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Abstract Oblique plate convergence is common, but it is not clear how the obliquity is achieved by
continental fold-and-thrust belts. We address this problem in the Qilian Shan, northeastern Tibetan
Plateau, using fieldwork observations, geomorphic analysis, and elastic dislocation modeling of published
geodetic data. A thrust dips SSW from the northern range front and underlies steeper thrusts in the interior.
Cenozoic thrust-related shortening across the Qilian Shan is ~155–175 km, based on two transects. Elastic
dislocation modeling indicates that horizontal strain in the interseismic period is consistent with oblique slip
on a single low-angle detachment thrust below ~26 km depth, dipping SSW at ~17°. We suggest that this
detachment is located above North China Block crust, originally underthrust during Paleozoic orogeny.
Horizontal shear strain is localized directly above the updip limit of creep on the detachment and is
coincident with the left-lateral Haiyuan Fault. This configuration implies that oblique slip on the detachment
below seismogenic depths is partitioned in the shallow crust onto separate strike-slip and thrust faults. This is
consistent with strain partitioning in oceanic subduction zones but has not previously been found by
dislocation models of continental interiors. The marginal, strike-slip, Altyn Tagh Fault influences thrusting
within the Qilian Shan for 100–200 km from the fault but does not control the regional structure, where
Paleozoic basement faults have been reactivated. The Qilian Shan resembles the main Tibetan Plateau in
nascent form: active thrusts are marginal to an interior that is developing plateau characteristics, involving
low relief, and low seismicity.

Plain Language Summary Tectonic plates commonly converge obliquely, meaning that the
convergence direction is not head-on to the boundary between the two plates but slanted at an angle. This
behavior is best known andunderstood fromwhere an oceanic plate passes underneath another platemargin.
The interiors of continents can also deform obliquely, but the deformation is not so well understood. In this
studywe have looked at the faults across amountain range at the northeastern side of the Tibetan Plateau, the
Qilian Shan, to understand how the oblique convergence takes place. Part of our work involves looking at the
structures on the ground and through satellite imagery, and part reanalyses data previously gathered for
the active rates of convergence across the range. The approaches give complementary results, in that the
oblique convergence seems to be split into two components, one dipping under the range and one slicing
along it. The data for the active slip place the range-parallel slicing above the point where the underlying,
dipping, fault changes behavior, from earthquake-prone to earthquake-free. In this respect the Qilian Shan
deforms remarkably simply, even though the continents are typically more complex than oceanic plates.

1. Introduction

A key question in continental tectonics is how overall plate convergence is accommodated within plate inter-
iors. The India-Eurasia collision has been a natural focal point for debate, because of its size, total convergence,
and active deformation rates [Tapponnier and Molnar, 1977; Avouac and Tapponnier, 1993; Yin and Harrison,
2000; Tapponnier et al., 2001; England and Molnar, 2005; Thatcher, 2007; Royden et al., 2008]. The Qilian Shan
(Figures 1 and 2) has received particular attention because it currently deforms at rates of ~20% of the overall
India-Eurasia convergence rate and is believed to be one of the youngest areas undergoing incorporation into
the Tibetan Plateau [Meyer et al., 1998; Zhang et al., 2004; Yin et al., 2008a; Duvall et al., 2013; Yuan et al., 2013;
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Zuza et al., 2016]. It is also an example
of oblique convergence during conti-
nental collision (Figure 1) [Gaudemer
et al., 1995; Zheng et al., 2013a;
Daout et al., 2016], where the strain
is separated (partitioned) into dip-slip
and strike-slip components (Figure 2).
Such zones are to be expected: ~45%
of active plate boundary convergence
is distinctly oblique (>22% from the
normal direction to the boundary)
[Woodcock, 1986]. However, it is not
clear how the strain partitioning oper-
ates within individual fold-and-thrust
belts. For example, what controls the
location of the faults that achieve
the strike-slip component of the
deformation?

This paper is an integrated study of the processes of oblique convergence in the Qilian Shan, based on results
from fieldwork and remote sensing data, analysis of the regional topography and seismicity, and elastic dis-
locationmodeling of published geodetic data. In particular, we investigate how strain partitioning takes place
in a region previously proposed to be underlain by a regional low-angle thrust (Figure 3) [Burchfiel et al., 1989;
Tapponnier et al., 1990;Meyer et al., 1998; Yin et al., 2008b; Guillot and Replumaz, 2013] and aim to understand
how the strike-slip component of such partitioning is located within the fold-and-thrust belt.

Fieldwork in 2013 and 2014 focused on the completion of transects across the northern half of the Qilian
Shan, supplemented by more reconnaissance level observations of range front geology at the southern
and western sides of the region. These observations are coupled with existing 1:200,000 geological maps
and satellite imagery from Google Earth to construct two regional cross sections, at a scale of ~1:200,000,
~150 km long in total. These cross sections help understand the location and style of deformation at present
exposure levels and help constrain the overall structure and amount of shortening. There was also focus on
the evidence, or lack of it, for Quaternary and Holocene deformation in different areas.

Figure 2. Major late Cenozoic structures of the Qilian Shan and Qaidam Basin, modified from Taylor and Yin [2009], with
Hexi Corridor details from Zheng et al. [2013b]. Earthquake surface ruptures are derived from Tapponnier et al. [1990],
Gaudemer et al. [1995], Meyer et al. [1998], Washburn et al. [2001], Van der Woerd et al. [2001], Xu et al. [2010], Chen et al.
[2013], and this study.

Figure 1. Summary of structures of the India-Eurasia collision, simplified
from Taylor and Yin [2009], with GPS velocities in a stable Eurasia frame,
selected from Liang et al. [2013].
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We have used available GPS data (Global Earthquake Model (GEM) Strain Rate Model compilation [Kreemer
et al., 2014, and references therein]) and simple elastic models to test whether the observed range-normal
and range-parallel velocities for the Qilian Shan are consistent with interseismic strain accumulation across
two shallowly locked, localized faults: a detachment thrust and strike-slip fault, respectively. This approach
is a quantitative test of existing models that propose the existence of an active regional detachment thrust
below the Qilian Shan [Meyer et al., 1998; Yin et al., 2008b; Daout et al., 2016] and also allows us to investigate
the geometric relationship between strike-slip and dip-slip faulting within the range.

We have analyzed Shuttle Radar TopographyMission (SRTM) digital elevation data (http://www2.jpl.nasa.gov/
srtm/; http://srtm.csi.cgiar.org) to gain insights from the regional topography on the present regional structure
and inparticular tounderstandthe roleof thestrike-slipAltynTaghFault incontrolling thethrust structureof the
Qilian Shan; this is potentially another aspect of the oblique convergence across the range [Meyer et al., 1998].

2. Regional Background
2.1. Structure

The Qilian Shan (shan = mountains) consists of a series of subparallel mountain ranges, separated from the
main part of the Tibetan Plateau by the Qaidam Basin. Each subrange within the Qilian Shan is typically tens
of kilometers across and hundreds of kilometers long (Figure 2). The name Qilian Shan is applied to the whole
region between the Qaidam Basin and the discontinuous basins of the Hexi Corridor to its north, but also spe-
cifically to the northernmost of these individual ranges, and to a single peak. Present summit elevations
across the Qilian Shan region are commonly >5000 m above sea level, with valley floors at ~2000–4000 m.
Individual ranges are usually bounded by Cenozoic thrusts [Tapponnier et al., 1990; Meyer et al., 1998; Van
der Woerd et al., 2001].

Present crustal thicknesses reach ~60–70 km in the Qilian Shan, contrasting with ~55 km for the interior of
the Qaidam Basin and 45–50 km for the Tarim Basin and Hexi corridor to the northwest and north of the
Qilian Shan [Wang et al., 2013; Tian and Zhang, 2013; Feng et al., 2014].

Basement of the Qilian Shan consists largely of rocks which formed in arcs and accretionary complexes, as
well as an ultrahigh pressure metamorphic belt. These units collectively underwent a long evolution of
oceanic subduction through to continental collision between the Qaidam Block and the Alashan (western
part of the cratonic North China Block), from ~520 to 400 Ma [Gehrels et al., 2003; Xiao et al., 2009; Song
et al., 2013, 2014; Wu et al., 2016]. There is also Proterozoic basement, both within the Qilian Shan, and
probably underlying the Qaidam Basin [Lu, 2002; Xu et al., 2015]. The central part of the Qilian Shan is
underlain by Proterozoic basement and sedimentary cover and is known as the Qilian Block; the more
juvenile, accretionary crust to its north is grouped as the North Qilian Orogen. Collision between the
Qilian Block and the arc/accretionary material of the North Qilian Orogen took place in the Early
Paleozoic [Song et al., 2013]. Paleozoic tectonic boundaries trend WNW-ENE, parallel to the present struc-
tural and geomorphic grain of the Qilian Shan (Figure 2). Precambrian basement of the North China Block
(Alashan) lies to the north of the Qilian Shan, underlying Mesozoic basins strung out along the Hexi
Corridor [Vincent and Allen, 1999].

Carboniferous and Permian rocks in the Qilian Shan include both marine and nonmarine successions, indicat-
ing that the region was close to sea level at this time [e.g., Wang and Yu, 1995]. Carboniferous strata include

Figure 3. Interpretation of the deep structure of the Qilian Shan as detached on a regional low angle thrust, following
Burchfiel et al. [1989] and Meyer et al. [1998]. Thrusts are shown as listric, and flattening onto the detachment, although
this is not evident from the focal mechanisms (selected from representative data shown on Figure 4a). The bold lines
indicate locked fault segments, from elastic dislocation modeling; see text for discussion. The basins are shown by grey
shade. The line of section is shown in Figure 2.
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coal measures [Geological Bureau of Qinghai Province, 1968a]. Mesozoic strata are typically nonmarine
[Vincent and Allen, 1999; Horton et al., 2004], including Triassic fluvial strata and Jurassic coal measures typical
of other parts of northern China. Cretaceous sandstones are fluvial red beds, marking more arid conditions.
Cenozoic strata are broadly similar to the Cretaceous rocks.

Cenozoic deformation and consequent exhumation may have begun as early as the Eocene, i.e., not long
after initial India-Eurasia collision [Clark et al., 2010; Zhuang et al., 2011], but rates accelerated and wider areas
were affected by ~15 Ma or later [Palumbo et al., 2009; Zheng et al., 2010; Lease et al., 2011; Zhang et al., 2012;
Duvall et al., 2013; Yuan et al., 2013; Liu et al., 2017]. Such a history does not suggest a smooth outward pro-
gression to the growth of the Tibetan Plateau over time, but it is broadly consistent with the northeastern
part of the plateau being relatively young [Tapponnier et al., 2001; Yuan et al., 2013].

Late Cenozoic and active faults are shown in Figure 2, adapted from Taylor and Yin [2009]. Thrusts typically lie
at the foot of and parallel to the major ranges that form the Qilian Shan and trend ~WNW-ESE. There are up to
sevenmain ranges, which have more individual expression in the wider, western part of the region (Figure 2).
From north to south these are the Qilian Shan (in the narrow sense), Daxue Shan-Tulai Nanashan, Sule
Nanshan, Danghe Nanshan, Tergun Daba Shan, Qaidam Shan, and a lower elevation, discontinuous series
of ridges along the northern margin of the Qaidam Basin (e.g., the Xitieshan).

Twomain left-lateral strike-slip faults form first-order elements in the geology of the study area (Figures 1 and
2). The Altyn Tagh Fault trends at N250°W and forms the northern margin to the Qilian Shan. The active and
Holocene slip rate is ~10 mm yr�1 and decreases to the ENE, based on both GPS data and offsets of geo-
morphic features [Zhang et al., 2004; Cowgill et al., 2009]. Total offset has been estimated at ~350 km by sev-
eral groups [e.g., Zhang et al., 2001]. Thickening of the crust within the Qilian Shan has been interpreted as
coupled to propagation of this fault, in a giant “horsetail” splay [Meyer et al., 1998].

The Haiyuan Fault runs for ~850 km at N110°E, through the central and eastern Qilian Shan and eastward
(Figure 2), and is proposed as the main strike-slip component of overall strain partitioning [Gaudemer et al.,
1995]. Active slip rate estimates from GPS and interferometric synthetic aperture radar (InSAR) are in agree-
ment at 4–6 mm yr�1, [Zhang et al., 2004; Cavalie et al., 2008; Jolivet et al., 2012; Zheng et al., 2013a]. Estimates
for the total offset vary widely, from 10 to 95 km, based on displaced geological and geomorphic markers
[Burchfiel et al., 1991; Gaudemer et al., 1995; Ding et al., 2004]. The western end of the Haiyuan Fault occurs
where it bends northward into the Sule Nanshan range (Figure 2); this region includes the single highest peak
in the Qilian Shan, Kangze’Gyai (>5800 m).

Other strike-slip faults cutting the Qilian Shan and adjacent areas to the south are the right-lateral Elashan
and Riyueshan faults (Figure 2), described as having ~10 km of offset each, and likely to be moving at
~1 mm yr�1 since ~10 Ma [Yuan et al., 2011].

2.2. Seismicity

SeveralM> 7 earthquakes have affected the area in historic times (Figure 4a). These events include the 1927
Gulang event, which killed ~40,000 people, and, just to the east of the area covered in Figure 4a, the 1920
Haiyuan earthquake, which killed >200,000 [Gaudemer et al., 1995]. These large events are concentrated
on the northern side of the Qilian Shan and adjacent Hexi Corridor [Xu et al., 2010]; Lee et al. [1976] noted that
the historical earthquake record may have a recording bias toward these areas, because of their relatively
high population density.

Figure 4a shows focal mechanisms for the study area, derived from a combination of body wave modeling
[Molnar and Lyon-caen, 1989; Chen et al., 1999; Elliott et al., 2010] and from the Global Centroid Moment
Tensor (CMT) catalog (http://www.globalcmt.org). Thrust events are concentrated at lower elevations around
the margins of the Qilian Shan but are scarce in the range interior. Low-angle events (<30° dip) are rare
(Figure 4b). Clusters of earthquakes occurred in 2008 and 2009 at the southern side of the Qilian Shan
(Figure 4a), which, along with other events, make this an unusually high seismicity area [Elliott et al., 2011;
Chen et al., 2013]. While most of these events are thrusts, three are strike-slip events and are discussed in
section 3.1.2. Earthquakes with M > 4 are also shown on Figure 4a, from the National Earthquake
Information Center (NEIC) catalog (http://earthquake.usgs.gov/earthquakes/search/), and quoted with epi-
center determinations typically of a few tenths of a degree, i.e., several tens of kilometers.
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Several of the largest historic earthquakes produced surface ruptures which have been studied in the field
[Peltzer et al., 1988; Tapponnier et al., 1990; Gaudemer et al., 1995; Meyer et al., 1998; Hetzel et al., 2004;
Champagnac et al., 2010; Xu et al., 2010]. These are concentrated at the margins of the Qilian Shan, especially
at the edge of the Hexi Corridor on its northern side, but also in the west, typically within ~100 km of the Altyn
Tagh Fault (Figures 2 and 4a). Most of these events are associated with thrust faulting, but strike-slip events
have been recorded, and even an oblique normal rupture associated with the 1954 Shandan earthquake in
the Hexi Corridor [Xu et al., 2010].

3. Observations
3.1. Structure From Fieldwork and Remote Sensing Analysis

New observations in this section add to our understanding of the distribution of strain across the Qilian Shan
and the relationship of the late Cenozoic deformation to the older structures and stratigraphy in the region.
3.1.1. Contractional Deformation
Figure 5 shows two NNE-SSW cross sections for the northern part of the Qilian Shan, centered around ~99.5°E
and 100.5°E, i.e.,>100 km east of sections presented inMeyer et al. [1998] and Şengör and Okurogullari [1991].

Figure 4. (a) Seismicity of the Qilian Shan, Qaidam Basin, and adjacent regions. The black focal mechanisms are from body
wave modeling [Molnar and Lyon-caen, 1989; Elliott et al., 2010] or the Global CMT catalog where M > 5.3 and there
is >70% double couple. The grey focal mechanisms are from the Global CMT catalog where M < 5.3 and/or there is
<70% double couple. See Tables S1 and S2. Epicenters of M > 4 events are from the NEIC catalog; historic thrust
epicenters are from Xu et al. [2010]. Regional topography is smoothed over a 75 km radius moving window from SRTM
data. (b) Histogram of thrust focal mechanism dip angles from the Qilian Shan, taken from sources listed for Figure 4a.
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Lower Paleozoic rocks are a mixture of metasediments, volcanics, granitoids, ophiolitic assemblages (e.g.,
gabbro and serpentinite), and high-pressure metamorphic rocks [Song et al., 2013]. These lithologies are
typically foliated and/or intensely folded (Figure 6a), which is absent from overlying Carboniferous and
younger sedimentary rocks at present exposure levels, and so constrains the Early Paleozoic age of the
penetrative fabrics. Proterozoic basement and a mixed carbonate-clastic Upper Proterozoic sedimentary
cover crop out in the southern part of the area covered by the section line. The valley north of these
Proterozoic rocks marks the suture between the Qilian Block and the North Qilian Orogen [Song et al.,
2013] (Figure 5b).

Many of the regional valleys between the prominent, linear, ridges of Paleozoic/Precambrian outcrops are
large-scale synclines of Triassic-Cenozoic strata, overthrust from one or both margins (Figure 6b). There is a
strong correspondence between the traces of major Paleozoic structural boundaries and the location of
the main Cenozoic thrust faults (Figure 2) [Taylor and Yin, 2009; Song et al., 2013; Wu et al., 2016].

The northernmost range front represents a major thrust boundary, displacing the Qilian Shan over the Hexi
Corridor to the north [Zuza et al., 2016]. Thrust planes exposed within 5 km of the range front typically dip at
≤35° (Figure 6c), which is a lower angle than the thrusts to the south. Themountain front is not linear but con-
tains salients and reentrants up to 15 km across [Geological Bureau of Qinghai Province, 1968a] suggesting
low-angle thrusting.

Within the sections of Figure 5, to the south of the northern marginal thrust, there is no consistent structural
vergence: thrust dip, structural relief, and the degree of folding in the synclines are roughly equal on the
north and south facing range fronts. There is no large-scale imbrication of the Triassic-Cenozoic strata or
structural windows or klippen that would indicate large-scale horizontal transport of thrust sheets on
Alpine or Himalayan scales (i.e., many tens of kilometers).

The presence of folded and faulted Cretaceous and Tertiary strata, within the synclines and in the footwalls of
the major thrusts, indicates the Cenozoic age of brittle thrusting. A data set of these brittle thrust faults,
recorded predominantly along the transects of Figure 5, has an average strike of 291° and dip of 41°
(Figure 7). This average is of similar strike but lower dip than Paleozoic foliations in the same localities

Figure 5. Cross sections through the northern Qilian Shan, based on original fieldwork and data from Geological Bureau of
Qinghai Province [1968a, 1968b, 1980]. Location shown in Figure 2.
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(295°; 77°). Foliation data from the Xitieshan area of the southern range margin of the Qilian Shan have a
distinctly different mean orientation of 345°/88°E (Figure 7).

Coal-bearing strata are commonly exposed in slivers along the fault planes, such that these rocks appear to
lubricate many of themajor thrusts (Figures 5 and 6d). These slivers are mapped as Carboniferous in age, con-
sistent with the coal seams of that age in the region, but it is possible that some are Jurassic, given that
Jurassic strata are also coal-bearing, albeit more restricted in their distribution. Fault gouge and cataclasite
breccia are common, but there are not exposures of ductile shear zone lithologies such as mylonite.

Figure 6. Field photographs of Qilian Shan structures and landscapes, located in Figure 2: (a) isoclinal folds in Lower
Paleozoic blueschists; (b) brittle thrust placing Paleozoic basement rocks over Cretaceous strata; (c) brittle thrust with
cataclasite breccia, within Ordovician volcanics at the northern margin of the Qilian Shan; (d) thrusted Lower Paleozoic and
Cenozoic strata, with an intervening smear of Carboniferous coal-bearing shales; (e) typical landscape within the interior of
the Qilian Shan, showing the relatively low relief; (f) higher relief of the Qilian Shan at its northern range front; (g) fault-
bound slivers within the Haiyuan Fault; and (h) thrust at the northwestern end of the Riyueshan Fault.
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Althoughmany range fronts are linear
and sharp, there is a lack of unequivo-
cal evidence for active thrusting along
the range interiors, in contrast to the
main north and south range fronts of
the Qilian Shan, where active thrust-
ing is well documented, albeit in dis-
continuous segments [Tapponnier
et al., 1990; Meyer et al., 1998; Hetzel
et al., 2004; Yin et al., 2008a; Xu et al.,
2010; Chen et al., 2013].

The majority of thrusts in the south of
the Qilian Shan are directed south-
ward, toward the interior of the
Qaidam Basin (Figure 3) [see also Yin
et al., 2008a]. Combined with the
northward thrusting at the northern
margin of the range, noted above,
this produces an overall divergence
to the pattern of thrust transport,
resembling a large-scale version of
the individual thrusted ridges shown
in Figure 5.

Triassic-Cenozoic basin fill is typically
≥3 km thick in the intermontane basins [e.g., Geological Bureau of Qinghai Province, 1968a]. Range crests
are presently ~1–2 km above the valley floors within the Qilian Shan (Figures 6e and 6f). These values give
a rough estimate of the minimum thrust throw at each range front of ~5 km, using an assumption that the
exposed Lower Paleozoic basement was below the level of the basal Triassic rocks at the start of Cenozoic
deformation. Mesozoic deformation cannot be discounted, so that not all the throw is definitely Cenozoic
in age. However, although there are local unconformities within the Mesozoic section, there is no evidence
of shortening and deformation on the magnitude of the Cenozoic tectonics. Folding of Mesozoic and
Cenozoic strata indicates strain within the intermontane basins, although not on the scale of the thrusted
ranges. Typical shortening across each of these basins in Figure 5 is on the order of 10–15%, derived by sim-
ple unfolding of the projected basal unconformity for each basin. We estimate regional shortening in
section 4.
3.1.2. Strike-Slip Deformation
We examined the Haiyuan Fault between 99.5° and 100.5°E, in a region further west than previous studies of
this structure. The fault in this region includes an eastern segment which trends subparallel to the Paleozoic
basement grain, passing westward into a segment at ~100.2°E, which cuts obliquely across the basement and
folded Mesozoic rocks (Figure 8a). The fault zone contains anastomosing lenses of contrasting lithologies, at
varying scales upward frommeter-sized lozenges (Figure 6g) to kilometer-scale slivers. Weak lithologies such
as shale, coal, and serpentinite are common, deformed by intense brittle fault networks. Subhorizontal slick-
enlines are common within the Haiyuan Fault but rare along other major structures shown within Figure 5.
Even within the Haiyuan Fault there are dip-slip slickenlines, indicating thrust motion (Figure 7). We cannot
discount that at least some of these dip-slip structures relate to pre-Cenozoic deformation, but as noted,
Paleozoic rocks are typically deformed with penetrative fabrics not seen in the post-Paleozoic section. The
width of the entire Haiyuan Fault zone is ~10 km in this region, based on the presence of subvertical faults
with subhorizontal slip across this distance.

Offset bedrock geology can be matched across the Haiyuan Fault in the region of 100°E, i.e., where the fault
cuts across the Paleozoic grain and further west than the locations of most of the previous offset estimates
[Burchfiel et al., 1991; Gaudemer et al., 1995; Ding et al., 2004]. Paleozoic and Mesozoic rock units and the faults
that separate them are offset for ~10 km (Figure 8a), based on 1:200,000 survey mapping [Geological Bureau
of Qinghai Province, 1968a, 1968b]. We confirmed the left-lateral slip sense and vertical orientation of this fault

Figure 7. Stereoplot of structural data from the Qilian Shan illustrating the
variation between thrust planes of assumed Cenozoic age and penetrative
fabrics within Paleozoic rocks. Foliations in the Xitieshan region at the
southern side of the Qilian Shan (Figure 2) have a more north-south orien-
tation than elsewhere. Haiyuan Fault slickenlines are predominantly low
plunge, supporting strike-slip motion, but a subset indicates dip slip. Haiyuan
Fault data are from localities shown in Figures 8 and 6b.
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where it juxtaposes ophiolitic mélange against Permian strata (Figure 8a). This offset is distinctly lower than
most previous estimates for the Haiyuan Fault (which are up to 95 km [Gaudemer et al., 1995]), based on a
variety of approaches from bedrock offset, to the apparent left-lateral offset of the Yellow River (Figure 2).
The difference between our estimate and most previous studies suggests that Figure 8a shows only part of
the total offset, with major but unquantified slip occurring on other fault strands to the north and south,
examined during our fieldwork (Figure 8a). An alternative but complementary explanation for our
relatively low offset estimate is that there is an along-strike gradient in slip, decreasing westward toward
the end of the Haiyuan Fault in the Sule Nan Shan (Figure 2).

Offset is harder to determine where the Haiyuan Fault is parallel to the regional bedrock structure. On the
regional scale, the Haiyuan Fault also crosses the Paleozoic structural grain of the Qilian Shan at a low angle
of obliquity and from east to west passes into the interior of the range from its northernmargin (Figure 2). The
segments parallel to the basement fabric are effectively right-stepping restraining bends and have been
associated with thrust earthquakes (Figure 4a). This is a possible explanation for the more steeply plunging,
dip-slip slickenlines within the broad fault zone (Figure 7).

Figure 8b shows a previously unreported trace of a segment of the Haiyuan Fault, where it cuts the
Quaternary sediments of an intermontane basin for a length of ~12 km. The segment trends east-west and
continues from the western end of the strand described above at 100°E. Individual stream gullies are offset
left-laterally by ~35 m (Figure 8c), suggesting that this offset represents cumulative Quaternary displacement
over an unknown number of earthquakes, rather than a single rupture.

We report another previously unidentified surface rupture at the southern margin of the Qilian Shan, near the
Xitieshan Fault, on the Qaidam Thrust [Yin et al., 2008b] (Figure 9). Here there is a linear, sharp scarp in the
surface of the alluvial fans. The rupture can be traced for ~8 km across the piedmont (Figures 9a and 9b), con-
sistent with aM ~ 6 Holocene earthquake in this area [Wells and Coppersmith, 1994]. The slip sense is not clear
and needs further work (access was not possible during our fieldwork). The regional elevation of the adjacent
range to the northeast argues for a thrust component. A strike-slip or oblique sense is possible; faint rupture
patterns in the imagery suggest a right-lateral component (Figure 9c), which would be consistent to the right-
lateral slip observed to the east on the Elashan and Riyueshan faults (Figure 2).

A fault trending northwest-southeast, east of Xitieshan, is visible in satellite imagery (Figure 10) but does
not appear to have been mapped previously [Geological Bureau of Qinghai Province, 1968a, 1968b]. Offset
sense is right-lateral, and the fault is parallel to the much larger and more prominent Elashan and
Riyueshan faults to the east (Figure 2). The faulting east of Xitieshan may represent a less developed

Figure 8. (a) Structure of the Haiyuan Fault at ~100°E [Geological Bureau of Qinghai Province, 1968a, 1968b]; (b) surface rup-
ture across Quaternary sediments, located in Figure 8a; and (c) close-up of ruptures in Figure 8b. Quickbird satellite imagery
from Google Earth (©2014 Google, ©2014 DigitalGlobe).
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equivalent of the Elashan and Riyueshan faults, which were interpreted by Duvall and Clark [2010], Yuan
et al. [2011], and Zuza and Yin [2016] to help accommodate shortening by counterclockwise rotation.
Three strike-slip earthquake focal mechanisms corroborate the fault slip sense and show it to be an
active structure (Figure 10e).

Figure 10. (a–d) Quickbird satellite imagery from Google Earth (©2014 Google, ©2014 DigitalGlobe) showing right-lateral
strike-slip faulting east of Xitieshan. Location shown in Figure 2. (e) Location of Figure 10a and local focal mechanisms as in
Figure 4a.

Figure 9. Quickbird satellite imagery from Google Earth (©2014 Google, ©2014 DigitalGlobe) of the Chaidanzhen fault
break on the Qaidam Thrust. Location shown on Figure 2.
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Yuan et al. [2011] suggested that the northwestern end of the strike-slip Riyueshan Fault terminated in a
thrust but did not examine the structure in this region. We confirm that a south dipping thrust places
Proterozoic rocks over Jurassic coal measures at the end of the Riyueshan Fault (Figures 2 and 6h), but the
topography is subdued, with no strong indications of Holocene activity.

In summary, left-lateral faulting within the Qilian Shan is focused on the Haiyuan Fault, as far west as its
termination in the Sule Nanshan, but the fault zone is up to ~10 km wide and complex, and includes
segments that both cross and lie parallel to the regional Paleozoic basement grain. Shorter right-lateral
faults are also present within the Qilian Shan, additional to the Elashan and Riyueshan faults
previously documented.

3.2. Constraints From Geodetic Data and Elastic Dislocation Modeling

GPS studies have previously established a horizontal velocity field for our area of interest [Gan et al., 2007;
Liang et al., 2013] (Figure 11). In a Eurasian reference frame, interseismic velocities decrease from~20mmyr�1

in the northern Kunlun to ~2–3 mm yr�1 in the Alashan, on the edge of the Hexi Corridor, and exhibit parti-
tioning of oblique convergence into components that are orthogonal and parallel to regional fault trends
[Zhang et al., 2004; Zheng et al., 2013a]. Previous studies have used elastic dislocation models to interpret
the GPS data but have mainly focused on modeling the range-parallel strike-slip component, thought to be
largely accommodated on the left-lateral Haiyuan fault, and in contrast have suggested that the

Figure 11. (a–d) One-fault elastic dislocationmodel for interseismic deformation in the Qilian Shan. Figure 11a shows topo-
graphic profile from dashed box within Figure 11d, from SRTM data. Figure 11b shows best fit model fault geometry,
earthquake focal mechanisms, and fit to data for profile-parallel velocities. The dashed black straight line shows the geo-
metry of the single creeping detachment fault with oblique slip, and the black ellipse shows the 95% uncertainty on the
location of the locked-creeping transition. Above this pointth, the blue and pink solid lines show the inferred geometry of
the locked thrust and strike-slip faults, onto which the oblique slip is inferred to be partitioned. Focal mechanisms show
location of earthquakes from Figure 4a for the region of Figure 11d. The black vertical bars show GPS-derived velocity
components parallel to the section line with 2-sigma uncertainties, and the blue line shows predicted velocities for the
model geometry shown in the same panel. The black vertical bars show velocity components normal to the section line
with 2-sigma uncertainties (Figure 11c), and the pink line shows predicted velocities for the model geometry shown in
Figure 11b. Figure 1112d shows the map of GPS data from Kreemer et al. [2014] compilation. The dashed box shows region
of GPS data projected onto central profile line for Figures 11b and 11c, and the pink and blue lines show surface projection
of the strike-slip and thrust model faults.
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convergent strain is broadly distributed across the Qilian Shan [Zheng et al., 2013a; Zhang et al., 2013]. In these
models, the investigation of model fault locations and geometries is often precluded, as these details are fixed
a priori.

Here we adopt a different approach to test whether the observed range-normal and range-parallel velocities
across the Qilian Shan are consistent with interseismic strain accumulation across a single, localized detach-
ment thrust and a subvertical strike-slip fault respectively. In this approach, the geometry and location of the
faults are free parameters, which enable us to investigate if such a simple two fault model can fit the available
data, and if it can, the geometry and location of these structures, alongwith the relationship between them. In
particular, this is a quantitative test of existingmodels that propose the existence of an active regional detach-
ment thrust below the entire Qilian Shan that accommodates the majority of the convergence across the
mountain belt [Meyer et al., 1998; Yin et al., 2008b], as opposed to suggestions that convergence is broadly dis-
tributed across the mountain belt with little evidence of localization [Zheng et al., 2013a; Zhang et al., 2013].
3.2.1. Two-Fault Model
First we draw a profile orientated N20°E, orthogonal to regional fault trends (Figure 11a), and project pub-
lished GPS velocities onto the profile line from within ~250 km, separating the profile-parallel (shortening)
and profile-perpendicular (strike-slip) velocities (Figures 11b and 11c). We have used published GPS data
from the GEM Strain Rate Model compilation [Liang et al., 2013; Kreemer et al., 2014, and references therein]
(Figure 11d). Initially, we model the horizontal velocity components separately with two model faults, in each
case using a back slip calculation for a dislocation in an elastic half space, where the modeled fault is locked
by friction above a “locking” depth and slips freely below this depth [Savage and Burford, 1973; Savage, 1983].
The model parameters for the strike-slip fault are slip rate, locking depth and location of the fault, as well as a
static offset in velocity to account for anon zero reference. For the thrust fault, we fix the surface projection of
the fault to the northern range front of the Qilian Shan and solve for slip rate, locking depth, and dip of the
fault, along with a static offset in velocity to again account for a nonzero reference. The horizontal location of
the locked-creeping transition is also a parameter of interest but is not independent; it is constrained solely
by the dip and locking depth. For bothmodels, we use a weighted nonlinear least squares inversion withmul-
tiple restarts to avoid local minima. We estimate uncertainties on each model using a Monte Carlo approach,
perturbing the GPS data 100 times with noise based on the formal velocity uncertainties and inverting these
perturbed data sets using the same process detailed above. The spread of the 100 retrieved values for each
model parameter defines the uncertainty on that parameter. More details of the code used are available from
the authors on request.

We make one additional modification to our two-fault model: the best fit detachment fault has a locking
depth of 35 ± 15 km (2-sigma), which is much greater than the estimated 20 km seismogenic thickness
[Sloan et al., 2011] and would lie within the lower crust for this region. We therefore fix the depth to
20 km, with very little degradation to the fit to the data (see Figures S1 and S2 and Table S3 in the
supporting information).

Our two-fault model is presented in Table 1 and Figure S1 and fits the GPS data well, with residuals of
similar magnitude to the formal uncertainty on the data (~1 mm/yr). The most important results of this
model are the following: (1) that the range-normal component of the GPS data can be explained by slip
on a localized detachment at depth and (2) that the data strongly constrain the location of the
locked-creeping transition of the detachment to be coincident (within uncertainty) with the locked-
creeping transition for the strike-slip fault and with the mapped trace of the Haiyuan fault. Essentially,

Table 1. Elastic Dislocation Model Parameters for Initial Model With Two Separate Faults and for Final Model With One Fault and Oblique Slip at Deptha

Model Fault Type
Slip-Rate
(mm yr�1)

Locking
Depth (km)

Dip
(deg)

Location of Locked-Creeping
Transition along Profile (km)

Offset in Velocity
(mm yr�1)

RMS
(mm yr�1)

Two faults Dip slip 6.0 ± 0.4 20b 13 ± 2 Sc 49 ± 12c 4.9 ± 0.2 0.78
Strike slip 4.1 ± 0.8 18 ± 21 90b 63 ± 6 4.3 ± 0.2 1.03

One fault, two slip components Dip slip 6.7 ± 1.0 26 ± 8 17 ± 4 S 49 ± 9 4.8 ± 0.2 0.74
Strike slip 4.2 ± 0.4 4.4 ± 0.2 1.06

aUncertainties are at 2-sigma level.
bFixed in inversion.
cWhen depth is fixed, dip, and location of fault covary.
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the locked portion of the strike-slip fault lies above the locked-creeping transition of the detachment
thrust (Figures 3 and S1b). We note that the dip angle and dip direction of the detachment thrust are
not well constrained, but although models with different dip values provide similar fit to the data
(Figures S2 and S3), the observation of the intersection at depth of the strike-slip and detachment thrust
is robust irrespective of dip direction, for locking depths <20 km. Here we present the south dipping
solution as this seems more realistic, given the location of the Qilian Shan at the northeastern side of
the Tibetan Plateau. In the Savage and Burford [1973] elastic model for strike-slip faulting used here,
fault-parallel surface velocities do not depend at all on the dip of the strike-slip fault below the
locking-depth. Therefore, the simplest interpretation of the coincidence between the locked-creeping
transitions of the two model faults is that the dip of the strike-slip fault at depth is the same as the
detachment, i.e., that oblique slip is localized on a single dipping detachment at depth, and is partitioned
only in the seismogenic crust.
3.2.2. One-Fault Model
We test this interpretation formally by running one final inversion. We use the samemethod described above
but this time constrain both strike-slip and thrust components of slip to take place on a single dipping
detachment below one locking depth, simultaneously fitting both profile-perpendicular and profile-parallel
GPS velocities. The joint inversion of both components of velocity means that the locking depth is better con-
strained than in the previous inversions, so it is not fixed in this model. When compared to the two-fault
model, the resulting one-fault oblique-slip model fits the data with no significant degradation to misfit and
is presented in Table 1 and Figure 11.

The best fit oblique detachment slips below a locking depth of 26 ± 8 km and has a dip of 17 ± 4° to the SSW.
This locking depth is in close agreement with estimates of the seismogenic thickness from robust earthquake
depths (~20 km [Sloan et al., 2011]) and with previous interseismic studies of the Haiyuan fault west of 104°E
[Jolivet et al., 2012], which is fully locked, in contrast to the creeping section further east [e.g., Jolivet et al.,
2015; Daout et al., 2016]. The best fit horizontal location of the locked-creeping transition on the fault is con-
strained to within 9 km and is in agreement with the mapped surface trace of the Haiyuan Fault, implying a
vertical or subvertical structure in the seismogenic upper crust. The rate of strike-slip motion on the detach-
ment is 4.2 ± 0.4 mm yr�1, consistent with previous estimates for the slip-rate on the Haiyuan fault in this
region [e.g., Zhang et al., 2004; Cavalie et al., 2008; Jolivet et al., 2012; Zheng et al., 2013a]. The rate of reverse
dip-slip motion on the detachment is 6.7 ± 1.0 mm yr�1. It is important to note that although we draw the
shallow, locked thrust fault that accommodates this strain in the seismogenic crust as a low-angle continua-
tion of the detachment (Figure 3), which matches geologic data (Figure 5) [Zuza et al., 2016], this is not a
requirement of the dislocation model itself. The model does not predict the structure within the locked
region of the crust, i.e., whether the dislocation continues updip at a low angle or into one or more steeper
structures. From the ratio of strike-slip and dip-slip rates (Table 1), we estimate the rake on the detachment at
depth to be ~58°.

The geometric relation proposed here betweenmajor strike-slip and thrust faults has been inferred from geo-
detic data above subduction zones with oblique convergence and is suggested from numerical models to
result from localization of shear strain in the crust above the locked-creeping transition on the detachment
[McCaffrey et al., 2000]. This relationship has not been previously identified for the Qilian Shan (although it
was predicted by the models of Bowman et al. [2003]) and is highly likely to occur in other continental
fold-and-thrust belts where strain partitioning has also been recognized [e.g., Murphy et al., 2014; Silver
et al., 2015].

3.3. Regional Scale Geomorphology and Drainage Patterns

We have examined regional patterns of topography and drainage to add at least first-order insights to our
fieldwork, remote sensing, and dislocation models. Smoothed elevation values (Figure 4a) and slope values
(Figure 12) highlight that the highest elevation and lowest relief part of the Qilian Shan occurs in the middle
of the region, centered on Hala Lake. Regional elevations decrease away from this area in all directions,
including toward the Altyn Tagh Fault to the west and north.

Rivers in the east of the Qilian Shan that do not drain into the Yellow River typically flow into Hala or Qinghai
lakes (Figure 2). Rivers in the west flow to the WNW along the major valleys parallel to the range fronts
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(Figure 13), but three of the major ones are diverted northward before they reach the Altyn Tagh Fault. This
northward diversion produce a nested pattern to the drainage (Figure 13), with the southernmost river, the
Sule He, reaching furthest west, while rivers to the east, the Beida He and Hong Shuiba He, have the shorter
courses and more easterly diversion points.

4. Discussion
4.1. Finite Strain Estimates

Throw estimates of ~5 km for individual range fronts within the Qilian Shan can be summarized to estimate
the overall range-normal shortening (Figure 5). We use an estimate of thrust dip of 45°, based on focal
mechanism fault dips (Figure 4b) and the dips of exposed range-bounding thrusts (Figure 7). Thrusts are
assumed to be planar, at least at the upper crustal levels under consideration. The throw corresponds to a
horizontal shortening (heave) of ~5 km. Given the seven main internal range fronts in our longer section, this
configuration suggests roughly 35 km of Cenozoic shortening across the section or ~30%. Extrapolating
across the full width of the Qilian Shan ranges (presently ~250–300 km, increasing westward) gives ~110–
130 km of thrust-related shortening in the Cenozoic within the interior of the Qilian Shan. An estimated
10–15% shortening is expressed in the folded strata of the intermontane basins (section 3.1.1), equivalent
to a further ~15 km shortening across the whole range.

The above estimate does not include the northern margin of the Qilian Shan, which differs from the internal
range fronts in size of the topographic step down to the Hexi Corridor basins to the north (Figures 4a and 13)
and the lower fault dip. A recent interpretation of seismic reflection profiles across this northern margin

Figure 13. Drainage patterns and late Cenozoic faults in the northwest Qilian Shan. Background is SRTM digital topography
superimposed over Landsat 7 false color imagery (bands 7, 4, and 2).

Figure 12. Regional slope, derived from a 35 km radius moving window on mean elevation smoothed over a 75 km radius
moving window.
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suggests typically ~30 km of shortening on this thrust front alone [Zuza et al., 2016], on a thrust system dip-
ping south at ~15°, which is consistent with the 17° dip for the shear zone underlying the range derived from
the elastic dislocation model in this study (Figure 11). Adding this 30 km value to the shortening estimate for
the internal ranges gives a total of 155–175 km range-normal shortening across the Qilian Shan. Previous
interpretations of the amount of shortening at the northern, marginal, range front are lower than 30 km, at
≤10 km [Zheng et al., 2010]. If this lower figure is correct, the overall shortening estimate must be
reduced accordingly.

It has been previously suggested that at ~15 Ma there was the onset or acceleration of significant deforma-
tion and uplift in the northeastern part of the Tibetan Plateau, including the Qilian Shan [e.g., Duvall et al.,
2013]. Zheng et al. [2010] put the onset of significant late Cenozoic exhumation near the northern thrust in
Qilian Shan to be slightly later, at 10 Ma, based on (U-Th)/He thermochronometry. Current GPS-derived defor-
mation rates for convergence across the Qilian Shan are 7.7 mm yr�1, combining dip-slip and strike-slip com-
ponents (section 3.2.2). Extrapolating this rate to 15 Ma would mean ~115 km of total shortening across the
Qilian Shan and Qaidam Basin, roughly split into ~65 km of strike-slip offset on the Haiyuan Fault, and
~100 km of range-normal shortening. The extrapolated range-normal shortening estimate is comparable
to, if lower than, our estimate in this study of 155–175 km and the estimate of 150–200 km shortening of
Meyer et al. [1998]. It is distinctly lower than the >215 km derived by Zuza et al. [2016] and the 250 km pro-
posed by Cheng et al. [2015]. The differences relate to the amount of strain interpreted for the internal ranges,
which should clearly be a focus for future study. If the higher estimates of Zuza et al. [2016] and Cheng et al.
[2015] are more realistic, strain needs to have taken place at near present rates for much longer than 15 Myr
or episodically through the Cenozoic. Our 155–175 km estimate fits a scenario where the present shortening
rate has occurred since ~15 Ma, and achieved most of the finite strain, but leaves open the possibility for sig-
nificant strain before 15 Ma.

4.2. Crustal Scale Accommodation of Oblique Convergence

Elastic dislocation modeling (Figure 11) provides an approach for understanding the deep structure of the
region. The best fit model for the interseismic geodetic data is consistent with localized, oblique, aseismic slip
on a low-angle detachment thrust (17° dip) below a locking depth fixed of 26 km (Figure 14). A significant

Figure 14. Schematic illustration of the fault geometry proposed for the Qilian Shan, with partitioning of oblique conver-
gence onto strike-slip and thrust components, with the intersection of the strike-slip and thrust faulting taking place at the
down-dip limit of the locked portion of the thrust.
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result of this model is that the locked-creeping transition lies directly beneath the location of the strike-slip
Haiyuan Fault. This implies that strain is spatially partitioned in the seimogenic upper crust between strike-
slip motion on the vertical Haiyuan Fault and thrusting, possibly to a large extent on the updip continuation
of the detachment (Figure 11). This deformation pattern is similar to geodetic observations made across obli-
que oceanic subduction zones [McCaffrey et al., 2000] and suggests that such behavior also occurs during
strain partitioning in continental fold-and-thrust belts. It matches the model predictions of Bowman et al.
[2003]. A similar, but not identical, pattern of strain partitioning has been interpreted for the Haiyuan Fault
and adjacent thrusts, to the east of our study area (102–104°E), by Daout et al. [2016], based on a combined
study of InSAR and GPS data. The two areas are different in terms of the proportions of thrust and strike-slip
deformation and the greater depth of locking further west. A more fundamental difference is that Daout et al.
[2016] do not model the seismogenic strike-slip fault as directly above locked-creeping transition, as is found
in our paper.

The historical events of M ~ 7 (Figure 4a) may be a record of rare but large earthquakes related to such a
detachment, above the locking depth. It is not clear from the structures exposed within the Qilian Shan or
our analysis of the geodetic data that the deep structure corresponds to a crustal scale critical wedge
[Meyer et al., 1998] or a continental subduction zone [Guillot and Replumaz, 2013]. The regional topography
(Figures 4a, 11, and 12) shows steep margins on both the northern and southern sides of the range, with
lower internal slopes, not consistent with a crustal wedge thickening southward toward the main part of
the Tibetan Plateau.

It is notable that there is a clear instrumental seismicity record of relatively steep thrusts (≥30°; Figure 4a), but
no focal mechanisms that clearly correspond to seismic slip on the underlying detachment thrust. It could be
that seismic slip on these steeper thrusts reduces the overall slip deficit on the detachment thrust and
reduces the magnitude of an eventual earthquake on the detachment.

We speculate that the detachment thrust corresponds to the upper surface of the North China Block
(Figure 3), proposed by some authors [e.g., Yin et al., 2008b] to underlie most or all of the Qilian Shan,
and consistent with deep seismic evidence [Ye et al., 2015]. Given the lack of hundred kilometer-scale
Cenozoic thrusting at the northern margin of the Qilian Shan [Hetzel et al., 2004; Zheng et al., 2010;
Zuza et al., 2016; this study], we conclude that the main underthrusting of the North China Block
(Figure 3) is more likely to have taken place during the Paleozoic accretion of the Qilian Shan, with reac-
tivation during late Cenozoic deformation. There is evidence for this Paleozoic age for underthrusting, in
the zircon populations within Paleozoic plutons in the Qilian Shan, which contain Precambrian signatures
of the North China Block [Gehrels et al., 2003].

The structure of the Qilian Shan has similarities to the Himalayas, where the Indian Plate underthrusts
Eurasian crust along a major thrust, dipping at a similar angle [e.g., Murphy et al., 2014]. There is no evidence
that the underthrust North China Block underwent slab break-off and uplift in the Cenozoic, comparable to
the India-Eurasia system [Magni et al., 2017].

4.3. Thrust Distribution, Crustal Thickening, and Surface Uplift

There is a concentration ofM> 5 thrust events at or below the regional 3500 m elevation contour (Figure 4a).
Of the fewM> 5 thrust events that occurred at higher elevations, one occurs on a restraining bend along the
Haiyuan Fault and two are ~100 km from the Altyn Tagh Fault. M > 4 events occur at higher elevations
(Figure 4a) but mainly on the northern side of the range. The area west of Lake Hala is distinctly aseismic.
While no focal mechanisms are available for these smaller events, it seems reasonable to conclude that they
are mainly thrust earthquakes in keeping with the observed structure of the region. Events along the Haiyuan
Fault are more likely to be strike slip. The higher, interior regions of the Qilian Shan show less evidence of
Holocene thrust activity than lower elevation regions (Figure 4a). The interior of the Qilian Shan has more
subdued relief than the range margins [Liu-Zeng et al., 2008] (Figure 12). The combined low relief and low
seismicity give the interior region plateau-like characteristics, at least in incipient form.

4.4. Influence of the Altyn Tagh Fault

It has been previously proposed that thrusts in the Qilian Shan splay off the northeastern part of the Altyn
Tagh Fault, for up to ~400 km away from the latter, and owe their existence to the need to absorb the slip
along this structure. [Meyer et al., 1998; Van der Woerd et al., 2001; Cheng et al., 2015]. There is clearly
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interaction between the thrusts in the Qilian Shan and the Altyn Tagh Fault: the thrusts in the northwest of
the Qilian Shan change strike westward, to swing into alignment (Figure 2). Active thrusting occurs relatively
close to the fault, at high regional elevations, in contrast to the remainder of the Qilian Shan further east
(Figure 4a).

However, the regional elevations of the Qilian Shan decrease toward the Altyn Tagh Fault (Figures 4a and 12),
implying that the greatest crustal thickening and highest topography has developed in the interior of the
Qilian Shan, rather than dying away laterally from the Altyn Tagh Fault. The pattern of rivers in the northwes-
tern Qilian Shan is consistent with an origin whereby drainage flows westward away from the interior of the
range, before meeting uplifted areas influenced by the Altyn Tagh Fault, and being diverted northward
toward the Hexi Corridor (Figure 13). Therefore, the influence of the Altyn Tagh Fault may extend laterally
only 100–200 km into the interior of the Qilian Shan, with most of the thrusting along the range representing
a regional shortening as part of the India-Eurasia convergence. There is clearly a lot of scope for more work on
this subject, but our observations in Figures 12 and 13 are consistent with the other results in this paper,
whereby the thrusting in the Qilian Shan is a major part of the overall India-Eurasia convergence and not a
secondary feature arising from the slip along the Altyn Tagh Fault.

We also note the coincidence of Cenozoic thrusts with Paleozoic structural boundaries along the length of
the Qilian Shan [Song et al., 2013; Wu et al., 2016], i.e., for ~800 km, and strongly implicating reactivation of
basement faults as a factor in controlling the location of the young structures (Figure 2). Our fieldwork obser-
vations confirm this match, with the exception of the Xitieshan region (Figure 7), where the Paleozoic folia-
tions strike more north-south than the Cenozoic thrusts in the same region.

5. Conclusions

We estimate range-normal shortening across the Qilian Shan as ~155–175 km, comparable to the 150–
200 km claimed from crustal scale restorations by Meyer et al., 1998], but lower than the >215 km and
250 km values derived by Zuza et al. [2016] and Cheng et al. [2015]. Maintaining the present range-normal
shortening rate of 6.4 mm yr�1 for the 15 Myr since the inferred onset or acceleration of deformation in
the Qilian Shan yields ~100 km total range-normal shortening, which is to a first order consistent with our
estimate, but raises the possibility that some strain took place before 15 Ma or has even slowed since 15 Ma.

The overall structure of the Qilian Shan is divergent, with southward thrusting at the southern margin and
northward thrusting at the northern margin of the range. Thrust structure within the region shows no predo-
minant transport direction at upper crustal levels (Figure 5).

Elastic dislocation modeling indicates that a single regional detachment thrust (dip angle of 17°) with oblique
slip below 26 km depth can explain both range-parallel and range-normal components of the GPS-derived
interseismic velocity field (Figure 11). Upper and lower crustal deformation therefore appear to be decoupled
along a zone approximating simple shear under the Qilian Shan (Figure 14).

This shear zone may be the upper surface of an underthrust North China Block [Yin et al., 2008b] (Figure 3),
with the caveat that regional underthrusting is more likely to have taken place in the Paleozoic than the
Cenozoic. The dip angle is higher than commonly proposed critical wedge scenarios for individual fold-
and-thrust belts, which have much lower dip values for the basal detachment to the fold-and-thrust belt
[Davis et al., 1983].

The strike-slip component of deformation is located on a near-vertical structure above the updip limit of obli-
que interseismic slip on the model detachment and equivalent to the observed Haiyuan Fault. This configura-
tion of strain partitioning may apply more generally in zones of oblique convergence (Figure 14) and so
explain the location of strike-slip faults in other fold-and-thrust belts, both ancient and active [e.g.,
Holdsworth and Strachan, 1991].

Well-constrained thrust focal mechanisms dip typically at >30° (Figure 4b) and are confined to the upper
20 km of the crust [Sloan et al., 2011]. If the crustal-scale structure involves an underlying low-angle thrust
(Figures 3 and 11), it has not produced earthquakes recorded in the instrumental catalogs. However, his-
toric M ~ 7 events at the northern side of the Qilian Shan could correspond to seismic slip on this structure
(Figure 4a).
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Major thrust seismicity (M> 5) in the Qilian Shan diminishes above the regional 3500 m contour, and the few
large thrust events above this elevation are typically linked to strike-slip faults at restraining bends (Figure 4a).
Smaller earthquakes are more widespread across the Qilian Shan (Figure 4a). Combined with the subdued
relief at these higher elevations (Figure 12), it appears that the interior of the Qilian Shan is developing
plateau-like characteristics.

The influence of the Altyn Tagh Fault may be confined to adjacent parts of the Qilian Shan, within 100–
200 km, and not the full lateral extent of thrusted ranges. These Cenozoic thrusts follow the Paleozoic base-
ment grain for ~800 km to the ESE, along the Qilian Shan [Song et al., 2013;Wu et al., 2016], and strongly imply
that reactivation of Paleozoic structures controls the location of the modern faults.
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