
http://wrap.warwick.ac.uk

Original citation:
Gkotsis, George, Stepanyan, Karen, Cristea, Alexandra I. and Joy, Mike. (2014)
Entropy-based automated wrapper generation for weblog data extraction. World Wide
Web, Volume 17 (Number 4). 827-846 . ISSN 1386-145X

Permanent WRAP url:
http://wrap.warwick.ac.uk/61827

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“The final publication is available at Springer via http://dx.doi.org/10.1007/s11280-013-
0269-6”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61827
http://dx.doi.org/10.1007/s11280-013-0269-6
http://dx.doi.org/10.1007/s11280-013-0269-6
mailto:publications@warwick.ac.uk

Noname manuscript No.
(will be inserted by the editor)

Entropy-based automated wrapper generation for
weblog data extraction

George Gkotsis · Karen Stepanyan ·
Alexandra I. Cristea · Mike Joy

the date of receipt and acceptance should be inserted later

Abstract This paper proposes a fully automated information extraction method-
ology for weblogs. The methodology integrates a set of relevant approaches
based on the use of web feeds and processing of HTML for the extraction of we-
blog properties. The approach includes a model for generating a wrapper that
exploits web feeds for deriving a set of extraction rules automatically. Instead
of performing a pairwise comparison between posts, the model matches the
values of the web feeds against their corresponding HTML elements retrieved
from multiple weblog posts. It adopts a probabilistic approach for deriving a
set of rules and automating the process of wrapper generation. An evaluation
of the model is conducted on a collection of weblogs reporting a prediction
accuracy of 89%. The results of this evaluation show that the proposed tech-
nique enables robust extraction of weblog properties and can be applied across
the blogosphere.

Keywords Web Information Extraction · Automatic Wrapper Induction ·
Weblogs

1 Introduction

The problem of web information extraction dates back from the early days
of the web and is fascinating and genuinely hard. The web, and the Blo-
gosphere as a constituent part, correspond to a massive, publicly accessible
data source. However, the scale is not the only challenge for capturing web

This work was conducted as part of the BlogForever project funded by the European Com-
mission Framework Programme 7 (FP7), grant agreement No.269963.

Department of Computer Science, University of Warwick, Coventry CV4 7AL
United Kingdom
Tel +44 (0)24 7652 4911
Tel +44 (0)24 7657 3024
E-mail: {G.Gkotsis},{K.Stepanyan},{A.I.Cristea},{M.S.Joy}@warwick.ac.uk

2 George Gkotsis et al.

resources. The heterogeneous nature of these resources, the large numbers of
third party elements and advertisements, the rapid changes, the propagation of
user-generated content and the diversity of inter-relations across the resources
are among the common characteristics of the web. These characteristics am-
plify the complexity of capturing, processing and transforming of these web
resources into structured data. The successful extraction of weblog properties
and its transformation into structured data is of paramount importance for
improving the quality of analysis, searching and preservation of such resources.

Although the exact number of weblogs is not known, it is evident that
the size of the blogosphere is large and continues to grow. WordPress, one of
the most popular blogging engines, is used by 19.6% of all the websites, while
having a market share of 57.9% amongst content management systems [25].
In 2008 alone, the Technorati reported to be tracking more than 112 million
weblogs, with around 900 thousand blog posts added every 24 hours [27].
The dataset of updated weblogs [5], as captured by Spinn3r between 13.01-
14.02.2011, contains 133 million (mainly English) blog posts. In Britain, 25%
of Internet users maintain weblogs or personal websites [7] that are read by an
estimated 77% of Web users [27]. Hence, the volume of information published
on weblogs justifies the attention of information retrieval, preservation and
socio-historical research communities.

Unlike static web pages, weblogs are commonly perceived as dynamic and
versatile web spaces. They often promote social connectedness, sharing, con-
tent creation and collaboration. Weblogs vary in their choice of subject, writ-
ing style, purpose, media use, platform and presentation. They can represent
individuals, organisations or companies and connect to different audiences.
Weblogs can assemble into specialised communities and interweave into sparse
networks. This investigation focuses on data extraction techniques suitable for
weblogs. Prior to proceeding to the subject of data extraction, it is necessary
to outline the weblog as the object of data extraction.

Typically, the content of a weblog resides in a relational database, though
alternative solutions for managing and maintaining the data are becoming
available1. At the time of accessing a weblog (that is, requesting the resource
via the HTTP protocol), it is being dynamically compiled by the blogging
platform and sent to the web browser for rendering. The automation supported
by the blogging platform provides a common structure that can be observed
across the various weblog pages. More specifically, the weblog post, which
constitutes a building block of a weblog, is comprised of a set of properties,
such as the title, author, publication date, post content and the categories (or
tags) assigned. Whilst the data structure is presented in a consistent way across
a certain weblog, it rarely appears identical across weblogs, even if the blogging
platform remains the same. The main reason for the above inconsistency is the
fact that bloggers are allowed to personalise the presentation of their weblog

1 http://www.instantfundas.com/2009/09/blogging-without-database-7-database.

html

Entropy-based automated wrapper generation for weblog data extraction 3

arbitrarily in numerous ways, hence the resulting weblog exhibits a customised
and unique document structure.

The above settings are shaping a challenging problem for state-of-the-art
wrappers, since the extraction rules cannot automatically adapt to each weblog
case. Even in the case of unsupervised wrapper induction, where examples are
not provided by the user and user feedback is not required during training, hu-
man effort is typically required. This effort concerns the selection of the initial
web pages or the manual annotation of the output of information extraction,
such as missing attributes and ambiguous data. In our case, in order to deploy
a pragmatic weblog data extraction solution, information extraction must be
fully automated and be able to deal with issues that usually require human
intervention.

One of the most prominent characteristics of weblogs is the existence of
web feeds. Web feeds, commonly provided as RSS, are XML documents that
allow access to the content of a website, such as a weblog, through a machine
interpretable, structured document. Due to their rigorous structure, web feeds
are used for accessing the content of a weblog in several applications. For
instance, ArchivePress2 is a plugin built for WordPress3, which relies on and is
limited by the weblogs’ web feeds [22]. This limitation appears due to the fixed
number of entries found in a web feed and a recent survey on web feeds reports
that the typical number of posts found in a web feed is 10 [21]. Furthermore,
the content of the posts found in the web feed might be clipped and may
contain only a summary of the weblog post.

The solution proposed here enables to overcome the above limitations.
Intuitively, the idea is not to treat the web feeds as the only source of informa-
tion, but as a medium that will allow the training and generation of a wrapper
automatically. During this unsupervised training session, the matching of the
elements found between the web feeds and the web documents is used to ob-
serve and record the position and the properties of the cross-matched elements.
Based on these observations, a set of rules is generated through an inherently
probabilistic approach. The paper is structured as follows. Section 2 intro-
duces the concept of wrapper and wrapper generation and Section 3 describes
the model proposed. Section 4 addresses the problem of matching text values
between different sources, a crucial problem upon which the proposed solution
relies. Section 5 presents a simple, real-world example as a demonstration of
wrapper generation. Finally, Section 6 evaluates the model, Section 7 discusses
the contribution of the approach and Section 8 presents the conclusions.

2 Wrapper generation

Work on using wrappers for data extraction started a few years after the
emergence of the web. Initially, the wrapper was a custom built tool devel-
oped to parse specific web pages. This page- or site-level approach required

2 http://archivepress.ulcc.ac.uk/
3 http://wordpress.org/

4 George Gkotsis et al.

a lot of effort and was inflexible to website changes. Traditionally, a wrapper
is considered a semi-automatic approach, due to the requirement for labelling
a collection of pages manually prior to applying the rules for extracting tar-
get data from other similarly formatted pages [18]. However, developments in
wrapper generation have yielded automatic, unsupervised approaches as well.
Hence we adopt the general definition by Baumgartner et al., as follows:

A wrapper is a program that identifies the desired data on target pages,
extracts the data and transforms it into a structured format [3].

In our approach, as stated in the definition above, the identification of
target pages is not part of the wrapper. In general, this problem is typically
resolved as part of the crawling process. We refer the reader to the discussion
of the problem of identification of target pages and how our work can inform
this process in Section 7.

From a more functional perspective, Laender et al. [17] describe a wrapper
as a program that executes a mapping W , which populates a data repository
R with the objects found in a webpage S. This mapping must also be capable
of recognizing and extracting data from any other page S′ similar to S. The
development of a wrapper is called wrapper generation or induction. Develop-
ing a wrapper can take different forms that use wrapper generation languages
or pattern matching. The term wrapper induction is often used to describe an
inductive process of wrapper generation. It may, for instance, involve appli-
cation of supervised learning. Therefore, the term wrapper generation is more
general.

3 Proposed Model

As already mentioned, our model enables to generate a fully automated wrap-
per. It can be classified as an unsupervised data extraction method for weblogs.
The approach is divided into three steps as follows.

3.1 Step 1: Feed Processing and Capturing of Post Properties

The only prerequisite of the first step is the acquisition of the weblog’s feed
URL. During this step, the content of the feed is fetched and processed through
an ordinary XML parsing library. A feed contains a section of entries that
point to corresponding weblog posts. For each entry, the following attributes
are typically found and stored.

– Title: An optional string. A post can contain no more than 1 title.
– Author : An optional string.
– Date Published : A required object of type date. A post contains exactly 1

publication date.
– Summary : An optional HTML encoded part of the weblog post’s content

(usually the beginning of the post’s content).

Entropy-based automated wrapper generation for weblog data extraction 5

– Permalink : A required URL that points to the actual weblog post.
– Categories: An optional collection of words/phrases describing the topic of

the post.

3.2 Step 2: Generation of Filters

The second step includes the generation of filters. The concept of a filter has
already been used in research related to web information extraction. Baum-
gartner et al.[2] use the term to refer to the building block of patterns, which
in turn describe a generalised tree path in the HTML parse tree. Adding a
filter to a pattern extends the set of extracted targets, whereas imposing a
condition on a filter restricts the set of targets. The same concept is used by
XWRAP [19] in order to describe the so-called “declarative information ex-
traction rules”. These rules are described in XPath-like expressions and point
to regions of the HTML document that contain data records.

Following related work, we use the concept of a filter in order to identify
and describe specific data elements of an HTML weblog post. Unlike past
approaches where most of the tools deal with the absolute path only (for ex-
ample through partial tree alignment [30]), our filters are comprised of triples,
which inform and extend existing solutions. Our approach overcomes irregu-
larities appearing across absolute path values by providing additional means
of describing the HTML element (namely the CSS Classes and HTML Identi-
fiers). Our evaluation will later show that especially CSS Classes are used as
extraction rules successfully many times, a feature that remains unexploited
in most (if not all) approaches until now. Furthermore, in our approach, we
acknowledge that neither of these three features (attributes) alone is strong
enough to serve as the means for robust extraction. Instead, we assert that
the combination of these three features is a vigorous solution.

In our approach, the filter is described using three basic attributes: the
Absolute Path, the CSS Classes and the identifiers of the HTML element:

– Absolute path: XPath4 (XML Path Language) is a W3C-defined language
initially introduced in 1999 that is used to address parts of an XML docu-
ment. There are roughly two basic approaches when addressing an element:
the absolute and relative path. The Absolute Path is the path from the root
of an HTML document to the desired element. This element may either
be a node of the DOM tree or simply an end-node (leaf). Thus, the Abso-
lute Path is described as a sequence of edges, where every edge is defined
as the name of the element and the positional information of the element
(index)5. This sequence of edges starts from the root of the document and
ends with the element containing the value we are interested in.

4 http://www.w3.org/TR/xpath/
5 The positional information of an HTML element is crucial in HTML documents, since

this affects its visual representation. This is one of the reasons that HTML DOM trees are
viewed as labelled ordered trees in the literature (e.g., [10]).

6 George Gkotsis et al.

– CSS Classes: CSS (Cascading Style Sheets) are “a simple mechanism for
adding style (e.g., fonts, colours, spacing) to web documents”6, first in-
troduced in 1996. It allows the separation of document content from its
presentation through the definition of a set of rules. The rules contain
information about the selectors and a declaration block.

– HTML Identifiers: The ID attribute identifies uniquely an HTML element
of a document. It is commonly used in cases where CSS code needs to ad-
dress one specific, unique element (e.g. the title of a post) or run JavaScript.

Figure 1 shows the structure of a filter with an annotated example. When
pointing at a specific element, a set of HTML Identifier values and CSS Classes
together with a single-valued Absolute Path are used to describe and define the
filter. More specifically, when an element is identified, any HTML Identifiers or
CSS Classes applied to this element are added to the filter. Afterwards, an it-
erative selection of the parent element continues, adding HTML Identifiers and
CSS Classes to the corresponding sets, as long as the value of the parent ele-
ment contains nothing but the value identified. For the example of Figure 1, the
value for the ID attribute is single-date, for the CSS Classes the value is date
and the Absolute Path is html[0]/body[1]/div[1]/div[1]/div[0]/div[0]/div[1]. Fur-
thermore, the filters are generated as the result of matching the post proper-
ties against the actual HTML document; technical details about this matching
process are provided in Section 4.

Fig. 1 The structure of a filter. An example is annotated for the case of an element con-
taining a date value.

6 http://www.w3.org/Style/CSS/

Entropy-based automated wrapper generation for weblog data extraction 7

3.3 Step 3: Induction of Rules and Blog Data Extraction

After the completion of step 2, a collection of filters is populated for each
property. The values of these filters are such that, when applied to the weblog
posts from which they were extracted, they link back to the HTML element
containing the value of the matched property. However, due to multiple oc-
currences of values during the text matching process of Step 2, there are cases
where a value is found in more than one HTML element. This results in gen-
erating a number of filters equal to the number of values found. Therefore,
the collected filters are not yet suitable for extracting the data out of a we-
blog; the collection contains diverse and conflicting information that needs
further processing. This “filter pollution” (or “diversity”) may appear due to
the following reasons.

– The visual theme of each weblog is different. This directly affects the values
of the filter attributes. Hence, filters cannot be generally applied across
different blogs.

– Even for a single weblog, the blogging platform may choose to render dif-
ferently the property to be found across different posts. For example, as the
size of the post content changes, the Absolute Path is affected. This value
of the path, if reused elsewhere, may point to different or null elements.

– The value to be matched may be repeated more than once in a single web
page. For instance, the title of a weblog post may be included at the sidebar
under the section “recent posts” or the name of the author may be cited
several times. Since our approach produces a filter for each matched value,
multiple filters refer to and describe the same property.

– There are cases where a part of a filter should be applied in order to extract
the desired property. For example, there are cases where the value of an
Absolute Path (or an auto-incrementing HTML identifier) changes for each
instance of a weblog post. At the same time, an identical CSS Class value
across posts might identify the desired property successfully. In that case,
only the CSS Class value should be used to extract the desired property.

The goal of this step is to address the above issues. More specifically, the
aim is to exploit the knowledge residing in the filters in order to generate a set
of rules that describes how to extract the properties for a weblog automatically.
These rules are devised from the collection of the filters already accumulated.
They are described in filter attributes and direct the process of extraction.

In the case of weblog data extraction, there is neither prior knowledge of
the location of the elements to be identified, nor a definite, automated way
to describe them. Instead, we propose a case-based reasoning mechanism that
assesses the information found in filters. The aim of this mechanism is to
generate rules through a learning by example methodology, i.e., a general rule
for each property is extracted through the examination of a set of instances.
In our case, the instances correspond to the weblog posts that lead to the
generation of the filters during the previous step. The rules are defined in
the language used to describe the previously collected filters and we propose

8 George Gkotsis et al.

to compute them in an inherently probabilistic way, so as to accommodate
irregularities found in web documents.

Moreover, the aim is to account for each attribute of each filter (Absolute
Path, CSS Values and HTML identifiers) individually, in order to assess the
utility and the likelihood of each attribute value as a rule. An important con-
sideration here is the fact that selecting a “best-match” filter from the list of
the filters or a non-empty value for each attribute (as a collection of “best-of”
values for each attribute) may result in the elimination of the desired element.
For instance, consider the case where an HTML identifier might increment
for each weblog post and is therefore unique for every instance; in that case
HTML identifiers should not be used at all.

Additionally, since the information gathered in the filters contains a degree
of uncertainty, we propose to use the concept of entropy for solving the problem
of devising the extraction rules. Information entropy and information gain have
been used in classification problems, such as the ID3 algorithm [23]. Entropy,
which was initially studied by Shannon, is defined as a measure of uncertainty
or randomness of a phenomenon [13]. The entropy E(S) of the set S for a
given attribute is defined as:

E(S) = −
n∑
j=1

fs(j) log2 fs(j)

where:

– n is the number of different values of the attribute in S;
– fs(j) is the frequency of the value j in the set S.

Our approach adopts the concepts of entropy-based measurements [11]
with the aim of generating a set of rules. In our case, instead of considering
the entropy of each attribute, the entropy of the value of each attribute (called
property in this paper and denoted as Ai) is accounted, which is:

E(SAi) = −fs(Ai) log2 fs(Ai)

Hence the gain (according to Quinlan [23]), which is now defined in relation
to every value i of its attribute A (denoted as G(S,Ai)) over its set, is:

G(S,Ai) = −fs(Ai) · E(SAi
)

For example, consider the example in Table 1. For this table, we have:

Entropy-based automated wrapper generation for weblog data extraction 9

Table 1 A simple example of different filters. ∅ denotes that no HTML Identifier was found.

HTML Identifiers CSS Classes Absolute Path

∅ cssValue1 path1
id1 cssValue1 path1
id1 cssValue1 path2
∅ cssValue2 path2
∅ cssValue2 path3

EIDsnull
= − 1

5 log2(1
5) = −0.467

G(S, IDsnull) = − 1
5 (−0.46) = 0.09

EIDsid1 = − 2
5 log2(2

5) = −0, 53

G(S, IDsid1) = − 2
5 (−0.53) = 0.21

ECSScssV alue1
= − 3

5 log2(3
5) = −0.44

G(S,CSScssV alue1) = − 3
5 (−0.44) = 0.27

ECSScssV alue2
= − 2

5 log2(2
5) = −0.53

G(S,CSScssV alue2) = − 2
5 (−0.53) = 0.21

EPathpath1
= − 2

5 log2(2
5) = −0.53

G(S, Pathpath1) = − 2
5 (−0.53) = 0.21

EPathpath2
= − 2

5 log2(2
5) = −0.53

G(S, Pathpath2) = − 2
5 (−0.53) = 0.21

EPathpath3
= − 1

5 log2(1
5) = −0.46

G(S, Pathpath3) = − 1
5 (−0.46) = 0.09

Based on the above calculations, the rules are ordered by their gain. Finally,
if the applied rule fails (i.e., when zero or more than one elements are identified
while a single value property is expected, e.g. for the case of a title), the next
rule is selected. For the example in Table 1, the following rules are produced
in the following order8:

1. CSS Class for value cssV alue1
2. CSS Class for value cssV alue2
3. HTML Identifier for value id1
4. Absolute path for path1
5. Absolute path for path2
6. Absolute path for path3

7 Since null contains no information, we consider instances of null values as a unique case
which does not add up to a more general case of “null” values.

8 Observations from the evaluation presented in Section 6 show that the use of CSS Classes
or HTML Identifiers is prioritised over the Absolute Path attribute, when the information
gain values are equal.

10 George Gkotsis et al.

Figure 2 presents an overview of the overall approach described. As already
discussed in detail, the proposed solution involves the execution of three steps.
The first step includes the task of reading and storing the weblog data prop-
erties found in the web feed. The second step includes training the wrapper
through the cross matching of information found in the web feed and the corre-
sponding HTML documents. This step leads to the generation of information,
captured through the filters, which describes where the weblog data proper-
ties reside. The final step deals with the processing of the filters, in order to
generate the rules that are used for weblog data extraction.

Fig. 2 Overview of the weblog data extraction methodology.

4 Text Matching

As already discussed in Section 3.2, the proposed method relies on the identi-
fication of an HTML element against a specific value. Text matching can be
used for achieving the above identification. Generally, text matching is a re-
search field studied extensively and may be classified into the following string
matching cases.

– Complete matching: Every character of a string has to match every char-
acter of another string and vice versa.

– Partial matching: Every character of one string matches a substring of
another string. Insertion is needed to have a complete matching.

– Absolute matching: A sequence of characters matches completely another
one.

– Approximate matching: A sequence of characters is aligned to another se-
quence optimally; i.e., the least possible changes take place in order to have
an absolute matching. Substitution is needed to achieve absolute matching.

Whilst absolute matching is a fast and trivial task, this type of matching is
of limited interest and applicability. On the contrary, approximate matching
has been a field of study in several problem domains. The main reason for
the popularity of approximate string matching is that inherent data distortion

Entropy-based automated wrapper generation for weblog data extraction 11

Table 2 An example of different cases of text matching (taken and extended from http:

//en.wikipedia.org/wiki/Levenshtein_distance).

Absolute Approximate

Complete kitten
kitten

kitten
sitten

Partial kitten
kitt

kitten
sitting

appears in many problems9. For the case under examination (identifying spe-
cific HTML elements) approximate, partial text matching10 is needed, since
two different, semi-structured data sources (the HTML document and the web
feed) are cross-matched (see Table 2 for an example).

Table 3 Levenshtein distance values for the example of Table 2. Distance is measured by
the minimum number of character edits between two strings.

Pairs of strings Levenshtein distance

(kitten, kitten) 0
(kitten, sitten) 1
(kitten, kitt) 2
(kitten, sitting) 3

The Levenshtein (or edit) distance is quite popular because it presents
several advantages (see Table 3). First of all, it is a simple concept and its
return value can be effortlessly assessed as a measure of the conducted match-
ing/comparison. Secondly, the algorithm that calculates this distance is very
efficient computationally (time and space complexity are low) and finally, this
distance establishes a metric space11. However, the Levenshtein distance value
expresses the number of character edits and therefore is not unitless. Thus,
having an absolute value as a result of the matching between two strings does
not give much information about the “degree of matching” between them. For
example, comparing one string of 200 characters against another of 1000 char-
acters would lead in the best case scenario (complete, partial matching) to a
Levenshtein distance value of 800. At the same time, comparing two strings
of 200 bytes would yield a result of no more than 200 (worst case scenario, no
overlapping characters between the two strings). The above remarks have led
to the further development of text distance measurements. Typically, these
metrics adopt and extend the Levenshtein distance while at the same time

9 A detailed survey on various string matching techniques can be found at [8].
10 also used as “optimal string alignment”.
11 Establishing a metric space based on a distance function leads to a very powerful math-

ematical model. This is because a metric space presents important properties (e.g. the trian-
gular inequality, identity of indiscernibles, symmetry) that can be used to extract meaningful
knowledge between objects belonging to a large collection, without the need to calculate the
distance for every pair of objects.

12 George Gkotsis et al.

attempt to address the issue of strings of different length. The most common
variations are the ones presented in Table 4.

Table 4 Variations of the Levenshtein distance (taken by Yujian and Bo [29]). |x|, |y| are
the lengths of the strings x,y, respectively. dE is the Levenshtein (or edit) distance.

Method Name Expression

Normalised by the sum dsum(x, y) =
dE(x,y)
|x|+|y|

Normalised by the maxi-
mum of the length of the
strings

dmax(x, y) =
dE(x,y)

max{|x|,|y|}

Normalised by the mini-
mum of the length of the
strings

dmin(x, y) =
dE(x,y)

min{|x|,|y|}

Normalisation by Yujian
and Bo [29]

dY B(x, y) =
2dE(x,y)

|x|+|y|+dE(x,y)

It is worth noting that each variation presents some advantages over the
original Levenshtein distance. For example, both dsum and dmax have nor-
malised values in the scale of 0 to 1 and are unitless (i.e. do not express number
of characters but percentage). The same applies to the distance dY B , which has
the extra feature of establishing a metric space. On the other hand, dmin is not
normalised and therefore maintains the basic limitation of the original Leven-
shtein distance. However, experiments conducted during the evaluation12 have
shown that all four distance metrics fail to quantify partial matching of weblog
properties adequately for the cases of strings of notably different length (see
discussion in previous paragraph).

Taking into account the above, another distance metric that is not based
on the Levenshtein metric was considered; the Jaro-Winkler metric, which is
introduced by Winkler [26] and extends the metric by Jaro [14]. Jaro metric
is computed as [8]:

Jaro(σ1, σ2) = 1
3 (c
|σ1| + c

|σ2| + c−t/2
c)

where:

– |σ1| and |σ2| are the lengths of strings σ1 and σ2;
– c are the “common characters” in the two strings: common are all the char-

acters σ1[i] and σ2[j] for which σ1[i] = σ2[j] and |i− j| ≤ 1
2min{|σ1|, |σ2|};

– find the number of transpositions t; the number of transpositions is com-
puted as follows: compare the ith common character in σ1 with the ith
common character in σ2, and each nonmatching character is a transposi-
tion.

12 Evaluation conducted for text matching is omitted, since it exceeds the scope of this
paper and would increase the size to a great extent.

Entropy-based automated wrapper generation for weblog data extraction 13

Winkler and Thibaudeau [26] modified the Jaro metric to give higher
weight to prefix matches, which for our case favours the matching of clipped
post content found in web feeds. Our evaluation of the above metrics has shown
that the Jaro-Winkler distance is more appropriate, since it returns low values
for cases of partial matching between strings of considerably different lengths.

5 Example

In order to demonstrate how the proposed methodology works, we consider
a specific example of a weblog. The weblog shown here is hosted on http:

//blogs.warwick.ac.uk, which is powered by the blogging platform Blog-
Builder, developed by Warwick IT services13. The weblog of the example pro-
vided is owned by a user by the name of “John Smith”14. For this example,
the property to be extracted will be the author of the weblog. The steps are
as follows:

Step 1: Feed processing and capturing of post properties

In this step, the web feed was found and processed. More specifically, the feed
is an Atom feed15 containing entries for the latest 20 posts published by the
user. However, in order to keep the example as general possible, the latest
10 posts were considered as being part of the web feed and the other 10 were
discarded (10 is the most typical number of entries found in web feeds [21]). For
this feed, the value of the author is always the same (John Smith); however,
even if more than one author was blogging, steps would proceed in the same
manner, since the value to be matched is extracted on a per-post, case-by-case
basis.

Step 2: Generation of filters

In this step, the value of the author found in the feed is matched to the HTML
document of the weblog post. For each match, a filter is generated, described by
the attributes HTML Identifiers, CSS Classes and Absolute Path accordingly.
The filters extracted are shown in Table 5.

The first column of Table 5 refers to a unique identifier of each post. The
table shows that, for each of the 10 posts, at least one filter was generated,
which means that the value of the author found in the web feed was successfully
matched for every case. Moreover, we notice that there are cases (i.e. post ids
18113 and 18115) where the author appears more than once (2 and 3 times,
respectively). This is happening because the text “John Smith” either appears
in a separate paragraph (as a “signature” to the content of the post 18113) or

13 Our evaluation presented in Section 6 uses a great variety of weblogs. The selection of
one Warwick blog is simply for illustrative purposes.
14 The name of the user has been anonymised for privacy reasons.
15 http://tools.ietf.org/html/rfc4287

14 George Gkotsis et al.

Table 5 Filters generated from and for a single weblog, for the case of a specific author,
John Smith. Attribute HTML Identifiers is null for all cases and is omitted.

Post
Id

CSS Classes Absolute Path

18110 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/div[0]/
div[0]/div[1]/div[1]/div[0]/p[8]/span[0]

18111 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/div[0]/
div[0]/div[1]/div[1]/div[0]/p[13]/span[0]

18112 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/div[0]/
div[0]/div[1]/div[1]/div[0]/p[7]/span[0]

18113 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/
div[0]/div[0]/div[1]/div[1]/div[0]/p[9]/span[0]

18113 ∅ /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/
div[0]/div[0]/div[1]/div[1]/div[0]/p[7]

18114 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/div[0]/
div[0]/div[1]/div[1]/div[0]/p[2]/span[0]

18115 commentauthor /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/div[0]/
div[0]/div[1]/div[1]/div[1]/div[0]/ol[2]/li[0]/h4[5]

18115 commentauthor /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/
div[0]/div[0]/div[1]/div[1]/div[1]/div[0]/ol[2]/li[0]/h4[5]/a[0]

18115 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/div[0]/
div[0]/div[1]/div[1]/div[0]/p[2]/span[0]

18116 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/
div[0]/div[0]/div[1]/div[1]/div[0]/p[7]/span[0]

18117 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/
div[0]/div[0]/div[1]/div[1]/div[0]/p[7]/span[0]

18118 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/
div[0]/div[0]/div[1]/div[1]/div[0]/p[6]/span[0]

18119 author /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/
div[0]/div[0]/div[1]/div[1]/div[0]/p[7]/span[0]

as a comment author (post 18115). However, for the majority of the cases the
author name is embedded into the HTML as follows:

<img src="/blogbuilder/media/images/tiny author.gif"

title="2nd Year Undergraduate Student:

Statistics" alt="">
John Smith

The filters presented in the Table 5 indicate that the HTML Identifiers are
not used to identify the HTML element (all values are null), while the CSS
Class value author is used with high frequency. Finally, for the Absolute Path,
while it follows a common path to a certain extent, its value typically varies.

Step 3: Induction of rules and weblog data extraction

In this step, the gain for each value of each attribute is calculated, as described
in Section 3. The result of the calculation shows that the first rule is the one
where value author is selected for the case of CSS Classes (highest gain).
Moreover, if we attempt to evaluate this rule, the result will show that the

Entropy-based automated wrapper generation for weblog data extraction 15

Table 6 Gain for every attribute value of the filters of Table 5. Selecting the rule described
by the highest gain (CSS Class with value author) will result in the successful extraction of
the desired property for all weblog posts. Attribute values appearing once have been omitted
for brevity.

Attribute
name

Attribute value Occurrences Gain

CSS
Classes

author 10 0.22

Absolute /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/div[0]/ 4 0.16
Path div[0]/div[1]/div[1]/div[0]/p[7]/span[0]
CSS
Classes

commentauthor 2 0.06

Absolute /html[0]/body[1]/div[0]/div[0]/div[0]/div[1]/div[0]/ 2 0.06
Path div[0]/div[1]/div[1]/div[0]/p[2]/span[0]

author is extracted successfully for all posts of the weblog (a more thorough
discussion on evaluation issues follows in Section 6). The specific values for
each rule are shown in Table 6.

6 Evaluation

In order to assess and evaluate the described methodology, we have developed
a software prototype that implements it. The evaluation was based on a use
case that aimed to assess the accuracy of the weblog data extraction. Details
about this use case are the following.

– A collection of 2547 posts (originating from 325 weblogs) was created.
These weblogs are powered by different blogging engines, such as Blogger
or WordPress and use different themes. The selected blogs are the most
popular (in terms of incoming links) as indicated by the Spinn3r dataset [5].
For each weblog, the feed containing a list of posts was acquired.

– Each weblog feed contained at least 10 entries. If more entries were in-
cluded, the additional entries were discarded and were not used for training
or evaluating the wrapper (see explanation in the previous section).

– The weblog post properties title, author, publication date and post content
were evaluated.

Evaluation was conducted following the 10-fold validation method [28].
This method is most appropriate when evaluating the quality of a classification
approach. The aim of this method is to assess the expected accuracy of future
examples, a measurement known as prediction error. In order to achieve the
above, training data are partitioned into 10 disjoint folds (blocks). Training
takes place for 9 out of the 10 blocks and testing of the model occurs for the
remaining block. This task is repeated 10 times, in order to test all blocks (see
Figure 3). In our case, each block corresponds to an entry found in a web feed.
Finally, the prediction error is extracted by accounting the errors for all 10
cases.

16 George Gkotsis et al.

Fig. 3 A visualisation of the 10-fold validation approach applied.

The evaluation was conducted on the author and the title of a weblog post.
While the web feed of the weblog contains more information, like the content
and the publication date of the post, validation of the correct extraction of
these properties was omitted. For the case of the content, the feed contains
less information, namely the summary. For the case of the date, the styling of
the date during the training was not captured and it was therefore not easy
to cross-validate the extraction. An updated version of the prototype includes
more capabilities concerning the date matching in order to be included in
future validations. Given the above, a manual validation on a small sample of
the use case has shown that the proposed approach captures the correct data
in most of the cases and is equally effective for the properties which have been
10-fold validated.

The results overall show that accuracy for the 2547 weblog posts is high
(89%). For the case of the title, the accuracy is as high as 98.3% (43 misses).
For the case of the author, the accuracy drops to 80.6% (493 misses). A survey
on the errors of the author attribute shows that these errors appear mostly
due to the following reasons.

– There are cases where a weblog does not show the name of the author at
all. Instead, the author name might appear occasionally as an author of a
comment, leading to the false production of rules.

– Similarly, there are cases where the author name appears as a comment in
addition to the post author. This leads to the generation of several filters
that point to comment blocks, leading to an increased information gain of
elements found in comments.

– Because of the time difference between the fetching of the web feed and
the weblog post, there are cases where weblog posts have changed (false
negative).

Entropy-based automated wrapper generation for weblog data extraction 17

During the development, some issues surfaced that shaped the final pro-
posed extraction methodology, which have not been discussed yet. These is-
sues, as well a suggestion for further improvement, are as follows.

– Matching a date (e.g. publication date) is a complex task, compared to
the simpler text matching (e.g. the weblog post title). The main reason
for this is the fact that different weblogs may style the date in different
ways. For instance, a date might appear as “Friday, 11 May 12”, “Friday,
11 May 2012” or even 11/05/2012. In order to address the above issue, the
prototype currently casts the date value to the most popular styles (as well
as some variations of them) available, such as:
– SHORT (e.g. 05.11.12)
– MEDIUM (e.g. May 11, 2012)
– LONG (e.g. May 12, 2012)
– FULL (e.g. Friday, May 11, 2012 AD)

Moreover, the date is currently rendered in the English language only,
which is usually not sufficient for matching the date in weblogs written in
different languages. An improvement would be to identify the language of
the document (e.g. with Tika16) and style the date following the locale of
the language identified.

– Initially, the rules are ordered by their information gain. If a rule fails to
return a valid value (e.g., a rule for the title should return exactly one
HTML element, but the rule might return 0 or more than one elements),
the next rule is applied until the model runs out of rules. This is not always
the best practice, since there are cases where searching for a property
should actually return no value (i.e. a title being blank). In this particular
case, the current prototype exhausts all possible rules, leading to false
values. An improvement would be to select rules that present information
gain higher than a certain threshold. We are currently experimenting with
various configurations and data in order to further study the above settings.

– For the case of the content of the weblog post, a web feed often contains a
small snippet of the actual post. This is the reason why the Jaro-Winkler
distance measurement was selected over the variations of the Levenshtein
distance. Therefore, after the summary has been identified in the HTML
document, the summary is extended in order to generate the filter for the
full content. The software prototype addresses this issue as follows:
– while the parent element does not contain special tag names (e.g. div),

the algorithm considers the parent element as the placeholder for the
content recursively;

– when a special tag name is found (e.g. div), the recursion stops and the
element is used to generate the filter.

Based on lessons learnt from the above, more recent work has been carried
out and an updated technique which follows and extends the same methodol-
ogy has been developed [12]. The new technique leverages the advantages of

16 http://tika.apache.org/

18 George Gkotsis et al.

its predecessor (presented in this paper) and overcomes some of the limitations
mentioned above. Future work includes the experimentation with more rich
XPath expressions as extraction rules in order to increase the performance
and allow applying the proposed technique beyond weblogs.

7 Discussion and Related Work

This section discusses how our approach relates to similar ones. To make the
section more readable, we are splitting the discussion into three parts. The first
part presents techniques that are making use of web feeds for accommodat-
ing data extraction (Web Feed Based Extraction). The second part places our
approach in the general research framework of data extraction (Data Extrac-
tion Techniques). The last part discusses how our approach can be integrated
into spiders and enhance their performance (Crawling and Accessing Weblog
Data).

7.1 Web Feed Based Extraction

The concept of using web feeds for capturing data is not new. ArchivePress17

is one of the archiving projects that has developed solutions for harvesting the
content of weblog feeds. Their solution focuses solely on collecting the struc-
tured content of weblog feeds that contain posts, comments and embedded
media. ArchivePress offered a robust mechanism for extracting weblog con-
tent and rich metadata. Making use of the standard XML-based data format
has enabled much more accurate and easier retrieval of data compared to using
a traditional crawler such as Heritrix18. Despite these benefits, the solution
provided by ArchivePress remains highly limited. The first limitation is re-
lated to the low number of entries (i.e., ten entries on average) distributed via
a single feed. Relying solely on web feeds prevents archiving data that are no
longer available in feeds. The second limitation is bound to encountering feeds
that distribute only partial content (i.e., post summary) as opposed to full
content. Therefore, retrieval when using ArchivePress is accurate but incom-
plete. Finally, the offered solution, as well as other related plugins, can only
be deployed on a single weblog at a time (powered by the WordPress blogging
platforms only and customised with the provided plugin19) and does not pro-
vide the necessary coverage for extracting information from a large number of
weblogs.

Despite the fact that web feeds constitute a useful resource for extracting
information from weblogs, they remain insufficient for ensuring robust infor-
mation extraction. Hence, the consideration of HTML documents with weblog
data remains paramount. One of the approaches that attempts to combine

17 http://archivepress.ulcc.ac.uk/
18 http://crawler.archive.org/
19 http://code.google.com/p/archivepress

Entropy-based automated wrapper generation for weblog data extraction 19

the two was developed by Oita and Sellenart [21]. The authors describe an ap-
proach for identifying the main article by using their corresponding web feeds.
This approach is based on evaluating a web page of interest and matching it
to the semantic information found in the corresponding web feed. The general
principle of cross-matching web feeds and pages constitutes the foundation of
the approach that we proposed in this paper. However, because the approach
by Oita and Sellenart does not devise general extraction rules, the solution
proposed is not suitable for capturing the data that are no longer available
in the corresponding web feed. This is a considerable limitation that prevents
the adoption of the proposed approach for extracting all the weblog entries,
including those that are no longer distributed via web feeds. The approach
introduced in our paper enables to overcome this limitation by describing a
mechanism for devising a set of general extraction rules that can be used across
weblog entries and regardless of their presence in the web feed. Oita and Sel-
lenart [21] report the results of an evaluation of a small corpus of weblogs as
comparable to other approaches; however, the performance of their approach
for extracting distinct properties, such as title, was reported as poor and was
not discussed in detail.

7.2 Data Extraction Techniques

The review of related work demonstrates the gap in the area of web informa-
tion extraction and highlights the need for developing robust solutions that
are applicable for weblogs. This paper attempts to narrow this gap by intro-
ducing a novel approach that enables capturing the content along with the
semantic structure of weblogs. To position our approach within the domain of
earlier conducted work on web information extraction, we classify it accord-
ing to the taxonomy of data extraction tools by Laender [17]. The rationale
for conducting this classification is to support potential users in assessing the
suitability of adopting the approach within a more general context of informa-
tion extraction. The taxonomy consists of six groups of tools. The grouping of
the tools is performed by taking into account their affordances: degree of au-
tomation, support for complex objects, ease of use, XML output, support for
non-HTML sources and type of page contents. The approach proposed in this
section can be associated with the Wrapper Induction and Modelling-Based
groups. Similarly to the Wrapper Induction tools, our approach generates ex-
traction rules as discussed in Section 3.3 of this paper. However, unlike many
wrapper induction tools, our approach is fully automated and does not rely on
human-annotated examples. Instead, it uses web feeds as a model that informs
the process of generating extraction rules and also resembles the Modelling-
Based group. Hence, the approach presented in this paper can be positioned
in relation to tools such as WIEN [16], Stalker [20], RoadRunner [6] or No-
DoSE [1].

WIEN is among the first tools aimed at automating the process of infor-
mation extraction from web resources. The term wrapper induction is, in fact,

20 George Gkotsis et al.

coined by the authors [16] of the tool. However, as one of the earlier attempts,
the use of the tool is restricted to a specific page structure and the heuristics
of the presented data. Furthermore, it is not designed to work with nested
structures of web data. The limitation of working with hierarchical data has
been addressed by the Stalker tool [20]. However, the use of Stalker requires
a training data set that limits the degree of automation offered by the sys-
tem. An attempt to automate the process of wrapper induction was made
by Crescenzi et al. [6] and published along with the RoadRunner tool, which
analyses structurally similar resources and generates a common schema for ex-
tracting the data. NoDoSE [1] represents a different, modelling-based category
of tools that requires an existing model that defines the process of extraction.
This is a semi-automatic approach due to the necessary human input for de-
veloping models. However, additional tools, such as a graphical user interface
for marking resources, can be used for reducing the human workload of de-
veloping the models. Hence, the review of the earlier work suggests that the
approach proposed in this paper addresses a niche not served by the existing
tools.

Among the generic solutions there are other technologies that aim at iden-
tifying the main section (e.g., article) of a web page. The open source Boil-
erpipe20 system is state-of-the-art and one of the most prominent tools for
analysing the content of a web page [15]. Boilerpipe makes use of the struc-
tural features such as HTML tags or sequences of tags forming subtrees and
employs methods that stem from quantitative linguistics. Using measures, such
as average word length and average sentence length, Boilerpipe analyses the
content of each web page segment and identifies the main section by selecting
the candidate with the highest score. The use of Boilerpipe delivers relatively
good results. For instance, the evaluation by Oita and Sellenart [21] reports
the precision of Boilerpipe to be 62.5%, even though our experiments with we-
blogs suggest a higher performance. However, similarly to Heritrix, the main
limitation of adopting Boilerpipe is bound to the constraints in identifying
the semantic structure of a weblog and in ensuring higher granularity of the
identified content that distinguishes properties such as title, date and author
from the content of the post.

7.3 Crawling and Accessing Weblog Data

The approach proposed in this paper can be adopted for designing and devel-
oping specialised spiders for the Blogosphere. Berger et al. [4] highlight the
gap for developing solutions for information extraction from weblogs and dis-
cuss the potential of employing web feeds for capturing weblog data. However,
the authors do not elaborate on their approach and focus on the process of
designing a weblog crawler and discussing its architecture at a higher level.
Hence, the existing gap for introducing effective weblog information extrac-
tion remains to be bridged. The approach introduced in our paper narrows

20 http://code.google.com/p/boilerpipe/

Entropy-based automated wrapper generation for weblog data extraction 21

this gap. In other work, Heritrix, the open source crawler used by the Internet
Archive21, allows for revisiting webpages and identifying important changes
using certain heuristics [24]. The above solutions share a common strategy,
where the attempt is to pairwise compare webpages in order to automatically
identify the template that renders the webpage. This approach resembles the
generic process of a wrapper induction. However, while the use of Heritrix
may identify the template of the weblog, this approach does not capture the
semantic structure of the weblog as represented through the template. Finally,
Faheem and Senellart propose an Application-Aware Helper (AAH) that can
be used during the crawling process [9]. AAH is using a knowledge base that
searches for HTML patterns and manages to detect the underlying blogging
engine. AAH and similar website crawling strategies are extremely useful be-
fore the execution of our model in order to provide the target post-pages.

In agreement with AAH, we performed an analysis on the total collection
of the attributes of the filters (HTML Identifiers and CSS Classes) generated
during the evaluation of Section 6. This analysis has revealed some patterns
that may be used in order to train the model faster and increase its accuracy.
The patterns show that the most common values for the HTML Identifiers of
the author are “header” and “site-title,branding,header”. For the CSS Classes
and the case of author or title, the values appearing most frequently are shown
in Table 7. As part of a future work, the values in Table 7 may be used in our
model in order to promote several well-known values and discard others (e.g.,
the value comment-author is used to describe a comment and not the author
of a post, even if there are cases where the values are identical) or even better
inform a crawling component, such as AAH’s knowledge base.

Table 7 Some values of CSS Classes ordered by the number of occurrences. The first column
corresponds to the case of the author and the second to the title of a weblog post.

Author Title

fn entry-title
author,vcard post-title
url,fn,n,author,vcard title
url,fn storytitle
url posttitle
comment-author post-format-icon
url,comment-author pagetitle
author entrytitle
url,fn,n single-title
comment-author,vcard rsswidget
fn,comment-author,vcard single
url,fn,comment-author,vcard photo-title

21 http://www.archive.org/

22 George Gkotsis et al.

8 Conclusions

In this paper, we have presented a method for fully automated weblog wrapper
generation. Compared to state-of-the-art tools, the generated wrapper exhibits
increased granularity, since it manages to identify and extract several weblog
properties, such as the title, author, publication date and main content of the
post with a prediction accuracy of 89%. This is accomplished through the
generation of rules, which are selected through the adoption of a probabilistic
approach based on information entropy and gain. The devising of these rules is
based on the generation of filters. The filters constitute a structure that, when
applied to a web document, singles out an HTML element. They are described
in triples, where each of its element-attributes describes the HTML element
in different forms (Absolute Path, CSS Classes and HTML identifiers). The
overall approach is evaluated against a real-world collection of weblogs and the
results show that the wrappers generated are robust and efficient in handling
different types of weblogs.

Acknowledgements This work was conducted as part of the BlogForever project funded
by the European Commission Framework Programme 7 (FP7), grant agreement No.269963.

References

1. Adelberg, B.: NoDoSE–a tool for semi-automatically extracting structured and
semistructured data from text documents. SIGMOD Rec. 27(2), 283–294 (1998)

2. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with
Lixto. In: Proceedings of the 27th International Conference on Very Large Data Bases,
VLDB ’01, pp. 119–128. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2001)

3. Baumgartner, R., Gatterbauer, W., Gottlob, G.: Web data extraction system. In: En-
cyclopedia of Database Systems, pp. 3465–3471. Springer (2009)

4. Berger, P., Hennig, P., Bross, J., Meinel, C.: Mapping the blogosphere–towards a uni-
versal and scalable blog-crawler. In: Privacy, Security, Risk and Trust (PASSAT), 2011
IEEE Third International Confernece on Social Computing (SocialCom), pp. 672–677.
IEEE (2011)

5. Burton, K., Kasch, N., Soboroff, I.: The ICWSM 2011 Spinn3r Dataset. In: Proceedings
of the Fifth Annual Conference on Weblogs and Social Media (ICWSM 2011). Barcelona,
Spain (2011)

6. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data extraction
from large web sites. In: Proceedings of the international conference on Very Large Data
Bases, pp. 109–118 (2001)

7. Dutton, W., Blank, G.: Next generation users: The internet in Britain. Oxford Internet
Survey (2011). URL http://www.oii.ox.ac.uk/publications/oxis2011_report.pdf

8. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey.
Knowledge and Data Engineering, IEEE Transactions on 19(1), 1–16 (2007)

9. Faheem, M., Senellart, P.: Intelligent and adaptive crawling of Web applications for
Web archiving. In: Proc. ICWE, pp. 306–322. Aalborg, Denmark (2013)

10. Geibel, P., Pustylnikov, O., Mehler, A., Gust, H., Kühnberger, K.: Classification of doc-
uments based on the structure of their DOM trees. In: Neural Information Processing,
pp. 779–788. Springer (2008)

11. Giles, K., Bryson, K., Weng, Q.: Comparison of two families of entropy-based classifi-
cation measures with and without feature selection. In: Proceedings of the 34th Annual

Entropy-based automated wrapper generation for weblog data extraction 23

Hawaii International Conference on System Sciences, HICSS ’01, pp. 3014–. IEEE Com-
puter Society, Washington, DC, USA (2001)

12. Gkotsis, G., Stepanyan, K., Cristea, A., Joy, M.: Self-supervised automated wrapper gen-
eration for weblog data extraction. In: G. Gottlob, G. Grasso, D. Olteanu, C. Schallhart
(eds.) Big Data, Lecture Notes in Computer Science, vol. 7968, pp. 292–302. Springer
Berlin Heidelberg (2013). DOI 10.1007/978-3-642-39467-6 26

13. Ihara, S.: Information theory for continuous systems. World Scientific Publishing Com-
pany (1993)

14. Jaro, M.A.: Unimatch: A record linkage system: User’s manual. Tech. rep., U.S. Bureau
of the Census, Washington, D.C. (1976)

15. Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow text
features. In: Proceedings of the third ACM international conference on Web search and
data mining, WSDM ’10, pp. 441–450. ACM, New York, NY, USA (2010)

16. Kushmerick, N.: Wrapper induction: Efficiency and expressiveness. Artificial Intelligence
118(1), 15–68 (2000)

17. Laender, A., Ribeiro-Neto, B., Da Silva, A., Teixeira, J.: A brief survey of web data
extraction tools. ACM Sigmod Record 31(2), 84–93 (2002)

18. Liu, B.: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Springer-
Verlag, Berlin, Heidelberg (2009)

19. Liu, L., Pu, C., Han, W.: XWrap: An extensible wrapper construction system for internet
information. In: Proceedings of the 16th International Conference on Data Engineering
(ICDE 2000), pp. 611–621. IEEE CS Press, San Diego, CA (2000)

20. Muslea, I., Minton, S., Knoblock, C.: Hierarchical wrapper induction for semistructured
information sources. Autonomous Agents and Multi-Agent Systems 4(1), 93–114 (2001)

21. Oita, M., Senellart, P.: Archiving data objects using Web feeds. In: Proceedings of
International Web Archiving Workshop, pp. 31–41. Vienna, Austria (2010)

22. Pennock, M., Davis, R.: ArchivePress: A Really Simple Solution to Archiving Blog
Content. In: Sixth International Conference on Preservation of Digital Objects (iPRES
2009). California Digital Library, San Francisco, USA (2009)

23. Quinlan, J.: Induction of decision trees. Machine learning 1(1), 81–106 (1986)
24. Sigurthsson, K.: Incremental crawling with Heritrix. Proceedings of International Web

Archiving Workshop pp. 1–12 (2005)
25. Web Technology Survey: Usage of content management systems for websites. [Online].

Available: http://w3techs.com/technologies/overview/content management/all. Tech.
rep., W3Techs (2013)

26. Winkler, W.E., Thibaudeau, Y.: An application of the fellegi-sunter model of record
linkage to the 1990 us decennial census. Methods 9 (1990)

27. Winn, P.: State of the blogosphere 2008: Introduction (2009). URL http://technorati.

com/blogging/article/state-of-the-blogosphere-introduction/

28. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques,
Second Edition. Morgan Kaufmann (2005)

29. Yujian, L., Bo, L.: A Normalized Levenshtein Distance Metric. IEEE Transactions on
Pattern Analysis and Machine Intelligence 29(6), 1091 –1095 (2007)

30. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: Proceedings
of the 14th international conference on World Wide Web, pp. 76–85. ACM (2005)

