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Values and evidence: how models make a difference
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Abstract We call attention to an underappreciated way in which non-epistemic values
influence evidence evaluation in science. Our argument draws upon some well-known
features of scientific modeling. We show that, when scientific models stand in for
background knowledge in Bayesian and other probabilistic methods for evidence
evaluation, conclusions can be influenced by the non-epistemic values that shaped
the setting of priorities in model development. Moreover, it is often infeasible to correct
for this influence. We further suggest that, while this value influence is not particularly
prone to the problem of wishful thinking, it could have problematic non-epistemic
consequences in some cases.
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1 Introduction

According to the value-free ideal, the internal workings of science, including the
evaluation of evidence, should be kept free from the influence of social, ethical and
political values as much as possible. A standard challenge to the value-free ideal stems
from the risk of error in inferring conclusions – that is, inductive risk (e.g. Rudner 1953;
Douglas 2009). In their classic forms, arguments from inductive risk focus on standards
of evidence: these standards should be (and in practice often are) more demanding in
cases in which erring in accepting a hypothesis can be expected to have serious
negative consequences. For example, stronger evidence should be required before
accepting the hypothesis that all parachutes in a batch will open when their release
cords are pulled than before accepting, say, the hypothesis that a new design on a
shampoo bottle will be more appealing to customers than the old one.
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More recently, Douglas (2000, 2009) has developed an expanded argument from
inductive risk, which pertains not just to standards of evidence but to methodological
choices throughout the research process. According to her argument, it is appropriate
for non-epistemic values to influence methodological choices when all three of the
following conditions are met: there is substantial uncertainty about which methodolog-
ical option would lead to the most accurate results; the available options have different
inductive risk profiles; and erring in some ways can be foreseen to be particularly bad.
For example, if it is unclear whether a tumor should be classified as malignant in the
context of an investigation of the carcinogenicity of a particular chemical, a researcher
might justifiably decide to classify such ambiguous tumors as malignant, because he
judges that it would be worse to erroneously classify the chemical as safe – in which
case it will end up being used widely and bring about additional cases of cancer – than
it would be to erroneously classify the chemical as carcinogenic (see also Douglas
2000). Classifying the ambiguous tumors as malignant decreases the risk that the
chemical will erroneously be considered safe.

One might try to resist these inductive risk arguments by adopting a Bayesian
perspective. When it comes to classic inductive risk arguments focusing on standards of
evidence, a Bayesian can deny that scientists need to accept or reject hypotheses in the
first place; the scientist’s job is merely to assign probabilities to hypotheses (e.g. Jeffrey
1956). Such assignments, which represent degrees of belief in hypotheses, should be
arrived at via an application of Bayes’ Rule, which does not require appeal to social,
political or ethical values. For expanded inductive risk arguments encompassing other
methodological choices, a similar strategy is open to the Bayesian: there may be different
options available at a given methodological decision point, but the Bayesian’s analysis
should determine the probability of the hypothesis being true given the outcome of the
chosen methodology, taking into account that the methodology itself is prone to erring in
particular ways.1 Policymakers and other decision makers may employ non-epistemic
values when it comes time to decide whether probabilities assigned to hypotheses are high
enough to warrant some course of action – high enough, say, to warrant banning a
chemical – but, the argument goes, scientists need not and indeed should not allow these
values to have influence when evaluating how evidence bears on a hypothesis.

The Bayesian response is subject to various counter-replies. A standard one is that
probability assignments – and more generally estimates of uncertainty – are also subject
to inductive risk considerations (Rudner 1953; Douglas 2009). On this view, conclud-
ing that H’s probability is P is tantamount to accepting a hypothesis H’ about the
probability of H. So, the argument goes, one has not escaped the need to decide
whether evidence is strong enough to warrant accepting a hypothesis; it is just a
different hypothesis, H’, for which the decision needs to be made. This argument
assumes that an agent can be uncertain about the probability of a hypothesis in light of
available information. Such an assumption would fail for ideal Bayesian agents, but for
real-world epistemic agents it is not implausible.

Developing this sort of reply further, Steel (2015) contends that real-world agents
often lack the precise degrees of belief needed as inputs to Bayesian analysis, i.e. the

1 In Douglas’s tumor classification example, for instance, the Bayesian scientist would calculate the proba-
bility of the chemical being carcinogenic conditional on both the outcome of her classifications and the fact
that a particular classification strategy (i.e. liberal or conservative) was used.
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probabilities that serve as priors and likelihoods. Instead, real-world agents, including
scientists, decide how to represent these probabilities, often using distributions that are
uniform, binomial, Poisson, normal, etc. These decisions, like other methodological
decisions in science, can be subject to inductive risk considerations. Thus, he con-
cludes, in practice there is scope for the influence of non-epistemic values deep in the
heart of Bayesian evaluations of the extent to which hypotheses are confirmed or
disconfirmed by evidence.

In this paper, we provide a different argument for a similar conclusion. Our
argument, which builds upon but generalizes beyond recent work focusing on values
in climate modeling (Biddle and Winsberg 2009; Winsberg 2012; Parker 2014;
Intemann 2015), focuses on the use of scientific models – especially mathematical
models and computer simulation models – as surrogates for background knowledge in
Bayesian and other studies that aim to assign probabilities to scientific hypotheses.
Because these scientific models often deviate from background knowledge in ways that
are in part dependent on non-epistemic values, the probabilities estimated via these
studies also turn out to be dependent on non-epistemic values in the sense that, if the
non-epistemic values had been different, so would have the estimated probabilities,
even with the same background knowledge. Moreover, correcting for the differences
between models and background knowledge, and thereby removing the model-based
influence of non-epistemic values on the probabilities produced, is often infeasible. In
this way, we argue, facts about scientific models, and about sciences that rely heavily
on them, pose an underappreciated challenge to the view that evidence evaluation –
even Bayesian evidence evaluation – can be kept free from the influence of non-
epistemic values. Our argument differs from those discussed above not only in its focus
on scientific models, but also in that the non-epistemic values that exert an influence are
related not to a preference for producer or consumer risk; our argument appeals to
preferences for accuracy in estimating some quantities over others, based on consider-
ations of social and ethical importance.

In Section 2, we review some familiar ways in which non-epistemic values
unproblematically influence choices in scientific model development. In Section 3,
we show that this influence nevertheless creates trouble for the view that evidence
evaluation, via Bayesian and other probabilistic methodologies, can be kept value free.
We also explain why the value influence that we identify does not directly give rise to
problems like ‘wishful thinking’, a standard motivation for the value-free ideal, though
it could have problematic non-epistemic consequences in some cases. Section 4 iden-
tifies and responds to three possible objections to our argument. Section 5 considers
whether the value influence that we identify can be dampened or escaped, either with
the help of robustness analysis or by expressing the conclusions of evidence evaluation
in terms other than precise probabilities. Finally, in Section 6, we offer some conclud-
ing remarks.

2 Models, priorities and values

In many cases, scientific models are constructed or selected with a set of purposes in
mind, some of which are deemed a higher priority than others. For instance, a fisheries
model might be constructed with the primary aim of making accurate short-term
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predictions of the sizes of key fish stocks, because these predictions will inform a set of
management decisions that need to be made, and with the secondary aim of facilitating
broad-brush understanding of why certain patterns occurred in the rise and fall of fish
stocks in the past. Or a global weather forecasting model might be developed with the
aim of producing accurate forecasts of rainfall and surface temperature, but with
accuracy for one region – say, the country in which the model is located – considered
a particularly high priority.

As the weather forecasting example suggests, purposes and priorities in model-
ing reflect interests. It is often because some things are deemed more important
than others – the weather in our home country rather than in Antarctica, and
rainfall and surface temperature rather than, say, precise wind speed high above
the ground – that modeling activities prioritize some purposes over others. The
interests shaping such prioritization decisions might be those of the modelers, a
sponsor of the research (e.g. a national government funding a meteorological
agency), a public community, etc. Such interests, in turn, reflect values. Impor-
tantly, these values typically are not just epistemic but also social. Weather
forecasting is especially concerned with surface conditions because these conditions
matter directly to people’s daily lives, having the potential to cause them hardship. This
is not to deny that some modeling studies are motivated primarily by epistemic interests
– simulations of the evolution of the early universe might be a good example – but the
purposes and priorities of manymodeling studies have far more practical underpinnings.
Just to be clear: our claim is not that modeling studies do not have epistemic goals;
clearly they do. Our point is merely that the epistemic goals of modeling studies often
stem in part from non-epistemic interests and values.

The selection of purposes and priorities in turn can influence decisions in model
construction and evaluation (Winsberg 2012; Elliott and McKaughan 2014; Intemann
2015). When it comes to model construction, for instance, purposes and priorities shape
not just which entities and processes are represented in a model but also how they are
represented, including which simplifications, idealizations and other distortions are
more or less tolerable. For example, depending on the purposes for which a model of
an ecosystem will be used, modelers might or might not decide to include a variable
representing the population of a particular species. Likewise, in the fisheries example
above, if there is reason to think that achieving accurate short-term predictions of key
fish stocks requires that the model represent a relatively small number of processes with
very high fidelity, then distortion in the representation of those processes (relative to
background knowledge) might be unacceptable even if it would not undermine the
model’s ability to facilitate the broad-brush understanding that is a secondary goal.
Moreover, the numerical values assigned to uncertain parameters within the fisheries
model might be tuned to ensure that the model’s output closely matches past observa-
tions of the variables for which accurate predictions are sought; if predictions of
different variables in the model were a higher priority, then the parameter values chosen
might well be different too.

When it comes to model evaluation, purposes and priorities can influence which
modeling results scientists compare with observations and what counts as a good
enough fit with those observations. For example, if the primary aim in a modeling
study is to accurately simulate the rise and fall of a river level in response to rainfall in a
region, then the fact that certain idealizations are made when representing vegetation in
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the region – idealizations that are not thought to make much difference to the rise and
fall of the river level in the simulations – will not be seen as problematic; although the
model’s representation of the vegetation fails to even approximately match observations
of particular aspects of that vegetation, the fit may be deemed good enough, given the
priorities at hand. It would not be acceptable, however, for the model’s results for river
levels to fail to fit closely with observations of those levels.

In practice, of course, model construction and model evaluation are not neatly
separable. Much informal evaluation occurs during the process of model construction,
and what is learned via formal evaluation activities typically feeds back into the model
construction process. For example, if results for a variable that significantly influences
river level in our simulation are found to fit relatively poorly with observations, then
adjusting the model to achieve better results for that variable may become a high
priority. Such adjustment might involve increasing the fidelity with which a particular
process is represented or including in the model a representation of a process that
before had been omitted entirely.

In fact, it is not uncommon for some models, including complex computer
simulation models, to be developed in this layered way, with the latest models
obtained by adjusting and adding to existing ones. In such cases, purposes and
priorities from earlier times can continue to exert an influence. Suppose process A
was represented in the model in a particular way at an earlier time in the model’s
development because of priorities at that time. That A was represented in that way
might well have shaped how some other processes were subsequently represented
in the model; perhaps process F was represented in a way that helps to compensate
for some errors introduced by A’s representation. Or perhaps the way in which A
was represented makes it impractical, or impossible, to represent F in an otherwise
desirable way, because those two methods of representation do not work in harmo-
ny with each other. A decade later in the model’s development, priorities may have
shifted somewhat, but modelers often will not bother to change the way A is
represented, unless there is a good reason to do so. This is because they know that,
were A to be given a different – even higher fidelity – representation now, the model
might perform less well; such a change might upset the ‘balance of approximations’
that currently allows the model to successfully simulate some important features of
the target system or phenomenon (see also e.g. Mauritsen et al. 2012, 14). Such
interdependencies among errors are often fully expected, even though exactly what
the dependencies are is often unclear, and so earlier layers of model development
are left intact (see also Lenhard and Winsberg 2010).

The foregoing considerations suggest that, with different purposes and priori-
ties, the models of a system or phenomenon that exist at any given time would be
somewhat different and would give somewhat different results for some variables
(if they included those variables at all). This is because, with different purposes
and priorities, choices made in model development – including the simplifications,
idealizations and other distortions relative to background knowledge that were
considered tolerable – would be somewhat different. But since purposes and
priorities in modeling often stem in part from non-epistemic values, and since
different non-epistemic values would often give rise to different purposes and
priorities, it follows that in many cases modeling results are dependent on non-
epistemic values in the sense that, if those values had been different, then the
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modeling results would have been somewhat different too (if they had been
produced at all), even given the same background knowledge.2

This conclusion about modeling results is a variation on the familiar point that our
current knowledge at any given time depends on (among other things) what we
considered important enough to investigate, and thus on our interests and values. The
argument developed in the next section, however, will hinge precisely on the fact that
models typically are not straightforward embodiments of existing knowledge but rather
include various simplifications and distortions relative to that knowledge.

3 Models, values and probabilities

According to the Bayesian view sketched earlier, the job of scientists is not to accept or
reject hypotheses, but to determine the probabilities of those hypotheses in light of
available information. This determination, on that view, can and should be done in a
value-free way in accordance with Bayes’ Rule, which provides a formula for updating
the probability assigned to H in light of each new piece of information, e: p(H|e) = p(H)
x p(e|H) / p(e). This version of Bayes’ Rule leaves implicit that the probabilities
assigned are always conditional on the agent’s background information B, i.e. on all
of the information that the agent has obtained prior to the point of considering how
obtaining e should affect her probability assignments. Making this explicit yields:
p(H|e&B) = p(H|B) x p(e|H&B) / p(e|B).

In the discussion surrounding values in science, the Bayesian claim is not that
the probability assigned to H will not depend in any way on non-epistemic values.
After all, as noted at the end of the last section, the information that agents have at
a given time, and hence the priors and likelihoods that they employ in Bayes’
Rule, depend on what they considered important enough to investigate in the past.
The claim is rather that non-epistemic values need not and should not play a role in
determining the extent to which, given B, the probability assigned to H should be
increased or decreased in light of e. This change in probability should be determined
in accordance with Bayes’ Rule.

For ideal Bayesian agents, following this advice would be no problem: these agents
would have ample computing power, a precise probability assignment for any hypoth-
esis that might be entertained, coherence among all of these assignments, awareness of
all of the deductive consequences of B, etc. Real-world epistemic agents, however,
often lack these luxuries. For instance, they often do not have all of the computing
power they would like to have, they do not recognize all of the deductive consequences
of B, and so on. Nevertheless, in some simple epistemic situations, even real-world
agents are able to implement the Bayesian approach in a relatively straightforward way.
But in the rest of this section we try to show why, in the more complex epistemic

2 This value-dependence of modeling results is independent of standard inductive risk considerations, so long
as the purposes of the modeling study do not have risk preferences ‘built in’. For example, if the purpose of a
study is to produce results for variable X that include a large ‘margin of safety’ or that we can consider a
‘worst-case scenario’, then the model-based value influence that we have identified is not independent of
inductive risk considerations. But it is independent for more typical modeling purposes that call for producing
accurate results for a quantity X, without specifying that any particular inaccuracy with regard to X is to be
avoided.
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situations that often arise in scientific practice, scientists’ best attempts to implement a
Bayesian approach – and thereby to estimate the extent to which e, in conjunction with
B, supports H – often will be influenced by non-epistemic values.

We begin from the observation that, for actual scientists, computing p(H|e&B)
explicitly is often practically infeasible, especially when the system or phenomenon
under study is a complex one. It is infeasible because there is too much relevant
background information to take into account and/or because available computational
methods or computational power (or both) are insufficient. In such situations, scientists’
best attempts at estimating p(H|e&B) often involve computing or estimating p(H|e&B’)
instead, where B’ (i) includes only a subset of claims in B – some relevant background
information is not taken into account because it is not recognized as relevant or because
doing so is simply too difficult given the time and resources available – and (ii) replaces
some of the claims in B with one or more computationally tractable scientific models,
M, of the system or phenomenon under investigation.3,4

Examples are not difficult to find, especially in the environmental sciences. In
hydrology, for instance, the BBayesian Forecasting System^ (BFS) methodology
draws upon results from a hydrological simulation model to assign probabilities to
hypotheses about future values of hydrological variables, e.g. river stage, discharge,
runoff, etc. (Krzysztofowicz 1999, 2002). BFS combines a probability forecast that is
based on results from the model with a ‘prior’ probability forecast based on past
observations of the system. The simulation models used in BFS serve as a stand-in for
relevant background theory; they are said to ‘embody’ ‘hydrological knowledge’
(Krzysztofowicz 1999), though they do so in an approximate way at best.

Similarly, in meteorology, computer simulation models of the atmosphere are at the
heart of state-of-the-art Bayesian methods for estimating the probabilities that should be
assigned to hypotheses about future weather conditions, given observations of recent
conditions. The methodology known as Bayesian Model Averaging (BMA), for exam-
ple, produces a probability density function (PDF) for the future value of a weather
variable of interest – such as the temperature in a particular locale – as a function of a
set of model-based forecasts (see e.g. Gneiting and Katzfuss 2014). More specifically,
the predictive PDF produced in BMA is a weighted average of PDFs associated with
different model-based forecasts (see Fig. 1), where the weights are Bayesian posterior
probabilities that represent, for each model, the probability that its forecast will be the

3 In many places, we talk about p(H|e&B’) as an estimate of p(H|e&B). One might worry that this assumes
that there is a true, uniquely correct p(H|e&B). This, in turn, would require a commitment not only to a kind of
objective Bayesianism, but also to the proposition that everyone in the relevant epistemic community shares
the same B. We would prefer not to commit ourselves to either of these, though we also don’t assume that it is
impossible for there to be a shared or common B.When we say that p(H|e&B’) is an estimate of p(H|e&B), we
mean that it is an estimate of the value of p(H|e&B) that some particular agent who accepts B – an agent who
is attempting to assign a probability to H with the help of models – would assign if s/he were logically
omniscient. In some situations, this value might reasonably be different for two different agents who accept the
same B. In other cases, even if different agents accept different Bs and different likelihoods, etc., there still
might be some single estimate, p(H|E&B’), that approximates p(H|e&B) for each of them reasonably well.
4 A referee noted that this is reminiscent of Harsanyi’s (1985) suggestion that it is not unusual (nor
unreasonable) to accept, as part of one’s background information, statements that – while not strictly true –
will simplify one’s decision problems without distorting one’s reasoning too much; this simplification-without-
distortion is certainly the goal here, though often the distortions in fact turn out to be significant, as we
emphasize in Section 4 below.
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best of the bunch, given its performance in making similar forecasts in the recent past
(see e.g. Raftery et al. 2005).

An even more elaborate Bayesian methodology involving complex simulation
models can be found among recent efforts to assign probabilities to hypotheses about
future climate change. The UK Climate Projections 2009 (UKCP09) project produced
probabilistic projections of climate change at a fine-grained spatial scale for the UK
through the end of the twenty-first century (Murphy et al. 2009). Describing the
methodology in detail is beyond the scope of this paper (see ibid.; see also Harris
et al. 2013), but roughly speaking it involved (i) identifying a set of uncertain
parameters in a complex climate model and assigning prior distributions for these
parameters, which represent uncertainty about which parameter values will give the
most accurate climate simulations, (ii) updating these distributions in light of how well
the model performs against past data when it is run with different combinations of
parameter values sampled from these distributions, and (iii) weighting the model’s
projections of future climate change according to these updated probabilities about
which parameter values will give the most accurate results, while accounting for the
fact that even the most accurate results are likely to be imperfect; the latter is done by
including a (probabilistic) estimate of the remaining error, where this estimate is
informed by the spread among climate models from other modeling centers.

For our purposes here, most of the technical details of BFS, BMA, UKCP09, etc. are
unimportant. What matters is that these are state-of-the-art attempts at implementing a
Bayesian approach in scientific practice and that their results are a function of forecasts
produced by scientific models that serve as a stand-in for background theoretical and

Fig. 1 BMA predictive PDF (thick curve) and its five components (thin curves) for the 48-h surface
temperature forecast at Packwood, WA, initialized at 0000 UTC on 12 Jun 2000. Also shown are the ensemble
member forecasts (open circles) and range (solid horizontal line), the BMA 90% prediction interval (dotted
lines), and the verifying observation (solid vertical line). After Raftery et al. 2005, Fig. 3
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other knowledge (from hydrology, meteorology, climate science, etc.). The assump-
tions of these models – in these cases computer simulation models – deviate from this
background knowledge in various ways, and these deviations reflect, at least to some
extent, the fact that predictive accuracy with regard to some variables was considered
more important – for non-epistemic reasons – during model development. Neverthe-
less, these models are the best tools available to scientists for applying available
theoretical knowledge to determine the probabilities that should be assigned to hypoth-
eses of interest about future conditions.

Our argument is now coming into focus. In practice, scientists’ best attempts at
estimating p(H|e&B) sometimes involve estimating p(H|e&B’) instead, where B’
includes only a subset of the claims in B and replaces some of these with a computa-
tionally tractable scientific model, M. But, per Section 2, the distortions relative to B
that scientists are willing to tolerate when developing M will depend in part on the
purposes and priorities of their investigations, as well as the purposes and priorities that
shaped any earlier layers of the model’s development. Often, these purposes and
priorities stem in part from non-epistemic values in such a way that, with different
values, some of the ways in which available models deviate from B would be different
too; scientists would be working with somewhat different models, M’. In that case, the
estimate of p(H|e&B) produced would be somewhat different as well, as illustrated
schematically in Fig. 2. Thus, in practice, scientists’ best attempts to implement a
Bayesian approach are sometimes such that non-epistemic values do influence their
evaluation of the extent to which, given B, the probability assigned to H should be
increased or decreased in light of e.

Furthermore, while BFS, BMA and related methodologies nicely illustrate how
scientists’ attempts to implement a Bayesian approach to evidence evaluation can
be influenced by non-epistemic values via modeling purposes and priorities, it
would be hasty to assume that such influence occurs only when scientists employ
mechanical methods for estimating probabilities. There are, in fact, other methods

Fig. 2 Schematic illustration of the influence of non-epistemic values in model-based Bayesian evidence evalu-
ation. With different non-epistemic values, different models and modeling results might be produced, giving rise to
different estimates of p(H|e&B). Except by coincidence, p(H|e&B’) ≠ p(H|e&B^) ≠ p(H|e&B^’) ≠ p(H|e&B’’’’)
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for estimating p(H|e&B) that lean more heavily on the subjective judgment of
experts, such as expert elicitation methods in which priors and likelihoods are
obtained by asking scientists for their degrees of belief in various hypotheses (see
e.g. Morgan 2014). Imagining that these estimates of p(H|e&B) are free from the
model-based value influence that we have identified, however, overlooks the fact
that the judgments of experts can be shaped significantly by their experience
working with particular models and by their awareness of particular modeling
results. Indeed, models are used in the study of complex systems in part because it
can be very difficult to reason (accurately) about such systems without them. We
would argue that, for sciences in which complex, non-linear models play a
prominent role, it is naïve to think that scientists can typically reach conclusions
about p(H|e&B) that are both adequately well-informed and independent of the set
of models that happens to be available to them at any particular time.

Finally, before turning to possible objections to our argument, we consider
whether the model-based value influence that we have identified is a source of
bias in scientific findings or has other worrisome consequences. A key question
seems to be whether there is some systematic link between, on the one hand, the
non-epistemic values that motivate the selection of high-priority variables and, on
the other hand, the probabilities assigned to hypotheses with the help of those
models; such a link might give rise to problems like ‘wishful thinking’, where
methodologies are biased toward conclusions that scientists wish to be true.
However, no such link seems present here: the value influence that we have
identified makes the probability assigned to H in light of e different from what
it would have been if full background information B could have been employed in
the analysis, and different from what it would have been if different values had
exerted an influence, but it does not drive the analysis toward some particular
conclusion about H’s probability (or about H more generally). Consider, for
example, the hypothesis that it will rain tomorrow in Hamburg. The past decision
of a German meteorological agency to prioritize accurate simulation of rainfall in
Germany in its global weather prediction models would not on its own drive the
probability estimated for H (with the help of those models) toward any particular
value, nor would it make it more likely that the probability would deviate in some
particular direction from the probability that would be assigned to H if full
background information B were used in the analysis.

That said, the value influence that we identified does have the potential for prob-
lematic consequences. One reason is simply that the influence operates via distortions
in modeling assumptions, and such distortions can artificially limit what types of data
are considered relevant and what the space of possible outcomes looks like, among
other things (see also Steel 2015, p.85). This can have significant practical implications.
For example, suppose that a simplification in an ecosystem model involves lumping
together several different species who play similar predator/prey roles, even as other
species are represented individually. The model will then say nothing about how
possible interventions on the ecosystem (e.g. associated with different proposed poli-
cies) might affect the relative proportions of the different species that have been lumped
together. Suppose that, unbeknownst to the model builders, there is a group of people
whose food supply depends upon the abundance of one of those lumped species. Then,
if modeling is the primary means by which people can learn about the likely effects of
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the proposed policy interventions, then that group of people may be less able to identify
– and thus advocate for – the policy that best serves their interests.5

Problematic consequences can emerge in a similar way via prioritization decisions.
In model development, scientists work harder to minimize distortions (relative to
background information B) in modeling assumptions when those distortions will lead
to inaccuracies in high-priority variables than when they will lead to inaccuracies in
low-priority variables. While there is no guarantee that p(H|e&B’) more closely
approximates p(H|e&B) when H concerns a high-priority variable than when it con-
cerns a low-priority variable, it does seem that, ceteris paribus, we should be more
suspect of results for p(H|e&B’) for hypotheses concerning lower-priority variables,
since less effort has been made to ensure that the modeling results informing those
probability estimates are accurate. 6 In cases where p(H|e&B’) does approximate
p(H|e&B) much more closely when H concerns high-priority variables than when it
concerns low-priority variables, then those people whose interests and values shaped
priorities in model development may be better informed about the questions that
interest them – and thus perhaps also in a better position to identify, prepare for and
respond to risks – compared to those people who didn’t have a say in priority-setting.7

To give a simple but stark example, if some African countries only have access to
model-based global weather forecasts produced in North American and Western
European countries, none of which considers accurate simulation of rainfall in those
African countries to be a high priority, and if people in those African countries
consequently receive forecasts of the probability of rainfall that are less skillful due
to this inattention, then this may disadvantage them, compared to people living in
North American and Western Europe, when it comes to identifying and responding
to e.g. flood risks, droughts, etc. In this way, the value influence that we identified
could in some cases be complicit in perpetuating certain kinds of power imbalances
and injustices. In the extreme, high-priority variables might be selected with this
very aim in mind.

Thus, while the value influence that we have identified is not particularly prone to
the problem of wishful thinking, it does have the potential for problematic non-
epistemic consequences. The extent to which such consequences actually occur, of
course, varies from case to case.

5 The point we wish to make is not that the ecosystem model ought, on social or ethical grounds, to have been
constructed differently – we do not take up that question here – but just that choices made in model
construction, including choices about what sorts of simplifications and idealizations are made, can have
significant non-epistemic consequences when probabilities estimated with the help of those models will help
to inform practical decisions. For a broader perspective, see also Proctor and Schiebinger 2008 on why we
remain ignorant about some things and how this sometimes has harmful consequences.
6 There is no guarantee for numerous reasons. One reason is that, even though scientists prioritize accurate
results for some variables, it is not always clear how to achieve such accuracy; it is possible that the choices
made in model development in fact lead to more accurate results for lower-priority variables. Moreover, as
noted earlier, scientific models sometimes undergo multiple layers of development over long periods, during
which modeling purposes and priorities can shift. In the long run, a model may or may not give more accurate
results for variables that were once a high priority, since choices made in the service of those priorities can be
‘undone’ by later choices in model development; in complex models, there is no simple additive formula for
the compound effect of multiple modeling choices. Indeed, the long run and overall effects on modeling results
of a series of choices in model development may be very difficult to identify (Lenhard and Winsberg 2010).
7 Moreover, those who had no role in shaping modeling priorities might be the least well informed about
which variables were high/low priority.
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4 Objections and replies

In this section, we present and respond to three possible objections to our argument:
that it relies on a misguided understanding of what Bayesian probabilities are; that the
true Bayesian would just correct for the value influence we have identified; and that the
value influence we have identified is of negligible magnitude and thus unimportant.

First, one might object that, given what Bayesian probabilities are, it makes no sense
to speak of Bestimating^ these probabilities: they are subjective degrees of belief that
agents just have. Bayes’ rule simply represents how an ideal epistemic agent’s degrees
of belief would change in light of new pieces of information. In response, we grant that
this is one way to think of Bayesian probabilities, but we find good reason to adopt an
alternative view. In particular, we see good reason to treat Bayesian probabilities as
personal probabilities that can be objects of acceptance (Cohen 1992; Steel 2015),
rather than as subjective degrees of belief, especially in scientific contexts. Steel (2015)
notes that real-world epistemic agents often have degrees of belief that are vague (i.e.
imprecise), incomplete (i.e. missing entirely for some hypotheses) or unreasonable (i.e.
not apportioned to their available information, based on unreliable heuristics, subject to
implicit bias, etc.). In addition, we would point to scientific practice, where explicit
Bayesian analyses are sometimes performed and where the probabilities that serve as
inputs are not obtained by introspection or by engaging in hypothetical betting games
but rather through careful and time-consuming efforts to work out the implications of
available information. On the view that Bayesian probabilities should be treated as
subjective degrees of belief that agents involuntarily and already have, it is hard to
make sense these aspects of scientific practice.8 By contrast, they are easy to explain if
Bayesian probabilities are viewed as personal probabilities that are objects of
acceptance: scientists recognize that the degrees of belief that they happen to have
in hypotheses – to the extent that they have them at all – might not be warranted
by the information available to them; the careful scientist uses whatever aids to
reasoning are at her disposal to try to arrive at probabilities that are warranted by
available information.

Second, one might object that, even if non-epistemic values do influence evidence
evaluation via modeling as we have argued, the true Bayesian scientist would just
correct for that influence. That is, the scientist would apply corrections so that the
probabilities match those that would be produced by conditionalizing on full back-
ground information, B. To this our reply is: easier said than done. To the extent that the
scientific model or models involved are complex, nonlinear, motley, the product of
many layers of model development, and the product of a wide array of disciplinary
areas of expertise, it becomes nearly impossible for today’s experts to know what such
corrections should be. For one thing, it may not be clear to a given group of scientists
what all of the distortions of M relative to existing knowledge B are, much less what the
effects of these distortions are onM’s results; this could be because they didn’t build the
model or because the model is complicated enough that not all effects of choices are

8 As Steel (2015) points out, however, once we move from a picture in which Bayesian probabilities are
degrees of belief that an agent involuntarily has, to one in which they are personal probabilities that an agent
chooses to accept, we seem to have opened the door to inductive risk arguments, as suggested by Rudner
(1953) and Douglas (2009).
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easy to anticipate, or both. 9 This is the situation when it comes to the weather
forecasting models discussed in the last section and even more so for their cousins,
global climate models (see also Biddle and Winsberg 2009; Winsberg 2012). In
practice, it is often infeasible to adjust model-based estimates to arrive at confident
and precise assignments for p(H|e&B).

A third possible objection is that the model-based influence of non-epistemic values
that we have identified is unimportant because, if all goes well, its contribution to any
difference between p(H|e&B’) and p(H|e&B) will be negligible. It will be negligible
because scientists will choose models that are suited to the purposes at hand; these
models will be constructed such that the ways in which their assumptions deviate from
background knowledge make little difference to the results of interest. As suggested in
Section 2, distortions in modeling assumptions relative to background knowledge are
considered acceptable only if they have a relatively small impact on high-priority
results.

To this objection we have two replies. First, we note that it is not always possible to
choose modeling assumptions whose deviations from background knowledge make
little difference to results produced. While we agree that this is typically the goal, we
would argue that scientific models, especially complex mathematical and computation-
al models, often fall noticeably short of this goal, despite scientists’ best efforts. Thus,
in practice the difference between p(H|e&B’) and p(H|e&B) due to reliance on models
is certainly not always small. Second, we note that scientists typically do not have at
their disposal, for each purpose of interest, a model that has been constructed or tuned
with that purpose as a top priority. Instead, a single model often ends up being used for
some range of purposes, not all of which were high priorities during model construc-
tion. The same weather forecasting model or climate model, for instance, might be used
to produce probabilistic forecasts both for high-priority and lower-priority variables. It
is practically infeasible to do otherwise, given the tremendous amount of work that
goes into constructing a single model – they are often developed and refined over many
years, by teams of scientists. Given that inaccuracies in modeling results for lower-
priority variables are often tolerated in model development for the sake of computa-
tional tractability, efficiency, etc., it cannot be presumed that the difference between
p(H|e&B’) and p(H|e&B) is small for hypotheses associated with these variables.

5 Escaping the influence of values?

We claimed above that it is often infeasible for scientists to apply corrections to their
results for p(H|e&B’) in such a way that they can be confident that they have arrived at
a probability that closely approximates p(H|e&B). Are there other ways that scientists
might try to escape or circumvent the model-based value influence that we have

9 de Melo-Martin and Intemann (2016) make a similar point in reply to the suggestion that, if scientists
communicate the non-epistemic values that influenced methodological choices on inductive risk grounds, then
policy makers can consider how conclusions reached in a study might have been different if different values
were employed. They note that it is doubtful that policy makers and other stakeholders can do this. We are
suggesting here that it is sometimes infeasible for scientists as well, especially when conclusions are expressed
in terms of precise probabilities.
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identified? In this section, we discuss two possible approaches, though in the end
neither seems to offer a straightforward escape.

First, it might be thought that robustness analysis, or considerations of robustness,
could help. Suppose scientists were to find that several different estimates of p(H|e&B),
obtained with the help of a different model (or models) in each case, were in close
agreement. Would this indicate that any value influence, via modeling purposes and
priorities, had only a negligible effect on the estimated probability? Not necessarily. It is
possible that the models were developed with similar purposes and priorities in mind
and that they consequently incorporate some of the same idealizations and simplifica-
tions relative to B; a case would need to be made that the agreement among estimates of
p(H|e&B) did not reflect the models’ shared deviations from B. Moreover, it is worth
emphasizing that close agreement on estimates of p(H|e&B) may be rather rare to begin
with, because probabilistic estimates can be highly sensitive even to small changes in
modeling assumptions. For an illustration, consider the BMA weather forecasting
example in Fig. 1: the individual probabilistic forecasts (represented by the small,
component PDFs), which come from very similar models, differ quite markedly in
the probabilities that they assign to future temperature values; BMA is employed
precisely because such disagreement among results from state-of-the-art models is
not uncommon.10

A second possible approach to escaping or dampening the model-based value
influence that we have identified involves reporting the conclusions of evidence eval-
uation in terms other than single-valued probabilities. Conclusions might be expressed
instead using imprecise probabilities (i.e. probability intervals) or in even more hedged
terms, e.g. ‘H is plausible.’ Arguably, this would be more appropriate anyway when
scientists do not know how to apply corrections to model-based estimates of p(H|e&B’)
to account for the difference between B’ and B; their actual uncertainty about H is
‘deeper’ than precise probabilities would imply.11,12 We explore this second approach in
the remainder of this section.

First, we note that methods that use probability intervals to express conclusions
about H, given e, are not necessarily less sensitive to value-influence than methods that
use single-valued probabilities. If a method assigns probability intervals in such a way
that, for each possible modeling result (or set of results), a different probability interval
will be assigned, then the method is just as sensitive as standard methods (like BFS,
BMA, etc.) that assign a different single-valued probability for each possible modeling
result (or set of results). If, however, the method uses a limited number of probability
intervals to express conclusions, then the method will be less value-sensitive, relative to
standard, precise-probabilistic methods, in the sense that some differences in modeling
results would not make a difference to the conclusion reached (see also Parker 2014).

10 In fact, the implementation of BMA shown in Figure 1 uses the same simulation model to make the various
forecasts; the model is run from different initial conditions each time, where the alternative initial conditions
are estimated with the help of other weather forecasting models. Each run is then associated with one these
other models.
11 The same is true if scientists determine that available information simply does not warrant assigning a
single-valued probability to H. This might happen, for instance, if H pertains to the value of variable X, and the
mechanisms that control the value of X are thought to be very poorly understood.
12 Of course, this is not the same thing as having low credence in H.
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Ceteris paribus, the fewer the intervals from which the method chooses, the greater the
reduction in value-sensitivity.13

It is helpful to have a concrete illustration. The Intergovernmental Panel on Climate
Change (IPCC), tasked with evaluating available evidence related to climate change,
often reports conclusions using a limited set of probability intervals, which are paired
with specific terminology (see Table 1). In their most recent assessment, IPCC scien-
tists considered – among many other things – whether global mean surface temperature
would rise by more than 2 °C by 2100 (relative to the 1850–1900 average) under
different greenhouse gas emission scenarios. 14 They concluded that a temperature
change greater than 2 °C was ‘unlikely’ (i.e. probability <33%) under a low emission
scenario known as RCP2.6 but ‘likely’ (i.e. probability >66%) under higher emission
scenarios RCP6.0 and RCP8.5 (see Table 2). Though it is unclear exactly how these
conclusions were arrived at in the course of the IPCC expert assessment, it seems clear
that the percentage of climate model projections that exceeded 2 °C for each of the
different emission scenarios (also shown in Table 2) played an important role, as these
percentages were highlighted in the report (see Collins et al. 2013, Section 12.4). Yet if
the IPCC scientists were using only the probability intervals in Table 1 to report
conclusions, then clearly some differences in these percentages (i.e. the percentage of
models indicating greater than 2 °C warming) would not have made a difference to the
conclusions reached. This is simply because there are fewer probability intervals in
Table 1 than possible percentages, given the number of models used.15 It seems likely,
for example, that even if only 96% of model projections (rather than 100%) showed
greater than 2 °C warming for RCP6.0, such warming still would have been deemed
‘likely’ (i.e. probability >66%).

It should be clearer now how the influence of non-epistemic values, via modeling,
might be dampened by moving from single-valued probabilities to interval probabili-
ties. Single-valued probabilities, if generated as a function of modeling results (e.g. as
in BMA), are maximally sensitive to changes in those results: except by coincidence
the conclusions reached (i.e. the probabilities) would be at least somewhat different if
the modeling results were somewhat different. This need not be the case when coarser
uncertainty depictions, such as a limited number of probability intervals, are employed;
even if the modeling results were somewhat different, the conclusion reached might
well be the same.

It is important to recognize, however, that even when conclusions are to be
expressed using a limited number of probability intervals, scientists still face a signif-
icant reasoning task: they must reason, in a coarse-grained way at least, about the
plausible effects of idealizations and simplifications in modeling assumptions, as well

13 Interestingly, Steele (2012) argues that, when the structure of beliefs of scientists does not neatly match any
of a limited set of options that they are constrained to choose among when reporting conclusions, then
Bscientists cannot avoid making value judgments, at least implicitly, when deciding how to match their beliefs
to the required^ options (see p.899). So the same limitation of options that can dampen the model-based value
influence that is the focus of our discussion can – according to Steele – also open the door to value influence
via inductive risk considerations.
14 Such questions are of interest in the international policy arena, where avoiding ‘dangerous’ climate change
is often operationalized to mean keeping global temperature change under 2 °C.
15 There were between 25 and 42 simulations used for each of the scenarios. Thus, even for the scenario with
the smallest number of simulations (25), there were 26 possible outcomes in terms of percentage values (i.e.
0%, 4%, 8%, … 100%) but only 9 probability intervals in Table 1.
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as about the implications of information in B that was not accounted for at all in the
modeling process. While Parker (2014) suggests that in some cases this might be
possible, it is unclear just how often scientists can perform this reasoning in a way that
is not unduly influenced by their experience with a particular set of models and
modeling results. As noted earlier, models are used in the study of complex systems
in part because it can be very difficult to reason about such systems without them. In
considering how different a set of modeling results might be if, say, a particular
physical process were represented with high fidelity (relative to B), a scientist’s
thinking might be strongly influenced by her observation of how much difference it
made when, in existing models, the process was given a medium fidelity representation
instead of a low fidelity one. Even when conclusions are expressed in very hedged
terms (Betz 2013, 2015), it is not always easy to move beyond one’s experience
working with a particular set of models; conclusions about what is plausible, for
instance, may be strongly shaped by the range of results observed to have been
produced by available models. So even with a move from single-valued probabilities
to coarser conclusions, it is unclear how ‘escapable’ the model-based influence of non-
epistemic values that we have identified ultimately is.

6 Concluding remarks

We have argued that, in practice, it is sometimes infeasible for scientists to evaluate
evidence in a value-free manner along the lines envisioned by the Bayesian response to
arguments from inductive risk. It is infeasible because scientists’ best attempts at

Table 1 IPCC calibrated
language for reporting
uncertainty (see also Mastrandrea
et al. 2010)

Term Definition in terms of probability ranges

Virtually certain >99% probability

Extremely likely >95% probability

Very likely >90% probability

Likely >66% probability

More likely than not >50% probability

About as likely as not 33 to 66% probability

Unlikely <33% probability

Extremely unlikely <5% probability

Exceptionally unlikely <1% probability

Table 2 Percentage of IPCC model projections exceeding 2 °C by 2100 and expert assessed likelihood of
warming exceeding 2 °C by 2100, for four different emission scenarios (see Collins et al. 2013, Sec.12.4)

Scenario % projections with T > 2 °C Assessed likelihood of T > 2 °C by 2100

RCP2.6 22% Unlikely (<33%)

RCP4.5 79% More likely than not (>50%)

RCP6.0 100% Likely (>66%)

RCP8.5 100% Likely (>66%)
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implementing a Bayesian approach involve using scientific models as surrogates for
background knowledge, and those models deviate from background knowledge in
ways that are dependent on non-epistemic values and that are difficult to correct for.
We further argued that, while this value influence is not particularly prone to the
problem of wishful thinking, it does have the potential for problematic non-epistemic
consequences.

We have not addressed the question of whether non-epistemic values ought to have
various other roles to play in modeling or in science more generally, e.g. in guiding
uncertain methodological choices when those choices can be foreseen to affect the
balance of inductive risk in significant ways (Douglas 2009). We do, however, have
two related observations to make. The first is that, at least in those fields of science that
rely heavily on complex, non-linear models, it is often not foreseeable how methodo-
logical choices in model development will shape modeling results in the long run,
because of the layered ways in which those models are developed and the fact that later
choices in model development can ‘undo’ the effects of earlier ones. The second is that
there is a close connection between this unforeseeability and limits to the extent to
which science in such fields can, in practice, be value-free: it is in part because it is
difficult to know some of the ways in which past methodological choices have shaped
today’s modeling results that the Bayesian response ceases to be a reply to which the
defender of the value-free ideal can appeal.

Finally, we note that the model-based value influence that we have identified is not
limited to Bayesian evidence evaluation. There are non-Bayesian model-based meth-
odologies for assigning probabilities to hypotheses, including some varieties of ‘en-
semble methods’ (e.g. Giorgi and Mearns 2003; see also Parker 2013), that exhibit the
same sort of value-dependence that we have highlighted for Bayesian methods.
Moreover, in many fields, scientific models serve as an important aid to reasoning in
general, not just in the process of evidence evaluation. The significance of our
argument thus lies not just in the challenge it provides to the Bayesian response to
inductive risk arguments, but in its identification of an underappreciated and subtle
route by which non-epistemic values exert an influence in scientific practice, namely,
by shaping – via the setting of epistemic priorities – the development of scientific
models that subsequently aid scientific reasoning in various ways.
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