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Abstract7

Estimating groundwater recharge rates is important for water resource management studies.8

Modeling approaches to forecast groundwater recharge typically require observed historic data9

to assist calibration. It is generally not possible to observe groundwater recharge rates directly.10

Therefore, in the past, much effort has been invested to record soil moisture content (SMC) data,11

which can be used in a water balance calculation to estimate groundwater recharge. In this context,12

SMC data is measured at different depths and then typically integrated with respect to depth to ob-13

tain a single set of aggregated SMC values, which are used as an estimate of the total water stored14

within a given soil profile. This article seeks to investigate the value of such aggregated SMC15

data for conditioning groundwater recharge models in this respect. A simple modeling approach16

is adopted, which utilizes an emulation of Richards’ equation in conjunction with a soil texture17

pedotransfer function. The only unknown parameters are soil texture. Monte Carlo simulation is18

performed for four different SMC monitoring sites. The model is used to estimate both aggre-19

gated SMC and groundwater recharge. The impact of conditioning the model to the aggregated20

SMC data is then explored in terms of its ability to reduce the uncertainty associated with recharge21

estimation. Whilst uncertainty in soil texture can lead to significant uncertainty in groundwater22
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recharge estimation, it is found that aggregated SMC is virtually insensitive to soil texture.23

Keywords: Conditioning, Groundwater recharge, Soil moisture content, Soil texture, Vertical24

percolation25

1. Introduction26

An essential aspect of water resource planning often involves the estimation of groundwater27

recharge rates, here defined as the rate at which water arrives at the water table of an aquifer28

following precipitation, interception, snow melt, evapotranspiration and percolation through the29

unsaturated zone. In many cases, water loss during percolation through the unsaturated zone30

below the reach of plant roots can be assumed negligible. Consequently, vertical percolation31

beneath the reach of plant roots and groundwater recharge are often treated as being the same32

(Quinn et al., 2012; Sorensen et al., 2014). Hereafter, vertical percolation is referred to as a proxy33

for groundwater recharge. Vertical percolation rates (VPR) can be estimated using a multitude34

of different models, all of which require historic data of some form to enable appropriate model35

parameter calibration.36

Ideally, such models should be calibrated to observed groundwater recharge rates. However,37

groundwater recharge data is difficult to observe directly. Some studies have sought to derive38

recharge data by separating out base flow from river discharge rate records (Rutledge, 2007). The39

problem here is that base flow separation methods are, in themselves, ad hoc and unconstrained,40

unless combined with some form of tracer based mass balance study (Lott and Stewart, 2016).41

Another method is to assume a specific yield for an unconfined aquifer and to infer recharge rates42
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from water table changes (Healy and Cook, 2002). The problem with this latter approach is that43

there is often significant uncertainty about the time-varying characteristics of specific yield (Healy44

and Cook, 2002; Mathias and Butler, 2006) and significant care is required to properly take into45

account the effects of lateral groundwater flow rates (Healy and Cook, 2002; Cuthbert et al., 2016).46

Arguably, the most direct method of observing recharge rates is to measure VPR from an in47

situ lysimeter (von Freyberg et al., 2015). The issue here is that such facilities are very expensive48

to manage and very few facilities exist around the world.49

Another related approach is to continuously monitor moisture content within a soil profile over50

a long period of time (Ireson et al., 2006). Providing that precipitation (net of interception) and51

actual evapotranspiration (AE) are also monitored, soil moisture content (SMC) data can be used52

to develop a VPR measurement by water balance. However, a problem is that AE is not often mea-53

sured. Instead, an estimate of potential evapotranspiration (PE) is generally obtained using weather54

station data (incoming radiation, temperature, humidity, wind speed etc.) in conjunction with an55

appropriate physics model (e.g. Allen et al., 1998). Under such conditions, a direct estimate of56

VPR is not possible by water balance, as the quantity of AE is unknown. Consequently, VPR must57

instead be estimated by simulating soil-plant-water processes using an appropriate model, which58

is conditioned to the observed SMC data.59

Interestingly, previous modeling studies have focused on the ability of models to estimate SMC60

data as opposed to the value of SMC data as a conditioner for estimating VPR (Ragab et al., 1997;61

Sorensen et al., 2014). In a recent study, Sorensen et al. (2014) presented SMC content data from62

four instrumented sites from southern England. They then compared estimated SMC data from63

four different uncalibrated recharge estimation methods. The authors conclude that, whilst each of64

3



four models provided a “generally good agreement” between simulated and observed SMC, there65

were large discrepancies between the different VPR estimates, leading to concerns over the value66

of SMC data for conditioning groundwater recharge modeling in the future.67

In the current study, the four aforementioned instrumented sites presented by Sorensen et al.68

(2014) are revisited to quantify the extent to which observed SMC data can be used to reduce69

uncertainty associated with groundwater recharge in the context of a single model structure. In70

particular, the model structure used includes a recently developed soil moisture accounting pro-71

cedure (SMAP) designed by Mathias et al. (2015), which is described later on in this article.72

Unknown input parameters associated with this SMAP only include information about the soil73

texture of the site (i.e., % clay, % silt and % sand).74

The outline of this article is as follows. An explanation is provided concerning the data, models75

and conditioning strategies to be applied. The aforementioned SMAP is used to estimate VPR at76

the four instrumented sites in southern England. Probability of non-exceedance (PNE) confidence77

limits are acquired using four successive methodologies. For comparison, PNE confidence limits78

are first acquired assuming any soil texture is equally likely to be applicable at each of the four79

sites. PNE confidence limits are then refined by conditioning the SMAP to the observed SMC80

data from each site. For further comparison, an additional set of PNE confidence limits is acquired81

by restricting soil texture to be within a polygon on a soil texture ternary diagram associated with82

the soil texture classification for that site as designated by the UK soil observatory (UKSO). The83

results are compared and contrasted so as to draw wider conclusions with regards to the value of84

observed SMC data when seeking to estimate VPR for groundwater recharge studies in the future.85
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2. Data and methodology86

2.1. Data87

The data used for this study include daily net rainfall (i.e., rainfall minus canopy interception88

losses) and PE data in conjunction with observed SMC from the four instrumented sites previously89

discussed by Sorensen et al. (2014). The four sites include Warren Farm, Highfield Farm, Beche90

Park Wood and Grimsbury Wood, all of which are located in Berkshire, UK.91

Daily net rainfall and AE data were obtained by Sorensen et al. (2014) using JULES (Best92

et al., 2011) driven by nearby meteorological observations. A default JULES parameterisation93

was used for grassland sites with woodland vegetation parameters defined using observations by94

Herbst et al. (2008).95

Routine SMC data were obtained at each site as follows (Sorensen et al., 2014). Point mea-96

surements of SMC were obtained using neutron probes at 17 intervals at depths of 0.1, 0.2, 0.3,97

0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.3, 2.6, 2.9, 3.2 m, respectively. The results were then98

aggregated together, by depth weighting, to obtain a depth of water contained within the top 3 m99

of the soil profile.100

Soil texture maps from the UK soil observatory (UKSO, 2016) were used to provide soil texture101

data describing the surface cover of the four sites.102

The UKSO map covers Great Britain and integrates geology and soil characteristics at a scale103

of 1:50 000, with a 1 km resolution version available for regional overviews. The simplified soil104

texture classifications are derived from measured soil textures (% clay, % silt and % sand) taken105

from archive samples held by the British Geological Survey. The map uses terms that refer to:106
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sandy soils, silty soils, clayey soils and loamy soils with additional indicators for the presence of107

chalk fragments (chalky) and peat (peaty). For reference, soil texture ternary diagrams illustrating108

the various available UKSO soil texture classifications are presented in Fig. 1.109

2.2. Geology and soil cover of the field sites110

Location maps of the four field sites, Warren Farm, Highfield Farm, Beche Park Wood and111

Grimsbury Wood, have previously been presented by Sorensen et al. (2014). The four locations112

cover a range of different superficial geology, soil type and land use. Warren Farm and Highfield113

Farm are grassland sites. Beche Park Wood and Grimsbury Wood are deciduous woodland sites.114

All four sites are underlain by chalk geology, with water tables located at greater than 10 m depth.115

The Chalk in this area is overlain by superficial clay-with-flints formation or Paleogene deposits116

comprising of clays, interbedded sands and silty clays with the exception of Warren Farm which117

is chalk outcrop (Sorensen et al., 2014).118

Soil logs indicate the following (Sorensen et al., 2014): Warren Farm consists of a thin 0.2 m119

soil, including flints, overlying weathered chalk which grades into consolidated chalk between 1120

and 3 m depth. Highfield Farm consists of a very heterogeneous fine loam to around 0.4 to 0.5 m,121

above clay with various degrees of interbedded gravel. Beche Park Wood consists of around 0.3 m122

of gravely clay, over clay-with-flints containing occasional sand filled fissures. Grimsbury Wood123

is predominantly silty clay overlain by 0.3 m of loam.124

The soil texture for the four sites according to UKSO is as follows: Warren Farm is described125

as a “chalky silty loam”. Highfield Farm is described as “loam to sand”. Beche Park Wood is126

described as “clay to clayey loam”. Grimsbury Wood is described as “clay to silt”.127
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The UKSO map provides quite reasonable soil texture descriptions for Beche Park Wood and128

Grimsbury Wood. However,the UKSO map soil texture descriptions do not compare well with129

the field descriptions for Warren Farm and Highfield Farm, previously provided by Sorensen et130

al. (2014). Indeed there are many problems associated with determining soil texture for soils131

associated with chalk (Kerry et al., 2009). Nevertheless, the UKSO soil textures will be considered132

further as an alternative conditioner for groundwater recharge estimation.133

2.3. Vertical percolation rate (VPR) modeling134

The soil moisture accounting procedure (SMAP) previously proposed by Mathias et al. (2015)135

was used to simulate VPR at the four sites. The model requires daily net rainfall, PE data and soil136

texture data to provide estimates of aggregated SMC and VPR.137

The SMAP has been specifically designed to emulate Richards’ equation in conjunction with138

the plant roots stress function of Feddes et al. (1976) and the pedotransfer function stored within139

the ROSETTA database (Schaap et al., 2001). The associated conceptual model comprises a 3140

m thick homogenous soil column with an exponentially distributed vertical plant root density141

distribution contained within the top 1 m of soil. The upper boundary condition comprises a flux142

associated with the net rainfall rate. The lower boundary condition is represented as a gravity143

drainage boundary.144

An aspect not adequately discussed by Mathias et al. (2015) is the stability of the Euler explicit145

time-stepping scheme used within the SMAP. Stability is ensured using a scheme very similar to146

that presented in Appendices B and C of Mathias et al., (2016). Further details about how this is147

achieved are provided in Appendix A of this article.148
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Each SMAP simulation was run for a warm-up period of at least 90 days before simulating the149

period through which observed SMC data is available. An initial value of SMC used to start the150

warm-up simulation was obtained as follows: First, the SMC that would be expected for a 3 m soil151

column at hydrostatic conditions with a fictitious water table present at 2 m below the base of the152

column was determined. The SMAP was then run, with this starting SMC value, using the first153

three years of net-rainfall and PE data. The final SMC value from this latter simulation was then154

used as the starting SMC value for the beginning of the 90 day warm-up period.155

2.4. Determination of VPR confidence limits156

Unconstrained probabilistic estimates of VPR are obtained by performing a Monte Carlo sim-157

ulation involving uniform random sampling of 10,000 soil textures across the entire soil texture158

ternary diagram and simulating SMC and VPR for each soil texture realization, for each of the four159

recharge sites. Cumulative distribution functions for VPR are then obtained to determine values160

of VPR at each simulation time, which correspond to probabilities of non-exceedance (PNE) of161

10% and 90%, hereafter referred to as the P10 and P90, respectively.162

2.4.1. Conditioning using the observed soil moisture content (SMC) data163

The confidence limits for each VPR are constrained further by conditioning the SMAP to the164

observed SMC data for each site. This is achieved as follows: The Nash and Sutcliffe (1970)165

efficiency (NSE) criterion is determined for each realization whereby166
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NSE = 1 −

N∑
i=1

(oi − mi)
2

N∑
i=1

(oi − oi)
2

(1)

and N is the number of data points, oi are the observed SMC data, mi are the modeled SMC data,167

and oi is the mean of the observed SMC data.168

All the Monte Carlo simulation realizations are ranked in terms of their NSE values. The169

highest NSE values correspond to those models that gave the most favorable comparison with170

the observed data. Conditioning is achieved by only retaining the top 10% realizations with the171

highest values of NSE. Cumulative distribution functions for VPR are then obtained to determine172

P10 and P90 values of VPR following conditioning.173

2.4.2. Conditioning using the UKSO soil texture data174

As discussed earlier, soil texture of the surface cover for each of the four sites has been deter-175

mined at a 1 km scale using the UKSO soil map. UKSO provide a soil texture classification for176

each location, which is defined in terms of a polygon on a soil texture ternary diagram (recall Fig.177

1). As a comparison to conditioning VPR using SMC data, simulated VPR is also conditioned178

using the UKSO soil texture data. This is achieved by redetermining the P10 and P90 VPR values179

from the aforementioned full Monte Carlo simulation, whilst only retaining those soil textures180

contained within the associated UKSO soil texture polygon.181
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3. Results182

Fig. 2 shows the modeling results for Warren Farm. First consider the plots of SMC in Fig. 2a.183

Note that the plotted lines represent the P10 and P90 results from the unconstrained Monte Carlo184

simulation, the conditioning on the observed SMC data and the conditioning to the UKSO soil185

texture classification for that site. For each of the three cases, the P10 and P90 are closely overlain186

on top of each other suggesting that SMC is completely insensitive to soil texture. Furthermore,187

the SMAP is able to estimate the observed SMC data to a considerably high-level, regardless of188

the soil texture assumed.189

In contrast, the unconstrained Monte Carlo simulation (the green envelope) presented in Fig.190

2b suggests that soil texture has a much more significant effect on VPR, with the difference be-191

tween the P10 and P90 results being as high as 50% during the peak event of 2004. The difference192

between the P10 and P90 for VPR clearly narrow following conditioning to the observed SMC193

data (consider the blue solid lines). However, even with this conditioning, the difference between194

the P10 and P90 results are as high as 30% during the peak event of 2004. Conditioning the sim-195

ulations using instead the UKSO soil texture classification leads to a similar level of refinement196

on VPR. However, conditioning to the UKSO soil texture classification generally leads to a slight197

overestimation of VPR in 2007 and 2008 as compared to the results obtained by conditioning to198

SMC data with the exception of the peak VPR events of early 2007 and 2008.199

Fig. 3 shows a very similar story for the Highfield Farm site. However, in this case, soil200

texture conditioning leads to an underestimation of VPR as compared to results obtained by SMC201

conditioning.202
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Figs. 4 and 5 show results from Beche Park Wood and Grimsbury Wood, respectively. SMC203

sensitivity to soil texture is more apparent at these sites (consider the green envelopes in Figs. 4a204

and 5a). However, SMC data estimates following SMC conditioning and soil texture conditioning205

at both sites are virtually interchangeable. In contrast, as with Warren Farm and Highfield Farm,206

there is a much wider variation in VPR estimate.207

To gain further insight, Fig. 6 shows the location of all the simulations selected by the SMC208

conditioning on a soil texture ternary diagram (the blue dots) for each of the four sites considered.209

The polygons for the associated UKSO soil texture classifications for each of the sites are also210

shown for comparison (the red solid lines).211

From Figs. 6a and b, it is clear that for Warren Farm and Highfield Farm, SMC conditioning212

identifies soil textures that are completely different to those suggested by UKSO. According to213

Fig. 1, the SMC conditioning suggests that Warren Farm is more of a “clay to chalky loam” as214

opposed to a “chalky, silty loam”. In the same way, the SMC conditioning suggests that Highfield215

Farm is more of a “chalky silty loam” as opposed to a “loam to sand”.216

In contrast, Figs. 6c and d show that some of the soil textures identified by SMC conditioning217

exist within the allocated UKSO soil texture classification polygons for Beche Park Wood and218

Grimsbury Wood. It is also notable that the soil log descriptions reported by Sorensen et al. (2014)219

for these sites are closer to the UKSO descriptions as compared to the soil log descriptions for220

Warren Farm and Highfield Farm. Recall Sorensen et al. (2014) describes Beche Park Wood as221

gravely clay and Grimsbury Wood as silty clay. UKSO describe Beche Park Wood as “clay to222

clayey loam” and Grimsbury Wood as “clay to silt”.223

Fig. 7 shows contour plots of NSE across the soil texture ternary diagrams for each of the four224
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sites. Note that NSE values closer to one imply better fits to the observed SMC data. Only values225

of NSE from 0.7 to 0.9 are contoured because 0.9 represents the highest NSE values achieved and226

less than 0.7 is arguably too poor to consider. The first thing to note is that NSE values greater than227

0.7 are achieved at all four sites for all soil textures outside of the UKSO “sand” polygon. Values228

of NSE within the UKSO “sand” polygon were mostly less than 0.7 for each of the four localities.229

The next thing to note is that at Warren Farm, NSE was between 0.86 and 0.9 for all soil textures,230

excluding the UKSO “sand” polygon. NSE values were considerably lower but still exhibit little231

variability with soil texture at Highfield Farm, Beche Park Wood and Grimsbury Wood.232

4. Discussion233

The most important observation that can be made from Figs. 2 to 5 is that SMC is virtually234

insensitive to soil texture. On the other hand, vertical percolation rate exhibits a stronger depen-235

dence on soil texture. The above results include a range of different soil type scenarios; consider236

the UKSO texture classification polygons in Fig. 6. However, all the sites studied are situated237

in Southern England, and therefore all experience a UK maritime climate. The extent to which238

climate may be important on the above finding is discussed below.239

From an earlier sensitivity analysis of the aforementioned SMAP, Mathias et al. (2015) found240

that the ratio of AE to PE, averaged over 34 years, ranged from 40% to 94% over the entire soil241

textural triangle (see their Fig. 5a). However, for sand fraction less than 90% this variation reduced242

to between just 80% and 94%. The main reason for this is that, in a UK maritime climate, there243

is generally sufficient rainfall to satisfy evaporative demands. Re-inspection of the governing244

equations presented by Mathias et al. (2015) reveals that the impact of soil texture on SMC is245
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largely through its control on AE. Because AE is virtually the same regardless of soil texture in246

this context, very little variation of SMC is observed with changing soil texture.247

It is interesting to note that there is marginally more sensitivity of SMC to soil texture at Beche248

Park Wood and Grimsbury Wood as compared to Warren Farm and Highfield Farm. The main249

difference between the wooded sites and the farm sites, as far as the SMAP is concerned, is that250

the wooded sites experience reduced net rainfall due to forest canopy interception losses. Figs.251

2c, 3c, 4c and 5c show monthly mean AE (excluding canopy interception loss) and VPR. It is252

clear that VPR is considerably lower at the wooded sites. Furthermore, whilst AE shows marginal253

summer variability with soil texture at all four sites, winter variability in AE is only apparent at254

the wooded sites.255

The reduction in available rainfall due to canopy interception makes it harder for plant roots256

to satisfy evaporative demands. Consequently, the system becomes more dependent on the soil257

moisture relationship with matric potential and plant stress function (consider Eqs. (22) and (23)258

in Mathias et al. (2015)). Hence SMC can be seen to me more variable with soil texture at the259

wooded sites.260

The wooded sites can be thought of as a proxy for a slightly more arid climate. It follows that261

SMC is expected to exhibit a much greater sensitivity to soil texture in semi-arid and arid climates,262

as compared to UK maritime climates.263

With regards to the stronger sensitivity of VPR to soil texture as compared to SMC, VPR is264

calculated by the SMAP using a non-linear function of SMC (Mathias et al., 2015, Eq. (20)).265

It follows that any minor variability in SMC will naturally lead to a greater variability in VPR.266

Conditioning the SMAP to the observed SMC data or the UKSO soil texture classifications leads267
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to a refining of the confidence limits for VPR. However, given the insensitivity of SMC to soil268

texture, it does not follow that this conditioning leads to increased reliability with regards to VPR.269

Similar to the JULES simulations presented by Sorensen et al. (2014), close to zero runoff was270

estimated by all the models regardless of the soil texture adopted. At Warren Farm the models271

estimated runoff to occur only on the 27th May 2007 and 20th July 2007 where recorded daily272

rainfall was 59 and 105 mm, respectively. At the other three sites, runoff was estimated only to273

occur on the 20th July 2007. Both of these dates have been previously recognized in terms of their274

high rainfall intensity by Ireson et al. (2011). The reason that the May event is only found to be275

significant at Warren Farm is due to its relative higher altitude and hence higher rainfall generally.276

In fact surface runoff was likely to have occurred on many more occasions at Grimsbury Wood277

and Beche Park Wood due to the nature of the overlying Paleogene deposits (Maurice et al., 2010).278

However, the modelling approach applied here (and by Sorensen et al. (2014) when using JULES)279

is not capable of estimating these events due to the use of daily rainfall, which leads to an averaging280

on rainfall intensities over a 24 hour period (Mathias et al., 2015).281

5. Summary and conclusions282

In this study, four instrumented recharge monitoring sites previously presented by Sorensen et283

al. (2014) are revisited to explore the value of observed SMC as a constraint for VPR (a proxy for284

estimating groundwater recharge rate) estimation. The four sites represent a range of different soil285

classifications. Although all four sites are from Southern England, two of the sites are located in286

woodland areas, providing a proxy for a slightly more arid climate.287

In their earlier study, Sorensen et al. (2014) concluded that SMC was not a good constraint in288
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this respect. The basis for their argument was that they used four different models to estimate the289

SMC data and found that, although each model was “generally good” at estimating the SMC data,290

the different models led to large variations of VPR.291

In this article, the observed SMC data has been revisited using a single model structure, the292

aforementioned SMAP, developed previously by Mathias et al. (2015). Furthermore, rather than293

just using the SMAP to estimate both SMC and VPR, the model is also calibrated directly to294

the SMC data to look at how such data can be used to reduce uncertainty associated with VPR295

estimate.296

Monte Carlo simulation using the SMAP suggests that aggregated SMC is virtually insensitive297

to soil texture. In contrast, uncertainty in soil texture can lead to significant variations in VPR298

prediction, as high as 50% of P10 values in some cases. Conditioning the SMAP to the observed299

SMC data or the UKSO soil texture classifications leads to a refining of the confidence limits for300

VPR. However, given the insensitivity of aggregated SMC to soil texture, it does not follow that301

this conditioning leads to increased reliability with regards to VPR.302

Using a goodness of fit measure, the NSE criterion, it was possible to delineate regions on a303

soil texture ternary diagram that provide better correspondence between the SMAP and observed304

SMC at each of the four sites (recall Fig. 6). Interestingly, the delineated regions did not all305

coincide with the polygons associated with the UK soil observatory (UKSO, 2016) soil texture306

classifications for the different sites. However, the regions defined by the NSE values represent307

well defined shapes in all four cases, potentially pointing to an alternative method for defining a308

“hydrological” soil texture for these sites.309

Overall, it is found that the calibrated soil texture values from such an exercise do not always310
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coincide with data from existing field-scale soil texture maps. But more importantly, whilst un-311

certainty in soil texture can lead to significant uncertainty in groundwater recharge estimation, it312

is found that aggregated SMC is virtually insensitive to soil texture.313

The insensitivity of aggregated SMC to soil texture is largely attributed to the fact that AE is314

generally not much less than PE in UK maritime climates. However, it is hypothesized that much315

greater sensitivity of aggregated SMC with soil texture would be observed in arid climates where316

AE is likely to be much less than PE and more controlled by soil hydraulic properties.317

6. Acknowledgements318

We are very grateful for the useful comments provided by two anonymous reviewers.319

7. References320

Allen, R. G., Pereira, L. S., Raes D., Smith M. (1998), Crop evapotranspiration-guidelines for computing crop water321

requirements. In FAO Irrigation and drainage, Paper 56, Rome.322

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R., Mnard, C. B. et al. (2011), The Joint UK Land Environ-323

ment Simulator (JULES), model description–Part 1: Energy and water fluxes, Geoscientific Model Development,324

4, 677–699.325

Cuthbert, M. O., Acworth, R. I., Andersen, M. S., Larsen, J. R., McCallum, A. M., Rau, G. C., Tellam, J. H. (2016),326

Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table327

fluctuations, Water Resour. Res., 52, 827–840.328

Feddes, R. A., Kowalik, P., Kolinska–Malinka, K., Zaradny, H. (1976). Simulation of field water uptake by plants329

using a soil water dependent root extraction function. J. Hydrol., 31, 13–26.330

Gash, J. H. C., Lloyd, C. R., Lachaud, G. (1995), Estimating sparse forest rainfall interception with an analytical331

model, J. Hydrol., 170, 79–86.332

16



Healy, R. W., Cook, P. G. (2002), Using groundwater levels to estimate recharge, Hydrogeol. J., 10, 91–109.333

Herbst, M., Rosier P. T. W., McNeil D. D., Harding R. J., Gowing D. J. (2008), Seasonal variability of interception334

evaporation from the canopy of a mixed deciduous forest, Agric. Forest Meteorol., 148, 1655–1667.335

Ireson, A. M., Wheater, H. S., Butler, A. P., Mathias, S. A., Finch, J., Cooper, J. D. (2006), Hydrological processes in336

the Chalk unsaturated zone–insights from an intensive field monitoring programme, J. Hydrol., 330, 29–43.337

Ireson, A. M., Butler, A. P. (2011), Controls on preferential recharge to Chalk aquifers, J. Hydrol., 398, 109–123.338

Kerry, R., Rawlins, B. G., Oliver, M. A., Lacinska, A. M. (2009), Problems with determining the particle size distri-339

bution of chalk soil and some of their implications, Geoderma, 152, 324–337.340

Lott, D. A., Stewart, M. T. (2016), Base flow separation: A comparison of analytical and mass balance methods, J.341

Hydrol., 535, 525–533.342

Mathias, S. A., Butler, A. P. (2006), Linearized Richards’ equation approach to pumping test analysis in compressible343

aquifers, Water Resour. Res., 42, W06408.344

Mathias, S. A., Skaggs, T. H., Quinn, S. A., Egan, S. N., Finch, L. E., Oldham, C. D. (2015), A soil moisture345

accounting-procedure with a Richards’ equation-based soil texture-dependent parameterization, Water Resour.346

Res., 51, 506–523.347

Mathias, S. A., McIntyre, N., Oughton, R. H. (2016), A study of non-linearity in rainfall-runoff response using 120348

UK catchments, J. Hydrol., 540, 423–436.349

Maurice, L., Atkinson, T. C., Williams, A. T., Barker, J. A., Farrant, A. R. (2010), Catchment scale tracer testing from350

karstic features in a porous limestone, J. Hydrol., 389, 31-41.351

Nash, J., & Sutcliffe, J. V. (1970), River flow forecasting through conceptual models part IA discussion of principles,352

J. Hydrol., 10, 282–290.353

Quinn, S. A., Liss, D., Johnson, D., van Wonderen, J. J., and Power T. (2012), Recharge estimation methodologies354

employed by the Environment Agency of England and Wales for the purposes of regional groundwater resource355

modelling, Geol. Soc. Spec. Publ., 364, 65–83.356

Ragab, R., Finch, J., Harding, R. (1997), Estimation of groundwater recharge to chalk and sandstone aquifers using357

simple soil models, J. Hydrol., 190, 19–41.358

17



Rutledge, A. T. (2007), Update on the use of the RORA program for recharge estimation, Ground Water, 45, 374–382.359

Schaap, M. G., Leij, F. J., van Genuchten, M. T. (2001). Rosetta: A computer program for estimating soil hydraulic360

parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163–176.361

Sorensen, J. P. R., Finch, J. W., Ireson, A. M., Jackson, C. R. (2014), Comparison of varied complexity models362

simulating recharge at the field scale, Hydrol. Process., 28, 2091–2102.363

UK Soil Observatory (UKSO) (2016), Soil Texture, [ONLINE] Available at:364

http://www.ukso.org/pmm/soil_texture.html [Accessed 17 October 2016].365

van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.366

Soil Sci. Soc. Am. J., 44, 892–898.367

von Freyberg, J., Moeck, C., Schirmer, M. (2015), Estimation of groundwater recharge and drought severity with368

varying model complexity, J. Hydrol., 527, 844–857.369

Appendix A. Ensuring stability for the Euler explicit time-stepping scheme370

This note provides additional information, not previously reported in Mathias et al. (2015),371

concerning an Euler explicit time-stepping scheme for the simplified soil moisture accounting372

procedure (SMAP).373

The SMAP of concern involves solving the conservation problem (Mathias et al., 2015)374

dΘ
dt
= qr − qin − qro − qd − Ea (A.1)

where Θ [L] is the aggregated soil moisture content, t [T] is time, qr [LT−1] is the rainfall rate, qin375

[LT−1] is the canopy interception rate, qro [LT−1] is the surface runoff rate, qd [LT−1] is a drainage376

rate (which forms an input into a linear reservoir store which outputs the vertical percolation) and377

Ea [LT−1] is the actual evapotranspiration rate.378
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Application of an Euler explicit time-stepping scheme leads to379

Θn+1 = Θn + Δt(qr,n − qin,n − qro,n − qd,n − Ea,n) (A.2)

where Δt [T] is the chosen time-step380

Following Appendix C of Mathias et al., (2016), it can be shown that stability of the above381

scheme is ensured providing382

∂

∂Θ
(−qr + qin + qro + qd + Ea) <

1
Δt

(A.3)

Note that, according to the equations presented in Mathias et al., (2016), qr, qin and qro are383

independent of Θ. The Ea term is jointly controlled by Θ and the potential evapotranspiration, Ep384

[LT−1]. It is found that the stability of the above scheme is largely insensitive to Ea, providing385

Ea is constrained to ensure that Θ > Θw where Θw [L] represents the minimum possible value of386

Θ associated with plant wilting. In this way, the stability criterion in Eq. (A.3) can be simplified387

further to388

∂qd

∂Θ
<

1
Δt

(A.4)

Mathias et al. (2015) prescribe that389

qd(S e) = KsS
η
e

[
1 −
(
1 − S 1/m

e

)m]2
(A.5)

which is the hydraulic conductivity function for unsaturated soils originally proposed by van390
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Genuchten (1980). Ks [LT−1] is the saturated hydraulic conductivity of the soil, η [-] and m [-]391

are empirical exponents, and S e [-] is the effective saturation, estimated by the SMAP using392

S e =
Θ − Θw

Θpu
(A.6)

where Θpu [L] is the soil moisture content capacity available for plant uptake.393

Differentiating Eq. (A.5) with respect to Θ leads to394

∂qd

∂Θ
=

KsS
η−1
e

Θpu

[
1 −
(
1 − S 1/m

e

)m]2 [
η +

2S 1/m
e (1 − S 1/m

e )m−1

1 − (1 − S 1/m
e )m

]
(A.7)

Considering again Eq. (A.4), stability of the scheme is therefore ensured providing Θ < Θ0395

where396

Θ0 = ΘpuS 0 + Θw (A.8)

and S 0 is found iteratively from the expression397

KsS
η−1
0

Θpu

[
1 −
(
1 − S 1/m

0

)m]2 ⎡⎢⎢⎢⎢⎢⎣η + 2S 1/m
0 (1 − S 1/m

0 )m−1

1 − (1 − S 1/m
0 )m

⎤⎥⎥⎥⎥⎥⎦ = 1
Δt

(A.9)

Note that Θ0 only needs to be found once for each simulation because Θ0 does not vary with time.398

Following Mathias et al., (2016), the above constraint can be imposed by determining the399
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discrete values of qd from400

qd,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, Θtrial < 0

qd,trial, 0 < Θtrial < Θ0

Θn − Θ0

Δt
+ qr,n − qin,n − qro,n − Ea,n, Θtrial > Θ0

(A.10)

where401

Θtrial = Θn + Δt(qr,n − qin,n − qro,n − qd,trial − Ea,n) (A.11)

with qd,trial being calculated directly from Eq. (A.5) with S e = S e,n.402

The reader is referred to Mathias et al. (2015) for all other details concerning the SMAP.403
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Figure 1: Soil texture ternary diagrams illustrating the various available UKSO soil texture classifications (adapted
from UKSO, 2016).
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Figure 2: a) and b) Time-series plots of daily soil moisture content and daily vertical percolation rate for Warren Farm.
The black dots are the observed soil moisture content data previously presented by Sorensen et al. (2014). The grey
bars represent the range in observed soil moisture content, as reported by Sorensen et al. (2014). The green envelope
represent the area bounded by the P10 and P90 from the Monte Carlo simulation obtained by uniform sampling across
the entire soil texture ternary diagram. The blue lines represent the P10 and P90 of the top 10% of all the simulations
in terms of their ability to simulate the observed soil moisture content data. The dashed red lines represent the P10 and
P90 of all those simulations that contained soil textures within the UKSO polygon for this site. c) Time-series plots of
monthly mean actual evapotranspiration (excluding canopy interception loss) and vertical percolation. The envelopes
represent the area bounded by the P10 and P90 from the Monte Carlo simulation obtained by uniform sampling across
the entire soil texture ternary diagram.
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Figure 3: The same as Fig. 2 but for Highfield Farm.
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Figure 4: The same as Fig. 2 but for Beche Park Wood.

25



2006 2007 2008

900

1000

1100

1200

1300

S
oi

l m
oi

st
ur

e 
co

nt
en

t (
m

m
)

a)

 

 

Unconstrained
Soil moisture conditioning
Soil texture conditioning
Observed

2006 2007 2008
0

0.2

0.4

0.6

0.8

1

V
er

tic
al

 p
er

co
la

tio
n 

(m
m

/d
ay

)

b)

 

 
Unconstrained
Soil moisture conditioning
Soil texture conditioning

2006 2007 2008
0

0.5

1

1.5

2

2.5

3

3.5

M
on

th
ly

 m
ea

n 
ra

te
s 

(m
m

/d
ay

)

c)

 

 
Actual evapotranspiration
Vertical percolation

Figure 5: The same as Fig. 2 but for Grimsbury Wood.
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b) Highfield Farm
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c) Beche Park Wood
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d) Grimsbury Wood
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Figure 6: Soil texture ternary diagrams showing blue dots as the locations of the top 10% simulations (in terms of their
ability to simulate the observed soil moisture data) for a) Warren Farm, b) Highfield Farm, c) Beche Park Wood and
d) Grimsbury Wood. The red polygons denote the region defined by the UKSO soil texture classification associated
with each of these sites.
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Figure 7: Soil texture ternary diagrams showing Nash and Sutcliffe (1970) efficiency (NSE) contours for a) Warren
Farm, b) Highfield Farm, c) Beche Park Wood and d) Grimsbury Wood. The red polygons denote the region defined
by the UKSO soil texture classification associated with each of these sites. The color bar values relate to NSE value
as given in Eq. (1). Recall that NSE is used here to assess the ability of the models to simulate the observed soil
moisture content data.
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