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ABSTRACT
This work presents AutoLens, the first entirely automated modeling suite for the analysis of
galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy’s
light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The
method’s approach to source-plane discretization is amorphous, adapting its clustering and
regularization to the intrinsic properties of the lensed source. The lens’s light is fitted using a
superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the
source. Single-component mass models representing the lens’s total mass density profile are
demonstrated, which in conjunction with light modeling can detect central images using a
centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple
a lens’s light and dark matter and determine whether the two components are geometrically
aligned. The complexity of the light and mass models is automatically chosen via Bayesian
model comparison. These steps form AutoLens’s automated analysis pipeline, such that all
results in this work are generated without any user intervention. This is rigorously tested on a
large suite of simulated images, assessing its performance on a broad range of lens profiles,
source morphologies, and lensing geometries. The method’s performance is excellent, with
accurate light, mass, and source profiles inferred for data sets representative of both existing
Hubble imaging and future Euclid wide-field observations.
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1 IN T RO D U C T I O N

Strong gravitational lensing offers a unique means of measuring the
mass distribution and composition of galaxies within our Universe.
Through the intricate analysis of a lensed source’s extended light
profile, one can robustly infer the lens galaxy’s density profile, a
technique that has been exploited to provide observations in the
fields of dark matter substructure (Vegetti & Koopmans 2009a, b;
Vegetti et al. 2012, 2014), stellar dynamics (Barnabe & Koopmans
2007; Barnabè et al. 2009, 2011), and cosmology (Suyu et al. 2013;
Collett & Auger 2014; Suyu et al. 2016; Wong et al. 2017). Equally,
this analysis provides a full reconstruction of the highly magnified
source galaxy and therefore offers an unprecedented view of the
high redshift Universe (Shirazi et al. 2014; Dye et al. 2014, 2015;
Rybak et al. 2015; Swinbank et al. 2015).

However, unlike the works above, the majority of strong lens-
ing studies exploit just one lensing observable, the Einstein Mass,
MEin, which is widely accepted as a robust mass estimator that is
essentially independent of the density profile assumed for the lens.
MEin is constrained by the first derivative of the lens’s potential,
therefore it is the position of the lensed source in the image-plane
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that is key. Measuring MEin therefore requires relatively simple lens
modeling methodology (e.g. Bolton et al. 2008; Sonnenfeld et al.
2013a) and has already been performed on the majority of known
strong lenses over the past decade (Bolton et al. 2008; Koopmans
et al. 2009; Bolton et al. 2012; Brewer et al. 2012; Dutton et al.
2013; Sonnenfeld et al. 2013b, 2015).

When an extended source is lensed, light rays emanating from dif-
ferent regions of the source trace through different regions of the lens
galaxy. Therefore, the lensed source’s extended surface-brightness
profile contains a wealth of additional information, that if exploited
can be used to measure the lens potential’s second derivative, its
density profile. Extracting this signal requires more sophisticated
lens modeling capable of both reconstructing the source’s intrin-
sic light profile and modeling the lens galaxy’s mass distribution
(Warren & Dye 2003; Dye & Warren 2005; Suyu et al. 2006; Veg-
etti & Koopmans 2009a; Tagore & Keeton 2014; Birrer, Amara &
Refregier 2015a; Tessore, Bellagamba & Metcalf 2016). Unfortu-
nately, the involved nature of extended source modeling has seen it
struggle to scale up to large samples, with most analyses focusing
on samples of just 1–10 objects (e.g. Dye et al. 2014; Vegetti et al.
2014; Birrer, Amara & Refregier 2016; Suyu et al. 2016; Dye et al.
2017).
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The aim of this paper is to rectify this, by demonstrating a fully
automated approach to extended source modeling that performs
all analysis and generates all results without any user intervention
after a brief initial set-up. This is well motivated, given archival
lens data sets have several hundred HST-quality images warranting
such an analysis (Bolton et al. 2006; Auger et al. 2010; Sonnenfeld
et al. 2013a). Furthermore, with ongoing and future surveys such
as the Large Syntopic Survey Telesccope and Euclid set to find
of order one hundred thousand strong lenses (Oguri et al. 2012;
Collett 2015), an automated pipeline is paramount to fully exploit
the expansive incoming data sets.

This paper builds upon the adaptive semilinear inversion method
developed by Nightingale & Dye (2015, N15 hereafter) with a
new comprehensive and automated modeling process that we have
named Autolens. We test this on an extensive suite of simulated
imaging, which is paramount given we are in a regime where the
detailed inspection of results on an individual case-by-case basis
is not feasible. This also includes data representative of Euclid
imaging, thus giving first insights into the type of modeling and
observations that may (and may not) be possible with direct analysis
of wide-field imaging.
pythonThis work is performed using a Fortran version of

AutoLens. A project is now under way to redevelop AutoLens
in and make it publicly available and open-source software for
the community. The latest status of this project can be found at
https://github.com/Jammy2211/PyAutoLens.

Table D2 at the end of the script lists parameters and symbols
used in this work.

This paper is structured as follows. Section 2 gives an overview
of AutoLens’s key features. Section 3 describes the light pro-
files, mass profiles, and simulated images used to test AutoLens.
Section 4 presents in detail AutoLens’s lens and source analysis,
including the method’s adaptive source analysis and variance scal-
ing, which Section 5 demonstrates. Section 6 describes the method’s
development into an automated analysis pipeline. Section 7 demon-
strates this on the simulated image suite and Section 8 discusses the
results and summarizes the paper.

2 OV E RV I E W O F AU TO L E N S

AutoLens is described fully in Section 4. Here, an overview of
the method’s key features is given.
AutoLens brings about a number of improvements over the

source analysis of N15, who demonstrated the use of an adaptive
pixel-grid to reconstruct the source galaxy. This computed a unique
source pixelization in a completely stochastic manner for every
lens model, a feature that was key to removing previously unknown
systematics associated with the discrete nature of source recon-
struction. AutoLens now adapts its pixel-grid and regularization
scheme to the morphology of the lensed source galaxy, in a man-
ner that significantly improves lens modeling within the Bayesian
framework of Suyu et al. (2006). This ensures that the method can
handle the diverse range of strongly lensed sources that are in ex-
isting lens samples (e.g. Newton et al. 2011; Dye et al. 2015; Shu
et al. 2016; Oldham et al. 2017; Enia et al. 2018).
AutoLens now fits the lens galaxy’s light, thereby unifying the

modeling of the lens’s mass and light and the reconstruction of the
source galaxy into one coherent framework. This is in contrast to
other methods in the literature, which typically subtract the lens
galaxy’s light before performing lens modeling (e.g. Bolton et al.
2006), therefore discarding the information that it contains. Light
profile fitting with AutoLens supports both single- and multi-

component models and the complexity of the light model is chosen
within the framework of Bayesian model comparison, ensuring that
an appropriate light profile is fitted for lenses of different morpho-
logical classes. This achieves a clean separation of the lens and
source light (which is not possible when modeled independently;
Marshall et al. 2007; Biernaux et al. 2016) and measures the lens
galaxy’s light profile, a quantity routinely measured to study the
structure of large samples of galaxies (Hoyos et al. 2011; Vika et al.
2013; Bluck et al. 2014; Bruce et al. 2014a,b; Nikutta et al. 2014;
Vika et al. 2014; Vulcani et al. 2014).

Three approaches to mass modeling are demonstrated, the first
invoking the same mass model as N15, a power-law density profile
representing the lens’s total mass distribution. This is the model
assumed in most strong lensing works (e.g. Dye et al. 2014; Vegetti
et al. 2014) and has been fitted to over one hundred Early-Type
Galaxy (ETG) lenses from surveys such as the Sloan Lens ACS
Survey (SLACS) (Bolton et al. 2006; Auger et al. 2010), the Strong
Lensing in the Legacy Survey (SL2S) (Sonnenfeld et al. 2013a) and
the BOSS Emission-Line Lens Survey (BELLS) (Brownstein et al.
2012). This has revealed that the inner mass distribution of ETGs
are accurately approximated by a nearly isothermal density profile
(Gavazzi et al. 2007; Koopmans et al. 2009; Barnabè et al. 2011;
Bolton et al. 2012; Sonnenfeld et al. 2013b; Sonnenfeld et al. 2015)
and has been termed the ‘bulge-halo conspiracy’, given that neither
the light matter component, the bulge, nor the dark component, the
halo, has this profile and yet their combination conspires to produce
one. However, these large samples measure only MEin from the
lensing data, using it as an additional constraint on stellar dynamical
modeling. The extended source modeling used in this work can
infer the lens’s density profile without any kinematic data, offering a
complementary measurement to these previous studies.AutoLens
also models the contribution of large-scale structure via an external
shear term, the inclusion of which is subject to Bayesian model
comparison given that incorrectly assuming a shear can potentially
bias the lens model inferred (Balmès & Corasaniti 2013).

By simultaneously fitting and subtracting the lens’s light, Au-
toLens can potentially reveal faint features in a lensed source that
previous approaches to lens analysis may have missed, due to, for
example, falsely oversubtracting these features before lens model-
ing or masking them in the subsequent lens analysis. Therefore,
AutoLens’s second approach to mass modeling attempts to detect
a source’s central features, like a third or fifth image (Mao, Witt &
Koopmans 2001; Rusin & Ma 2001; Keeton 2003) or radial arcs, by
invoking the cored power-law density profile. AutoLens is able
to detect these features provided they are present in the image and
sufficiently extended and again uses Bayesian model comparison
to ascertain whether such features are residuals resulting from the
subtraction of an overly simplistic lens light profile or whether they
are genuine lensed image components. AutoLens thus brings a
new capability of searching for central images at optical and UV
wavelengths to compete with existing efforts in the submm and ra-
dio where the lens light is typically not detected (Winn, Rusin &
Kochanek 2004; Hezaveh, Marshall & Blandford 2015; Quinn et al.
2016). A promising aspect of searching at shorter wavelengths is
the possibility that sources possess a flatter and more extended light
profile, lessening the central image’s demagnification.

Fitting of the lens’s light plays another crucial role, allowing Au-
toLens to advocate decomposed mass profiles that separately treat
the lens’s light and dark matter. The final approach to mass modeling
thus incorporates the light profile into the mass model, exploiting
the fact that by tracing the lens’s underlying stellar mass distribu-
tion it offers additional information about approximately half of
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the lens’s overall density profile, information that other methods
omit. In doing so, AutoLens is able to make unique measure-
ments about both components, for example the light component’s
mass-to-light ratio (independent of stellar population synthesis) and
the dark matter’s ellipticity, as well as comparing how the two are
distributed relative to one another. AutoLens makes no assump-
tions about the geometric alignment of the light and dark matter,
determining whether there is a positional and/or rotational offset be-
tween the components via Bayesian Model comparison, allowing
AutoLens to offer a first observational insight into the geometry
of light and dark matter (Navarro & Benz 1991; Bett et al. 2010;
Piontek & Steinmetz 2011; Sales et al. 2012; Schaller et al. 2015;
Velliscig et al. 2015; Liao et al. 2017).
AutoLens is tested on a large suite of simulated images chosen

to rigorously test AutoLens on a range of lens light and mass
profiles, source morphologies, and strong lens geometries repre-
sentative of forthcoming large lens samples. Each simulated lens
has two images generated, one at the resolution and signal-to-noise
level of currently available HST imaging data and one where these
properties are in line with what can be anticipated from Euclid
imaging. Finally, the reader should note that, although not shown
in this paper, AutoLens’s development was performed in con-
junction with testing on images of real strong lenses and some of
the method’s design choices reflect circumstances not tested by the
simulated data set. These design choices are discussed in this work
whenever relevant.

3 SI M U LATED DATA

3.1 Light profiles

Light profiles for the lens galaxy are computed using Sersic func-
tions, which have elliptical coordinates ξl =

√
xl

2 + y2
l /q

2
l , such

that the intensity at a given coordinate is given by

ISer(ξl) = Il exp

{
− kl

[(
ξl

Rl

) 1
nl − 1

]}
, (1)

which has seven parameters: (xl, yl), the light centre, ql, the axis
ratio, θ l, the orientation angle (defined counter-clockwise from the
positive x-axis), Il, the intensity at the effective radius Rl and nl, the
Sersic index. kl is a function of nl. In general, a subscript ‘l’ signifies
that a parameter belongs to the light model. The de Vaucouleurs
light profile IDev(ξ l) corresponds to nl = 4 and the exponential light
profile IExp(ξ l) corresponds to nl = 1, respectively. The resulting 2-
D light profile is then convolved with the instrumental point spread
function (PSF).

Composite light models are calculated by summing individual
component intensity maps. When multiple light components are
used, each component’s parameters are labeled with an additional
numeric subscript (e.g. nl1, nl2, etc.). All multicomponent light mod-
els are assumed to share the same center and rotation angle.

An adaptive oversampling routine is used to ensure that light
profiles are computed in both an accurate and efficient manner. This
is described in AppendixA.

3.2 Mass profiles

To generate a lensed source, each image pixel must be traced from
the image-plane to the source-plane via the lens equation. This
is performed using the deflection angles computed from the lens
convergence profile (see below), kappa (ξ ). Like the light profile,

this is a function of the elliptical radius ξ =
√

x2 + y2/q2. This
has center (x, y), projected axis ratio q and is rotated by an angle
θ defined counter-clockwise from the positive x-axis. In general,
all parameters associated with the lens’s total mass profile have no
subscript, whereas those associated with a dark matter component
have subscript ‘d’ and a light matter component a subscript ‘l’.

N15 used a Singular Power-Law Ellipsoid (SPLE) lens model
with volume mass density profile of the form ρ(r) = ρo(r/ro)−α . αx,y

was computed following K01, where the lens mass normalization
was given by the equivalent velocity dispersion σ . However, this
parameterization is uncommon within the literature and to ease
future comparison the formalism of Suyu (2012) is used hereafter,
where the elliptical power-law surface density is given by

κpl(ξ ) = (3 − α)

1 + q

(
θE

ξ + S2

)α−1

. (2)

Here θE is the model Einstein radius in arc seconds. The core radius
is given by S, which is set to zero for singular power-law models.
Profiles that include a core are referred to as ‘PLCore’. The factors
(3 −α) and 1 + q rescale θE to give the same mass normalization for a
changing density slope α or axis ratio q. The potential and deflection
angles are computed from equation (2) using the method of Barkana
(1998). The case α = 2 again corresponds to the Singular Isothermal
Ellipsoid (SIE) lens profile. Although parameterized differently, the
κpl(ξ ) profile given in (2) and used in N15 are identical, therefore
the σ -q-α degeneracy described in N15 is again present, however
now between θEin, q and α (although the rescalings by (3 − α) and
1 + q make these degeneracies appear more orthogonal).

The inclusion of an external shear field is supported, which in-
troduces two additional parameters with subscript ‘sh’, the shear
strength γ sh, and orientation of the semi-major axis measured
counter-clockwise from east, θ sh. To numerically compute its de-
flection angles, this shear requires a center, which assumes either
the mass profile’s center (x and y) or dark matter’s center (xd and
yd) for a decomposed model.

Decomposed mass profiles assume separate density profiles for
the light and dark matter components. The light component uses
the elliptical Sersic profile given by equation (3), converting it to a
mass profile as

κSer(ξl) = 
lISer(ξl), (3)

therefore sharing the same parameters as the light profile, but
with an additional parameter 
 l, the mass-to-light ratio. Simulated
lenses with multiple light components are generated using the same

 l for each component.

The dark matter component is given by an elliptical Navarro–
Frenk–White (NFW) profile, which represents the universal density
profile predicted for dark matter halos by cosmological N-body
simulations (Navarro, Frenk & White 1996a, b; Zhao 1996). This
has volume mass density given by

ρ = ρs

(r/rs)(1 + r/rs)2
, (4)

where ρs gives the halo normalization and rs the scale radius, which
is fixed throughout this work to the value rs = 30 kpc (Bullock et al.
2001). Coordinates for the NFW profile are scaled by rs, giving the
scaled elliptical coordinate ηd = ξ d/rs.

Analytic solutions for the NFW model are given in (Golse &
Kneib 2002) and are given by

κNFW(ηd) = 2κd
1 − F (ηd)

η2
d − 1

, (5)
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where

F (ηd) =

⎧⎪⎪⎨
⎪⎪⎩

1√
η2

d−1
arctan

√
η2

d − 1 : ηd > 0

1√
1−η2

d

arctanh
√

1 − η2
d : ηd < 0

1 : ηd = 1

(6)

where κd is related to the lens halo normalization by κd = ρsrs/�cr

and �cr is the critical surface density. A spherical NFW profile may
also be used, which removes the axis ratio qd and rotation angle θd

as free parameters and has the title NFWSph.
Unlike the PLCore profile, the light and dark matter profiles above

do not have a prescription to include a centrally cored profile.
Therefore, the decomposed mass profiles used in this work are
not equipped to produce the type of source features indicative of
a cored central density, like a central image or radial arc. Cored
models for both the light (e.g. cored-Sersic Dullo & Graham 2013,
2014 or Nuker Faber et al. 1997 profiles) and dark matter (e.g. a
generalized NFW profile; Zhao 1996) will be considered if and
when objects with central source features are detected first using
the PLCore profile.

The deflection of light at the center of each image pixel is com-
puted by integrating the lens’s convergence profile κ using the equa-
tion

αx,y(x) = 1

π

∫
x − x′∣∣x − x′∣∣2 κ(x′)dx′, (7)

where x is the image-plane coordinate. The method of Keeton
(2001, K01 hereafter) is followed to compute the 2-D deflection
angle map αx,y from equation (7). An adaptive numerical integrator
following the method of K01 is used to compute deflection angles
and is described in Appendix A.

3.3 Source profiles

The intrinsic source surface brightness profiles used in this work
follow one or a summation of several elliptical Sersic functions
using the elliptical radius ξs = √

xs
2 + y2

s /q
2
s . All parameters as-

sociated with the source have the subscript ‘s’. The lensed image of
the source is convolved with the instrumental PSF.

3.4 Simulation suite

AutoLens is tested using a suite of 54 simulated images that
are generated using the light, mass, and source profiles described
above. Such an extensive library of images is necessary to explore
the diverse range of lensing geometries, mass profiles, and lens and
source morphologies that are possible in any strong lens sample, as
well as for ensuring that AutoLens’s Bayesian model comparison
features (see Section 6) correctly choose the lens model complexity.
The images have been chosen to span a broad range of image
resolutions, signal-to-noise ratios, and source morphologies, the
three key attributes in determining how accurately a lens model can
be constrained for a given image (Lagattuta et al. 2012; Vegetti et al.
2014). The highest quality images simulated in this work are of a
comparatively lower S/N and resolution than currently available
(e.g. SLACS, SL2S) strong lens observations, thus the precision of
the results may be viewed as conservative.

Images are representative of either Hubble Space Telescope
(HST) strong lens imaging or that which is anticipated from Eu-
clid optical imaging. HST simulated images are generated with a
pixel scale of 0.06 arcmin, are convolved with a circularly symmet-
ric Gaussian PSF of size 0.085 arcmin, include read noise of 4 e-,

a flat background sky of 1500 e- and Poisson noise (including the
background sky). Euclid images have a pixel scale 0.1 arcmin, a
PSF of size 0.125 arcmin, read noise of 4 e-, a background sky of
300 e-, and Poisson noise. Details of how sky subtraction is per-
formed are given in the next section. The signal-to-noise (S/N) ratio
of the lensed source component in each image is summarized using
the S/N value of its brightest pixel, which is located by scanning
the model lensed source during the image simulation (after the PSF
convolution step but before noise is added). The S/N of the lens’s
light profile is computed in an analogous way using its model light
profile. In line with current lens data sets, these S/N values range
between 10 and 50 for the source and between 40 and 80 for the
lens. By using just the brightest pixel in each component, more
concentrated source and lens profiles have fewer high S/N pixels
compared to flatter profiles.

Lens profiles are chosen using parameters consistent with fidu-
cial redshifts of zlens = 0.5 for the lens and zsrc = 1.0 for the source.
The lens light profile is generated using the adaptive oversampling
routine to a fractional accuracy of 10−7. Each lensed source pixel is
computed with oversampling of degree 20 × 20. Images are repre-
sentative of a single exposure, therefore omitting dithered observing
strategies and multidrizzling of images to a common frame. Thus,
effects such as correlated noise are not present in the simulated data
set and are not considered in this work.

To generate the 54 simulated images, 19 different combinations
of light, mass, and source profiles are used, which are shown in
Tables 1 and 2. These lens and source models have been chosen to
test specific aspects of AutoLens. Their model names reflect these
chosen aspects (e.g. the LensMassShear model tests mass model-
ing with an external shear). Each model is then used to generate
multiple images at different image resolutions and S/N ratios, with
Tables 1 and 2 also listing the images generated from each model.
An image is then referred to by its model name and a subscript
describing the image properties as follows; an ‘H’ or ‘E’ for HST or
Euclid resolution, ‘S##’ for the source S/N, ‘L##’ for the lens S/N
and either ‘Disk’, ‘Bulge’, ‘BD’ (Bulge-Disk), ‘Cusp’ or ‘Multi’
(multiple sources) to describe the source morphology. The suite of
images can be characterized in more detail as follows:

(i) 24 images generated without a lens light component (‘NL’
in tag replacing ‘L##’), aimed primarily at testing AutoLens’s
source analysis. Of these 24 images, 4 unique SPLE lens models
are used. Therefore, each lens model comprises six images with a
S/N of 50, 30, 10 and representing either HST of Euclid imaging.
Example image names are SrcBDHS30NLBD (tests modeling a source
with a bulge-disc morphology) or SrcDiskES10NLDisk (tests a source
with only a disc).

(ii) 14 images generated with a lens light component and an SPLE
mass profile, aimed at testing lens light modeling for different lens
and source morphologies. Seven unique lens models are used, using
sources with S/N ranging from 20 to 30, lenses with S/N ranging
from 40 to 80 and with every model generating a Hubble and Euclid
resolution image. Included in this set are images that test a shear
component in the mass model, multicomponent light profiles and
how light modeling fares with either cuspy or flat source morpholo-
gies. Example image names are LensSrcBulgeHS25L50BD (tests light
modeling with a bulge-like source) and LensMassShearES50L80Flat

(tests shear modeling).
(iii) Six images generated with a lens light component and a

PLCore mass profile, aimed at testing cored-mass modeling and
central image detection. Three unique lens models are used, using
sources with S/N ranging from 20 to 30 and lenses ranging from 40
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Table 1. The lens light, mass, and source profiles used to create each image of the simulation suite generated using a total-mass profile (e.g. an SPLE or
PLCore). The left-hand column of the table gives the title of each model, the name of which signifies the aspect of AutoLens that model has been made to test
(e.g. the SrcBulge model tests modeling sources with a bulge morphology). Each model is used to generate multiple images and in the first column underneath
each model name are the tags describing those images, which can be read as follows: ‘H’ or ‘E’ for Hubble or Euclid resolution, ‘S##’ the source S/N, ‘L##’ the
lens S/N (NL for no lens), and ‘Bulge’, ‘Disk’, ‘BD’, ‘Cusp’ or ‘Multi’ to describe the source morphology. The second and third columns list each component
and its corresponding profile. The remaining columns show the input lens parameters of each lens model.

Model Title Component Model Parameters

SrcBulge Light None
HS50NLBulge, HS30NLBulge Mass SPLE x = 0.00′′ y = 0.00′′ θ = 127 ◦ θE = 1.2 q = 0.8 α = 2.0
HS10NLBulge, ES50NLBulge Source Sersic xs = 0.06′′ ys = −0.03′′ θs = 90 ◦ Is = 0.015 Rs = 0.4′′ ns = 2.5 qs = 0.7
ES30NLBulge, ES10NLBulge
SrcDisk Light None
HS50NLDisk, HS30NLDisk Mass SPLE x = 0.00′′ y = 0.00′′ θ = 75 ◦ θE = 1.2 q = 0.75 α = 2.3
HS10NLDisk, ES50NLDisk Source Sersic xs = 0.02′′ ys = 0.6′′ θs = 10 ◦ Is = 0.033 Rs = 0.9′′ ns = 1.0 qs = 0.80
ES30NLDisk, ES10NLDisk
SrcBD Light None
HS50NLBD, HS30NLBD Mass SPLE x = 0.00′′ y = 0.00′′ θ = 45 ◦ θE = 1.0 q = 0.7 α = 1.7
HS10NLBD, ES50NLBD Source 1 Sersic xs1 = 0.06′′ ys1 = −0.03′′ θs1 = 0 ◦ Is1 = 0.006 Rs1 = 0.4′′ ns1 = 2.5 qs1 = 0.7
ES30NLBD, ES10NLBD Source 2 Sersic xs2 = 0.06′′ ys2 = −0.03′′ θs2 = 0 ◦ Is2 = 0.0003 Rs2 = 0.9′′ ns2 = 1.0 qs2 = 0.80
SrcMulti Light None
HS50NLMulti, HS30NLMulti Mass SPLE x = 0.0′′ y = 0.0′′ θ = 160 ◦ θE = 1.0 q = 0.75 α = 2.1
HS10NLMulti, ES50NLMulti Source 1 Sersic xs1 = 0.06′′ ys1 = −0.03′′ θs1 = 0 ◦ Is1 = 0.0013 Rs1 = 0.3′′ ns1 = 4.0 qs1 = 0.9
ES30NLMulti, ES10NLMulti Source 2 Sersic xs2 = 0.06′′ ys2 = −0.03′′ θs2 = 0 ◦ Is2 = 0.0003 Rs2 = 0.9′′ ns2 = 1.0 qs2 = 0.9

Source 3 Sersic xs3 = 0.15′′ ys3 = 0.12′′ θs3 = 0 ◦ Is3 = 0.0036 Rs3 = 0.3′′ ns3 = 3.0 qs3 = 0.9
Source 4 Sersic xs4 = −0.07′′ ys4 = −0.11′′ θs4 = 0 ◦ Is4 = 0.0036 Rs4 = 0.3′′ ns4 = 3.0 qs4 = 0.9

LensSrcBulge Light Sersic xl = 0.00′′ yl = 0.00′′ θl = 127 ◦ Il = 0.0085 Rl = 0.6′′ nl = 4.0 ql = 0.72
HS30L50Bulge Mass SPLE x = 0.00′′ y = 0.00′′ θ = 127 ◦ θE = 1.2 q = 0.8 α = 2.0
ES30L50Bulge Source 1 & 2 Sersic Identical to SrcBulge
LensSrcDisk Light Sersic xl = 0.00′′ yl = 0.00′′ θl = 127 ◦ Il = 0.0085 Rl = 0.6′′ nl = 4.0 ql = 0.72
HS30L50Disk Mass SPLE x = 0.00′′ y = 0.00′′ θ = 127 ◦ θE = 1.2 q = 0.75 α = 2.3
ES30L50Disk Source 1 & 2 Sersic Identical to SrcDisk
LensSrcCusp Light Sersic xl = −0.03′′ yl = 0.04′′ θl = 30 ◦ Il = 0.1377 Rl = 1.2′′ nl = 1.25 ql = 0.6
HS20L60Cusp Mass SPLE x = −0.03′′ y = 0.04′′ θ = 30 ◦ θE = 1.4 q = 0.7 α = 2.35
ES20L60Cusp Source 1 Sersic xs1 = 0.07′′ ys1 = 0.04′′ θs1 = 125 ◦ Is1 = 0.001 Rs1 = 0.4′′ ns1 = 4.0 qs1 = 0.8

Source 2 Sersic xs2 = 0.07′′ ys2 = 0.04′′ θs2 = 125 ◦ Is2 = 0.00004 Rs2 = 0.8′′ ns2 = 1.0 qs2 = 0.7
LensSrcDouble Light Sersic xl = −0.03′′ yl = −0.08′′ θl = 127 ◦ Il = 0.024 Rl = 0.9′′ nl = 2.0 ql = 0.8
HS25L60BD Mass SPLE x = 0.03′′ y = −0.08′′ θ = 127 ◦ θE = 1.2 q = 0.75 α = 2.1
ES25L60BD Source 1 & 2 Sersic Identical to SrcBD except xs1 = xs2 = 0.25′′ and ys1 = ys2 = 0.15′′
LensSrcMulti Light Sersic xl = 0.04′′ yl = −0.03′′ θl = 45 ◦ Il = 0.017 Rl = 0.8′′ nl = 3.0 ql = 0.7
HS25L75BD Mass SPLE x = 0.0′′ y = 0.0′′ θ = 160 ◦ θE = 1.0 q = 0.75 α = 2.1
ES25L75BD Source 1, 2, 3 & 4 Sersic Identical to SrcMulti
LensMassShear Light Sersic xl = 0.03′′ yl = 0.05′′ θl = 60 ◦ Il = 0.02 Rl = 1.5′′ nl = 2.5 ql = 0.6
HS40L80Disk Mass SPLE x = 0.03′′ y = 0.05′′ θ = 60 ◦ θE = 1.15 q = 0.95 α = 1.92
ES40L80Disk Mass Shear xsh = 0.03′′ ysh = 0.05′′ θsh = 40 ◦ γ sh = 0.03

Source Sersic xs = 0.06′′ ys = −0.07′′ θs = 30 ◦ Is = 0.016 Rs = 0.5′′ ns = 1.0 qs = 0.6
LensLightBD Light 1 Dev xl1 = 0.00′′ yl1 = 0.00′′ θl1 = 90 ◦ Il1 = 0.012 Rl1 = 0.4′′ nl1 = 3.0 ql1 = 0.74
HS25L50BD Light 2 Exp xl2 = 0.00′′ yl2 = 0.00′′ θl2 = 90 ◦ Il2 = 0.026 Rl2 = 1.15′′ nl2 = 1.0 ql2 = 0.8
ES25L50BD Mass SPLE x = 0.00′′ y = 0.00′′ θ = 90 ◦ θE = 1.2 q = 0.8 α = 2.05

Source 1 Sersic xs1 = −0.04′′ ys1 = −0.07′′ θs1 = 90 ◦ Is1 = 0.0036 Rs1 = 0.4′′ ns1 = 2.5 qs1 = 0.7
Source 2 Sersic xs2 = 0.1′′ ys2 = −0.1′′ θs2 = 0 ◦ Is2 = 0.00036 Rs2 = 0.9′′ ns2 = 1.0 qs2 = 0.8

CoreSrcDisk Light Sersic xl = 0.00′′ yl = 0.00′′ θl = 40 ◦ Il = 0.027 Rl = 0.48′′ nl = 2.5 ql = 0.6
HS35L70Disk Mass PLCore x = 0.00′′ y = 0.00′′ θ = 40 ◦ θE = 1.4 q = 0.8 α = 1.85 s = 0.2′′
ES35L70Disk Source Sersic xs = 0.12′′ ys = 0.25′′ θs = 10 ◦ Is = 0.04 Rs = 0.4′′ ns = 1.0 qs = 0.8
CoreSrcQuad Light 1 Sersic xl1 = 0.00′′ yl1 = 0.00′′ θl1 = 110 ◦ Il1 = 0.045 Rl1 = 0.25′′ nl1 = 2.5 ql1 = 0.77
HS40L60BD Light 2 Exp xl2 = 0.00′′ yl2 = 0.00′′ θl2 = 110 ◦ Il2 = 0.03 Rl2 = 1.35′′ nl2 = 1.0 ql2 = 0.6
ES40L60BD Mass PLCore x = 0.00′′ y = 0.00′′ θ = 110 ◦ θE = 1.0 q = 0.7 α = 1.75 s = 0.3′′

Source 1 & 2 Sersic Identical to SrcBD except xs1 = xs2 = 0.01′′ and ys1 = ys2 = −0.01′′
CoreSrcDouble Light Sersic xl = 0.05′′ yl = −0.06′′ θl = 170 ◦ Il = 0.0067 Rl = 1.5′′ nl = 3.5 ql = 0.7
HS25L50BD Mass PLCore x = 0.05′′ y = −0.06′′ θ = 170 ◦ θE = 1.3 q = 0.8 α = 1.65 s = 0.25′′
ES25L50BD Source 1 Sersic xs1 = 0.2′′ ys1 = −0.1′′ θs1 = 90 ◦ Is1 = 0.0075 Rs1 = 0.4′′ ns1 = 2.0 qs1 = 0.9

Source 2 Sersic xs2 = 0.2′′ ys2 = −0.1′′ θs2 = 90 ◦ Is2 = 0.0025 Rs2 = 0.8′′ ns2 = 1.0 qs2 = 0.8

to 80, with every model again generating a Hubble and Euclid im-
age. Example image names are CoreSrcDiskHS35L70Disk (tests cored
modeling for a flat source profile) and CoreSrcDoubleES25L50BD

(tests cored modeling for a doubly imaged source).
(iv) 10 images generated using a decomposed mass model, aimed

at testing light and dark matter modeling as well as the detection
of light/dark matter alignments. Five unique lens models are used,
generating sources and lenses with the same S/N ranges as before
and with every model again being used to generate a Hubble and
Euclid image. Included in this set are images that test a small rota-
tional offset and aligned light and dark components. Example image
names are LMDMRotHS30L40BD (tests the detection of a rotational
offset) and LMDMShearES25L80Cusp (tests decomposed modeling
with an external shear).

Fig. 1 shows postage-stamp cut-outs of a small sub-set of images
and their source-plane configurations. Comparison between the dif-
ferent cut-outs shows the broad range in image resolution, S/N, and
source and lens morphologies the simulation suite covers.

4 IM AG E A NA LY S I S , L E N S MO D E L I N G , A N D
S O U R C E R E C O N S T RU C T I O N

4.1 Extended source modeling

This section gives a brief overview of the theory relevant for mod-
eling strongly lensed extended sources. A more detailed description
of this overview can be found in Schneider & Weiss (1992) and
Keeton (2003).
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Table 2. The lens light, mass, and source profiles used to create each image of the simulation suite generated using a decomposed mass profile (e.g. a Sersic +
NFW). The table follows the exact same lay-out as Table 1. The values of Il, Is, and 
 l correspond to the values used for the highest S/N Hubble resolution
image of each lens model and their values are reduced for generating each model’s Euclid resolution images.

Model Title Component Model Parameters

LMDMAlign Light Sersic xl = 0.00′′ yl = 0.00′′ θl = 127 ◦ Il = 0.0085 Rl = 0.6′′ nl = 4.0 ql = 0.72
HS50L40BD Mass NFW + 
 l xd = 0.00′′ yd = 0.00′′ θd = 127 ◦ κd = 0.13′′ q = 0.82 
 l = 25.0 
 l = 6.73
ES50L40BD Source 1 & 2 Sersic Identical to SrcBD
LMDMRot Light Sersic Identical to LMDMAlign
HS50L40BD Mass NFW + 
 l Identical to LMDMAlign except θd = 132 ◦
ES50L40BD Source 1 & 2 Sersic Identical to SrcBD
LMDMPos Light Sersic Identical to LMDMAlign
HS50L40BD Mass NFW + 
 l Identical to LMDMAlign except xd = 0.05′′
ES50L40BD Source 1 & 2 Sersic Identical to SrcBD
LMDMRot90 Light Sersic Identical to LMDMAlign
ES30L65Multi Mass NFW + 
 l xd = 0.00′′ yd = 0.00′′ θd = 17 ◦ κd = 0.13′′ q = 0.82 
 l = 42.0 
 l = 6.73
ES50L40BD Source 1 & 2 Sersic Identical to SrcBD
LMDMShear Light Sersic xl = 0.00′′ yl = 0.00′′ θl = 100 ◦ Il = 0.033 Rl = 0.75′′ nl = 2.5 ql = 0.75
HS35L80Cusp Mass NFW + 
 l xd = 0.03′′ yd = 0.03′′ θd = 90 ◦ κd = 0.13′′ q = 0.8 
 l = 11.5 
 l = 2.0
ES35L80Cusp Mass Shear xsh = 0.03′′ ysh = 0.03′′ θsh = 150 ◦ γ sh = 0.03

Source 1 & 2 Sersic Identical to LensSrcCusp except Rs2 = 0.3′′

Figure 1. A sub-set of simulated images corresponding to the images SrcBDHS50NLBulge (top left panel), SrcBDES10NLBulge (middle left panel),
LensSrcMultiHS25L75Multi (second column), CoreSrcDiskHS35L70Disk (third column), and LMDMPosHS50L40BD (fourth column), which are given by the
3rd, 9th, 14th, and 17th models listed in Table 1, respectively. The top row shows the simulated images, the middle row lens subtracted images (or a second
simulated image at lower resolution and S/N in the left column), and third row the simulated parametric source of each image, where black points are the traced
image pixel coordinates.

As discussed in the Introduction, extended source modeling of-
fers information about the second derivative of the lens’s potential.
However, this signal is encoded into the lensed source’s extended
surface-brightness distribution and is therefore only available wher-
ever the lensed source is actually observed, around REin, the Einstein

radius. The extension of this measurement to smaller radii (where
there is typically no source light) is therefore something of an ex-
trapolation (Sonnenfeld et al. 2012; Schneider & Sluse 2013b; Xu
et al. 2016), albeit one aided by how the mass model’s overall nor-
malization must still give an accurate MEin. The constraints that a
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lens offers therefore varies from system to system, depending on
the source size, lensing geometry and source and lens redshifts,
with the most exceptional examples spanning over 15 kpc in ex-
tent (Gavazzi et al. 2008; Eichner, Seitz & Bauer 2012; Sonnenfeld
et al. 2012;). Thus, for many lenses, this measurement does not
require large extrapolations, except in the very central regions. By
fitting the lens’s light profile, AutoLens partly constrains these
central regions, both through the detection or absence of the lensed
source’s faint central features and by incorporating the lens’s light
profile into the mass model.

N15 illustrated the nature of extended source analysis. First, a
clear degeneracy emerges between the parameters governing the
lens’s mass distribution, which for the power-law density profile
used in N15 was its mass normalization, ellipticity, and density
slope (see also Suyu 2012; Suyu et al. 2013). This degenerate sub-
set of mass models all integrate to give approximately the same
MEin, with the different models varying only how they distribute
this mass. The favoured model from this sub-set is then whichever
best reconstructs the extended source. N15 also demonstrated how
these degenerate lens models are fully degenerate with the source-
plane magnification (see also Birrer et al. 2016), such that more
centrally concentrated mass profiles result in a more spatially ex-
panded source reconstruction (i.e. lower total magnification; see fig.
4 of N15). This requires specific care to ensure that the inferred lens
model is not biased (Section 4.5) and as such, AutoLens adapts
to and scales with this phenomenon (Section 4.7).

There is an important caveat to lens modeling of this nature,
associated with the form of κ assumed for the lens. If the allowed
(parametric) form of κ is unable to accurately follow the actual
mass distribution, the sub-set of lens models that integrate to give the
correct MEin will offer only an approximate match to the lens’s actual
mass profile. They may still provide a good fit to the lensing data, but
can misestimate a number of the lens’s properties, like the lens’s true
slope at REin. This is a manifestation of the much-studied mass-sheet
transformation (MST) and source position transformation (Falco,
Gorenstein & Shapiro 1985; Schneider & Sluse 2013a, b; Schneider
2014a, b; Xu et al. 2016; Tagore et al. 2018). This work circumvents
this issue by using the same density profile for both the modelling
and creation of each simulated image, as was performed in N15. Use
of the lens’s light profile to trace its underlying stellar matter profile
may reduce the freedom of the MST; however, a more detailed
investigation of this is beyond this paper’s scope.

4.2 Semilinear inversion

The semilinear inversion (SLI) method simultaneously reconstructs
the surface brightness distribution of a strongly lensed source and
models the lens galaxy mass distribution. It was first presented in
Warren & Dye (2003, WD03 hereafter), placed within a Bayesian
framework by Suyu et al. (2006, S06 hereafter) and developed
into adaptive SLI in Nightingale & Dye (2015, N15 hereafter). An
outline of the SLI method is given here, but readers are referred to
these publications for comprehensive details.

The SLI method assumes a pixelized source plane, computing
the linear superposition of PSF-smeared source pixel images that
best fits the observed image, for a given lens model. This is done
via the matrix fij, which maps the jth pixel of each lensed image
to each source pixel i and produces the source pixel surface bright-
ness vector s. Finally, the jth pixel of the model image is computed
as

∑
isifij, which is subtracted from the observed image with flux

values dj and statistical uncertainties σ j. In the original implemen-
tation of the SLI method, the values dj have had a pre-computed

foreground light model subtracted. The sum of the squared signif-
icances of the residuals between the observed and model images
then gives a χ2 statistic.

The pixelization used by the SLI method may be discretized into
pixels of arbitrary shape or tessellation. In N15, the source-plane
pixelization was derived using an h-means clustering algorithm,
which defined source pixels as clusters of traced image pixels. The
same clustering methodology is used here to compute source pix-
els, however switching instead to a weighted k-means clustering
algorithm (see Hartigan & Wong 1979). This allows clustering to
be weighted, thus enabling the source pixelization to adapt to the
source’s surface brightness (see Section 4.7), unlike N15, which
adapted to the mass model magnification. K-means clustering also
produces more uniform and regular source-plane pixelizations (al-
beit still stochastic enough to sample and overcome discretization
biases). The randomization of the clustering that N15 showed to
remove discreteness biases has also been slightly modified to en-
sure that even the exact same lens model parametrization gives a
different source-plane pixelization (the reason for this is described
in Section 4.6).

Due to the ill-posed nature of the matrix inversion used by the
SLI method the solution must be regularized using a linear reg-
ularization matrix, which is described in WD03 and Appendix B.
Regularization acts as a prior on the source reconstruction, imposing
a smooth source solution. AutoLens follows a Voronoi regulariza-
tion scheme that is scale-independent, such that regularization is the
same for a larger or smaller source, a property key to handling the
source rescaling that emerges during lens modeling. This Voronoi
grid is also used to visualize source reconstructions. In N15, regu-
larization was controlled by the hyper-parameter λ, which set the
degree to which smoothness is imposed on the solution following
the Bayesian framework of S06. Section 4.6 presents AutoLens’s
new approach to source-plane regularization.

4.3 Lens light and mass modeling

Fitting and subtraction of the lens’s light is fully integrated into Au-
toLens, with all parameters associated with the lens’s light model
sampled within the same non-linear parameter space as those gov-
erning the mass model. Therefore, for each iteration of the method,
before reconstruction of the lensed source, AutoLens first com-
putes a model 2-D light distribution using one or more elliptial
Sersic functions. The resulting 2-D light model is then convolved
with the instrumental PSF and subtracted from the observed image.

The mass model is then used to compute the deflection angle map
αx,y and trace image-pixel to the source plane. The source recon-
struction outlined above is then performed. N15 showed that, due
to aliasing effects, the source reconstruction benefits from oversam-
pling (termed subgridding in N15), which splits each image-pixel
into a set of square sub-pixels, which are each individually traced to
the source plane and used by the inversion. Appendix A describes
a bilinear interpolation scheme used to speed this calculation up,
allowing higher levels of oversampling (8 × 8) to be used in this
work. Appendix A also describes how the positions of the image’s
brightest pixels are used to speed up mass modeling, by discarding
models where they do not trace close to one another.

The incorporation of lens light fitting into AutoLens only
slightly changes the modeling formalism given in N15 and the
previous section. All pixels within the masked region retain the
subscript j, with the definition of terms fij and σ j unchanged. How-
ever, dj is now defined to be the observed flux in pixel j including
the lens flux contribution that is denoted as bj. The quantity Di used
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in WD03 and N15 must therefore also change to

Di =
J∑

j=1

fij (dj − bj )/σ j
2 . (8)

χ2 is therefore given by

χ2 =
J∑

j=1

[
(
∑I

i=1 sifij ) + bj − dj

σ j

]2

. (9)

This is identical to before, except for the change in the definition
of dj and inclusion of the bj term. The overall likelihood function
follows the same Bayesian framework used in N15 and is given in
Section 4.6.

The determination of the lens model parameters is a standard non-
linear search problem, performed using the MultiNest algorithm
(Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009), based
on the nested sampling Monte Carlo technique of Skilling (2006).
As described in N15, the random nature of AutoLens’s source-
plane discretization results in a noisy likelihood function that can
rapidly fluctuate over small scales in parameter space, ill suited to
Markov chain Monte Carlo analysis. MultiNest’s approach of
first mapping out parameter space over large scales, followed by
convergence toward the more noisy, higher evidence small scales,
is therefore well suited. The implementation of MultiNest in
AutoLens uses constant efficiency sampling mode. This tunes
the reduction of MultiNest’s elliptical contours such that the
acceptance ratio is kept at a target level, which is set to 10 per cent
for the final analysis of each image. Importance sampling is also
employed, which as discussed in Feroz et al. (2013) improves the
accuracy of sampling in constant efficiency mode, especially the
estimation of the Bayesian evidence.

4.4 Masking

Before performing the lens analysis, the image is masked, remov-
ing the regions in the image that only contain background sky (or
unwanted contaminants like foreground stars). In the early stages
of development, AutoLens used a dual-masking scheme. The first
mask encapsulated both the lens and source and had only the lens’s
light profile subtracted from it. The second was then tailored to con-
tain only the lensed source galaxy, with the source reconstruction
performed only within this smaller second mask. The motivation
behind this was that the source reconstruction is the most computa-
tionally demanding aspect of the analysis, thus a much faster run-
time is possible by performing it exclusively on a smaller masked
region. Unfortunately, testing of this masking scheme found that
it biased the lens’s light model, as the omission of the source re-
construction in the first mask meant it dominated the overall χ2

value. Attempts to circumvent this by, for example, weighting the
likelihood of each mask never led to satisfactory results. Therefore,
it was concluded that the lens and source must be analysed within
the same masked region and that the approach used in N15 of tai-
loring a hand-drawn mask around the lensed source was no longer
viable. Thus, comparatively wide and extensive masking possibly
extending well beyond the lensed source as well as encompassing
the entire region within the REin (where typically no source light is
present) is now necessary.

This masking scheme offers a number of benefits to lens model-
ing. For example, it ensures that if a lens model incorrectly places
extraneous images within the image reconstruction, they are not
masked out and ignored. Equally, faint source features that may

have been masked previously will now be detected and modeled.
The drawback (and reason why source-only masks are generally
used in other studies, e.g. Dye et al. 2014; Vegetti et al. 2014) is
that the overall run-time of a lens analysis scales directly with the
number of image pixels. For this more extensive masking scheme,
the number of image pixels increases by a factor of 2−4, leading to
an increase of AutoLens’s overall run time by the same factor or
more. This provides a significant computational challenge and mo-
tivates the new source-plane analysis features described in Section
4.7.

In this work, a circular mask of radius 3.9 arcsec is used to model
all lenses, which is sufficiently large to fully capture the source
and lens of every simulated image. The use of a circular mask pro-
vides a regular and symmetric source-plane pixelization. This gives
the adaptive source-plane features described in Section 4.7 better
control of the source reconstruction and reduces the discretization
effects discussed in N15. In contrast, masks tailored to the lensed
source produce irregular edges in the source pixelization that, as
discussed next, have the potential to bias the analysis. During an
early initialization phase of the pipeline, an annulus mask is used
instead of a circular mask.

4.5 Central image pixels

A consequence of the masking scheme above is that the lens’s cen-
tral image pixels are now traced to the source-plane and included as
part of the image and source reconstruction. This is acceptable for
modeling a cored mass profile (like the PLCore profile), as these pix-
els are expected to trace near the source. However, for singular mass
profiles these central image pixels may be significantly demagni-
fied and trace to exterior regions of the source plane that negatively
impact the resulting source pixelization. This is illustrated in Fig. 2
for the image LensSrcSersicHS50L40BD, where central image pixels
are marked as blue dots and in the top-left panel can be seen to
correspond to the regions where the lens’s light is brightest. The
remaining panels show source reconstructions using three different
SPLE mass models with density slopes (α) of 1.5, 2.0 (this image’s
input value), and 2.5 (see the figure’s caption for how the over-
all lens model is computed). This figure reaffirms the source-plane
scaling discussed in N15, noting that the source-plane axis increases
from 1.5 arcsec × 1.5 arcsec for the α = 1.5 mass model to 4.5
arcsec × 4.5 arcsec for α = 2.5. For α = 2.0 (the top-right panel)
the lens model matches the image’s input model. Thus, the lens’s
light is subtracted perfectly (not shown) and the central pixels trace
to regions where the source is very faint, therefore having no impact
on the source and image reconstruction.

During testing, it emerged that this ideal scenario was not always
reached and central pixels could bias lens modelling in two different
ways. The first is due to the interplay between the location to which
central image pixels trace in the source plane and the mass model’s
density slope α, illustrated in Fig. 2. For mass profiles with a lower
value of α, central image pixels are less demagnified and thus trace
closer to the source, giving them the potential to impact the source
reconstruction. Indeed, the central image pixels shown in the top-
centre panel (for α = 1.5) trace within the source’s faint extended
envelope and are therefore allocated a low level of extraneous flux
by the source reconstruction. Thus, it is possible that the source
reconstruction wrongly places extraneous flux in the image recon-
struction’s central regions, which can potentially bias lens modeling
in two different ways:
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Figure 2. A demonstration of where central image pixels trace in the source plane for mass models with varying density-slope, using the image
LensSrcBulgeHS30L50Bulge, which is pictured in the top left-hand panel. The remaining panels show source reconstructions for this image, using three
different lens models, which all use the image’s input light model (see Table 1) and input mass model geometric parameters (x = 0.0 arcsec, y = 0.0 arcsec,
and θ = 127 ◦). Three different sets of mass profile parameters are used: top centre (α = 1.5, θE = 1.16, q = 0.93); top right (α = 2.0, θE = 1.2, q = 0.73);
bottom row (α = 2.5, θE = 1.36, q = 0.56). These parameters were determined by fixing α to 1.5, 2.0, and 2.5 and computing θEin and q via a full AutoLens
analysis. Black dots depict the locations of traced image pixels and red dots are the centres of each Voronoi source pixel. Central image pixels are defined as
pixels whose image-plane coordinates are within 6 pixels (0.36 arcsec) of the mass model centre and are marked using blue dots, depicted in both the image
plane (top left) and source plane (remaining panels). Their source-plane locations can be seen to depend critically on α, tracing further away from the source
as α increases. The overall size of the source plane increases from 1.5 arcsec × 1.5 arcsec for α = 1.5 to 4.5 arcsec × 4.5 arcsec for α = 2.5, demonstrating
the source-plane scaling effect discussed in N15. The image-plane mask and border are marked with yellow dots in the top-left panel and the location this
border traces to in the source plane is shown in the bottom-centre and bottom-right panels (for the α = 2.5 mass model), forming a ring of pixels outside of
which only demagnified central image pixels trace. Outside this border, central image pixels can be seen to form their own source pixels, an effect that can
prove problematic for the source reconstruction. Therefore, the scheme shown in the bottom-right panel is used, which relocates central image pixels that trace
beyond this border to its edge.

(i) When the lens light subtraction leaves significant residuals.
In this instance, the mass model may be biased towards lower α

solutions that allow the source reconstruction to fit these residuals.
(ii) When the value of α assumed for the mass model is lower

than the true value. In this case, the source reconstruction may fit
some of the flux in the central image pixels, leading to an inaccurate
lens light model.

At the beginning of a lens analysis, care must therefore be taken
to ensure that these biases are circumvented. AutoLens achieves
this by assuming an SPLE mass model with a fixed value of α = 2.2
early in the analysis. Later in the analysis, once the lens subtraction
is accurate, α can safely be treated as free. The second problem is
counteracted because a slope α = 2.2 is steeper than most strong
lenses (Koopmans et al. 2009), thus ensuring that central image
pixels trace well away from the source. Whilst this may not be
sufficient for all lenses (e.g. those with a very steep density profile
or very extended source) it has proven adequate for all test cases
thus far. Sanity checks flag up when central image pixels receive

extraneous flux, ensuring that this bias will be spotted on large lens
samples.

The second problem is also illustrated in Fig. 2, particularly
the bottom-centre and bottom-right panels, which depict where
central image pixels trace relative to the ‘image border’ (yellow
dots), the ring of image pixels located at the edge of the image-
plane mask. These panels show that for the α = 2.5 mass model
(chosen to exaggerate this effect) central image pixels trace well
beyond this image-plane border (the yellow ring of dots) in the
source plane, forming their own source-pixels and offering the re-
construction an unphysical means by which to fit the lens subtrac-
tion’s residuals or noise. Thus, the mass model may be biased to
high α solutions that allow these exterior source pixels to form. To
counteract this, AutoLens relocates all central image pixels that
trace beyond the image border in the source-plane to its edge, as
shown in the bottom-right panel of Fig. 2. This prevents central im-
age pixels forming their own source pixels and therefore removes
their potential to bias the lens model in a computationally efficient
manner.
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4.6 Bayesian framework

AutoLens’s WQsource and image analysis is based on the
Bayesian framework for interpolation, model comparison, and regu-
larization presented in MacKay (1992) (in particular chapters 2 and
6), which S06 generalized to lens modeling. Many other methods in
the literature are also based on this (e.g. Dye et al. 2008; Vegetti &
Koopmans 2009a; Collett & Auger 2014; Tagore & Keeton 2014).
This framework objectively ranks every image and source recon-
struction that is produced by AutoLens’s linear inversion step.
For every light model, mass model, and source reconstruction, the
overall probability is given by the Bayesian evidence, ε,

− 2 ln ε = χ2 + sT H�s + ln
[
det(F + H�)

]

− ln
[
det(H�)

] +
J∑

j=1

ln
[
2π (σj )2

]
. (10)

This expression was derived in Dye et al. (2008) from S06, is used
for all modeling presented in this work, and is equivalent to the
expression used in N15. However, the regularization matrix H�

has been redefined such that AutoLens can now also apply a
non-constant regularization scheme to the source reconstruction, as
described next. The mathematical formalism for this non-constant
regularization is given in Appendix B.

Equation (10) quantifies three aspects of the image and source re-
construction, the first being the quality of the image reconstruction.
Because the source reconstruction is a linear inversion that takes as
an input the image-data when reconstructing it, it is in principle able
to perfectly reconstruct the image regardless of the image’s noise
or the accuracy of the lens model (e.g. at infinite source resolution
without regularization). This is why the problem is ‘ill-posed’ and
why regularization is necessary. However, this still raises the ques-
tion of what constitutes a ‘good’ solution? Equation (10) defines this
by assuming that the image data consist of independent Gaussian
noise in each image pixel, defining a ‘good’ solution as one whose
χ2 residuals are consistent with Gaussian noise, therefore produc-
ing a reduced χ2 ∼ 1. Solutions that give a reduced χ2 < 1 are
penalized for being overly complex and fitting the image’s noise,
whereas those with a reduced χ2 > 1 are penalized for not invoking
a more complex source model when the data support it. In both
circumstances, these penalties lead to a reduction in lnε.

The second aspect of the analysis that equation (10) quantifies
is the complexity of the source reconstruction. This uses terms
2, 3, and 4 of this expression (those containing the regularization
matrix H�), which from here on are collectively referred to as the
‘regularization terms’. These terms estimate the number of source
pixels that are used to reconstruct the image, after accounting for
their correlation with one another due to regularization. Solutions
that require fewer correlated source pixels collectively decrease the
total value of these regularization terms, increasing the value of lnε.
Thus, simpler and less complex source reconstructions are favoured
by this expression.

Finally, equation (10) favours models that fit higher S/N realiza-
tions of the observed imaging data (where the S/N is determined
using the image-pixel variances, the σ j’s found in the χ2, F, and∑J

j=1 ln
[
2π (σ j )2

]
terms of equation (10)). If fixed variances are

assumed throughout the analysis, this aspect of equation (10) has no
impact on modeling. However, a number of methods have invoked
scaling the image pixel variances wherever the image reconstruc-
tion fits the data poorly (e.g. Suyu 2012), an approach AutoLens
follows.

The premise is that whilst increasing the variances of image
pixels lowers their S/N values and therefore also decreases lnε by
increasing

∑J

j=1 ln
[
2π (σ j )2

]
, doing so may produce a net increase

in lnε by decreasing χ2 and F. This occurs when the χ2 values
of the image pixels whose variances are increased were initially
very high and therefore fit poorly by the lens model. Conversely,
variances cannot be reduced to arbitrarily low values, as doing so
will inflate their χ2 contribution (again decreasing lnε). In fact,
AutoLens does not allow a pixel’s variance to be scaled below its
‘baseline’ value, the value that is expected from a consideration of
instrumental noise sources like Poisson counts and read noise.

In summary, lnε is maximized for solutions that most accurately
reconstruct the highest S/N realization of the observed image, with-
out overfitting its noise and using the fewest correlated source pixels.
By employing this framework throughout, AutoLens objectively
determines the final lens model following the principles of Bayesian
analysis and Occam’s Razor.

The simplest application of the Bayesian evidence was shown
in N15, where it was used to set the regularization coefficient λ, a
hyperparameter that controls the degree of smoothing applied to the
source reconstruction (λ is included in equation (10) via the matrix
H�). This amounted to fixing the lens model (and the source pix-
elization, regularization scheme, etc.) and iterating over the value
of λ until the peak value of lnε is reached. This peak value strikes
a balance: too high values of λ oversmooth the source reconstruc-
tion and thus give a poor overall fit to the data (decreasing lnε by
increasing χ2), whereas too low values give a source reconstruction
that not only accurately reconstructs the image but also fits large
portions of its noise (decreasing lnε by increasing the regulariza-
tion terms). The optimum value of λ therefore again corresponded
to the solution that gives an overall reduced χ2 of approximately
1. Section 5 demonstrates that there are many scenarios where this
simple scheme does not produce a satisfactory fit to the image data,
motivating the features introduced below.

4.7 Adaptive image and source reconstruction

In addition to the lens model, the source and image analysis there-
fore determine the value of lnε. For instance, lnε depends on the
source-plane pixelization (see N15 and also Tagore & Keeton 2014),
the degree of regularization applied to it and the regularization
scheme that is applied (e.g. zeroth-order, gradient, curvature; see
WD03). The observed image’s variances (which can now be scaled)
also determine lnε. Thus, the set-up of the source and image analysis
will determine the lens model that is inferred. To determine what
is objectively the most probable lens model, one must therefore
find the model that maximizes lnε including all these aspects of the
analysis. AutoLens achieves this by changing its source pixeliza-
tion, regularization, and image variances, in conjunction with the
lens model, throughout the analysis. Other methods follow a sim-
ilar approach for choosing the source-plane regularization scheme
or resolution (e.g. Suyu 2012; Vegetti et al. 2014), but do not do so
in a fully automated or self-consistent way.

To adapt the source reconstruction and scale the image’s vari-
ances, pre-computed model images of the lens galaxy’s light profile
and reconstructed lensed source (in the image-plane) are used (us-
ing lens light and mass models that have already been estimated
in earlier phases of the automated analysis pipeline described in
Section 6). These model images are stored in vectors of J image
pixels, where the lensed source model in each image pixel is given
by �j = ∑

isifij and the lens light model in each image pixel by
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Łj = bj. These vectors are updated throughout the automated anal-
ysis pipeline and correspond to the highest likelihood model that
has previously been estimated.

In the following sub-sections, we describe each adaptive feature
of the source and image analysis, alongside their associated hyper-
parameters.

4.7.1 Source pixelization

Three new hyperparameters are associated with the source pixeliza-
tion. The first is simply the number of source-plane pixels, Ns. The
second and third control the source plane clustering. The weighted
k-means clustering algorithm used for source plane pixels mini-
mizes the sum of cluster ‘energies’, E, given by

E =
I∑

i=1

ei =
I∑

i=1

K∑
k=1

(
rk

Wk

)2

, (11)

where a cluster energy ei is the quadrature sum of the distances rk

of its K associated traced image-plane pixels to its center divided by
each pixel’s weight Wk. In N15, all traced image pixels were given
unit weighting, leading the method to adapt to the mass model’s
magnification pattern. Instead, the method now adapts to the surface
brightness of the lensed source, using the weight vector W , which
calculates the weight Wj of each image pixel using the pre-computed
source model vector as

Wj =
[(

�j − �min

�max − �min

)
+ LClust1

]LClust2

, (12)

where �min and �max are the maximum and minimum values of
� such that the first term of the right-hand side of this equation
ranges between 0 and 1. As the hyperparameter LClust2 increases,
the separation between the lowest and highest Wj values increases,
such that minimization of the statistic E prefers a source-plane
clustering that places a greater number of smaller source pixels
within the source’s brightest regions. Conversely, as larger values of
the hyperparameter LClust1 are added, the resulting distribution of Wj

values is flattened, such that minimization of the statistic E places
more source pixels away from the source. Together, LClust1 and
LClust2 give AutoLens complete control of its source pixeliation.
For LClust2 = 0, all Wj = 1 and source-plane adaptation reverts to
pure magnification scaling as in N15. Negative values of LClust1 and
LClust2 are not permitted, which would lead the source-plane to adapt
to regions of background sky.

Fig. 3 illustrates surface brightness adaptation for the simulated
images LensSrcDiskHS30L50Disk and LensSrcCuspHS20L60Cusp. The
left-hand panels show source reconstructions not using this feature,
equivalent to using the analysis of N15 or a value LClust2= 0. The
right-hand panels show the result of including Ns, LClust1, and LClust2

as free parameters in the hyperparameter optimization. For the im-
age LensSrcCuspHS20L60Cusp surface-brightness adaptation can be
seen to have a significant effect, congregating a large number of
source pixels around the cuspy source’s bright central regions. For
the image LensSersicDiskHS30N50Flat, it plays a lesser role, owing to
the source’s flatter light profile.

4.7.2 Source and lens contribution maps

The remaining adaptive image and source features require an esti-
mate of how much of the flux in each image pixel can be attributed to
the source and lens. To achieve this, two ‘flux contribution maps’ are
generated, �Src and �Lens. To compute these vectors, the total flux

in each image pixel that can be accounted for by the pre-computed
source and lens light models is first computed as

T j = �j + Łj . (13)

The contribution of flux that can be attributed to the source light in
each image pixel is then estimated as

�Src,j = �j

T j + ωSrcFrac
, (14)

where values of �Src below 0.02 are set to 0 to remove residual
features in the source reconstruction. The contribution of flux from
the lens is then given as

�Lens,j = Łj

T j + ωLensFrac
. (15)

Both vectors are then divided by their maximum values, such that
they range between values just above 0 and 1. �Src will therefore
contain values close to 1 where only the source is present and close
to 0 where it is not, whereas �Lens will behave analogously for
the lens. The above expressions also include the hyperparameters
ωSrcFrac and ωLensFrac, the practical role of which is to allow the
source and lens contribution maps to attribute more pixels to values
closer to 1. Without these hyperparameters only the brightest pixels
are able to obtain a value near 1, limiting the applicability of the
contribution maps for the features discussed next.

Fig. 4 shows the flux contribution maps of the images
LensSrcCuspHS20L60Cusp and LensSrcDiskHS50L100Flat, where both,
as expected, correctly trace either the source or lens.

4.7.3 Luminosity-weighted regularization

The next three hyperparameters introduce a luminosity-weighted
regularization scheme, using the redefined regularization matrix
H� given in equation (10) and described in Appendix B. A similar
scheme is employed by Suyu et al. (2013) and Vegetti et al. (2014).

To weight regularization by the lensed source’s flux, each source
pixel requires some measure of how much of the source’s flux it
contains before the actual source reconstruction is performed. To
do this, �Src is used, summing over the K image pixels allocated to
each source pixel to compute the vector v as

vi =
∑K

k=1 �Src,k

K
, (16)

where i is again the source pixel number. Each element in v is
divided by K to normalize for the number of allocated image pixels,
which can vary due to the k-means algorithm. The vector V is then
computed, where each element is given by

Vi =
[

vi

vmax

]LLum

. (17)

Once again, each element is divided by the maximum value of v

to scale all values between 0 and 1 and raised to the power of the
hyperparameter LLum. V is then used to compute the luminosity-
weighted regularization value of each source pixel (see Appendix B)
as

�i = λSrcVi + λBG(1 − Vi), (18)

therefore leading to two regularization coefficients λSrc and λBG.
The importance of luminosity-weighted regularization is that it

divides source-plane regularization into two regions: (i) pixels that
map to the lensed source and (ii) pixels that map to the background
sky or central regions of the lens galaxy. The hyperparameter LLum
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Figure 3. An illustration of source surface-brightness adaptation (see Section 4.7.1) using the images LensSersicDiskHS30L50Disk (top row) and
LensCuspySrcHS20L60Cusp (bottom row). All panels depict the result of using each image’s input lens model to optimize the hyperparameters, with the
left-hand panels adapting to the mass model’s magnification and optimizing just λ (Ns = 500) and right-hand panels adapting to the source’s surface brightness
by optimizing all hyperparameters described in this section, including Ns, LClust1, and LClust2. Black dots depict the locations of traced image-pixels and red
dots are the centres of each Voronoi source pixel. For both images, surface-brightness adaptation congregates more source pixels in the source’s brighter central
regions, leading to an increase in lnε.

controls the smoothness of the transition between these two regions,
whereby higher values give a sharper transition and LLum = 0 reverts
to the constant regularization scheme of N15. By using two regu-
larization coefficients (λSrc and λBG), each region therefore receives
its own level of regularization.

Fig. 5 illustrates this, by showing the effective regularization
coefficient λeff applied to each source pixel (see Appendix B for
the exact definition of this quantity). The constant regularization
scheme, which gives each source pixel the same value of λeff, is
not shown, but computes values of λeff = 610 and λeff = 230 for
LensSersicDiskHS30L50Disk and LensCuspySrcHS20L60Cusp, respec-
tively. The luminosity-weighted scheme reduces regularization in
the central regions of the source, facilitating a more detailed recon-
struction of its light. Simultaneously, it increases the regularization
of the source-plane’s exterior pixels (where the source isn’t located),

allowing the method to fully correlate the exterior source pixels that
only reconstruct the background sky. The constant regularization
scheme is used in the early stages of the automated pipeline, before
non-constant regularization has been appropriately set up.

4.7.4 Sky background

The data-vector d does not include the background sky, which is
subtracted using each image’s background-sky flux fBG. However,
for real data, fBG is estimated using the image itself (e.g. by taking
a median value of a region of sky), which introduces uncertainty
in fBG. Therefore, to include this uncertainty, sky subtraction is
controlled by the hyperparameter ωSky, where

d = d ′ + ωSkyfBG, (19)
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Figure 4. The observed images (top row), lens flux contribution maps �Lens (middle row), and source flux contribution maps �Src (bottom row) described
in Section 4.7.5 for the images LensSrcDiskHS30L50Disk (left-hand column) and LensSrcCuspHS20L60Cusp (right-hand column). Figures show the result of
using each image’s input lens model to optimize all of the hyperparameters described in this section, including ωSrcFrac and ωLensFrac. The contribution maps
successfully split each pixel’s flux contribution between the source and lens.

MNRAS 478, 4738–4784 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/4/4738/5001434
by University of Durham user
on 12 July 2018



AutoLens: automated modeling of a strong lens’s light, mass, and source 4751

Figure 5. An illustration of the luminosity-weighted regularization scheme described in Section 4.7.3 using the images LensSersicDiskHS30L50Disk (left-hand
panel) and LensCuspySrcHS20L60Cusp (right-hand panel). Black dots depict the locations of traced image-pixels and red dots are the centres of each Voronoi
source pixel. Both panels correspond to the result of optimizing the hyperparameters, including λSrc, λBg, and LLum, with the input lens model, thereby producing
a nonconstant regularization scheme. Grey scaling shows the effective regularization coefficient λeff of each source pixel, which as described in Appendix B
represents the effective degree of regularization applied to that pixel. The constant regularization scheme that is produced by using only the hyperparameter
λ is not shown, but gives all pixels the same value of λeff = 610 for the image LensSersicDiskHS30L50Disk and λeff = 230 for LensCuspySrcHS20L60Cusp.
Luminosity-weighted regularization can be seen to reduce the degree of regularization applied to the source’s brightest regions and increase it in its exterior
regions, both contributing to an increase in lnε.

noting that d and d ′ must therefore be in units of electrons per
second. Early in the analysis ωSky is fixed to zero. The prior assigned
to ωSky can be chosen to match the uncertainties found by the sky
estimation. The motivation behind incorporating the sky subtraction
into the analysis is well documented, whereby a poor or uncertain
sky subtraction can make it difficult to quantify the faint regions of
a galaxy’s extended light profile (Häußler et al. 2013).

4.7.5 Variance scaling

A baseline variance is assigned to each pixel as the quadrature sum
of Gaussian background noise and Poisson photon error

σj,base =
√

σ 2
BG + dj , (20)

where σ BG is the value of the overall background noise in counts
(in this work the background sky and read noise) and where dj has
been converted from electrons per second to counts. This gives the
image’s ‘baseline variance-map’, with its corresponding χ2 values
termed χ2

base. For real imaging data, equation (20) could contain
additional terms due to other aspects of the data reduction (e.g.
hot pixels, cosmic rays, dithering etc.). The initial stages of an
AutoLens analysis use the baseline variance map. However, after
these initial stages, the variances may be increased in regions of the
image where a poor fit is obtained.

The next set of hyperparameters thus offers AutoLens the abil-
ity to perform this variance scaling, therefore producing a ‘scaled
variance-map’ with corresponding scaled χ2

scale values. The vari-
ances are scaled separately for the background, source, and lens, by
using the flux contributions maps and the expression

σj,scale = σj,base + ωBGσBG + ωSrc

√
dj (�Src,j )ωSrc2

+ωLens

√
d j(�Lens,j )ωLens2 , (21)

where σ BG and dj are again in counts. The ω terms are all hy-
perparameters that scale the variances of image pixels in different
regions of the observed image. If the lens’s light is not modeled,
the corresponding ωLens terms are not included in equation (21) or
the hyperparameter optimization. The scaled variances cannot go
below their baseline values because the method requires that ωBG �
0, ωSrc � 0, and ωLens � 0. The background sky variances are scaled
because there is uncertainty in the background sky subtraction.

During testing, it emerged that the method must not be allowed
to scale variances to arbitrarily high values. This prevents the S/N
of image pixels that actually contain significant flux from being un-
realistically small. To implement this, first, the maximum values of
χ2

base are determined using the cuts �Src > 0.75 and �Lens > 0.75.
These provide an indication of how well the lens model currently
fits the source and lens galaxies. The highest values allowed for
the hyperparameters ωSrc and ωLens are then set such that their cor-
responding χ2

scale values cannot be scaled below a target value χ2

value, which we set to 10. If either χ2
base value is already below

10 (because the lens model is already fitting the data accurately),
variance scaling for that component is switched off and its corre-
sponding hyperparameters are omitted. For this reason, variance
scaling is not required in cases where the lens model that created
the simulated image matches the model used to fit it. We therefore
defer its demonstration until the next subsection when this is not
the case.

4.7.6 Implementation

Whereas N15 used just one hyperparameter, AutoLens now uses
up to 14 simultaneously. Setting these parameters by maximizing
lnε can therefore no longer rely on simple iteration as it did in N15.
Instead, a fully non-linear MultiNest search is performed, which
treats every hyperparameter as a free parameter. This again uses
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constant efficiency mode and importance sampling and the priors
used for each hyperparameter are discussed in Appendix C. The
figures shown in the previous section were generated by using this
non-linear optimization.

In general, the lens model and hyperparameters are sampled sep-
arately from one another. That is, a lens model is estimated, which
is used to optimize the hyperparameters, which are next fixed to im-
prove the lens model, and so on. Bayesian inference therefore retains
the three-level structure described in Dye et al. (2008), where the
linear source inversion forms the inner-most level. However, Au-
toLens can include the hyperparameters in the non-linear search
of the lens model, thus sampling any of the parameters described
above alongside the mass and light models. This feature is used at
various points throughout the analysis pipeline and the importance
of this will be discussed in Section 6.

It is here that the fully randomized source-plane discretization
discussed in Section 4.2 is important, where the random seed of
source-plane clustering was updated to always produce a different
source-plane discretization. When the lens’s mass model is fixed
(as it is for a hyperparameter optimization), its corresponding de-
flection angles are also fixed, therefore also fixing the source-plane
coordinates of the traced image pixels. Therefore, for the imple-
mentation of clustering used in N15 the exact same source-plane
discretization would have been used throughout the entire hyper-
parameter optimization. This is problematic, as a particular source-
plane discretization favors a particular combination of hyperparam-
eters, which in turn favor a particular lens model, leading the overall
analysis to end up biased towards a specific parameter set. Thus,
by fully randomizing the source-plane discretization, this biasing is
removed.

5 D E M ONSTRATION

The importance of these features is now demonstrated by analysing
two simulated images with two different hyperparameter strategies:
(i) the ‘basic implementation’, which uses only Ns and λ as hyperpa-
rameters and therefore omits the adaptive image and source features
above. This closely resembles N15, with the only difference being
that N15 used a fixed value of Ns. (ii) The ‘adaptive implemen-
tation’, which uses all of the features above, giving up to 14 free
hyperparameters if variance scaling is activated for both compo-
nents. Both implementations use a MultiNest search to set the
hyperparameters and the analysis is performed using the automated
analysis pipeline introduced in the next section. Whilst readers are
not yet aware of how this operates, the specific details are not im-
portant for providing a simple demonstration of the adaptive image
and source features. However, it is worth noting that (i) this analysis
does not use a fixed lens model, but determines the lens model via
multiple MutliNest runs, and (ii) initial runs assume a simpli-
fied lens model (a Sersic light profile and SIE mass profile). The
second point is of particular importance for demonstrating variance
scaling.

Figs 6, 7, and 8 show the results of this analysis. These figures
follow the same format, showing the reconstructed model image,
residuals, χ2 image (residuals divided by the baseline or scaled
variances squared, equation (9)), and reconstructed source (Fig.
6) or baseline/scaled variance maps (Figs 7 and 8) for the basic
implementation (top rows) and adaptive implementation (middle
and bottom rows). The input lens models for both images are given
in Table 1.

5.1 Source modeling – correct mass model

The first issue arises when modeling sources with a cuspy and
rapidly changing light profile. This is illustrated in Fig. 6 using
the image SrcBDHS50NLBD. Significant residuals can be seen in the
basic implementation’s reconstruction of the image’s bright, high
S/N pixels, which causes a small sub-set of image pixels to obtain
large χ2

base values. This means that the overall χ2 is constrained
by only a small portion of data; approximately 5 per cent of image
pixels contribute to over 90 per cent of the overall χ2 value. Whilst
this is clearly not ideal for any form of data analysis, Table 3 shows
that the basic implementation still computes the correct lens model,
suggesting that the poor residuals and skewed χ2 distribution do not
bias lens modeling. However, as discussed next, this holds only for
simulated images where the mass model matches exactly the lens’s
true mass profile. For real imaging this is not the case, thus these
issues must be corrected.

The issue arises because of the basic implementation’s source-
plane pixelization and regularization scheme. By adapting to the
magnification, pixels in the source’s central regions (where its in-
trinsic light profile is most rapidly changing) cover roughly the same
area as those further out (where its light profile is flatter). However,
although the pixels in these central regions are reconstructing a more
rapidly declining light profile, they are regularized with the same
λ as those further out. Therefore, when setting λ, the method has
to compromise between a λ low enough to accurately reconstruct
the source’s central regions but also high enough to correlate the
source pixels further out. A compromised and intermediate value
of λ is ultimately calculated. This ‘oversmooths’ the reconstructed
source’s central light, producing the residuals seen in Fig. 6 (where
the fact these are the highest S/N image pixels inflates their χ2

contribution). The exterior regions of the source-plane (which map
to background sky in the image) are simultaneously ‘underregular-
ized’, in the sense that an unnecessarily high number of correlated
source pixels are used to fit the regions of the image where the source
is not present. Altogether, a reduced value of lnε is inferred. The fact
Ns is a free parameter for the basic implementation demonstrates
that a higher source-plane resolution by itself cannot alleviate these
problems.

The bottom row of Fig. 6 shows that the adaptive implementation
removes this problem, producing nearly featureless residuals and
a χ2 image fully consistent with Gaussian noise. Table 3 confirms
that this comes with an increase in lnε and shows a reduction in the
lens model parameter errors, suggesting the basic implementation’s
skewed χ2 distribution produced overestimated errors because it
constrained the model with a small subset of the available image
data. For this analysis, variance scaling was switched off, as the
baseline χ2 values in the lensed source model were all below 10.

In this example, both the improved pixelization and regulariza-
tion scheme contribute to this. The congregation of smaller source
pixels around the source’s central cusp of light provides a better spa-
tial sampling of its rapidly changing surface brightness, meaning it
reconstructs the source more accurately. Non-constant regulariza-
tion ensures that each source pixel is subject to an appropriate level
of regularization, regardless of its location in the source plane. The
interplay between both of these features givesAutoLens complete
freedom in how it reconstructs the source and ensures it finds the
simplest solution possible (in a Bayesian sense). These solutions,
by definition, use the fewest number of correlated source pixels
and the adaptive implementation is indeed found to assume lower
Ns values, offering significant gains in run-time efficiency. Model
comparison with AutoLens therefore has no bias or preference to

MNRAS 478, 4738–4784 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/4/4738/5001434
by University of Durham user
on 12 July 2018



AutoLens: automated modeling of a strong lens’s light, mass, and source 4753

Figure 6. The model source, residuals, χ2 images, and source reconstructions for the analysis of the image SrcBDHS50NLBulge, using either the basic
implementation (top row, adaptive image and source analysis switched off) or adaptive implementation (bottom row, adaptive image and source analysis turned
on). The resulting lens models are given by the first two rows of Table 3. The basic implementation can be seen to fit the image poorly, leaving noticeable
residuals in each multiple image, which dominate the model’s overall χ2 value. The adaptive implementation gives featureless residuals and a Gaussian χ2

image.

Figure 7. The model source, residuals, χ2 images, and variance maps for the analysis of the image SrcBDHS50NLBulge, using either the basic implementation
(top row, adaptive image and source analysis switched off) or adaptive implementation with variance scaling turned off (middle row) or turned on (bottom row)
and a lens model which incorrectly assumes that α = 2.0 (the true value is α = 1.7). The resulting lens models are given by the third, fourth, and fifth rows
of Table 3. The basic implementation can be seen to fit the image poorly, leaving noticeable residuals in each multiple image, which dominate the model’s
overall χ2 value. The adaptive implementation also gives poor residuals, given that the lens model is incorrect, however the χ2 image shows a far less skewed
distribution, which the right-hand panels show is the result of variance map scaling.

sources of a specific morphology or smoothness profile, which is
not necessarily the case for approaches using a fixed pixelization
(see S06).

5.2 Source modeling – incorrect mass model

Fig. 7 shows three independent analyses of the same image above,
SrcBDHS50NLBD, but where its SPLE mass model has been fixed to
an incorrect power-law slope α = 2.0 (its input value is α = 1.7).

Three analyses are performed using the basic implementation (top
row), the adaptive implementation with variance-scaling manually
switched off (middle row), and with variance scaling on (bottom
row). The basic implementation suffers the same issues as before;
noticeable residuals and a skewed χ2 distribution. However, the
same is also now true for the adaptive implementation. This is
because, even with the improved source pixelization and regular-
ization, the mismatch between the assumed mass model and true
lens profile means only a poor fit is obtainable. When variance scal-
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Figure 8. The model images, residuals, χ2 images, and variance maps for the analysis of the image LensLightBDHS25L50BD, fitted using a Sersic light model
even though its true underlying profile is a Sersic + Exp. Two fits are shown, using the basic implementation (top row, adaptive image and source analysis
switched off) and adaptive implementation (middle row, adaptive image and source analysis turned on). The adaptive implementation can be seen to increase
the variances where the lens and source are located. The resulting lens models are given by the sixth to ninth rows of Table 3. The basic implementation can
be seen to fit the image poorly, leaving residuals around both the lens and source, which dominate the model’s overall χ2 value. The adaptive implementation
gives poor residuals around the lens (as expected because the Sersic model cannot provide an accurate fit), however the source residuals are mostly removed
and its χ2 image shows a significantly less skewed distribution.

ing is turned on, the residuals are equally poor. After all, scaling the
variances can’t change the fact that this mass model simply does not
provide a good fit to the observed image. However, the χ2 image
shows fewer pixels with high χ2 values and χ2 values that are lower.
As discussed for the previous issue, this is the more desirable solu-
tion, as it uses all of the data that is available to constrain the lens
model. Table 3 shows this in turn provides the smallest errors and
highest Bayesian evidence. However, the scaled χ2 values shown
in the bottom row of Fig. 7 are not fully consistent with Gaussian
noise, because the limits of variance scaling prevent χ2

sca values to
go below 10. The reasoning behind this set-up is discussed next in
Section 5.4.

In this example, the issue could easily be fixed by allowing α to
be a free parameter. For real lenses, however, the mass model will

always (to some degree) be ‘incorrect’, because the mass models
assumed during a lens analysis are a simplified representation of
any galaxy’s true underlying mass distribution (see discussions by
Brewer et al. 2012; Suyu 2012). Noticeable residuals and non-
uniformly distributed χ2 images (without variance scaling) are
therefore commonplace when analysing real strong lenses, which
will negatively impact lens modeling by overfitting a small frac-
tion of the available imaging data. This can lead to overestimated
parameter errors or biased parameter estimates. Instead, it is more
desirable that the lens model is constrained using all of the data
that is available by fitting the image in an equally weighted man-
ner, especially once other uncertainties like a poor PSF-sampling
are considered. Variance scaling ensures that this is the case and
in conjunction with the adaptive source features offers a natural
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5 means to test more complex mass models using Bayesian model
comparison.

5.3 Simultaneous source and lens modeling – incorrect light
model

Further issues arise when the lens and source are modeled simultane-
ously, in particular when the lens light subtraction leaves residuals.
Fig. 8 illustrates this particular circumstance, showing the results of
fitting the image LensLightBDHS25L50BD with a Sersic light profile,
even though the simulated lens was generated using the more com-
plex Sersic + Exp profile. As expected, the lens subtraction for both
implementations leaves significant residuals, as the Sersic profile
is simply unable to provide a good fit to the lens’s more complex
morphology. However, comparison of the residuals and χ2 image
of the two implementations show they differ in two ways: (i) the
basic implementation leaves residuals after fitting the lensed source,
whereas the adaptive implementation does not (the much smoother
source morphology for this object means this is not due to the issue
above); (ii) the χ2 image for the adaptive implementation almost
fully realizes the image’s Gaussian noise, except for a few pixels
in the centre of the image, whereas the basic implementation again
suffers the skewed χ2 distribution discussed above, however now
also in the central pixels where the lens is located.

The fundamental problem here is that when simultaneously mod-
eling both the lens and the source reconstruction cannot distinguish
between lensed source flux and residual lens light. Problematically,
it treats the latter as if they are part of the source, corrupting the im-
age reconstruction and ultimately biasing the inferred lens model,
as shown in Table 3. This issue impacts the image reconstruction
in two ways, both of which the adaptive implementation was devel-
oped specifically to tackle.

The first is the impact of central residual light on the source
reconstruction. The linear inversion will attempt to fit these pixels
like any other, but fail to do so, given that they map to the exterior
regions of the source-plane where all of the other traced image
pixels map to the background sky (see Fig. 2). This by itself is
acceptable, as the method shouldn’t reconstruct these pixels as if
they are part of the source. The problem, however, is regularization,
as (in an analogous manner to the cuspy source above) these pixels
lead the basic implementation to set a compromised higher value
of λ, which leads the source reconstruction to be oversmoothed,
producing the source residuals seen in Fig. 8 and inflating the lens
model parameter errors as shown in Table 3.

The adaptive implementation does not suffer this issue because of
luminosity-weighted regularization, which allows the source recon-
struction to simultaneously smooth over the exterior regions of the
source plane that map to the lens subtraction residuals (and back-
ground sky) whilst simultaneously fitting the detailed structure of
the source with an appropriate and reduced level of regularization.
Therefore, even in the presence of a poor lens subtraction the adap-
tive implementation can still fit the source accurately, as shown by
the removal of source residuals in Fig. 8. When the method is able
to smooth over the source plane’s exterior regions with very high
levels of regularization, the issues discussed in Section 4.5 related
to the source reconstruction fitting residual flux in central image
pixels are circumvented.

The second problem is also due to central image pixels, but in-
stead how the lens light model fits and subtracts them. These pixels
are the highest S/N pixels in the data (typically by a large margin)
and therefore have the potential to overwhelm the model’s χ2 con-
tribution if the lens subtraction is not perfect. When this occurs, the
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light model concentrates its flux into these central regions so as to
accurately fit only these high S/N image pixels, overconcentrating
the inferred light profile and failing to give a global representation
of the lens’s morphology. This is shown by Table 3, where the ba-
sic implementation can be seen to go to a much higher value of nl

compared to the adaptive implementation.
For real lenses, no light subtraction will ever be perfect and

many lenses will possess detailed structures (e.g. bars, dust lanes) a
smoothly parametrized profile cannot fit completely. Thus, it is
paramount this issue is removed from the lens analysis, which
the bottom row of Fig. 8 shows is exactly what variance scaling
achieves, by increasing the variances around the lens galaxy such
that the χ2 image reverts to being (almost) Gaussian, thereby again
giving a global fit to the imaging data.

5.4 Variance overscaling

The χ2 images shown in Figs 7 and 8 for the adaptive implemen-
tation (with variance scaling on) are not fully consistent with the
image’s Gaussian noise. A small subset of pixels retaining values
of χ2 ∼ 10 can be seen. This is because of the upper limits placed
on the values of ωSrc and ωLens, which restricted their maximum
values such that χ2

sca could not be scaled below 10. When these
limits are not imposed, the χ2 image becomes fully consistent with
Gaussian noise. However, during testing of AutoLens, it emerged
that giving these hyperparameters the freedom to go to arbitrarily
high values lead to ‘variance overscaling’.

Here, the scaled variances were increased to such large values
that the effective S/N (and χ2

sca values) of their corresponding image
pixels was ∼0. This decreased lnε, as the overall S/N of the observed
image was reduced (recall the description of the Bayesian evidence
in Section 4.6). However, a net increase in lnε was still possible,
because the source reconstruction and lens model could change so
as to fit other regions of the image better. These solutions are not
desirable, as the method is essentially ignoring the central regions
of the lens and source galaxies in order to better fit more exterior
regions of each. The limits on ωSrc and ωLens are therefore imposed
to prevent this from happening, by ensuring the χ2

sca values of these
image pixels cannot be reduced to 0. The target values of χ2

base = 10
are chosen to give a balance between reducing the χ2 values such
that the source reconstruction and lens light profiles do not overfit
the central regions, whilst also ensuring that variance overscaling
does not occur. For real lenses, it will be important to investigate the
impact of changing these target scalings on the inferred lens model.

5.5 Decomposed mass modeling

Equation (3), used for decomposed mass modeling, assumes that
light perfectly traces mass, an assumption that will hold only ap-
proximately for real lenses. However, the lens’s light profile is con-
strained by two aspects of a decomposed analysis: (i) the quality of
the light subtraction and (ii) the decomposed mass model’s source
and image reconstructions. For decomposed mass modeling it is
therefore desirable to give the lens’s light matter distribution the
freedom to deviate from the lens’s light profile, if doing so improves
the mass model. Variance scaling facilitates this, such that the χ2

contribution of central image pixels can be downweighted to allow
the light profile to deviate from its true profile. Doing so decreases
lnε, but could potentially produce a net lnε increase by improving
the mass model. Thus, AutoLens does not strictly assume that
light traces mass and is able to deviate from this assumption within
a Bayesian context. Comparison to models assuming a total-mass

profile, like the SPLE, can offer insight into whether this is occur-
ring and to what degree. However, the simulated images used in this
work assume that light traces mass, thus this is not tested explicitly
here.

6 PI PELI NE AUTOMATI ON

AutoLens is a multiphase automated analysis pipeline, designed
with scalability to very large lens data sets in mind. Each phase
involves a separate MultiNest search, but generates initial points
from priors derived from the highest likelihood regions of the pre-
vious phase’s posterior distributions. Many tasks required to set
up AutoLens are performed automatically between phases, most
notably optimizing the hyperparameters of the adaptive image and
source reconstruction features. Fig. 9 provides a flow diagram of
AutoLens, showing the different phases used throughout the au-
tomated analysis framework. The figure shows that the pipeline
incorporates three parallel routes, a particular route being chosen
depending on whether a singular total-mass profile, cored total-mass
profile or decomposed mass profile is being fitted. Also shown is
the primary aim of each phase and lens model that is fitted.

6.1 Pipeline phase linking

In the initial phases of the automated analysis pipeline broad uni-
form priors are assigned to all lens model parameters, since they
have no expectation values computed for them. However, once es-
timated, this information is used to set that parameter’s priors in the
subsequent phase of the pipeline. The motivation behind this is that
the more complex lens models used by AutoLens have a large
and highly degenerate non-linear parameter space within which
accurate sampling and location of the global maximum is unattain-
able if broad priors are assumed on all parameters simultaneously.
Therefore, the initial phases of AutoLens accurately estimate a
less complex lens model, with later phases using these results to
gradually increase the lens model complexity whilst ensuring the
non-linear parameter space is sampled accurately. To accompany
this, the image and source reconstructions also gradually adapt to
the properties of the lens and source being analyzed, facilitating
further the fitting of more complex lens models.

The lens models used in different phases of the pipeline are linked
via Gaussian priors centered on each parameter’s high-likelihood
regions, as estimated in the previous phase. Although it is possible
to choose narrow priors to expedite the exploration of parameter
space, the prior scaling values chosen for this work sample very
broad regions, ensuring that no results are simply a consequence of
overly restrictive priors (but offering enough information to ensure
parameter space is sampled robustly). Nevertheless, the freedom
offered by the ability to scale the degree of sampling will be key
to scaling the method up to large lens samples in the future. Ap-
pendix C gives a full description of how each phase is linked, along
with the priors used to link every mass and light model from one
phase to the next.

6.2 Pipeline initialization

Initialization involves four automated tasks, the aim of which is to
compute an accurate light (Sersic) and mass (SPLE α = 2.2) model
alongside a robust initialization of the hyperparameters.

(i) PInit1 – Lens Light Subtraction – This phase fits a Sersic +
Exponential light profile to the observed strong lens with the lensing
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Figure 9. A flow diagram of the AutoLens automated analysis framework, which is described in detail throughout Section 6. The method begins with
four initialization phases, which aim to accurately compute an accurate lens model alongside a robust initialization of the hyperparameters. Before the fourth
initialization phase, the pipeline splits into one of three routes, depending on whether a singular total-mass, cored total-mass, or decomposed mass profile is
desired. Each of these pipelines then runs a set of model comparison phases that set the complexity of the lens light profile, mass profile, and light and dark
matter geometry. The main analysis pipeline then begins which computes high precision estimates of every lens model parameter. Images without a lens light
component use a reduced version of this pipeline described in Section 6.6.
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analysis turned off. Shown in Fig. 10 (top row), the resulting light
model and subtraction are poor. However, they are sufficient for the
centre of the lens’s light profile to be estimated and to provide a
lens-subtracted image for the next phase. No other information is
used from this phase.

(ii) PInit2 – Parametric Source Model – Initializing a lens model
with a pixelized source reconstruction is a surprisingly non-trivial
task. This is because of the over-/underfit solutions discussed in
N15, which reconstruct the source as a demagnifed version of the
lensed image. In general, these solutions have a lower lnε than
the input model, but occupy much larger volumes of non-linear
parameter, causing MultiNest to get stuck in their local maxima.
To circumvent this issue, a parametric source profile is used first, for
which these unwanted and unphysical solutions do not exist. This
allows an initial estimate of the mass profile to be computed in a
completely general way, which can then be used in the next phase to
prevent MultiNest from sampling these over-/underfit solutions.
Thus, this phase fits the SPLE (α = 2.2) + Sersic (source) model
to the image, omitting lens light modeling and masking the central
regions where the poor lens subtraction leaves residuals. This is
illustrated in Fig. 10 (top-middle row), where the lensed source
models can be seen to fit the observed image well enough to ensure
the mass model has been estimated reliably. Finally, the positional
image pixels and threshold value are updated (see Appendix A).

(iii) PInit3 – Initial Lens Model and Hyper-Parameters – This
phase now uses a pixelized source-plane, fitting the Sersic + SPLE
(α = 2.2) model to the image (α = 2.2 to remove the biases described
in Section 4.5). Restrictive priors are placed on the mass model
parameters, ensuring that the method does not sample the unphysical
solutions corresponding to a demagnified image reconstruction. The
baseline variance-map is used, source-light adaptation is turned off,
and a constant regularization scheme is applied with λ included
as a free parameter in the non-linear search. This is illustrated in
Fig. 10 (middle row), where both the light and source models can
be seen to fit the observed image reasonably well, but with the
residuals and χ2 image showing the issues discussed previously
(as is expected given the adaptive source/image features are not
implemented yet). However, the model is of sufficient accuracy to
initialize the hyperparameters, which is performed before phase
PInit4. The positional image pixels and threshold are again updated.

(iv) PInit4 – Model Refinement – This phase fits one of three
models: (i) the Sersic + SPLE (α = 2.2) model (with priors relaxed
compared to the previous phase); (ii) the Sersic + PLCore (α = 2.0)
model (using priors from the previous phase and a broad prior on
the core radius) or (iii) the Light + NFWSph model (with broad
uniform priors). The models correspond to the singular total mass
pipeline, cored total mass pipeline, or decomposed mass pipeline,
respectively. This phase benefits from the adaptive image and source
features following the hyperparameter initialization of the previous
phase. The aim of this phase is to refine the lens model and ensure an
excellent optimization of the hyperparameters for the model com-
parison phases. This is illustrated in Fig. 10 (bottom row), where an
accurate model for both the light and mass components is shown,
alongside much improved residuals and χ2 values. Following this
phase, hyperparameters are re-optimized and positional image pix-
els are recomputed.

6.3 Bayesian model comparison

The next stage of the pipeline ‘builds’ the lens model, by performing
Bayesian model comparison. A number of publications have already
detailed the hierarchical Bayesian formalism of pixel-based lens

analysis methods like AutoLens (e.g. S06, Vegetti & Koopmans
2009a; Tagore & Keeton 2014). Hence, only a brief overview is
given here. Bayes’s theorem is given by

P (m|d, M) = P (m|M)
P (d|m,M)

P (d|M)
, (22)

where d is the data and m is a particular realization of the overall
model M, which comprises all linear source parameters, hyper-
parameters, lens model parameters, and H�. P(d|m, M) gives the
likelihood, P(m|M) the priors on model parameters, and P(m|d, M)
the posterior probability. The Bayesian evidence is given by P(d|M)
(which readers should note is different to the Bayesian evidence
given by equation (10), which ranks the source reconstruction) and
can be obtained by integrating over all possible models m in the set
of models M as

P (d|M) =
∫

P (m|M)P (d|m,M)dm . (23)

This expression has the principle of Occam’s razor built into it,
whereby overly complex models are penalized if they do not give
a justifiably improved fit to the observed data. Thus, maximizing
this quantity objectively chooses the model which best fits the data
without being overly complex. The ratio of the evidence of two
models (e.g. P(d|M1)/P(d|M2)) gives their Bayes factor and to ac-
cept a more complex model, a Bayes factor greater than twenty is
required (considered ‘strong’ evidence in Bayesian statistics). The
integral given in equation (23) is estimated by MultiNest and
therefore is a natural by-product of AutoLens’s analysis. It should
be noted that during the model comparison phases, MultiNest’s
non-linear parameter space comprises a subset of M’s parameters
(because certain hyperparameters are left fixed) and the evidence is
estimated for only these parameters. The parameters that are omit-
ted have no impact on the value of evidence and are omitted for
efficiency. In practice, model comparison with AutoLens simply
amounts to fitting different light or mass models at various stages of
the pipeline and choosing a more complex model when the evidence
increases over the previous (simpler) model by a threshold value,
which is set to 20.

When transitioning to a more complex lens model, the set-up of
the adaptive image and source features may be problematic. These
features adapt to a specific source morphology and suppress the χ2

contribution of poorly fitted image pixels by increasing their vari-
ances. If a more complex model changes the reconstructed source’s
morphology or accurately fits pixels that previously had their vari-
ances increased, there is a risk that using the hyper-arameters of the
simpler model may prevent the more complex model from making
a sufficiently high gain in lnε to be correctly favoured by model
comparison. Therefore, the relevant hyperparameters are included
as free parameters in each model comparison’s non-linear search.
This allows the model to change the source reconstruction and undo
the suppression of image pixels χ2 values if and when the new lens
model begins to accurately fit them, which in turn allows the correct
lnε values to be sampled.

The model comparison phases (and an intermediate linking
phase) follow the initialization phases above and are (noting that
following all the phases below is a hyperparameter re-optimization):

(i) PMCLight – Light Model – This phase chooses the light model.
For the singular total mass pipeline an SPLE (α = 2.2) mass model
is used, for a cored total-mass pipeline a PLCore (α = 2.0) model
and decomposed pipeline an NFWSph model. The mass model’s
parameters are initialized using the results of phase PInit4. The hy-
perparameters λSrc, ωLens, and ωSrc are not fixed. First, the Sersic +
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Figure 10. A demonstration of the analysis performed in phases PInit1 (top row), PInit2 (top-middle row), PInit3 (bottom-middle row), and PInit4 (bottom
row) using the image LensSrcBulgeHS30L50Bulge. The left-hand panels show the observed image and mask (top-row) and source reconstructions of each phase
(remaining rows), the middle-left panels the reconstructed model images, the middle-right panels the residuals and right most panels the χ2 images (equation 9).
top row (PInit1) – A Sersic + Exp light profile is fitted to the observed image with lensing analysis turned off. The light model gives a poor overall fit to the
observed image but gives an accurate estimate of xl and yl and reveals the lensed source for the next phase. top-middle row (PInit2) – A SPLE (α = 2.2) +
Sersic model is fitted to the lens subtracted image generated in the previous phase, where the source is modeled using a smoothly parametrized profile which is
sampled simulataneously with the mass model. This gives a robust initialization of the mass model’s parameters for the next phase and initializes the positional
image pixels. bottom-middle row (PInit3) – A Sersic + SPLE (α = 2.2) model is fitted to the observed image with the adaptve image and source analaysis
features switched off and λ included as a free parameter. The light and source models give a reasonable fit to the image, but the residuals and χ2 image show the
issues demonstrated in Section 5 are present. Nevertheless, the model is sufficient to optimize the hyperparameters so that the next phase can use the adaptive
image and souce features. bottom row (PInit3) – A Sersic + SPLE (α = 2.2) model is again fitted to the observed image but now with the adaptive image and
source features. The light and source models give an accurate fit and the residuals and χ2 are improved from the previous phase (and will be further improved
after this phase’s hyperparameter optimization).

Mass model is refitted, to compute the Bayesian evidence now
the hyperparameters have been re-optimized. This is compared to
the Sersic + Exp + Mass model, thus determining whether a two-
component light profile is required. For the total-mass pipelines the
light model does not contribute to the mass model, whereas for the
decomposed pipeline it does.
The simplified mass profiles used during this phase often leave
residuals in the lensed source. The two-component light model was
found to make gains in Bayesian evidence by subtracting these

source residuals. This behaviour is undesirable, therefore the upper
limit on the hyperparameter ωSrc is increased to a target value χ2

sca =
1.0 (as opposed to the value χ2

sca = 10.0 used everywhere else in
the pipeline). This ensures these residuals are not fitted by the light
profile, as they are down-weighted by variance scaling. After this
phase, the method reverts to a target value χ2

sca = 10.0.
(ii) PSPLEInit – SPLE Initialization – For the total-mass pipelines,

if the lens’s slope deviates from the fixed value previously assumed
for α it is beneficial to refine the mass model and adaptive source
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features to reflect. This phase does exactly this, by fitting the SPLE
or PLCore mass model with free α, alongside the light profile just
chosen. If variance scaling is on, ωLens and ωSrc are included as free
parameters, to ensure the new light profile (if chosen) and mass
profile are able to fit regions of the image that may have previously
had their χ2 suppressed.

(iii) PMCMass – Mass Model – For the total-mass pipelines, the
most probable light model computed in PSPLEInit is subtracted from
the observed image to create a source-only image. This image is
then fitted to choose the mass model with light modeling turned off
for computational speed. For the decomposed mass pipeline, the
original image is used with light modeling turned on. The hyper-
parameters λSrc and ωSrc (and ωLens for the decomposed pipeline)
are not fixed. First, the SPLE, PLCore, or Light + NFWSph model
is fitted, which is subsequently compared to the same model with
the inclusion of a Shear term, thus determining if an external shear
component is necessary.

(iv) PMCGeom – Light/Dark Matter Geometry – For the decom-
posed model pipeline this phase determines the light and dark matter
geometries, where the Light model is the light model chosen in the
phase PMCLight. The hyperparameters λSrc, ωSrc, and ωLens are not
fixed. First, the Light + NFW model is fitted assuming geometric
alignment (θ l = θd, xl = xd, yl = yd). This is compared to a Light +
NFW model that allows rotational misalignment (θ l and θd both
free) but retains the assumption of a common center. A third com-
parison is then performed, which allows the centers to vary (xl, yl, xd,
and yd all free) and assuming the rotational alignment determined
from the previous result.

6.4 Separate pipelines

It is worth noting the importance of using separate pipelines for
different mass profiles. For example, attempts to fit images gener-
ated using a cored mass profile with a singular mass profile were
found to give poor results, because lensed source features specific
to a cored mass model (radial arcs and a central image) cannot be
replicated accurately by a singular model. On the other hand, if a
cored model is wrongly assumed, it will wrongly include some of
the lens’s light in the source reconstruction, biasing the lens model.
Singular total-mass and decomposed mass models were generally
found to produce lensed sources with the same overall structure.
However, geometric offsets between a decomposed model’s light
and dark matter components produce unique features a singular
model cannot replicate (see Section 7).

Therefore, it is important to use separate pipelines for models
that produce different and unique lensed source features. To choose
between these models, Bayesian model comparison is again used,
now using the final results of each pipeline. Whilst this is compu-
tationally expensive, the splitting of each pipeline means they can
run in parallel.

6.5 Main pipeline

Following the initialization and model comparison, phase 1 of the
main pipeline begins, using the lens model previously chosen. The
lens’s light and mass are modeled simultaneously, with all initial pa-
rameters sampled via Gaussian priors initialized using the previous
phase’s results. The main pipeline comprises two phases: (i) the lens
model is estimated and the hyperparameters are re-optimized; (ii)
the same model is estimated again, but using more computationally
intensive settings providing more accurate parameter estimates and
errors. A third phase is possible, which includes all hyperparameters

in the non-linear search. However, this final phase is computation-
ally expensive and was found to have negligible influence on the
inferred lens model.

6.6 No lens light

AutoLens uses a simplified pipeline for modeling images where
there is no lens light component. This applies the phases PInit2, PInit3,
and PMCMass without lens light modeling. The main pipeline then
runs with only the mass model, using only phase 1.

6.7 Pipeline settings

The analysis has a number of settings that are changed throughout
the pipeline. In the early phases these are chosen to give a fast
run-time, since only an estimate of which models reasonably fit
the data is necessary. More computationally intensive settings are
used later on once high accuracy parameter, error, and Bayesian
evidence estimation is required. These are shown in Table 4, where
settings like the PSF trimming and image subgridding are altered
to give fast computation early on and high-accuracy later. Early
hyperparameter initialization is also restricted to lower values of Ns,
given how this drives the computational run-time (provided doing
so does not decrease lnε significantly). The set-up of MultiNest
is also changed, such that earlier pipeline phases converge more
quickly towards a solution, with more thorough sampling employed
in later phases. These settings can be altered to allow AutoLens to
scale up to larger lens samples whilst keeping the overall run-time
feasible.

6.8 Parameter estimation

Unless otherwise stated, estimates for each parameter are the median
of their 2-D marginalized posterior probably distribution, which
is calculated by weighting each accepted sample in MultiNest
by its sampling probability.1 This set of parameters then consti-
tutes what is referred to as the ‘most probable’ lens model and the
set that corresponds to the maximum overall likelihood gives the
‘most likely’ lens model. Errors correspond to the 3σ confidence
bounds on each parameter’s marginalized 1-D posterior distribution
function (PDF) unless otherwise stated and 2D PDF contours are
calculated by marginalizing over all other parameters. The results
presented in this work use only the MultiNest samples generated
from the second phase of the main pipeline unless stated otherwise
(or the final phase of the no lens light pipeline).

6.9 Stopping criteria

A MultiNest search stops when its estimate of the global poste-
rior log-evidence exceeds a user-defined threshold accuracy, which
corresponds to the point where all active points have roughly the
same likelihood values. However, as shown in N15, the changing
discretization of the source pixelization leads to a noisy and non-
smooth likelihood function in non-linear parameter space. There-
fore, whilst MultiNest does an adequate job sampling this, its
stopping criterion is ill-defined, as it tries to fully map out all
of the noise in parameter space. In practice this means that once

1The sampling probability is a quantity output by MultiNest correspond-
ing to the sample prior mass multiplied by likelihood and normalized by the
evidence.
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Table 4. Settings used in each phase of the AutoLens pipeline described in Section 6. Column 1 shows the pipeline phase. Column 2 shows whether the
light and mass are modeled independently or simultaneously. Column 3 shows the likelihood tolerance on the selection of Ns, whereby the hyperparameter
with the lowest value of Ns is chosen within this likelihood range to give a faster overall run-time. Column 4 shows the degree of image subgridding used by
the analysis. Column 5 shows the fraction of the PSF that is trimmed about its centre. Columns 6–8 show the MultiNest settings for the number of live
points, tolerance, and reduction factor. Column 9 shows the stopping factor discussed in Section 6.9, which determines at what acceptance rate MultiNest
terminates. Settings are changed to trade off fast run time in the early phases to high precision accuracy in the later phases. The final row shows the settings
used when optimizing the hyperparameters between each phase.

Phase Method
Ns likelihood

tolerance
αx,y subgrid

degree PSF trim
MultiNest

live points
MultiNest

tolerance
MultiNest

reduction factor
Stopping

factor

PLInit1 Light Only N/A N/A 10 per cent 50 1000. 0.2 N/A
PLInit2 Mass + Source N/A 2 × 2 10 per cent 200 100.0 0.2 5.0
PLInit3 Light + Mass 15.0 4 × 4 10 per cent 125 50. 0.2 2.0
PLInit4 Light + Mass 15.0 4 × 4 10 per cent 125 50. 0.2 2.0
PLMCLight Light + Mass 8.0 8 × 8 0 per cent 150 1.0 0.2 2.0
PLSPLEInit Light + Mass 8.0 8 × 8 0 per cent 150 1.0 0.2 2.0
PLMCMass Mass Only 5.0 8 × 8 0 per cent 125 1.0 0.2 2.0
PLMCGeom Light + Mass 8.0 8 × 8 0 per cent 175 1.0 0.2 2.0
Phase One Light + Mass 2.0 8 × 8 0 per cent 150 0.8 0.15 2.0
Phase Two Light + Mass 0.5 8 × 8 0 per cent 400 0.8 0.1 4.0
Hyper Fixed Next Next Next 150 100. 0.2 2.0

the lens model is estimated accurately there are one or two active
MultiNest points with anomalously high likelihood values (due
to discretization noise) that prevent MultiNest from stopping.
This leads MultiNest’s acceptance rate to plummet, as it can no
longer maintain a high acceptance rate by further reducing the lens
model’s iso-density contours around the high-likelihood regions.
At this point, any further increase in likelihood (or the Bayesian
evidence) comes from randomly producing a ‘good’ source-plane
discretization, information which is of no practical use in terms of
actually constraining the lens model.

Therefore, to circumvent this issue and offer a meaningful stop-
ping criterion, MultiNest is automatically terminated once its
acceptance rate falls below the target sampling rate divided by a
user-specified value, which are both given in Table 4. This division
value is never below 2, ensuring all phases end only when noise
in the parameter space is all that is left being fitted (MultiNest
consistently maintains its target sampling efficiency otherwise).

In the final analysis phase a different approach is used. Instead,
a ‘likelihood cap’ is imposed, such that any samples with a higher
likelihood are reduced to this cap’s value. This cap is calculated by
taking the previous phase’s most likely lens model and hyperparam-
eter set and computing the mean likelihood of 100 different source
reconstructions, corresponding to the value above which Multi-
Nest begins fitting noise (relying on the fact that the lens model
is unchanged from the previous phase and already estimated accu-
rately). MultiNest then runs until all active points hit this value,
thus preventing it from fitting the parameter space’s noise. This is
important for ensuring the errors of the most probable lens model
are estimated accurately, as noise-fitting can bias this towards a few
points that gain anomalously high likelihoods due to favourable
discretizations. A low value for the likelihood cap will only lead the
method to overestimate parameter errors, given that it exclusively
trims the highest likelihood regions of parameter space.

7 R ESULTS

This section presents AutoLens’s automated analysis of the full
suite of simulated images. Given the large library of results, this
section focuses on only a subset of lens model parameters that
best summarize the accuracy of each analysis. For the Sersic light

component of a lens model, the effective radius Rl, sersic index nl

and axis ratio ql are used, with multicomponent light models using
nl1, Rl1 ql1, Rl2, and ql2. For SPLE mass components the Einstein
radius θEin, axis ratio q and density slope α are used, with the core
radius S included for the PLCore model and shear orientation θ sh

and magnitude γ sh for a Shear component. The NFW model is
summarized with its normalization κd and axis-ratio qd whereas a
light profile’s mass component uses instead its mass-to-light ratio

 l. The geometry of light and dark matter is also investigated using
their centroids and rotation angles xl, yl, θ l, xd, yd, and θd.

To ease the reader’s comparison to the input values, all results
are presented as the difference between the estimated value and
simulated lens’s true input value, �P = Ptrue − Pmodel, where P is
a given parameter. The parameters that have been omitted are those
that are generally ‘easy’ to estimate and share no degeneracies with
the other parameters (e.g. xl, x, θ ). Again, for brevity, only a sub-set
of images for each analysis is presented, choosing results that show
the general trends and exceptions.

7.1 Source-only

The source-only simulation suite consists of four unique lens and
source models, each of which is used to generate six images, three
at Hubble resolution with a source S/N = 50, 30, 10 and three at
Euclid resolution at S/N= 50, 30, 10, giving a total of 24 images. The
analysis of each image uses the reduced pipeline for objects without
a lens light component, therefore also omitting the ωLens hyper-
parameters. The shear model comparison phase is also omitted for
brevity. The results are summarized using the mismatch parameters
�θEin, �q and �α in Table 5, where all parameters are correctly
estimated within 3σ confidence. Fig. 11 shows the observed image,
model image, residuals, χ2 images and source reconstructions for
the images SrcBulgeES10NLBulge and SrcBDHS50NLFlat, which cover
different lens models, source morphologies and image resolutions
and S/N ratios. The residuals are nearly featureless and χ2 image
realizes the image’s noise, as Section 5 discussed is the desired
solution.

Fig. 12 shows the 2-D PDFs of �α against �θEin for the Hubble
resolution (first panel) and Euclid resolution (third panel) images
of the S/N = 30 images of the SrcBulge, SrcDisk, and SrcMulti
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AutoLens: automated modeling of a strong lens’s light, mass, and source 4763

Figure 11. The simulated model images, residuals, χ2 images and source reconstructions for the no lens light analysis of SrcBulgeES10NLBulge (top row) and
SrcBDHS50NLBD (bottom row). Images correspond to the most likely model at the end of the main pipeline, corresponding to the models given by rows six,
seven, thirteen and twenty-one of Table 5 respectively.

models. The same degeneracy discussed in N15 is seen between
the parameters governing the lens’s mass distribution, where the
degenerate models shown by the contours each integrate to give
approximately the same MEin. Accompanying this (but not shown)
is the source-plane scaling effect, demonstrated in fig. 4 of N15,
whereby steeper mass profiles lead to a more expanded source
reconstruction. As expected, the posterior probability distribution
function broadens for lower resolution imaging.

Fig. 13 shows �α’s 1-D PDF for each image of every lens model.
There is no systematic deviation of �α with varying image reso-
lution, S/N ratio, mass model or source morphology, confirming
AutoLens’s source-only analysis is free of systematic bias. As
expected, images at higher spatial resolution or S/N give tighter
lens model constraints. This figure also gives a sense of how pre-
cisely images of different image resolution or S/N constrain α,
suggesting that Euclid wide-field imaging will be able to estimate
α to a precision ±0.1, or better, at 3σ confidence.

By comparing each panel, one can also see how the lens model’s
precision depends on the source morphology. The bulge-disk mor-
phology is marginally the most-well constrained, benefiting from
how its source has both a smooth extended disk component and
cuspy central light profile. In contrast, the bulge-only morphology
offers the loosest constraints, suggesting that an extended envelope
of source light is important to reducing errors. However, for images
with the same resolution and S/N, the differences in error estimates
are marginal, thus for smoothly parametrized source morphologies
the profile shape and number of components appears to play no
major role in determining how precisely the mass model is con-
strained. This contradicts discussions by the authors (Vegetti et al.
2012; Lagattuta et al. 2012), who argue that multiple sources with
non-symmetric morphologies offer much tighter constraints, as they
produce a less degenerate set of possible image reconstructions from
which there is a smaller sub-set of mass models that are able to re-
construct them accurately. Such a trend is not seen for the analysis
of the SrcMulti images. However, this is most likely a reflection of
the fact that these simulated images are modeled with their input
mass profile and the tighter constraints offered by complex sources

are more readily observed on real strong lens imaging, where the
mass model offers only an approximate fit.

7.2 Non-cored Lens and Source

The non-cored lens simulation suite consists of seven unique lens
and source models, which are each used to generate two images at
Hubble and Euclid resolution with a range of source and lens S/N
ratios, giving a total of fourteen images. The analysis of each image
uses the singular total-mass pipeline, with parameter estimates and
results corresponding to the end of phase two. The results of using
Bayesian model comparison to choose the light and mass profiles
are shown in Table 6, with the input model correctly chosen for all
images. The Sersic light model is summarized using the mismatch
parameters �Rl, �nl an �ql, whereas the Exp model use �Rl1,
�ql1, �Rl2 and �ql2. These are listed, alongside �θEin, �q and
�α, in Table 7, showing the majority of parameter estimates are
accurate within 3σ confidence. Fig. 14 shows the observed images,
model images, model sources, residuals, χ2 images and source
reconstructions for three images. The image residuals can be seen
to realize each image’s noise whereas the χ2 images are Gaussian, as
desired. These images are indicative of the analysis of all non-cored
images.

7.2.1 Model comparison

The results of the model comparison phases PLightMC and PMassMC

for all images are given in Table 6. For all images, model compar-
ison correctly chooses the input light and mass models. Therefore,
at Euclid resolution or higher, multi-component light profiles and
detection of an external shear are possible. Model comparison also
never wrongly favours a more complex model, reaffirming that
model comparison functions exactly as expected. For many of these
comparisons the more complex model is an extension of the true
model (e.g. all SPLE + Shear models can reproduce the input SPLE
model if γ sh = 0), the scenario which acts as the most stringent
test of model comparison. For many model comparisons, the high-
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4764 J. W. Nightingale, S. Dye, and R. J. Massey

Figure 12. Marginalized 2-D PDF’s of the mismatch parameters �P = PTrue − PModel for the mass model Einstein radius �θEin and power-law density slope
�α for images of the SrcBulge, SrcDisk and SrcMulti models (left panels) and LensSrcBulge, LensSrcDisk and LensSrcMulti models (right panels). The
legend at the top of each panel indicates the image each contour corresponds to, where the Src images have been chosen to closely match the S/N of the Lens
images, such that the left two panels compare the PDFs of similiar lensed sources at Hubble resolution and right panels at Euclid resolution. Contours give the
1σ (interior) and 3σ (exterior) confidence regions. For SrcBulge and LensSrcBulge the input values of each parameter are θEin = 1.2′′, q = 0.8 and α = 2.0,
for SrcDisk and LensSrcDisk θEin = 1.2, q = 0.75 and α = 2.1. Panels one and two, or three and four, therefore compare the analysis of nearly identical
lensed sources but for a model which either does or does not include lens light modeling. With lens light modeliing included, the PDFs do not appear broader.

est likelihood values found in the (rejected) more complex models
were higher than the highest likelihoods of the simpler model, by
values of approximately lnε = 5 − 15. This shows a maximum
likelihood based approach is not well suited to determining the lens
model complexity and demonstrates AutoLens’s use of Occam’s
Razor.

7.2.2 Modeling results

The modeling results for the non-cored simulation suite, given in
Table 7, are positive, with all but one mass model parameter esti-

mated incorrectly within 3σ confidence and their estimates at 1σ

consistent with expectations. The incorrect mass model parameter is
the density-slope α for the image LensMassShearES40L80Disk. Given
the accurate parameter estimates for the equivalent high-resolution
image, it appears that this image is simply too low resolution to ac-
curately constrain the density-slope simultaneously with an external
shear.

The majority of light model parameters are also estimated cor-
rectly within 3σ confidence and estimates at 1σ are again consistent
with Gaussian expectations. However, there is a trend throughout
the parameter estimates whereby the light model’s Rl and nl val-
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AutoLens: automated modeling of a strong lens’s light, mass, and source 4765

Figure 13. Marginalized 1-D PDF’s of the mass-profile density mismatch �α = αTrue − αModel for the twenty-four mass models given in Table 5. The
top-left panel corresponds to the six images of the SrcBulge model, the top-right SrcDisk, bottom-left SrcBD and bottom-right SrcMulti. Each graph’s legend
indicates the image that each line corresponds to, where black / red / blue lines give Hubble resolution images at S/N = 50 / 30 / 10 and green / purple / cyan
give Euclid resolution images at S/N = 50 / 30 / 10, respectively. The input value of α for each model is given in brackets by the x-axis label. All PDF’s are
consistent with the input lens model (�α = 0.0).

ues are over-estimated compared to their true input value. In most
cases, this is consistent within their errors (at 1 − 2σ confidence),
however there are five cases which are incorrect within 3σ . These
offsets are most prevalent for simulated images which are: (i) gener-
ated with a low Rl; (ii) generated with a high nl and; (iii) generated at
Euclid resolution. Thus, these offsets are most significant in cases
where there is more blending between the source and lens light,
especially when this occurs towards its central regions where the
strongest constraints on Rl and nl are placed. This is a limitation of
any analysis which tries to deblend the lens from the source using
single-waveband imaging without a sufficiently high resolution.

Fig. 15 shows the 1-D PDF of �nl for the Hubble resolution
(left-hand panel) and Euclid resolution (right-hand panel) images
of each lens model, corresponding to the models given by Table
7. The majority of nl values are estimated correctly, with those
that are not discussed above. The tendency to be shifted above the
lens’s input value of nl is also visible in this figure. The size of
each PDF and therefore the precision inferred on the value of nl can
be seen to vary greatly, but without an obvious dependence on the

image resolution or S/N. Thus, these factors do not appear to be
the most important for constraining the lens’s light profile. Instead,
the model’s precision is most heavily dependent on the lens’s input
values of Rl and nl, where larger effective radii and lower Sersic
indexes provide a more precise light model. In these cases, a greater
amount of lens light (that is not obscured by the source’s light) is
visible and available to constrain the lens’s light profile. Therefore,
it is the degree of lens and source light blending that drives how
well the light profile can be measured.

Now the lens’s light and mass are modeled simultaneously, it is
interesting to investigate what interplay, if any, there is between
the two components. Fig. 16 shows the marginalized 2-D PDF’s
between �α and �nl for the Hubble resolution (left panel) and
Euclid resolution (right panel) images. Contours are orthogonal,
demonstrating there is no noticeable degeneracy between the mass
and light models, where visual inspection of other parameter pairs
(e.g. Il, RL, θEin, etc.) reveals this holds in general.

The precision of the mass model also appears to show no de-
pendence on whether the lens’s light is included, as can be inferred
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4766 J. W. Nightingale, S. Dye, and R. J. Massey

Table 6. The results of Bayesian model comparison in the phases PLightMC and PMassMC for the fourteen Lens images, where the image’s listed in the first
column are generated using a variety of source morphologies, lens profile and mass models. The third and fourth columns show the Bayesian evidence values
(equation 23) computed for the Sersic and Sersic + Exp light models and the fifth and sixth columns the values for the SPLE and SPLE + Shear mass models.
Values in bold correspond to those chosen by the pipeline, noting that a threshold of twenty must be exceeded to favour a more complex model.

Image Sersic (PMCLight) Sersic + Exp (PMCLight) SPLE (PMCMass) SPLE + Shear (PMCMass)

LensSrcBulgeHS30L50Bulge 55549.5448 55552.1930 55602.9633 55604.7013
LensSrcBulgeES30L50Bulge 15895.6885 15894.4006 15915.2358 15917.5771
LensSrcDiskHS30L50Disk 55113.8123 55122.6322 55154.4289 55153.1476
LensSrcDiskES30L50Disk 15567.8761 15571.8895 15580.8484 15573.1699
LensSrcCuspHS20L60Cusp 54989.4958 54981.9373 55025.2533 55025.8970
LensSrcCuspES20L60Cusp 15111.1705 15101.0015 15137.4186 15137.7187
LensSrcDoubleHS25L60BD 55450.3420 55426.1254 55478.9227 55480.2748
LensSrcDoubleES25L60BD 15588.8998 15600.0188 15623.4948 15621.5500
LensSrcMultiHS25L75Multi 55487.6488 55491.7482 55522.6763 55522.9063
LensSrcMultiES25L75Multi 15609.1851 15576.4738 15629.4569 15633.4754
LensMassShearHS40L80Disk 54300.2109 54314.5680 54528.1859 54722.6101
LensMassShearES40L80Disk 14787.7869 14797.0800 14841.6874 14951.8195
LensLightBDHS25L50BD 55177.7344 55327.3654 55402.3462 55403.6771
LensLightBDES25L50BD 15319.9874 15407.3859 15487.9352 15488.5821

by contrasting the errors on θEin, q, and α for the S/N = 30 im-
ages of the LensSrcBulge/SrcBulge, LensSrcDisk/SrcDisk and
LensSrcMulti/SrcMulti models. Each pair of models shares the
same spatial resolution, S/N ratio, mass, and source profiles, with
the only difference between them being the inclusion of the lens’s
light. The magnitude of errors for the source-only case and lens and
source case shows no systematic increase across all images, demon-
strating that the light subtraction (provided it is accurate) does not
impact the mass model precision. Fig. 12 reinforces this further,
showing that the mass-profile degeneracies between θEin and α are
similar for these images, regardless of whether the lens is included
or not.

Whilst the lens’s light has no impact on the mass model precision,
the reverse is not true. That is, the presence of the source’s light has
a huge impact on the precision of the inferred light profile. This was
confirmed by comparing the errors on the light profile parameters
shown in Fig. 7 to the errors computed by fitting lens-only variants of
each image. For example, for the image LensSrcBulgeHS30L50Bulge,
errors on nl were approximately ±0.05 when no source was present
and ±0.7 when it was (see Table 7). This occurs because of the
smooth and symmetric nature of the lens’s light profile, which has a
sizable fraction of its light obscured by the ring-like source, such that
much looser constraints are possible. Furthermore, for the simulated
lenses used in this work, the source obscures the lens in and around
its half-light radius, where the largest impact on the estimation of
Rl (and nl due to their degeneracy) can be expected. In contrast,
the source morphology is asymmetric and irregular and therefore
looks similar, regardless of the smooth lens profile used for the light
subtraction, such that similar constraints are offered across a range
of lens light models.

7.3 Cored lens and source

The cored lens simulation suite consists of three unique lens and
source models, each of which is again used to generate an im-
age at Hubble resolution and Euclid resolution both with a source
S/N = 35−50 and lens S/N spanning 50−70, giving a total of
six images. Each image is analyzed using AutoLens’s singular
total-mass profile and cored total-mass profile pipelines. The re-
sults of model comparison are shown in Table 8, showing that the
light profiles and cored models are correctly chosen for all images.

Parameter estimates for each image are summarized in Table 9, us-
ing �S and the same mismatch parameters as before, where many
parameters are estimated correctly within 3σ confidence but one
image, discussed next, has clear problems. Fig. 17 shows the ob-
served images, model images, model sources, residuals χ2 images,
and source reconstruction for the high-resolution images, showing
that the image and source reconstructions successfully reproduce
the features of a cored mass profile, like radial arcs or a central
image, and again gives residuals and χ2 images consistent with the
noise.

7.3.1 Model comparison

The results of the model comparison between the SPLE and PLCore

models, using a full AutoLens analysis for each, are given for all
six images in Table 8. For all images model comparison correctly
chooses the cored model, demonstrating the method’s success at
modeling a cored profile. The correct lens light profile is also chosen
for all images. There is one case, given by the bottom row of Ta-
ble 8, which is incorrect, where the image CoreSrcDoubleES25L50BD

includes a Shear component. There is no obvious explanation for
this occurrence and the shear magnitude γ sh reverts to approxi-
mately 0 in the main pipeline. Thus, its inclusion is disregarded as
non-consequential.

7.3.2 Modeling results

The parameter estimates for the cored images are given in Table 9,
where parameter estimates for four out of six images are all accurate
within 3σ confidence. However, for images of the CoreSrcQuad
model, the light profile parameter estimates are poor, with the values
of nl significantly offset from the input value. The middle row of
Fig. 17 shows the image CoreSrcQuadHS40L60BD, where it can be
seen that this is an example of an image where the source’s central
image perfectly overlaps the centre of the lens’s light profile. This
is the case of maximum blending and it is no surprise that the light
model is inaccurate, as the lens’s central light profile is completely
obscured. This means that if lenses of this configuration are found
in nature, care must be taken in ensuring their lens subtraction is
accurate and their inferred light profiles should be viewed with
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Figure 14. The model images, residual, χ2 images and source reconstructions for the images LensSrcBulgeHS30L50Bulge (top row), LensLightBDHS25L50BD

(middle row) and LensSrcDoubleES25L60BD (bottom row). Images correspond to the most likely model at the end of phase 2 of the main pipeline, corresponding
to the models given by rows 1 − 2, 27 − 29, 15 − 16 and 11 − 12 of Table 7 respectively.

Figure 15. Marginalized 1-D PDF’s of �nl (or �nl1 for images of the model LensLightBD) for the seven Hubble resolution (left) and seven Euclid resolution
(right) images of the Lens model images, corresponding to the results given in Table 7. Each graph’s legend indicates the colour each line corresponds to. The
input value of nl for each model are give in Table 1. The majority of PDF’s are consistent with the input lens model (�nl = 0.0). The width of PDFs shows no
trend with image S/N or resolution, instead it is the size of the lens galaxy which drives the precision of parameter estimates.

caution. Multiwavelength imaging may be able to decouple the lens
and source. The mass model for this configuration is still estimated
accurately.

Fig. 18 shows the 1-D and 2-D PDFs of �θEin, �q, �α, and
�S for all of the Core images. In general, lower-resolution imaging
gives wider parameter estimates compared to their higher resolution
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AutoLens: automated modeling of a strong lens’s light, mass, and source 4769

Figure 16. Marginalized 2-D PDF’s of �nl versus �α for the Hubble resolution (left panels) and Euclid resolution (right panels) models of the Lens images.
Legends at the top of each panel indicate the image that each line corresponds too. Contours give the 1σ (interior) and 3σ (exterior) confidence regions. The
input value of nl and α for each model are give in Table 1. Little to no degeneracy is observed in any of the PDFs, demonstrating that the mass and light models
are essentially independent of one another.

Table 8. The results of Bayesian model comparison in the phases PLightMC and PMassMC for the six Core images, using both the non-cored and cored mass
model pipelines. Image names are listed in the first column, with the second column listing whether each row corresponds to a non-cored or cored pipeline
run. The third and fourth columns show the Bayesian evidence values (equation 23) computed for each light model and the fifth and sixth columns evidences
for comparison of the SPLE and SPLE + Shear mass model. These are then used to determine whether the cored or non-cored model is favoured, as shown by
the final column. Values in bold correspond to those chosen by the pipeline, noting that a threshold of 20 must be exceeded to favour a more complex model.

Image Pipeline Run
Sersic

(PMCLight)
Sersic + Exp

(PMCLight)
SPLE

(PMCMass)
SPLE + Shear

(PMCMass)
Core model

chosen?

CoreSrcDiskHS35L70Disk Non-cored 53835.2452 53849.6432 54459.7417 54482.4440
CoreSrcDiskHS35L70Disk Cored 54505.0945 54500.4490 54549.9967 54554.9393
CoreSrcDiskES35L70Disk Non-cored 14791.5954 14769.7912 15013.6825 15021.6143 Yes
CoreSrcDiskES35L70Disk Cored 15025.1912 15032.7236 15048.2671 15047.9044 Yes
CoreSrcQuadHS40L60BD Non-cored 54019.3266 54125.3480 54551.2353 54554.2885
CoreSrcQuadHS40L60BD Cored 54376.6692 54632.3307 54706.6518 54709.8142
CoreSrcQuadES40L60BD Non-cored 14697.6901 14834.0991 14937.6529 14938.3421 Yes
CoreSrcQuadES40L60BD Cored 14801.0601 14998.6605 15105.6929 15110.8025 Yes
CoreSrcDoubleHS25L50BD Non-cored 53375.7084 53425.0099 54429.5815 54431.3582
CoreSrcDoubleHS25L50BD Cored 54236.5839 54234.0987 54563.2273 54564.5934
CoreSrcDoubleES25L50BD Non-cored 14454.5533 14458.9280 14867.2487 14868.3826 Yes
CoreSrcDoubleES25L50BD Cored 14795.4639 14809.6472 14903.2335 14931.0893 Yes

counterparts and the CoreSrcQuad images are less precisely con-
strained, due to the lens light blending discussed above. S becomes
another parameter in the mass-profile degeneracy discussed in Sec-
tion 4 and in N15, offering the mass model an additional means
by which to change its mass distribution whilst still integrating to
give an accurate MEin. The additional freedom introduced by S is
constrained by the very central regions of the lensed source, either
its central image or radial arcs.

Having established that the lens’s light and mass profiles are
separable for non-cored models, it is interesting to ask whether
a degeneracy emerges between the light profile and cored mass
model. Fig. 19 shows 2-D PDFs between nl, �α and �S. Once
again, no degeneracy is observed between the mass and light model
parameters (with inspection of other parameter pairs confirming
this trend is general). This is initially surprising, but builds on the
discussion above that because the lensed source’s appearance is non-

symmetric and irregular it shares no degeneracy with the subtraction
of a smooth light profile.

7.4 Decomposed mass models

The decomposed lens simulation suite consists of five unique lens
and source models, each of which is used to generate an image at
Hubble and Euclid resolution, with source S/N= 30−40 and lens
S/N= 50−80, giving a total of 10 images. Each image is analyzed
using the decomposed profile pipeline, producing a Light + NFW
model. The results of model comparison are shown in Table 10. The
correct light model and inclusion of an external shear are correct for
all models, however a number of light and dark matter geometries
are not consistent with their input models. Parameter estimates for
each image are summarized in Table 11, using �Rl, �nl �ql, �κd,
�qd, and �
 l. Fig. 20 shows the observed images, model images,
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Figure 17. The model image, residuals, χ2 image, and source reconstructions for the analysis of the images CoreSrcDiskHS35L70Disk (top row),
CoreSrcQuadHS40L60BD (middle row), and CoreSrcDoubleES50L50BD (bottom row). Images correspond to the most probable model at the end of the
main pipeline, corresponding to the models given by rows 1−2, 5−8, and 13−14 of Table 9, respectively.

model sources, residuals, χ2 images, and source reconstructions
for three images, showing residuals and χ2 images that realize the
image’s noise.

7.4.1 Model comparison

The results of the model comparison phase PMCGeom for all images
is shown in Table 10. The input light profiles are chosen for every
image, and the shear is chosen correctly for 9 out of 10 images.
However, for five images, an offset in their light and dark matter
geometry is not chosen, even though they are present in their lens’s
input profiles. In all cases, model comparison opts to choose the
simpler (aligned) model over the input geometrically offset models.
Therefore, the non-inclusion of these components can simply be
attributed to the observed image’s resolution and S/N being insuf-
ficient to offer a large enough increase in evidence to favour the
more complex model. In many cases, the input model does increase
the Bayesian evidence, but does not meet the threshold value of 20.
Nevertheless, detections are made for the high-resolution images
of the LMDMRot90 and LMDMPos images, demonstrating that
geometric offsets can detected in strong lens imaging, but that such
a detection requires higher quality data than the models discussed
previously.

Whilst image quality is a driving factor in detecting geomet-
ric offsets, another important aspect is the presence of an external
shear. In the absence of an external shear, no degeneracy is ob-
served between the geometric parameters �xd, �yd, and �θd and

those governing the lens’s light or mass profiles. This is impor-
tant, because it suggests that when inferring a geometric misalign-
ment any assumptions related to the lens’s mass distribution (e.g.
the form of the dark matter profile or use of a constant mass-to-
light ratio) may not be very important. However, when a shear is
present, this is found to no longer be the case and a degeneracy
emerges between the dark matter geometry parameters, the shear
parameters γ sh and θ sh, and the mass profile’s other parameters.
Degeneracies between ellipticity, rotational misalignments, and an
external shear have been long established (Keeton, Kochanek &
Seljak 1997) and they are particularly problematic for decomposed
mass modeling as it becomes the dark matter profile that makes
up a smaller fraction of overall mass where one is trying to detect
them.

The degeneracy between dark matter geometry and an external
shear also explains why analysis of the high-resolution LMDM-
Rot90 image incorrectly includes an external shear in the mass
model. The Shear component is chosen earlier in the pipeline using
the axisymmetric NFWSph profile, thus the Shear is included as it
mimics the effect of the rotational misalignment that the NFWSph
cannot capture. Later in the pipeline, when the NFW + Light model
with a rotational offset is chosen, the shear magnitude γ sh reduces
to nearly zero, effectively removing the shear and giving an accu-
rate lens model. In the future, it may prove beneficial to choose an
external shear via model comparison independently in the PMCGeom

phase. This strategy will be considered in the future, where inde-
pendent constraints on the shear from weak-lensing will also be
considered.
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4772 J. W. Nightingale, S. Dye, and R. J. Massey

Figure 18. Marginalized 2-D PDF’s of �θEin, �q, �α, and �S for the images of the Core models. The top-right legend indicates the image that each coloured
line corresponds top. Contours give the 1σ (interior) and 3σ (exterior) confidence regions. For CoreSrcDisk the input values of each parameter are θEin = 1.4
arcsec, q = 0.8, α = 1.85, and S = 0.2 arcsec, for CoreSrcQuad θEin = 1.0 arcsec, q = 0.7, α = 1.75, and S = 0.3 arcsec and for CoreSrcDouble θEin = 1.3
arcsec, q = 0.8, α = 1.65, and S = 0.25 arcsec. A degeneracy can be seen between all parameters, which is an extension of the degeneracy between mass,
ellipticty and slope described in N15, but including also the core radius S.

In summary, AutoLens can successfully detect geometrically
misaligned light and dark matter profiles. This is because, in an
analogous fashion to the cored profile earlier, geometrically mis-
aligned mass components impart unique features into the lensed
source’s extended light profile that an axisymmetric model cannot
fit, especially given the constraints placed on the light profile’s ge-
ometry due to lens light fitting. However, based on these results, it
is clear that the prospects for detecting geometric offsets (if present
in nature) are heavily dependent on the quality of the imaging data,
the size of the offset, and the presence and magnitude of an ex-
ternal shear. Such an analysis may be beyond the reach of Euclid
wide-field imaging, but within the realms of possibility for cur-

rently available Hubble imaging. Additional information from an
independent measurement, such as weak-lensing, may be crucial,
as it can offer independent constraints on the shear magnitude and
direction.

7.4.2 Modeling results

The results of the parameter estimates for the decomposed mass
models are given in Table 11. For the first seven images, the results
are positive, with the majority of lens model parameters estimated
correctly within 3σ . However, the image LMDMRot90ES30L75Multi,
and both of the LMDMShear images, are poorly estimated. In
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AutoLens: automated modeling of a strong lens’s light, mass, and source 4773

Figure 19. Marginalized 2-D PDFs of �nl, �α, and �S for the images of the Core models. The top-right legend indicates the image that each coloured
line corresponds top. Contours give the 1σ (interior) and 3σ (exterior) confidence regions. For CoreSrcDisk the input values of each parameter are nl = 2.5,
α = 1.85, and S = 0.2 arcsec, for CoreSrcQuad nl1 = 2.5, α = 1.75, and S = 0.3 arcsec and for CoreSrcDouble nl = 3.5, α = 1.65, and S = 0.25 arcsec. No
degeneracy can be seen between nl and the mass-profile parameters, suggesting that there is no degeneracy between a light model and cored mass model.

all cases, a rotational misalignment was not chosen when present
in the input image, which likely contributes to this result. The
large and inaccurate values of xd and yd for the high-resolution
LMDMShear image also suggest that the analysis is unable to
accurately resolve the degeneracy between geometric offset and
external shear. This result reaffirms the caution that must be
taken when attempting to model an external shear and geometric
offset.

The most significant parameter degeneracies of the previous mass
models were found between the parameters governing their mass
distributions, which consisted of either three or four parameters. For

a decomposed mass model, seven (or more for a multicomponent
light profile) parameters determine the lens’s mass distribution; Il,
Rl, nl, ql, κd, qd, and 
 l. This would create an extremely com-
plex and degenerate non-linear parameter space, from which lens
models constraints are not possible, if it were not for the con-
straints placed on the light model parameters by the light profile’s
fit to the lens galaxy. Shown by Fig. 21 for the low-resolution im-
ages, this results in essentially no degeneracy emerging between
the light profile parameters (Il, Rl, nl) and dark matter parameters
(κd, qd), with their degeneracy instead folded into the mass-to-light
ratio 
 l.
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Table 10. The results of Bayesian model comparison in the phases PLightMC, PMassMC, and PGeomMC for the 10 LMDM images, which test decomposed mass
modeling. Image names are listed in the first column. The second and third columns show the Bayesian evidence values (equation 23) computed for the Sersic
and Sersic + Exp light models, the fourth and fifth columns evidences for comparison of the SPLE and SPLE + Shear mass models and final three columns the
evidences for the geometrically aligned, rotationally offset and/or positionally offset Light + NFW model. Values in bold correspond to those chosen by the
pipeline, noting that a threshold of 20 must be exceed to favour a more complex model.

Image
Sersic

(PMCLight)
Sersic + Exp

(PMCLight)
SPLE

(PMCMass)
SPLE + Shear

(PMCMass)
NFW (Align)

(PMCGeom)
NFW (Rot)
(PMCGeom)

NFW (Pos)
(PMCGeom)

LMDMAlignHS40L50BD 55633.3189 55640.7631 55647.3234 55651.7835 55643.8825 55644.4506 55651.3071
LMDMAlignES40L50BD 15820.3812 15824.0408 15843.2371 15841.4428 15831.0632 15833.0704 15829.2484
LMDMPosHS40L50BD 55628.4640 55632.5936 55655.0241 55657.4802 55612.5394 55612.7578 55659.5510
LMDMPosES40L50BD 15919.0649 15920.2272 15944.3584 15948.5535 15913.5722 15910.0842 15928.2960
LMDMRotHS40L50BD 55413.7926 55424.4787 55469.5119 55467.4304 55449.3334 55456.2422 55443.2313
LMDMRotES40L50BD 15840.9690 15842.9032 15851.6601 15852.1060 15840.3070 15842.4563 15841.4788
LMDMRot90HS30L75Multi 54794.3025 54795.2551 55195.8635 55265.1315 55263.0546 55287.5303 55262.7623
LMDMRot90ES30L75Multi 15070.9989 15066.1369 15367.6957 15379.6356 15372.5886 15371.7799 15377.4355
LMDMShearHS35L80Cusp 55363.3473 55341.4098 55462.1340 55593.4590 55538.4963 55548.8675 55577.3864
LMDMShearES35L80Cusp 15621.6493 15620.9123 15654.5684 15695.2625 15686.0568 15690.4766 15695.1630

8 D I SCUSSION AND SUMMARY

8.1 Automated analysis

All results were generated in this work without user interven-
tion, demonstrating that AutoLens successfully automates the
lens modeling process. High-quality imaging of many hundreds
of strong lenses exist in the HST archive, a data set that has not
been fully exploited due to the time overheads historically associ-
ated with lens modeling. Therefore, in the short term, AutoLens
can significantly increase the total number of strong lenses with a
complete lens model and source reconstruction. In the long term,
consideration must be given to how this automated framework will
be expanded to samples of lenses in the tens of thousands, which
will be provided by surveys such as Euclid in less than 5 yr (Collett
& Auger 2014).

Of course, one can envisage scenarios where the automated anal-
ysis, as presented here, breaks down. These include the presence
of luminous or dark high-mass substructures in the lens galaxy or
lens morphologies whose light profile cannot be fitted accurately
with the models used here (e.g. late-type lenses with complicated
structure due to star formation and dust lanes). Therefore, as Au-
toLens is expanded to larger samples, it will inevitably require
new functionality and the design philosophy, so far, has been to
always develop automated solutions that offer a choice between
precision and run-time. AutoLens’s modular structure facilitates
this, by breaking down the complex and iterative nature of lens
modeling into a simple set of self-contained phases ensuring that
new functionality can be introduced. Equally, the model compar-
ison framework means that adding more complex light and mass
profiles does not require a large reworking of each AutoLens
pipeline. However, it remains to be seen whether the most complex
lens modeling tasks can be performed in a truly automated fashion.

The total run-time for a full AutoLens analysis depends crit-
ically on the total number of image pixels in the analysis and is
therefore driven by two factors: (i) the image resolution and (ii)
the overall size of the lens and lensed source. The total run time
for a unified lens and source analysis in this work ranged from 15
to 300 CPU hours, which, when run in parallel across eight cores,
translates to 2–40+ real-time hours. The large samples that will be
provided by Euclid will fall in the faster range of run times, whereas
currently available high-resolution HST imaging could exceed these
figures if drizzled to resolutions higher than those used in this work.

Thus, processing large lens data sets is already feasible on mod-
ern high-performance computing facilities, even for samples in the
tens of thousands. Increasing the analysis speed further would be
beneficial and is possible, through either advances in computational
processing like graphical processing units or by using a reduced and
simpler analysis pipeline with more restrictive lens model priors.

Another pressing issue is continued testing of AutoLens. The
simulated images used throughout this work were generated using
the same mass models that were then ultimately fitted, circumvent-
ing issues like the MST and not testing assumptions like a constant
mass-to-light ratio. Thus, they are somewhat uninformative in re-
vealing what a strong lens analysis actually measures for a real
lens galaxy. The assumptions underlying lens modeling with Au-
toLenswill be discussed in future publications, where they can be
considered in more detail by comparing and contrasting a range of
different lens models with different underlying assumptions, as well
as looking for additional guidance from independent mass probes.
However, the ideal means of testing this analysis will use simulated
lenses generated via ray-tracing through realistic cosmological hy-
drodynamical simulations (Schaye et al. 2015) and it is anticipated
AutoLens will take part in such work in the future. This work
also bypassed a number of instrumental effects that could have the
potential to bias the lens model, like a poor PSF sampling or image
artefacts.

8.2 Unified modeling

The results of unified modeling were highly successful and motivate
existing high-resolution lens samples for AutoLens’s first anal-
yses of known strong lenses. These samples have superior spatial
resolution, S/N (e.g. Bolton et al. 2008) and more source complex-
ity (Newton et al. 2011) than the images simulated in this work, as
well as average lens and source redshifts below this work’s fiducial
values of zlens = 0.5 and zsrc = 1.0. Altogether, this should improve
the precision of each lens model compared to the values quoted in
this work and may even allow for more complex lens models to be
invoked, for example assuming a non-constant mass-to-light ratio.
The lower redshifts also reduce the average external shear across the
sample (Jaroszynski & Kostrzewa-Rutkowska 2012), thus reducing
its degeneracy with the mass profile ellipticity and, if present, any
geometric offsets.

For the SPLE profile, the mass and light models were indepen-
dent of one another, confirming that the lens light subtraction has
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Figure 20. The model image, residuals, χ2 image, and source reconstructions for analysis of the images LMDMPosHS40L50BD, LMDMRotES40L50Multi, and
LMDMShearHS35L80Cusp. Images correspond to the most probable model at the end of the main pipeline, corresponding to the models given by Table 11.

little impact, if any, on the accuracy of the mass model inferred
alongside only a minor impact on its precision. This validates ap-
proaches in the literature that infer a mass model from an im-
age whose lens is subtracted before lens modeling (e.g. via a B-
Splines interpolation). However, the reverse is not true and this
approach cannot yield an accurate model for the lens’s light, as
there is no analogous way to accurately subtract the source before
fitting the lens. Therefore, a selling point of unified modeling is
its ability to accurately characterize the lens’s visual morphology,
which underpins the method’s ability to perform decomposed mass
modeling.

Features such as radial arcs or a central image were successfully
detected, demonstrating that the method is able to diagnose a cored
mass profile. Therefore, AutoLens will also begin searching for
cored mass profiles in existing lens data sets. In the future, this effort
will benefit from data-sets which resolve the source and lens at an
increased spatial resolution as well as multiwavelength imaging that
contrast the relative brightnesses of the lens and source relative. It
remains to be seen whether dust in the lens galaxy will prevent any
such effort.

Although the mass model was not degenerate with the light sub-
traction, there are cases where the improved light subtraction offered
by unified modeling could improve or even change the mass model
altogether, when it reveals faint features in the lensed source that
other approaches wrongly subtracted. This happened recently when
a number of teams reassessed the light subtraction of HST imaging
of the lens ID81 (Dye et al. 2014, 2015; Rybak et al. 2015; Swin-
bank et al. 2015), finding additional structure in the lensed source
that changed the mass model and led to a more complete source

reconstruction. Following the same argument, the non-detection of
source light is an equally powerful means by which to constrain the
mass model and it is not uncommon for the image reconstruction
to place extraneous flux where it isn’t observed, information that
a poor lens subtraction and restrictive source-only masking will
struggle to exploit. An extreme of this arises when a mass model
goes to particularly shallow density profiles and begins to predict a
central image in the region other approaches will have most likely
masked before the analysis began.

Finally, and most importantly, unified modeling enables use of
decomposed mass models that allow a number of unique measure-
ments to be made for both a lens’s stellar and dark components.
These models offer a significant improvement to lens modelng in
general, because fitting of the lens’s light profile is exploited to
place constraints on its underlying stellar mass distribution. For ex-
ample, in the majority of SLACS lenses, the stellar component is
dominant, making up over 90 per cent of the total mass within REin

(Barnabè et al. 2011). Therefore, lenses with a fainter, less extended
or doubly imaged source, which offer loose constraints on an SPLE
mass model, will no doubt benefit from the additional information
extracting by a decomposed mass model. Care must, of course, be
taken to understand the impact of assuming a constant mass-to-light
ratio.

8.3 Comparison to other methods

Other methods in the literature (Dye & Warren 2005; Vegetti &
Koopmans 2009a; Suyu 2012; Collett & Auger 2014; Tagore & Kee-

MNRAS 478, 4738–4784 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/4/4738/5001434
by University of Durham user
on 12 July 2018



AutoLens: automated modeling of a strong lens’s light, mass, and source 4777

Figure 21. Marginalized 1-D and 2-D PDFs of the parameters governing the lens’s mass distribution for decompossed mass modeling, �Il, �Rl, �nl, �ql,
�κd, �qd, and �
 l, for the low-resolution image’s of the LMDM models. The legend at the top indicates the image that each coloured line corresponds top.
Contours give the 1σ (interior) and 3σ (exterior) confidence regions. The input values for each model can be found in Table 1. A degeneracy can be seen
between all parameters, an extension of the degeneracy between mass, ellipticity, and slope described in N15, but now including components for both the light
and dark matter profiles. However, fitting of the lens’s light reduces this degeneracy, thereby permitting accurate sampling.

ton 2014; Birrer, Amara & Refregier 2015b) use approaches similar
to AutoLens’s image and source analysis. The key differences
are: (i) the amorphous nature of AutoLens’s source pixelization,
which ensures the method can truly achieve the simplest solution
using the fewest correlated source pixels; (ii) the freedom given to
AutoLens’s variances and source regularization, which are key
to correctly fitting the lens’s light profile, and (iii) the method’s
removal of the discreteness biases described in N15, which (al-
though not shown explicitly shown in this work) continued to have
a significant impact on both mass and lens light modeling if not
handled using the approach advocated in N15. Furthermore, Au-

toLens changes its image and source analysis in an automated and
fully self-consistent manner, in contrast to other methods that fol-
low a more ad hoc approach. This makes the results of AutoLens
reproducible.

8.4 Summary

This paper presents AutoLens, the first automated modelling suite
for strong gravitational lenses. Our key results are as follows:

(i) The image and source analysis adapt automatically to the
properties of the strong lens being analysed. This includes an
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amorphous source-plane pixelization that adapts to the source’s
unlensed surface-brightness profile, a source regularization scheme
that adapts to the source’s intrinsic morphology and scaling of the
observed image’s variance-map to ensure the method provides a
global fit to the strong lens imaging. These are all performed self-
consistently within the Bayesian framework of MacKay (1992);
Suyu et al. (2006).

(ii) Fitting of the lens’s light profile is fully integrated into Au-
toLens and performed simultaneously with the mass and source.
Light profiles comprise both single- and multicomponent models,
allowing the method to perform a bulge-disc decomposition and
model lens galaxies of arbitrary morphology. The adaptive image
and source features above are key to ensuring that the lens’s light
profile is inferred accurately, something other methods are not well
suited to.

(iii) The improved lens subtraction allows AutoLens to model
and detect faint features in a lensed source that previous methods
may omit. This includes, but is not limited to, features indicative of
a cored density profile, such as radial arcs or the source’s third or
fifth central image.

(iv) Lens light fitting allows the method to invoke decomposed
mass models that model separately the lens’s light and dark matter.
These offer a significant improvement to the inferred mass model
because they exploit how the lens galaxy’s light traces its underlying
stellar mass distribution. Thus, by incorporating its light profile into
the mass model new information is exploited about the lens’s mass
distribution; information that previous approaches to lens modeling
omit completely.

(v) The complexity of the light and mass models, including the
detection of radial arcs, a central image or a geometrically offset
light/dark matter profile, is decided objectively via Bayesian model
comparison. This is performed by estimating the Bayesian evidence
of each unique lens model, by running a non-linear search using the
nested sampling algorithmMultiNest (Skilling 2006; Feroz et al.
2009) for each.

(vi) A single lens therefore provides a diverse range of obser-
vations. Mass models that assume a total (light and dark summed)
profile infer its inner density slope, can detect a central core, and
fully characterize the lens galaxy’s light profile. Decomposed mass
models offer a stellar mass-to-light ratio, dark matter halo ellipticity
and dark matter fraction as a function of radius, as well as deter-
mining if the light and dark matter are geometrically aligned with
or offset from one another. The highly magnified source galaxy is
also fully reconstructed.

(vii) AutoLens is fully automated, such that all results pre-
sented in this work are generated without any user intervention.
This successfully automates the lens modeling process.

(viii) AutoLens is demonstrated on a suite of 54 simulated
images whichthat span a variety of lens and source morphologies,
mass profiles, lensing geometries and imaging data resolutions,
and signal-to-noise ratios. The method performs well for all of the
observables listed above, choosing the correct model complexity
in the majority of cases and inferring most parameters accurately
within 3σ confidence.

8.5 Concluding remarks

Over the past two decades an outstanding and diverse multiwave-
length data set of high-quality strong lens images has been amassed
throughout the literature. However, the complex and iterative na-
ture of lens modeling has historically restricted their analysis to
small samples, simplified mass models, and little to no considera-

tion of how the lens galaxy’s light profile can benefit their analysis.
AutoLens addresses these issues, enabling the application of de-
composed mass profiles that fully exploit the information contained
within the lens’s light on large lens samples. Future work will see
AutoLens applied to these data sets, with the lens galaxy mor-
phologies, density profiles, and dark matter geometries key topics
of interest. This work will lay the foundations for study of the an-
ticipated large lens data sets comprising tens of thousands of strong
lenses to ultimately give an unprecedented understanding of the na-
ture of galaxy formation, dark matter, and the Universe in general.
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APPENDI X A : EFFI CI ENCY TRI CKS AND
A L G O R I T H M S

A1 Light profile

High levels of oversampling are required to accurately compute a
2-D Sersic light profile. This is especially true when evaluated at
low radii, where it diverges. Therefore, adaptive oversampling is ap-
plied to ensure that the light profile is computed fast and accurately.
This routine first acts on all pixels within Rl. The intensity of the
pixel, I(ξ l), is computed at its center. This pixel is then divided into
a 2 × 2 sub-grid and the mean of intensities at the sub-pixel centres
is computed. If the fractional change in I(ξ l) is <0.0001, then suf-
ficient accuracy has been achieved and the value just computed is
used. However, if the fractional change is >0.0001, this process is
iteratively repeated for higher levels of oversampling, up to a sub-
grid of degree 2000 × 2000. Finally, if all pixels within Rl required
oversampling, then pixels outside this radius are re-evaluated until
the accuracy threshold is met at least once without oversampling.
If the initial I(ξ l) value is below the numerical precision of Au-
toLens (10−16), it is not oversampled, as rounding errors prevent
convergence (and the flux is negligible anyway). These occurrences
are rare and happen when ξ l is large and Rl is small.

A2 Deflection angles

Numerical integration is used to compute αx,y from the above κ(x)
profiles. AutoLens uses an adaptive numerical integration tech-
nique, which iteratively refines the subintervals over which the inte-
gral is evaluated until a threshold accuracy is achieved. The expres-
sions for φr can be found in K01, with equation (55) giving the NFW

MNRAS 478, 4738–4784 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/4/4738/5001434
by University of Durham user
on 12 July 2018

http://dx.doi.org/10.1093/mnras/stu305
http://dx.doi.org/10.1093/mnras/stv1442
http://dx.doi.org/10.1086/428340
http://dx.doi.org/10.1111/j.1365-2966.2008.13401.x
http://dx.doi.org/10.1111/j.1365-2966.2012.22003.x
http://dx.doi.org/10.1086/118606
http://dx.doi.org/10.1086/184422
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/abs/1306.2144
http://dx.doi.org/10.1086/519237
http://dx.doi.org/10.1086/529541
http://dx.doi.org/10.2307/2346830
http://dx.doi.org/10.1093/mnras/sts633
http://dx.doi.org/10.1088/0004-637X/799/1/1
http://dx.doi.org/10.1111/j.1365-2966.2010.17855.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21197.x
https://arxiv.org/abs/astro-ph/0102341
http://dx.doi.org/10.1086/344539
http://dx.doi.org/10.1086/304172
http://dx.doi.org/10.1088/0004-637X/703/1/L51
http://dx.doi.org/10.1111/j.1365-2966.2012.21406.x
http://dx.doi.org/10.1093/mnras/stx1391
http://dx.doi.org/10.1046/j.1365-8711.2001.04143.x
http://dx.doi.org/10.1086/523091
http://dx.doi.org/10.1086/170590
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1086/177173
http://dx.doi.org/10.1088/0004-637X/734/2/104
http://dx.doi.org/10.1093/mnras/stv1455
http://dx.doi.org/10.1088/0004-6256/143/5/120
http://dx.doi.org/10.1093/mnras/stw2832
http://dx.doi.org/10.1111/j.1365-2966.2010.17637.x
http://dx.doi.org/10.1093/mnras/stw773
http://dx.doi.org/10.1086/319129
http://dx.doi.org/10.1093/mnrasl/slv092
http://dx.doi.org/10.1111/j.1365-2966.2012.20975.x
http://dx.doi.org/10.1093/mnrasl/slv104
http://dx.doi.org/10.1093/mnras/stu2058
http://arxiv.org/abs/1409.0015
http://dx.doi.org/10.1093/mnras/stu316
http://dx.doi.org/10.3847/0004-637X/824/2/86
http://dx.doi.org/10.1214/06-BA127
http://dx.doi.org/10.1088/0004-637X/752/2/163
http://dx.doi.org/10.1088/0004-637X/777/2/97
http://dx.doi.org/10.1088/0004-637X/777/2/98
http://dx.doi.org/10.1088/0004-637X/800/2/94
http://dx.doi.org/10.1088/0004-637X/766/2/70
http://dx.doi.org/10.1093/mnras/stx483
http://dx.doi.org/10.1111/j.1365-2966.2012.21661.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10733.x
http://dx.doi.org/10.1088/2041-8205/806/1/L17
http://dx.doi.org/10.1093/mnras/stu1671
http://dx.doi.org/10.1093/mnras/stx2965
http://dx.doi.org/10.1093/mnras/stw2212
http://dx.doi.org/10.1111/j.1365-2966.2008.14005.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15559.x
http://dx.doi.org/10.1038/nature10669
http://dx.doi.org/10.1093/mnras/stu943
http://dx.doi.org/10.1093/mnras/stv1690
http://dx.doi.org/10.1093/mnras/stt1320
http://dx.doi.org/10.1093/mnras/stu1696
http://dx.doi.org/10.1093/mnras/stu632
http://dx.doi.org/10.1086/375132
http://dx.doi.org/10.1038/nature02279
http://dx.doi.org/10.1093/mnras/stw3077
http://dx.doi.org/10.1093/mnras/stv2708
http://dx.doi.org/10.1093/mnras/278.2.488
http://dx.doi.org/10.1080/00401706.1987.10488304


4780 J. W. Nightingale, S. Dye, and R. J. Massey

profile, equation (45) the de Vaucouleurs profile, and equation (74)
the exponential profile. For every profile the κ(x) and αx,y maps
generated by AutoLens have been compared with those given by
the lensing software gravlens (Keeton 2003), ensuring that all
are implemented in AutoLens correctly.

N15 showed that image oversampling (termed subgridding in
N15) is required to remove aliasing effects that lead to inaccurate
lens modeling. Oversampling splits each image pixel into a set
of square sub-pixels, the centers of which are all traced to the
source-plane and used by the inversion. However, high levels of
oversampling requires αx,y to be computed for each additional sub-
pixel, which can prove computationally expensive.

A bi-linear interpolation scheme is therefore now applied to
greatly increase efficiency, whereby deflection angles are computed
at the center of image pixels and interpolated to give the sub-pixel
deflection angles. In the central regions of the mass profile (where
the density profile is rapidly increasing), this interpolation scheme
becomes inaccurate, thus in these central regions each sub-pixel de-
flection angle is computed explicitly. Further out (where the density
profile is much flatter) deflection angles are interpolated from a grid
of computed deflection angles, thus reducing the number of overall
deflection angle calculations. This grid becomes more coarse as one
reaches the flatter regions of the mass profile’s density. This interpo-
lation scheme calculates αx,y at sub-pixels to a fractional accuracy
of 10−4, which is more than sufficient, given the systematics associ-
ated with source-plane discretization. Whilst a 4 × 4 sub-pixel grid
was found to be sufficient in N15, higher levels of oversampling
(8 × 8) are used in this work, given that it is now computationally
feasible.

A3 Positional information

The initial calculation of lens models that accurately fit the im-
age data involves searching large portions of non-linear parameter
space, which is prohibitively expensive. Positional information is
therefore used to increase speed, by requiring that any lens model
must first meet the requirement that four image pixels in the lensed
source must trace to within a threshold value of one another in the
source-plane. If this criterion fails, a new lens model is sampled.
This approach was introduced by Brewer & Lewis (2008) for a
strongly lensed quasar, the point source nature of which allowed
them to impose that image pixels trace to within 10−5 arcsec of one
another. Here, a much larger threshold is used throughout, because
unlike Brewer & Lewis (2008), this is not imposed to constrain the
lens model but simply to improve the speed of the initial non-linear
sampling.

However, due to the complex source morphologies of real strong
lens imaging, one can never be sure which image-plane pixels actu-
ally neighbour one another in the source plane. Therefore, positional
information is only exploited once an accurate model for the source
has been computed, which in the automated analysis pipeline is
after the phase PInit2 where a parametric source is fitted. The po-
sitional image pixels are calculated as the four image pixels that
trace closest to the parametric source’s center (xs, ys) and also (i)
are separated by over 20 per cent of the lens’s REin value in the
image-plane and (ii) have 1 pixel rotationally offset from the others
in the image-plane by at least 120◦ − 240◦ degrees around the lens
center (to ensure multiple images are sampled as opposed to just
one image’s extended arc). To compute positional image pixels for a
pixelied source-plane, these requirements are followed using image
pixels that trace to the brightest pixel in the source reconstruction.

If they are not met using only this source pixel, its closest traced
image pixels are iteratively used until four image pixels are chosen.

The threshold value is then reduced to a value of 3 × the maxi-
mum source-plane separation of these newly allocated image pixels
or 0.3 arcsec, whichever is smaller, thereby giving significant effi-
ciency gains whilst ensuring no feasible lens models are wrongly
discarded. Positional information is also key to removing the un-
wanted over-/underfit solutions described in N15 and Section 6.

APPENDI X B: C ONSTANT REGULARI ZATIO N

The linear regularization matrix H used in Warren & Dye (2003)
and N15 is derived following the formalism given in Ziegel et al.
(1987). This computes H as H = BT B, where the matrix B stores
the regularization pattern of source pixels with one another. For ex-
ample, to regularize each source pixel with its neighbour, assuming
the numbering scheme is such that pixel 1 is a neighbour of pixel 2,
and 2 of 3, etc., the matrix Bx is given as⎡
⎢⎢⎣

−1 1 0 0 ...

0 −1 1 0 ...

0 0 −1 1 ...

... ... ... ... ...

⎤
⎥⎥⎦ . (B1)

For gradient regularization on an N × N square grid, this ma-
trix gives the regularization of source pixels across the x-direction,
where every N elements will be a row of zeros. This matrix then
gives a regularization matrix Hx = Bx

T Bx. For regularization in
the y-direction, a second By matrix is generated, where the negative
ones are again across the diagonal and the positive ones every N
elements across from this, with the final N rows all zeros. By is
then used to compute a second regularization matrix Hy = By

T By,
which is added to the first to give the overall regularization matrix
H = Hx + Hy. ForAutoLens’s Voronoi regularization scheme the
same pattern is followed, using around 5–10 H matrices correspond-
ing to regularization across all of the Voronoi vertex indices.

B1 Non-constant regularization

Formally, λ can be included in the B matrices above. However,
because it is a fixed single value, it is convention to take it outside
B. For example, in N15, this saw λ included in three terms in the
expression for the Bayesian evidence (e.g. λsT Hs). For the non-
constant regularization scheme used to weight regularization by the
source’s luminosity, a 1D vector of regularization coefficients �

must be employed and incorporated into the computation of H.
Therefore, the B matrices above are redefined to include each

pixel’s effective regularization coefficient, λeff, as B� = �B, where
� is computed as described in Section 4.7.3. The corresponding
regularization matrix is then H� = BT

�B�.

APPENDI X C : PI PELI NE PRI ORS AND
L I N K I N G

This appendix presents a more detailed overview of pipeline phase
linking, describing the priors given to the different light and mass
profiles used to initialize that profile at different points in the
pipeline.

For each phase, initial parameter sampling is performed using
one of two priors:

(i) Uniform Prior (UP) - – – Draws points randomly from a
uniform distribution defined by a maximum and minimum value.
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Table C1. Priors used to initialize the Sersic + Exponential fit used in PInit1

Model Component Prior load Parameters

Sersic Light None xl1 UP 0.5
−0.5 yl1 UP 0.5

−0.5 Il1 UP 2
0 Rl1 UP 4

0 nl1 UP 9.5
0.7 ql1 UP 1.0

0.3 θ l1 UP 180
0

Exponential Light None xl2 = xl1 yl2 = yl1 Il2 UP 2
0 Rl2 UP 4

0 nl2 = 1 ql2 UP 1.0
0.3 θ l2 = θ l1

Table C2. Priors used to initialize the SPLE + Sersic (Source) or PLCore + Sersic (Source) profile fit used in PInit2. The Sersic and SPLE and PLCore parameters
are initialized from the results of PInit1.

Model Component Prior load Parameters

SPLE Mass PInit1 x GP 0.1′′ y GP 0.1′′ θE UP 4
0 q UP 1.0

0.3 θ UP 180
0

α = 2.2
Sersic Source None xs UP 0.5

−0.5 ys UP 0.5
−0.5 Is UP 2

0 Rs UP 4
0 ns UP 9.5

0.7 qs UP 1.0
0.3 θ s UP 180

0

(ii) Gaussian Prior (GP) - – – Draws points randomly from a
normal distribution defined by a mean μg and width σ g. The value
for μg is estimated from the previous phase, using the median of
the same parameter or a related parameter’s marginalized 1-D is
estimated from the previous phase, using the median of the same
parameter or a related parameter’s marginalized 1-D

The value of σ g is defined such that 68.2 per cent of points sam-
pled (on average) are between that parameter’s previously estimated
3σ confidence bounds. These confidence bounds are generally not
symmetric and the value furthest from the mean is used. This en-
sures that when linking phases the wider area of the previous phase’s
posterior is sampled. For example, if a parameter is estimated as
n = 4+0.2

−0.3 at 3σ confidence, 68.2 per cent of samples in the next
phase will (on average) lie between 3.7 and 4.3. However, for high-
quality imaging data, parameters can be estimated to a very high
accuracy and their errors could therefore be very small. Using these
errors to set σ g therefore runs a risk of biasing an analysis by plac-
ing overly restrictive priors. To overcome this, each parameter has
a minimum σ g value, which replaces the previous analysis’s error
estimate if it is below this minimum. Extending the previous exam-
ple, if this minimum value were 0.6, then 68.2 per cent of samples
in the next phase will be between 3.4 and 4.6 despite its errors only
corresponding to a size of 0.3. These minimum values are given for
each phase in the tables described next.

For the first optimization of the hyperparameters uniform priors
are assumed on all parameters, except λ which uses a broad Gaussian
prior centered on phase PInit3’s initial estimate of λ. These uniform
priors are broad, but may not be sufficient to capture the optimum
value of all of the hyperparameters. However, re-optimization of
the hyperparameters uses Gaussian priors centered on their previ-
ous phase’s most probable values with σ g = μg/2, thus the optimum
values will be reached after two or three hyperparameter optimiza-
tions.

The following tables give the priors used in each pipeline phase
for the different light and mass models. It should be noted that some
quantities that depend on the image properties, like Il and 
 l, have
priors that depend on initial estimates of their values from the image
data. All tables follow the same notation, where UPa

b corresponds to
a uniform prior between the values a and b and GP a corresponds to
a Gaussian prior with minimum value σ g given by a. Initialization
of parameters in the main pipeline uses exclusively Gaussian priors,
retaining the minimum σ g values given for the model comparison
phases.
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Table C3. Priors used to initialize the Sersic light model and SPLE mass model used in PInit3. The SPLE and PLCore parameters x, y, and θ are initialized
from the results of PInit2.

Model Component Prior load Parameters

Sersic Light None xl UP 0.5
−0.5 yl UP 0.5

−0.5 Il1 UP 2
0 Rl1 UP 4

0 nl1 UP 9.5
0.7 ql1 UP 1.0

0.3 θ l1 UP 180
0

SPLE Mass PInit2 x (xl) GP 0.02 y (yl) GP 0.02 θE GP θEin/4 q GP 0.05 θ GP 20.0 α = 2.2
Hyper
Params

Hyper None λ UP 1000
0

Table C4. Priors used to initialize the Sersic light profile and mass profile used in PInit4. The Sersic, SPLE, PLCore, and NFWSph parameters are initialized
from the results of PInit3.

Model Component Prior load Parameters

Sersic Light PInit3 xl GP 0.02′′ yl GP 0.02′′ Il GP Il/2 Rl GP Rl/2 nl GP 0.8 ql GP 0.1 θ l GP 20.0
SPLE Mass PInit3 x GP 0.1′′ y GP 0.1′′ θE GP θE/2 q GP 0.1 θ GP 20.0 α = 2.2
PLCore Mass PInit3 x GP 0.1′′ y GP 0.1′′ θE GP θE/2 q GP 0.1 θ GP 20.0 α = 2.0 s GP 0.1′′
NFWSph Mass PMCMass xd (x) GP

0.2′′
y (y) GP 0.2′′ κs UP 3

0 q = 1.0


 l Mass 
 l UP 5.0
0.0

Table C5. Priors used to initialize the Mass + Light profile fits used for model comparison in phase PMCLight. Parameter initializations are derived from the
results of PInit4. The hyperparameters ωLens and ωSrc are initialized using the χ2

Base values of the observed image.

Model Component Prior load Parameters

Sersic Light PInit4 xl GP 0.02′′ yl GP 0.02′′ Il UP 2
0 Rl UP 4

0 nl UP 9.5
0.7 ql UP 1.0

0.3 θ l GP 20.0
Sersic + Exp Light PInit4 xl GP 0.02′′ yl GP 0.02′′ Il1 UP 2

0 Rl1 UP 4
0 nl1 UP 9.5

0.7 ql1 UP 1.0
0.3 θ l GP 20.0

xl2 = xl1 yl2 = yl1 Il2 UP 2
0 Rl2 UP 4

0 nl2 = 1.0 ql2 UP 1.0
0.3 θ l2 = θ l1

SPLE Mass PInit4 x GP 0.01′′ y GP 0.01′′ θE GP 0.05′′ q GP 0.01 θ GP 2.0 α = 2.2
PLCore Mass PInit4 x GP 0.05′′ y GP 0.05′′ θE GP θE/2 q GP 0.1 θ GP 10.0 α = 2.0 S UP 0.2′′

0.0′′
NFWSph Mass PMCMass xd (x) GP

0.2′′
y (y) GP 0.2′′ κs GP κs/2 q = 1.0


 l Mass 
 l GP 
 l/2
Hyper
Params

Hyper Prev λSrc GP
λSrc/2

ωLens UP
ωLens/2

ωSrc UP
ωSrc/2

Table C6. Priors used to initialize the light and mass profile fits used for model comparison phase PLSPLEInit. All components of the light model use the same
priors given in the row labled the Light model, regardless of whether it is a single Sersic or multiple Exp and/or Sersic profile. These are derived from the
results of the PMCLight phase, as are the SPLE, PLCore, and Shear parameter initializations.

Model Component Prior load Parameters

Light Light PMCLight xl GP 0.02′′ yl GP 0.02′′ Il GP Il/2 Rl GP Rl/2 nl GP 0.8 ql GP 0.1 θ l GP 20.0
SPLE Mass PMCLight x GP 0.05′′ y GP 0.05′′ θE UP 4

0 q UP 1.0
0.3 θ GP 60.0 α UP 2.5

1.5
PLCore Mass PInit4 x GP 0.05′′ y GP 0.05′′ θE GP θE/2 q GP 0.1 θ GP 10.0 α = 2.0 S UP 0.2′′

0.0′′
Hyper
Params

Hyper Prev ωLens GP
ωLens/2

λSrc GP
λSrc/2

Table C7. Priors used to initialize the mass profile fits used for model comparison phase PLMCMass. Parameter initializations are derived from the results of
PMCLight.

Model Component Prior Load Parameters

SPLE Mass PMCLight x GP 0.05′′ y GP 0.05′′ θE UP 4
0 q UP 1.0

0.3 θ GP 60.0 α UP 2.5
1.5

PLCore Mass PMCLight x GP 0.05′′ y GP 0.05′′ θE UP 4
0 q UP 1.0

0.3 θ GP 60.0 α UP 2.5
1.5 s UP 0.0

2.0
PLCore Mass PInit4 x GP 0.05′′ y GP 0.05′′ θE GP θE/2 q GP 0.1 θ GP 10.0 α = 2.0 S UP 0.2′′

0.0′′
NFWSph Mass PMCMass xd (x) GP

0.2′′
y (y) GP 0.2′′ κs GP κs/2 q = 1.0


 l Mass 
 l GP 
 l/2
Shear Mass PMCLight xsh = x ysh = y γ sh UP 0.4

0.0 θ sh UP 180
0

Hyper
Params

Hyper Prev λSrc GP
λSrc/2

ωSrc UP
ωSrc/2

ωLens UP
ωLens/2
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Table C8. Priors used to initialize the light and mass profile fits used for model comparison phase PLMCGeom. All components of the light model use the same
priors given in the row labeled the Light model, regardless of whether it is a single Sersic or multiple Dev, Exp and/or Sersic profile. These are derived from
the results of the PMCLight phase, whereas the Shear parameter initializations are derived from the results of PMCMass.

Model Component Prior load Parameters

Light Light PMCLight xl GP 0.02′′ yl GP 0.02′′ Il GP Il/2 Rl GP Rl/2 nl GP 0.8 ql GP 0.1 θ l GP 20.0
NFW Mass PMCMass xd (x) GP

0.2′′
y (y) GP 0.2′′ κs UP 3

0 q UP 1.0
0.2 θ UP 180.0

0.0


 l Mass 
 l UP 5.0
0.0

Shear Mass PMCLight xsh = xd ysh = yd γ sh GP 0.1 θ sh GP 90.0
Hyper
Params

Hyper Prev λSrc GP
λSrc/2

ωLens UP
ωLens/2

ωSrc UP
ωSrc/2

Table C9. Priors used to initialize the hyperparameter optimization. After the first hyperparameter initialization, hyperparameters are initialized using Gaussian
priors with a width half their median value.

Model Feature Parameters

Hyper Source Adaption LClust1 UP 0.0
10.0 LClust2 UP 0.0

10.0 Ns UP 80.0
800.0

Contribution Maps ωFrac UP 0.0
10.0

Variance Scaling ωBG UP 0.0
2.0 ωLens UP 0.0

6.0 ωLens2 UP 0.0
6.0 ωSrc UP 0.0

6.0 ωSrc2 UP 0.0
6.0

Regularization λSrc UP 0.0
1000.0 λBg UP 0.0

1000.0 LLum UP 0.0
5.0

Sky Subtraction ωSky UP −1.0
1.0
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APP ENDIX D : PARAMETER TA BLE

Table D1. Parameter symbols and descriptions for all parameters used in
this work.

Lensing quantities
MEin Einstein mass
REin Einstein radius
x Image-plane coordinate (image-plane reference frame)
x′ Image-plane coordinate (lens reference frame)
κ(x) Lens convergence profile
φ Lens deflection potential
αx,y Deflection angle map (x and y dimensions)
�cr Critical surface mass density
Light profiles
xl, yl Centers (arcseconds) [Exp, Sersic]
θ l Rotation angle (clockwise from north) [Exp, Sersic]
ql Axis ratio [Exp, Sersic]

ξ l Elliptical coordinate (ξl =
√

xl
2 + y2

l /q2
l ) [Exp, Sersic]

Il Intensity (electrons per second) [Exp, Sersic]
Rl Effective radius (circular) [Exp, Sersic]
nl Sersic index [Exp (nl = 1.0), Sersic]
kl Function of Sersic index [Exp, Sersic]
Mass profiles
x, y Centers (arcseconds) [SIE, SPLE, PLCore]
θ Rotation angle (clockwise from north) [SIE, SPLE, PLCore]
q Axis ratio [SIE, SPLE, PLCore]
ξ Elliptical coordinate (ξ =

√
x2 + y2/q2) [SIE, SPLE,

PLCore]
θEin Einstein radius (arcseconds) [SIE, SPLE, PLCore]
α Power-law density slope (ρ(r) = ρo(r/ro)−α . αx,y) [SIE,

SPLE, PLCore]
S Core radius (arcseconds) [PLCore]
xd, yd Centers (arcseconds) [NFW]
θd Rotation angle (clockwise from north) [NFW]
qd Axis ratio [NFW]

ξd Elliptical coordinate (ξd =
√

xd
2 + y2

d/q2
d ) [NFW]

ρs Halo scale normalization [NFW]
rs Halo scale radius (rs = 30 kpc) [NFW]
κd Halo normalization κd = ρsrs/�cr) [NFW]
ηd Scaled elliptical coordinate (ηd = ξd/rs) [NFW]

 l Mass-to-light ratio (electrons per second) [Exp, Sersic]
xsh, ysh Centers (arcseconds) [Shear]
γ sh Magnitude [Shear]
θ sh Rotation angle (clockwise from north) [Shear]
Source profiles
xs, ys Centers (arcseconds) [Exp, Sersic]
θ s Rotational angle (clockwise from north) [Exp, Sersic]
qs Axis ratio [Exp, Sersic]
ξ s Elliptical coordinate (ξs = √

xs
2 + y2

s /q2
s ) [Exp, Sersic]

Is Intensity (electrons per second) [Exp, Sersic]
Rs Effective radius (circular) [Exp, Sersic]
ns Sersic index [Exp (ns = 1.0), Sersic]
ks Function of Sersic index [Exp, Sersic]

Table D2. Parameter symbols and descriptions for all parameters used in
this work.

Semi-linear inversion
I Total source pixels
i Source pixel number
J Total image pixels
j Image pixel number
fi, j Matrix mapping image pixels to source pixels
d Observed image values in (electrons per second)
σ Observed image statistical uncertainties

(electrons per second)
b Model lens light profile values
s Model reconstructed source surface-brightness

values
D Observed image mapping vector used for linear

inversion (see Warren & Dye (2003))
F Image-source plane mapping matrix used for

linear inversion (see Warren & Dye (2003))
H� Regularization matrix
χ2 Residuals over uncertainties squared
ε Linear inversion bayesian evidence
Hyper parameters
Ns Source-plane resolution (number of source pixels)
LClust1, LClust2 Control the source pixelization
ωLensFrac, ωSrcFrac Control the lens and source contribution maps
ωBG Scale the background sky variances
ωLens1, ωLens2 Scale the lens light variances
ωSrc1, ωSrc2 Scale the lensed source variances
ωSky Scale the background sky subtraction
λ Regularization coefficient (constant regularization

scheme)
λSrc Source regularization coefficient (non-constant

scheme)
λBg Background regularization coefficient

(non-constant scheme)
LLum Controls transition of non-constant regularization
Adaptive image/source vectors
� Preloaded model of lensed source (from previous

pipeline phase)
Ł Preloaded model of lens galaxy (from previous

pipeline phase)
K Number of image pixels allocated to a given

source pixel
E Cluster energies used for k-means clustering
r Distances of K traced image pixels to allocated

source pixel
W Weights of each source pixel, used for

surface-brightness adaption
T Preloaded source and lens image T = � + Ł
�Src Lensed source flux contribution map
�Lens Lens light flux contribution map
v Source flux contribution of each source-pixel

(computed from �Src)

V Weights of each source pixel, used for
luminosity-weighted regularization

�, (λeff) Effective regularization coefficients
fBg Background sky flux used for sky subtraction
σbase Observed image variances without scaling

(counts)
χ2

base χ2 values generated using unscaled baseline
variances

σscale Observed image variances including scaling
(counts)

χ2
scale χ2 Values generated using scaled variances
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