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1 Introduction

Starting with the discovery of the Parke-Taylor formula for tree-level gluon amplitudes [1],

the study of scattering amplitudes has suggested intruiging new ways of formulating quan-

tum field theory. Building on the work of Nair [2], Berkovits and Witten [3, 4] proposed

a worldsheet model for N = 4 super-Yang-Mills (SYM) known as twistor string theory,

whose correlation functions give rise to an elegant formula for tree-level amplitudes in terms

of integrals over curves in twistor space [5]. It turns out however that twistor string theory

also contains conformal supergravity (CSGR) in its spectrum [6], so it is difficult to extend

this formula to loop-level. These ideas were then extended by Skinner to N = 8 super-

gravity (SUGRA) [8] following the discovery of a gravitational analogue of the Park-Taylor

formula by Hodges [7]. This framework was subsequently extended to a broad range of

theories after Cachazo, He, and Yuan (CHY) proposed worldsheet formulae for tree-level

scattering amplitudes of non-supersymmetric gauge and gravitational theories in any di-

mension [9]. These formulae are supported on solutions to the scattering equations, which

were previously discovered in the context of ordinary string theory [10, 11]. The worldsheet

theory underlying the CHY formulae was constructed by Mason and Skinner and is called

ambitwistor string theory [12]. In the case of 10d supergravity, this model is critical and

can be extended to loop-level [13, 14].
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Using a model known as 4d ambitwistor string theory, it is possible to obtain mani-

festly supersymmetric formulae for tree-level scattering amplitudes in 4d N = 4 SYM and

N = 8 SUGRA supported on refined scattering equations [15, 16]. In this approach the

scattering equations are split into two sets, which we refer to as left and right. In general,

the number of states in the left set is related to the Grassmann degree of the superampli-

tude. Furthermore, in the case of SYM and SUGRA, it is also tied to the MHV degree

of the amplitude, which is related to the number of negative helicty supermultiplets being

scattered. In particular, an Nk−2MHV amplitude describes the scattering k negative helic-

ity multiplets. These formulae are simpler than twistor string formulae in that they do not

contain integrals over moduli of curves in twistor space, and are also simpler than the CHY

formulae in general dimensions in that the solutions to the refined scattering equations are

split into different MHV sectors.1 Moreover, the formulae arising from 4d ambitwistor

string theory are intimately related to Grassmannian integral formulae for N = 4 SYM

and N = 8 SUGRA obtained using on-shell diagrams [20–23].

Like the Berkovits-Witten twistor string, the 4d ambitwistor string for N = 4 SYM

contains CSGR in its spectrum, in particular a certain non-minimal version of N = 4

conformal supergravity (in the minimal version there is no coupling between the Weyl

tensor and scalar fields of the model [24]). Although CSGR is not unitary, it is nevertheless

of theoretical interest for several reasons. For example, it is renormalizable and can be made

UV finite if coupled to N = 4 SYM [25, 26]. Furthermore, it is possible to obtain classical

Einstein gravity with cosomological constant by imposing Neumann boundary conditions

on conformal gravity [27] (see also [28, 29]), and this approach was used to deduce twistor

string formulae for scattering amplitudes of Einstein supergravity in flat space [30, 31].

Given the large amount of symmetry in CSGR, we expect its scattering amplitudes

to have simple mathematical properties. The purpose of this paper is therefore to investi-

gate this structure using 4d ambitwistor string theory. CSGR amplitudes were previously

studied in [6, 32–36]. More recently, these amplitudes were shown to arise from taking the

double-copy of super-Yang-Mills with a (DF )2 gauge theory [37]. An ambitwistor string

description of the (DF )2 theory was subsequently found in [38] and used to deduce a CHY

formula for conformal gravity amplitudes in general dimensions.

In this paper, we use 4d ambitwistor string theory to derive compact new worldsheet

formulae for CSGR amplitudes supported on refined scattering equations. In contrast to

the worldsheet formulae for N = 4 SYM and N = 8 SUGRA, we find that the number of

particles in the left set is not generally tied to the MHV degree. Nevertheless, the formulae

we obtain are very simple, allowing us to generalise previous results in many ways. For

example, we obtain a simple formula for scalar-graviton amplitudes with any number of

particles in the left set. If only two particles are in the left set, this formula reduces to the

one previously derived by Berkovits and Witten. More generally, the formula can be readily

evaluated numerically and we match it against results obtained from Feynman diagrams

and double copy techniques developed in [37] up to 8 points with any number of particles

1In particular, the number of solutions to the refined scattering equations is given by the Eulerian

number
〈
n−3
k−2

〉
for an n-point Nk−2MHV amplitude [17–19]. In contrast, the scattering equations in general

dimensions have (n− 3)! solutions.
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in the left set. Moreover, we generalize this to a manifestly supersymmetric formula using

four types of vetex operators which describe states in either the left or right set and either

the positive or negative helicity graviton multiplet.

Since the equations of motion for conformal gravity are fourth order in derivatives,

they also admit non-plane wave solutions of the form A · xeik·x. We find that the vertex

operators for such states are very simple and give rise to scattering amplitudes which can

be obtained by taking momentum derivatives of plane wave amplitudes, and are therefore

well-defined at least in a distributional sense. Vertex operators for non-plane wave states

were previously proposed in [33]. Whereas previous vertex operators were defined only

for A2 = 0, our vertex operators are defined for any A and appear to be more compact.

Nevertheless, computing non-plane wave amplitudes using 4d ambitwistor string theory

turns out to be subtle for several reasons. First of all, in order to compute worldsheet

correlators we introduce source terms in the path integral leading to deformed scattering

equations. The final result is then obtained by taking functional derivatives with respect

to the sources and setting them to zero, which returns to the original scattering equations.

Second of all, since the formulae are manifestly four-dimensional and on-shell, we develop

a prescription for taking momentum derivatives of spinor variables.

The structure of this paper is as follows. In section 2, we review some facts about

4d ambitwistor string theory that will be relevant in this paper. In section 3, we derive

worldsheet formulae for scattering amplitudes of graviton multiplet states with plane-wave

boundary conditions. In section 4, we generalize these formulae to non-plane wave states,

and in section 5 we present our conclusions and future directions. There are also four

appendices. In appendix A, we review the BRST quantization of 4d ambitwistor string

theory and show that the vertex operators presented in this paper are BRST invariant. In

appendix B, we show that our worldsheet formula for scalar-graviton amplitudes reduces to

the Berkovits-Witten result when there are only two particles in the left set. In appendix C,

we describe a method for taking momentum derivatives of on-shell variables. Finally, in

appendix D, we use this method to compute several examples of non-plane wave amplitudes.

2 Review

In this section, we will review the 4d ambitwistor string theory describing N = 4 SYM and

CSGR. The Lagrangian for this model is given by

L =
1

2

(
Z · ∂̄W −W · ∂̄Z

)
+ Lj (2.1)

where the worldsheet coordinate is a complex number σ with ∂̄ = ∂σ̄, the target space is

supertwistor space

ZA =

 λα
µα̇

χI

 , WA =

 µ̃α

λ̃α̇
χ̃I

 ,

and Lj is the Lagrangian for a current algebra, the details of which will not be important.

Note that α, α̇ = 1, 2 are spinor indices and I = 1, 2, 3, 4 is an R-symmetry index, and
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the corresponding worldsheet fields are bosonic and fermionic, repsectively. Furthermore,

recall that a 4d null momentum can be written in bispinor form as follows:

kαα̇i = λαi λ̃
α̇
i

where i labels the particle number. The worldsheet fields λ, λ̃ can therefore be thought of

as parametrizing an on-shell momentum, although their relation to the external spinors of

the amplitude will be made precise later on. The scattering amplitudes will ultimately be

expressed in terms of inner products 〈ij〉 = λαi λ
β
j εαβ and [ij] = λ̃α̇i λ̃

β̇
j εα̇β̇ , where ε is the

two-index Levi-Civita symbol.

In contrast to the Berkovits-Witten model, the Z and W fields in the 4d ambitwistor

model have holomorphic conformal weight 1
2 . Note that the model has a GL(1) symmetry

(Z,W ) →
(
ΩZ,Ω−1W

)
. We will gauge this symmetry as well as the Virasoro symmetry

(which contains an SL(2) subgroup). The physical states of the model then correspond

to the BRST cohomology. In contrast to ordinary string theory, the spectrum of 4d am-

bitwistor string only contains field theory degrees of freedom, notably N = 4 SYM and

CSGR without an infinite tower of massive higher-spin states. In appendix A we describe

the BRST quantization of this model in more detail.

Field theory scattering amplitudes are then obtained from correlation functions of

vertex operators corresponding to physical states. Each vertex operator is described by a

pair of complex numbers σα = 1
t (1, σ), which correspond to homogeneous coordinates on

the Riemann sphere at tree-level. For example, an integrated vertex operator encoding the

N = 4 SYM multiplet (which consists of a gluon, six scalars, and eight fermions) has the

following form:

Vi(σ) =

∫
dt

t
δ2 (λi − tλ(σ)) eit([µ(σ)λ̃i]+χ(σ)·ηi)j(σ)

where j(σ) is a Kac-Moody current and λiηi is the supermomentum. We include subscripts

with particle labels to distinguish the external data from worldsheet fields. We also define

the vertex operator Ṽ by complex conjugating V and Fourier transforming back to η space.

We define the left set L as the set of particles with Ṽ vertex operators, and the right set

R as those with V vertex operators. To compute an n-point Nk−2MHV superamplitude in

N = 4 SYM is then obtained from the worldsheet correlator〈
Ṽ1 . . . ṼkVk+1 . . .Vn

〉
integrated over the locations of the vertex operators. Particular component amplitudes can

then be extracted by integrating out the appropriate η variables. At tree-level, we may take

all the vertex operators to be integrated and use the SL(2)×GL(1) ∼ GL(2) symmetry to

fix the coordinates of two vertex operators to be σαi = (1, 0) and σαj = (0, 1). Note that

the remaining integral over worldsheet coordinates is localized by the delta functions in

the vertex operators which encode the scattering equations. The scattering equations are

then refined according to how many particles are in the left and the right set.
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As we mentioned above, the 4d ambitwistor string also describes CSGR. The spectrum

of this theory contains the following graviton multiplets:

Φ− = h−η1η2η3η4 + ηIηJηKψ
IJK + ηIηJA

IJ + ηIψ
I + φ−

Φ+ = φ+η1η2η3η4 + ηIηJηKψLε
IJKL + ηIηJAKLε

IJKL + ηIψJKLε
IJKL + h+, (2.2)

where h± refers to helicity ±2,
{
ψIJK , ψIJK

}
to helicity ±3/2,

{
AIJ , AIJ

}
to helicity

±1,
{
ψI , ψI

}
to helicity ±1/2, and φ± refer to spin-0 states. Note that the spin-1 states

above are distinct from the gluons of N = 4 SYM. Also note that the graviton multiplets

can have plane wave eik·x boundary conditions or non-plane wave A · xeik·x boundary

conditions because the equations of motion are fourth order in derivatives. We will present

vertex operators corresponding to the graviton multiplet states in the next sections and

demonstate their BRST invariance in appendix A. In contrast to the worldsheet formulae

for N = 4 SYM and N = 8 SUGRA, the scattering equations for CSGR are not in

general refined by MHV degree since the left set can contain states from both graviton

multiplets. Note that the CSGR spectrum also contains gravitino multiplets consisting of

states with helicities ±
{

3
2 , 1,

1
2 , 0,−

1
2

}
and plane-wave boundary conditions. The scattering

amplitudes for these states can be computed using the techniques we develop in this paper,

although we leave a detailed analysis for future work. For more details about spectrum of

CSGR in the context of the Berkovits-Witten model, see [6, 33].

3 Plane wave graviton multiplet scattering

In this section, we will consider scattering amplitudes for graviton multiplets with plane

wave boundary conditions in CSGR. First we derive a concise worldsheet formula for

scalar-graviton amplitudes, and then we lift it to a supersymmetric formula. We denote

left set vertex operators with Ṽ, and right set with V. The scattering equations will then

be refined by how many states are in the left set, which will not in general correspond to

the MHV degree.

The vertex operators describing gravitons and scalars are given by:

Ṽh−(σ) =

∫
dt

t2
〈λiλ(σ)〉 δ2

(
λ̃i − tλ̃(σ)

)
eit〈µ̃(σ)i〉

Ṽφ+(σ) =

∫
tdt
[
λ̃(σ)∂λ̃(σ)

]
δ2
(
λ̃i − tλ̃(σ)

)
eit〈µ̃(σ)i〉

Vφ−(σ) =

∫
tdt 〈λ(σ)∂λ(σ)〉 δ2 (λi − tλ(σ)) eit[µ(σ)i]

Vh+(σ) =

∫
dt

t2

[
λ̃iλ̃(σ)

]
δ2 (λi − tλ(σ)) eit[µ(σ)i] .

(3.1)

We verify the BRST invariance of these vertex operators in appendix A. Let Φ± be the set

of positive/negative scalars, and G± be the set of positive/negative helicity gravitons, so

that G− ∪ Φ+ = L and G+ ∪ Φ− = R. Tree-level graviton-scalar amplitudes can then be

obtained from the following correlator〈 ∏
lg∈G−

Ṽh−lg
∏

lφ∈Φ+

Ṽφ
+

lφ

∏
rφ∈Φ−

Vφ−rφ
∏

rg∈G+

Vh+rg

〉
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integrated over the locations of the vertex operators (modulo GL(2)). The correlator can

be easily computed using the path integral formalism by combining the exponentials in the

vertex operators with the action to obtain the modified Lagrangian

L = µ̃ · ∂̄λ− µ · ∂̄λ̃− µ̃ ·
∑
l∈L

tlλlδ (σ − σl) + µ ·
∑
r∈R

trλ̃rδ (σ − σr) .

Since the (µ, µ̃) fields do not appear anywhere else in the path integral, they can be in-

tegrated out yielding delta functionals which localize the functional integrals over the re-

maining fields onto solutions of the equations of motion

∂̄λ =
∑
l∈L

tlλlδ (σ − σl) , ∂̄λ̃ =
∑
r∈R

trλ̃rδ (σ − σr) ,

which are uniquely solved by

tλ(σ) =
∑
l∈L

λl
(σl)

, tλ̃(σ) =
∑
r∈R

λ̃r
(σr)

, (3.2)

where (ij) = (σi − σj) /titj . The amplitude is then given by the following worldsheet

integral:

Ah,φn,|L| =
∫
d2×nσ

GL(2)
δ(SE)

∏
lg∈G−

Hlg

∏
lφ∈Φ+

F̃lφ
∏

rφ∈Φ−

Frφ
∏

rg∈G+

H̃rg (3.3)

where d2×nσ = Πn
i=1dσidti/t

3
i ,

δ(SE) =
∏
l∈L

δ2
(
λ̃l − tlλ̃ (σl)

)∏
r∈R

δ2 (λr − trλ (σr)) (3.4)

F̃l =
∑

r<r′∈R

[rr′] (rr′)

(lr)2 (lr′)2 , Hl =
∑

l′∈L,l′ 6=l

〈ll′〉
(ll′)

Fr =
∑
l<l′∈L

〈ll′〉 (ll′)
(rl)2 (rl′)2 , H̃r =

∑
r′∈R,r′ 6=r

[rr′]

(rr′)
.

The delta functions in (3.4) localize the worldsheet integral onto solutions of refined scat-

tering equations.

For |L| = 2, the scattering equations have only one solution, and it can be found

analytically. As we show in appendix B, on the support of this solution (3.3) reduces to

the Berkovits-Witten result

Ah,φn,|L|=2 = δ4(P ) 〈12〉4
n∏

i∈Φ+∪H+

n∑
j=1,j 6=i

[ij]

〈ij〉
〈jxi〉 〈jyi〉
〈ixi〉 〈iyi〉

, (3.5)

where λxi and λyi are arbitrary reference spinors. For |L| > 2 we have verified (3.3) (and

its extension to include fermions and spin one states) numerically by matching it against

results obtained using Feynman diagrams and color-kinematics duality [37] up to eight

points with any number of particles in the left set.2 In order to do so, new techniques

were developed for numerically solving the scattering equations which will be reported on

in [39].

2We thank Henrik Johansson for providing numerical results derived from color-kinematics duality

against which to compare our worldsheet formula.
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3.1 Supersymmetric formula

The scalar-graviton vertex operators in (3.1) can be lifted to the following supersymmetric

vertex operators:

Ṽ−(σ) =

∫
dt

t2
〈λiλ(σ)〉 δ2|4

(
λ̃i − tλ̃(σ)

)
eit〈µ̃(σ)i〉

Ṽ+(σ) =

∫
tdt
[
λ̃(σ)∂λ̃(σ)

]
δ2|4

(
λ̃i − tλ̃(σ)

)
eit〈µ̃(σ)i〉

V−(σ) =

∫
tdt 〈λ(σ)∂λ(σ)〉 δ2 (λi − tλ(σ)) eit([µ(σ)i]+χ(σ)·ηi)

V+(σ) =

∫
dt

t2

[
λ̃iλ̃(σ)

]
δ2 (λi − tλ(σ)) eit([µ(σ)i]+χ(σ)·ηi)

(3.6)

where

δ2|4
(
λ̃i − tλ̃ (σ)

)
= δ2

(
λ̃i − tλ̃ (σ)

)
δ4 (ηi − tχ̃ (σ)) .

These vertex operators encode all states in the positive/negative helicity graviton multiplets

(denoted with a ±), which can occur in the left/right set (denoted with/without a tilde).

Hence, CSGR amplitudes are computed using four types of vertex operators, in contrast to

N = 4 SYM and N = 8 SUGRA which have only two types of vertex operators. Note that

the Ṽ± vertex operators can be obtained by complex conjugating the V∓ vertex operators

and Fourier transforming back to η space.

Let us denote the set of states with V± and Ṽ± vertex operators by Φ± and Φ̃±, respec-

tively. Then the left set L = Φ̃−∪ Φ̃+ and the right set R = Φ−∪Φ+. A superamplitude is

then obtained by computing a correlator of vertex operators integrated over the worldseet

(modulo GL(2)). As before, one can integrate out the (µ, µ̃) fields localizing (λ, λ̃) onto the

solutions in (3.2). In the supersymmetric case, we can similarly integrate out the χ fields,

localizing the χ̃ field onto the following solutions to the equations of motion:

tχ̃(σ) =
∑
r∈R

ηr
(σr)

.

An n-point Nk−2MHV amplitude with |L| particles in the left set is then given by the

following worldsheet formula:

Ank,|L| =
∫
d2×nσ

GL(2)
δ(SE)

∏
l−∈Φ̃−

Hl−

∏
l+∈Φ̃+

F̃l+
∏

r−∈Φ−

Fr−
∏

r+∈Φ+

H̃r+ , (3.7)

where k = |Φ−|+ |Φ̃−| and

δ(SE) =
∏
l∈L

δ2|4
(
λ̃l − tlλ̃ (σl)

)∏
r∈R

δ2 (λr − trλ (σr)) . (3.8)

Note that the superamplitude will be unchanged if we replace Φ± states with Φ̃± states as

long as |L| is preserved. For the special case where k = |L|, a formula in terms of integrals

over curves in twistor space was previously conjectured in [35], and it would be interesting

– 7 –
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to see how this formula is related to (3.7). Component amplitudes can be extracted by

integrating out the appropriate η variables. For example, the scalar-graviton amplitudes

in (3.3) are obtained by integrating out (ηl)
4 for l ∈ L, and setting (ηr) = 0 for r ∈ R. In

a similar way, one can also obtain component amplitudes with fermions and spin-1 states.

4 Non-plane wave graviton multiplet scattering

The fourth order equations of motion for conformal gravity lead to a second set of graviton

multiplet states with boundary conditions A · xeik·x. Note that if A · k = 0, then this is

actually a solution to the second order wave equation. Following from this we find that

vertex operators for non-plane wave states have a free vector index which will be contracted

into a choice of A for each state.

We propose the following vertex operators describing non-plane wave gravitons

and scalars:

Ṽαα̇h− (σ) =

∫
dt

t2

(
λαi µ

α̇(σ)− λα(σ)
∂

∂λ̃i,α̇

)
δ2
(
λ̃i − tλ̃(σ)

)
eit〈µ̃(σ)i〉

Ṽαα̇φ+ (σ) =

∫
tdt
(
∂µ̃α(σ)λ̃α̇(σ)− µ̃α(σ)∂λ̃α̇(σ)

)
δ2
(
λ̃i − tλ̃(σ)

)
eit〈µ̃(σ)i〉

Vαα̇φ− (σ) =

∫
tdt

(
λα(σ)∂µα̇(σ)− ∂λα(σ)µα̇(σ)

)
δ2 (λi − tλ(σ)) eit[µ(σ)i]

Vαα̇h+ (σ) =

∫
dt

t2

(
µ̃α(σ)λ̃α̇i − λ̃α̇(σ)

∂

∂λi,α

)
δ2 (λi − tλ(σ)) eit[µ(σ)i] .

(4.1)

Since the (µ, µ̃) fields appear outside the exponentials, when computing correlation func-

tions we cannot simply combine them with the action and integrate them out as before.

On the other hand, if we add source terms for these fields, then we can compute a different

correlator where they only appear in the exponentials and obtain the original correlator

by taking functional derivatives with respect to the sources and setting them to zero after-

wards. In more detail, we add the following source terms to the Lagrangian:

µ · J̃ − µ̃ · J

and consider a correlator of vertex operators like the ones in (4.1), but without (µ, µ̃)

terms outside the exponenti als. This correlator can then be evaluated by combining the

exponentials of the vertex operators with the action and integrating out (µ, µ̃) giving rise

to delta functionals which localize the (λ, λ̃) fields onto solutions of the following equations

of motion:

∂̄λ =
∑
l∈L

tlλlδ (σ − σl) + J, ∂̄λ̃ =
∑
r∈R

trλ̃rδ (σ − σr) + J̃ ,

which are uniquely solved by

tλ(σ) =
∑
l∈L

λl
(σl)

+

∫
dσ′

tJ (σ′)

σ − σ′
, tλ̃(σ) =

∑
r∈R

λ̃r
(σr)

+

∫
dσ′

tJ (σ′)

σ − σ′
. (4.2)

– 8 –
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We can then restore the terms with (µ, µ̃) outside the exponentials by taking functional

derivatives with respect to (J, J̃) and setting them to zero afterwards (note that after

setting the sources to zero, the scattering equations will no longer be deformed). From the

explicit form of (λ, λ̃) in (4.2), we conclude that correlators with non-plane wave vertex

operators can be evaluated by making the following substitutions for (µ, µ̃) outside of the

exponentials in (4.1):

µ(σ) =

∫
dσ′

σ − σ′
δ

δλ̃(σ′)
, µ̃(σ) =

∫
dσ′

σ − σ′
δ

δλ(σ′)
. (4.3)

These formulae are familiar from canonical quantization.

Note that the non-plane wave graviton vertex operators in (4.1) contain singular terms

which cancel out. In the first vertex operator for example, a pole arises in the first term

after making the replacement in (4.3), but this is precisely cancelled by the pole which

arises from λ(σ) in the second term. Indeed, looking at (3.2), we see that the residue of

the second pole is λi, which precisely cancels the residue of the first pole. We describe this

in more detail in appendix D, where we also work out some examples at n points with up

to two non-plane wave states, and show that amplitudes with non-plane wave states can

be obtained by acting on the plane-wave amplitudes with a momentum derivative for each

non-plane wave state. This could have been anticipated from the LSZ reduction formula

by noting that a non-plane wave solution can be written as a momentum derivative of a

plane-wave solution:

A · x eik·x = A · ∂
∂k

eik·x,

where k is understood to be off-shell prior to taking the derivative.

Since the amplitudes are manifestly 4d and on-shell, we must define a prescription

for taking momentum derivatives of on-shell quantities. We define such a prescription in

appendix C, and use it to derive the following formulae which are sufficient to differentiate

any little group invariant function of spinor brackets:

∂

∂pβ̇β

(
λα

〈λη〉

)
=

ηα

〈λη〉2
λβ ξ̃β̇

[ξ̃λ̃]

∂(λ̃α̇λα)

∂pβ̇β
= δαβ δ

α̇
β̇
−
ξ̃α̇ξαλβλ̃β̇

〈λξ〉 [ξ̃λ̃]
,

where η is an arbitrary spinor and ξ is a reference spinor which parametrizes an off-shell

extension of the momentum k. Another subtlety about non-plane wave amplitudes is that

they can be expressed in many different ways. For example, using momentum conservation

to remove the dependence on the momentum of a particular leg, amplitudes with a single

non-plane wave state can be written with a derivative acting only on the momentum-

conserving delta function, although the expressions we obtain from worldsheet calculations

will generally not be of this form for amplitudes with more than three legs. On the other

hand, amplitudes with non-plane wave states are well-defined in a distributional sense. In

particular, if we multiply a non-plane wave amplitude by a test function, integrate over
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momentum space, and perform integration by parts, then we are left with derivatives of

the test function times a plane-wave amplitude which is unambiguous.

Finally, let us point out that non-plane wave scalar-graviton amplitudes can be super-

symmetrized using the following vertex operators, which are the non-plane wave analogues

of (3.6):

Ṽαα̇− (σ) =

∫
dt

t2

(
λαi µ

α̇(σ)− λα(σ)
∂

∂λ̃i,α̇

)
δ2|4

(
λ̃i − tλ̃(σ)

)
eit〈µ̃(σ)i〉

Ṽαα̇+ (σ) =

∫
tdt
(
∂µ̃α(σ)λ̃α̇(σ)− µ̃α(σ)∂λ̃α̇(σ)

)
δ2|4

(
λ̃i − tλ̃(σ)

)
eit〈µ̃(σ)i〉

Vαα̇− (σ) =

∫
tdt

(
λα(σ)∂µα̇(σ)− ∂λα(σ)µα̇(σ)

)
δ2 (λi − tλ(σ)) eit([µ(σ)i]+χ(σ)·ηi)

Vαα̇+ (σ) =

∫
dt

t2

(
µ̃α(σ)λ̃α̇i − λ̃α̇(σ)

∂

∂λi,α

)
δ2 (λi − tλ(σ)) eit([µ(σ)i]+χ(σ)·ηi).

(4.4)

Once again, the superamplitude will depend on both the MHV degree and the number of

states in the left set.

5 Conclusion

In this paper we investigate tree-level scattering amplitudes of graviton multiplets in CSGR

using 4d ambitwistor string theory. This model has the same spectrum as the Berkovits-

Witten twistor string (notably N = 4 SYM and a non-minimal version of N = 4 CSGR)

but gives rise to scattering amplitudes in the form of worldsheet integrals supported on

refined scattering equations which are split into two sets, referred to as left and right. In

contrast to the 4d ambitwistor string formulae for N = 4 SYM and N = 8 SUGRA, we

find that the scattering equations for CSGR are in general not refined by MHV degree so

the amplitudes are labelled by the MHV degree as well as the size of the left set. On the

other hand, we are able to obtain very simple formulae for scattering amplitudes which

generalize previous results in several ways.

We obtain a compact formula describing the scattering of any number of scalars and

gravitons with any number of particles in the left set. If two particles are in the left set,

the worldsheet integrals can be solved analytically reproducing the results of Berkovits

and Witten. If more than two particles are in the left set, the worldsheet integrals can

be evaluated numerically and we match the results against those obtained using Feynman

diagrams and the double copy approach developed in [37] up to 8 points with any number

of particles in the left set. An explicit algorithm for numerically solving the scattering

equations and computing amplitudes with plane wave external states will be described

in [39]. Moreover we generalize the scalar-graviton amplitudes to a supersymmetric formula

using four types of vertex operators which describe states in the left or right set and the

positive or negative helicity graviton multiplet.

Since the equations of motion for CSGR are fourth order in derivatives, there are

also graviton multiplets with non-plane wave boundary conditions of the form A · xeik·x.

Amplitudes with such states are subtle to compute since this requires introducing sources
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in the worldsheet path integral which lead to deformed scattering equations, as well as

developing a prescription for taking momentum derivatives of spinor variables. In the end

however, we show that the amplitudes can be obtained by acting on plane wave amplitudes

with momentum derivatives.

There are a number of interesting open questions:

• Conformal symmetry is not manifest in our worldsheet formulae. As explained in [36],

this is not surprising since chosing plane wave external states singles out 2-derivative

solutions to the 4-derivative equations of motion, breaking conformal invariance. On

the other hand, the underlying theory has conformal symmetry so it would be inter-

esting to understand how it is realized at the level of amplitudes. Hidden conformal

symmetry of gravitational amplitudes was recently explored in [40], so it would be

interesting to see if the ideas developed in that paper can be applied to conformal

gravity.

• As shown in [23], the 4d ambitwistor string formulae for N = 4 SYM and N = 8

SUGRA can be mapped into Grassmannian integral formulae which can be derived

from a completely different approach involving on-shell diagrams. For N = 4 SYM,

these formulae suggest a new interpretation of the amplitudes as the volume of a

geometric object known as the Amplituhedron [41]. It would interesting to carry out

an analogous mapping for CSGR amplitudes and see if they have a similar geometric

interpretation.

• A double copy construction has recently been proposed for CSGR [37], which involves

combining super-Yang-Mills with a certain non-supersymmetric (DF )2 gauge theory,

and an ambitwistor string theory describing the latter in general dimensions was

proposed in [38]. It would be interesting to try to formulate the (DF )2 theory

using 4d ambitwistor string theory and obtain worldsheet formulae for the scattering

amplitudes supported on refined scattering equations.

• Classical Einstein gravity in dS4 can be obtained from conformal gravity by imposing

Neumann boundary conditions which fix external states to be of the Bunch-Davies

form (1 + ikη) e−ikη+i~k·~x, where η is the conformal time coordinate. These external

states have also been used to compute three and four-point de Sitter correlators using

Feynman diagrams and BCFW recursion and the results are consistent with holog-

raphy [42, 43]. Note that the Bunch-Davies state is essentially a linear combination

of plane-wave and non-plane wave states which are precisely of the form we have

studied in this paper. We therefore hope that the techniques developed in this paper

can be used to compute de Sitter correlators using worldsheet methods.3

In summary, we find that 4d ambitwistor string theory reveals interesting new mathe-

matical structure in the scattering amplitudes of CSGR, which appears to be very different

3Note that correlators in dS and AdS are related by analytic continuation [45]. A twistor string formula

for N = 8 SUGRA in AdS4 was proposed in [44], although it is written in terms of external states which

make it difficult to relate it to results obtained using other methods.
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from the structure previously found in N = 4 SYM and N = 8 SUGRA. We hope that ex-

ploring the directions described above will lead to a deeper understanding of gravitational

amplitudes which can ultimately be applied to more realistic models.
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A BRST quantization

In this appendix, we will review how to BRST quantize the 4d ambitwistor string theory

in (2.1). After gauging the GL(1) symmetry (Z,W ) →
(
ΩZ,Ω−1W

)
and introducing a

worldsheet vielbein by taking ∂̄ → ∂̄ + e∂, the Lagrangian becomes

L → L+ aZ ·W + eTmatter,

where a is a worldsheet gauge field and

Tmatter =
1

2
(Z · ∂W −W · ∂Z) + Tj ,

where Tj is the current algebra stress tensor.

Note that this action is a (β, γ) ghost system with holomorphic conformal weights

(1/2, 1/2). A general (β, γ) system with holomorphic conformal weights (λ, 1− λ) has the

stress tensor

Tβγ = λβ∂γ − ε(1− λ)γ∂β,

where ε = ±1 for bosonic/fermionic statistics. The central charge can then be read off

from the OPE of T with itself and is given by

c = 2ε
(
6λ2 − 6λ+ 1

)
. (A.1)

We may gauge-fix e = a = 0 using the Fadeev-Popov procedure by introducing ghost

systems (b, c) and
(
b̃, c̃
)

with holomorphic conformal weights (2,−1) and (1, 0), respec-

tively. The stress tensor for the ghosts is then given by Tghost = Tbc + Tb̃c̃ where

Tbc = 2b∂c− c∂b, Tb̃c̃ = b̃∂c̃.

Using (A.1), the contribution of the ghosts to the central charge is cghost = −26−2 = −28.

We then define the BRST charge Q as follows:

Q =

∮
dσ (c (Tmatter + Tghost) + c̃Z ·W ) .
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The key property that Q must satisfy is nilpotency, i.e. Q2 = 0. In order for Q to satisfy

this constraint, the total central charge must vanish. The (Z,W ) system has zero central

charge since the bosonic contributions cancel the fermionic ones, so the central charge of

the current algebra must be cj = +28.

The physical states of the theory correspond to the BRST cohomology. Hence, the

corresponding vertex operators must be Q-closed, i.e. {Q,V} = 0. The condition of Q-

closure implies that the vertex operators must have holomorphic conformal weight wV = 1

and GL(1) weight qV = 0. The conformal and GL(1) weights may in turn be read off from

the OPE of the vertex operator with T and Z ·W :

T (σ)V(σ′) =
wVV(σ)

(σ − σ′)2 + . . . , Z ·W (σ)V(σ′) =
qVV(σ)

σ − σ′
+ . . .

where the ellipsis denote less singular terms.

Let us verify that the vertex operators considered in this paper are Q-closed. Since

the equations of motion for conformal gravity are fourth order in derivatives, the spectrum

contains plane wave states of the form eik·x as well as non-plane wave states of the form

A · xeik·x. Moreover, in the ambitwistor string framework, vertex operators with opposite

helicity are simply complex conjugates of each other and are therefore naturally divided

into two sets, which we shall refer to as left and right sets (the scattering equations are

then refined by the number of states in each set).

A plane-wave vertex operator in the right set is schematically of the form

δ2 (λi − tλ(σ)) eitµ(σ)·λ̃i ,

where ki = λiλ̃i is the on-shell momentum. Using the incidence relation adapted to world-

sheet fields µ(σ) = x · λ(σ) (where x is a point in spacetime), we see that the exponential

reduces to a plane-wave on the support of the delta function. Let us therefore consider an

ansatz for a plane-wave vertex operator of the form

V(σ) =

∫
dt

tγ
δ2 (λi − tλ(σ)) eitµ(σ)·λ̃i

[
λ̃(σ)λ̃i

]s−1
j(σ), (A.2)

where s ≥ 1. In practice, one can avoid a tedious (but straightforward) OPE calculation

using the following rules for computing conformal and GL(1) weights:

T : [Z] = [W ] = −[t] =
1

2
, [∂] = 1

Z ·W : [Z] = −[W ] = −[t] = 1, [∂] = 0,

where weights of t are fixed by the consistency condition that [tZ] = 0 (for vertex operators

in the left set, t will have opposite weights). We take external spinors have zero weight i.e.

[λi] =
[
λ̃i

]
= 0. Applying these rules to the vertex operator in (A.2), we find that

wV =
1

2
(γ − 1) +

1

2
(s− 1) + wj , qV = (γ − 1)− (s− 1),
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where wj is the conformal weight of the current algebra. Q-closure then implies that γ = s

and wj = 2− s, which implies that s ≤ 2.4 If s = 1, then the vertex operator reduces to

V(σ) =

∫
dt

t
δ2 (λi − tλ(σ)) eitµ(σ)·λ̃ij(σ) (A.3)

which describes a gluon in N = 4 SYM. For s = 2, the vertex operator describes a graviton

with plane wave boundary conditions:

V(σ) =

∫
dt

t2
δ2 (λi − tλ(σ)) eitµ(σ)·λ̃i

[
λ̃(σ)λ̃i

]
,

where we discarded the current algebra since wj = 0.

To deduce the vertex operator for a scalar in the left set, consider the ansatz

V(σ) =

∫
dt

tγ
δ2 (λi − tλ(σ)) eitµ(σ)·λ̃i 〈λ(σ)∂λ(σ)〉1−s j(σ) (A.4)

where s ≤ 1. Using the rules described above, one finds that

wV =
1

2
(γ − 1) + 2(1− s) + wj , qV = 2(1− s) + (γ − 1).

Imposing wV = 1 and qV = 0 then implies that γ = 2s − 1 and wj = s, from which we

deduce that s ≥ 0. If s = 1, then the vertex operator reduces to the gluon vertex operator

in (A.3), but if s = 0 it describes a scalar with plane-wave boundary conditions

V(σ) =

∫
tdtδ2 (λi − tλ(σ)) eitµ(σ)·λ̃i 〈λ(σ) · ∂λ(σ)〉 .

Let us now turn our attention to non-plane wave states. Let us consider the follow-

ing ansatz:

V(σ) =

∫
dt

tγ

(
Aαα̇

(
µ̃α(σ)λ̃α̇i − λ̃α̇(σ)

∂

∂λi,α

))s−1

δ2 (λi − tλ(σ)) eitµ(σ)·λ̃i .

Following an analysis very similar to the one for (A.2), we find that s = γ = 2, so the

vertex operator reduces to that of a non-plane wave graviton. Similarly, we find that the

following ansatz

V(σ) =

∫
dt

tγ
(
Aαα̇

(
λα(σ)∂µα̇(σ)− µα̇(σ)∂λα(σ)

))1−s
δ2 (λi − tλ(σ)) eitµ(σ)·λ̃i

must satisfy s = 0 and γ = −1, and reduces to the vertex operator for a non-plane

wave scalar.

4Note that if we do not impose the constraint qV = 0, i.e. we do not gauge the GL(1) symmetry of the

worldsheet theory, then vertex operators with higher spin appear to be allowed.
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B Derivation of Berkovits-Witten formula

In this appendix, we will evaluate the worldsheet integral in (3.3) for the case |L| = 2. In

this case, the worldsheet integral is straightforward to evaluate analytically. Let us take

the left set to be L = {1, 2} and the right set to be R = {3, . . . , n}. Using the GL(2)

symmetry to set σα1 = (1, 0) and σα2 = (0, 1), the delta functions encoding the refined

scattering equations reduce to∏
l∈L

δ2
(
λ̃l − tlλ̃ (σl)

)
= 〈12〉2 δ4(P ),

δ2 (λr − trλ (σr)) =
(1r)2 (2r)2

〈12〉 (12)
δ

(
σ1
r −
〈21〉
〈r1〉

)
δ

(
σ2
r −
〈21〉
〈r2〉

)
, r ∈ R.

The remaining worldsheet integrals then localize onto the solution

σαr =

(
〈21〉
〈r1〉

,
〈21〉
〈r2〉

)
, r ∈ R. (B.1)

On the support of the refined scattering equations, (3.3) then reduces to

Ah,φn,|L|=2 = δ4(P ) 〈12〉2
∏
r∈R

(1r)2(2r)2

〈12〉 (12)

∏
lg∈G−

〈12〉
(12)

∏
lφ∈Φ+

∑
r<r′∈R

[rr′](rr′)

(lφr)2(lφr′)2

∏
rφ∈Φ−

〈12〉 (12)

(1rφ)2(2rφ)2

∏
rg∈G+

∑
r∈R

[rgr]

(rgr)

= δ4(P )
〈12〉4

(12)2

∏
lφ∈Φ+

∑
r<r′∈R

[rr′](rr′)(12)

(lφr)2(lφr′)2 〈12〉
∏

rg∈G+

∑
r∈R

[rgr](1rg)
2(2rg)

2

(rgr) 〈12〉 (12)
.

(B.2)

Plugging in (B.1), we find that the factor associated with each h+ leg is given by∑
r∈R

[rgr](1rg)
2(2rg)

2

(rgr) 〈12〉 (12)
=
∑
r∈R

[rgr] 〈1r〉 〈2r〉
〈rgr〉 〈1rg〉 〈2rg〉

= ψλ1λ2rg ,n , (B.3)

where we define the gravitational inverse soft factor for leg j as follows:

ψabj,n =
n∑

k=1,k 6=j

[jk]

〈jk〉
〈ka〉 〈kb〉
〈ja〉 〈jb〉

, (B.4)

where a and b are reference spinors. Using momentum conservation, it is possible to show

that the inverse soft factor is independent of the choice of reference spinors so we will just

refer to it as ψj,n. Similarly, we find that the factor associated with each φ+ leg is given by∑
r<r′∈R

[rr′](rr′)(12)

(lφr)2(lφr′)2 〈12〉
= ψlφ,n, (B.5)

where we checked the second equality numerically up to high multiplicity. Hence, we find

that for |L| = 2, (3.3) reduces to the formula of Berkovits and Witten;

Ah,φn,|L|=2 = δ4(P ) 〈12〉4
∏

i∈Φ+∪G+

ψi,n.
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C Momentum derivatives

We would like to be able to take derivatives of on-shell quantities with respect to off-

shell momenta. As written, this problem is not well specified as there are four degrees of

freedom in an off shell momentum p but only three degrees of freedom in the spinor variables

which parametrize an on-shell momentum after removing the little group redundancy. We

work with real momenta such that λ̃β̇ = λβ∗. To make the problem well-defined, we will

introduce a fourth degree of freedom α in addition to the three degrees of freedom in the

spinor variables and write the off-shell momentum in terms of (λβ , α) as follows:

pβ̇β = λ̃β̇λβ + αξ̃β̇ξβ (C.1)

where ξαα̇ = ξαξ̃α̇ is a reference null vector which encodes an off-shell direction.

Inverting these equations to solve for α(p) is simple, and we find that α(p) = p2

2p·ξ . We

can also solve for λ(p)β . To see this, contract with the spinor ξ̃β̇ to arrive at ξ̃β̇p
β̇β = [ξ̃λ̃]λβ .

For real momenta it is clear that
∣∣∣[ξ̃λ̃]

∣∣∣2 = ξ · p, hence there must exist some phase θ(p)

such that [ξ̃λ̃] = e−iθ
√
ξ · p. Given that λ is defined only up to an arbitrary phase, we can

express it in terms of p as follows:

λ(p)β = eiθ(p)
ξ̃β̇p

β̇β

√
ξ · p

. (C.2)

Note that for the choice ξα =

(
0

1

)
and θ = 0 we recover the well-known expression

λ(p)β =
1√

p0 + p3

(
p0 + p3

p1 − ip2

)
. (C.3)

Differentiating (C.2) with respect to the off-shell momentum then gives

∂λ(p)α

∂pβ̇β
=

∂

∂pβ̇β

(
eiθ(p)ξ̃α̇p

α̇α

√
ξ · p

)

=
δαβ e

iθ(p)ξ̃β̇√
ξ · p

− 1

2

eiθ(p)ξ̃α̇p
α̇α

√
ξ · p

ξβ ξ̃β̇
ξ · p

+ i
∂θ(p)

∂pβ̇β
eiθ(p)ξ̃α̇p

α̇α

√
ξ · p

=
δαβ ξ̃β̇

[ξ̃λ̃]
− 1

2

λ(p)αξβ ξ̃β̇

〈λξ〉 [ξ̃λ̃]
+ i

∂θ(p)

∂pβ̇β
λ(p)α.

(C.4)

In general, differentiating a function of spinor brackets which is not little-group in-

variant will result in a ∂θ(p)
∂p term. Let us therefore consider momentum derivatives of the

little-group invariants λ̃α̇λα and λβ

〈λη〉 , where η is an arbitrary spinor (which can come from

a different external leg for example). We find that

∂

∂pβ̇β

(
λα

〈λη〉

)
=
〈λη〉 ∂λα

∂pβ̇β
+ ηγ

∂λγ

∂pβ̇β
λα

〈λη〉2

=
ηα

〈λη〉2
λγ

∂λγ

∂pβ̇β
=

ηα

〈λη〉2
λβ ξ̃β̇

[ξ̃λ̃]
,

(C.5)

– 16 –



J
H
E
P
0
7
(
2
0
1
8
)
0
7
4

where in the second line we used the Schouten identity, and in the third equality we

used (C.4). Furthermore, using equation (C.1) we find that

∂(λ̃α̇λα)

∂pβ̇β
=

∂

∂pβ̇β

(
pα̇α − p2

2ξ · p
ξβ̇ξβ

)
. (C.6)

This calculation involves only derivatives of vectors with respect to vectors, and hence we

do not need equation (C.4). The result is

∂(λ̃α̇λα)

∂pβ̇β
= δαβ δ

α̇
β̇
−
ξ̃α̇ξαλβλ̃β̇

〈λξ〉 [ξ̃λ̃]
. (C.7)

Note that the right-hand-side is a projection matrix which removes components along the

off-shell direction, i.e. ξβ̇ξβ ∂λ̃
α̇λα

∂pβ̇β
= 0 and pβ̇β ∂λ̃

α̇λα

∂pβ̇β
= λ̃α̇λα.

D Non-plane wave examples

In this section, we will work out examples of scattering amplitudes for non-plane wave

states of the form A · xeik·x using the vertex operators proposed in section 4, and use

the method described in appendix C to express them as momentum derivatives of plane

wave amplitudes.

D.1 Non-plane wave scalar

We will first calculate an amplitude with two plane wave negative helicity gravitons, a

negative multiplet scalar with non-plane wave boundary conditions, and n− 3 plane wave

positive helicity gravitons. We then define the left set to be L = {1, 2}, the right set R to

contain the remaining particles, and the set R′ = {4, . . . n} to be the set of positive helicity

gravitons. The vertex operators for these states can be found in (3.1) and (4.1).

After replacing (µ, µ̃) outside the exponential in the non-plane wave scalar vertex op-

erator and taking functional derivatives according to (4.3), we obtain the following world-

sheet formula:

A(h−h−φ−x h
+ . . .h+) =A3αα̇

∫
d2×nσ

GL(2)

〈12〉2

(12)2

(( ∏
ρ∈R′

∑
r∈R

[ρr]

(ρr)

)
(12)

(13)2(23)2

(
λα2

∂

∂λ̃1α̇

−λα1
∂

∂λ̃2α̇

)

+
∑

ρ∈R′,l∈L

λ̃α̇ρλ
α
l (ρl)

(3ρ)2(3l)2

( ∏
ρ′∈R′,ρ′ 6=ρ

∑
r∈R

[ρ′r]

(ρ′r)

))
δ(SE). (D.1)

The first term comes from acting with the functional derivatives on the delta functions

imposing the scattering equations, and the second term comes from acting on the spinor

brackets
[
λ̃ρλ̃ (σρ)

]
in the positive-helicity graviton vertex operators.

We can evaluate the worldsheet integral analytically following the same procedure

described in appendix B. Using the GL(2) symmetry to fix σα1 = (1, 0) and σα2 = (0, 1) and

converting the delta functions in the left set into a momentum conserving delta function,

we see that the remaining terms do not depend on λ̃1 or λ̃2. Furthermore, the Jacobian
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from the scattering equation delta functions only contains angle brackets, so the ∂
∂λ̃

will

act only on the momentum conserving delta function. We can then simplify this part of

the calculation as follows:(
∂

∂λ̃1α̇

λα2 −
∂

∂λ̃2α̇

λα1

)
δ4(P ) =

(
λ1β

∂

∂Pα̇β
λα2 − λ2β

∂

∂Pα̇β
λα1

)
δ4(P )

= 〈12〉 ∂

∂P3 α̇α
δ4(P ).

(D.2)

After some further simplification using the Schouten identity, we obtain

A(h−h−φ−x h
+ . . .h+) = 〈12〉4A3αα̇

( ∏
ρ∈R′

ψλ1λ2ρ,n
∂

∂P3 α̇α
(D.3)

+
∑
ρ∈R′

λ̃α̇ρ
(
〈12〉〈ρ3〉λα3 +〈23〉〈13〉λαρ

)
〈3ρ〉2 〈1ρ〉〈2ρ〉

∏
ρ′∈R′,ρ′ 6=ρ

ψρ′,n

)
δ4(P ),

where the gravitational inverse soft factor ψρ,n was defined in (B.4).

Using the results in appendix C, it is not difficult to show that (D.3) can be obtained

by applying a momentum derivative to a plane-wave amplitude as follows:

A(h−h−φ−x h
+ . . . h+) = 〈12〉4A3 ·

∂

∂P3

∏
ρ∈R′

ψρ,nδ
4(P )

 . (D.4)

Clearly for n = 3, |R′| = 0 and the result holds. To show this for n > 3, let us compute

the momentum derivative of the gravitational inverse-soft factor for leg j with respect to

particle i where i 6= j and assume that the reference spinors do not depend on i. We then

find that

∂

∂P β̇βi

ψabj,n =
∂

∂P β̇βi

∑
k 6=j

[jk]

〈jk〉
〈ka〉 〈kb〉
〈ja〉 〈jb〉

=
1

〈ja〉 〈jb〉

(
λ̃jα̇

∂

∂P β̇βi

(
λ̃α̇i λ

α
i

)
aα
〈ib〉
〈ji〉

+ [ji] 〈ia〉 ∂

∂P β̇βi

(
λαi
〈ji〉

)
bα

)

=
λ̃jβ̇

〈ja〉 〈jb〉 〈ij〉2

(
〈ab〉 〈ji〉λiβ + 〈ia〉 〈bi〉λjβ

)
,

(D.5)

where we used equations (C.5) and (C.7) and chose the reference spinor to be ξ̃α̇ = λ̃α̇j .

Setting i = ρ, j = 3, a = λ1, and b = λ2, we see that the second term in (D.3) contains the

derivative of ψρ,n, from which (D.4) follows.

D.2 Non-plane wave graviton

We now compute an amplitude with one negative-helicity non-plane wave graviton,

A(h−x h
−h+ . . . h+). As outlined in section 4, the vertex operator for h−x has divergences

– 18 –
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which cancel, and we show the details of this here. Following the same steps as in the

previous section, we obtain the following worldsheet formula:

A(h−x h
−h+ . . . h+) = A1ββ̇

∫
d2×nσ

GL(2)

〈12〉
(12)(

lim
α→σ1

(λβ1 ∂
∂λ̃1β̇

α− σ1
+

λβ1
∂

∂λ̃2β̇

(12)
−
λβ1

∂
∂λ̃1β̇

α− σ1
−
λβ2

∂
∂λ̃1β̇

(12)

)∏
r∈R

∑
r′∈R

[rr′]

(rr′)

+
∑
r∈R

λβ1 λ̃
β̇
r

(1r)

∏
r′ 6=r∈R

∑
r′′∈R

[r′r′′]

(r′r′′)

)
δ(SE)

(D.6)

where the first term comes from acting with the functional and ordinary derivative in h−x on

the delta functions imposing the scattering equations, the second term comes from acting

with the functional derivative on the spinor brackets
[
λ̃rλ̃ (σr)

]
in the positive-helicity

graviton vertex operators, and we have regulated divergent terms by taking a limit.

Cancelling the singular terms and carrying out the worldsheet integral as described in

appendix B then gives

A(h−x h
−h+ . . . h+) = A1ββ̇

∫
d2×nσ

GL(2)

〈12〉
(12)

((λβ1 ∂
∂λ̃2β̇

− λβ2 ∂
∂λ̃1β̇

(12)

)∏
r∈R

∑
r′∈R

[rr′]

(rr′)

+
∑
r∈R

λβ1 λ̃
β̇
r

(1r)

∏
r′ 6=r∈R

∑
r′′∈R

[r′r′′]

(r′r′′)

)
δ(SE) (D.7)

= 〈12〉4A1ββ̇

(∏
r∈R

ψλ1λ2r,n

∂

∂P1ββ̇

+
∑
r∈R

〈12〉λβ1 λ̃
β̇
r

〈1r〉2 〈2r〉

∏
r′∈R,r′ 6=r

ψr′,n

)
δ4(P ).

Using the results from appendix C to differentiate the gravitational inverse soft factor as

we did in the previous section, we arrive at the final result that

A(h−x h
−h+ . . . h+) = 〈12〉4A1 ·

∂

∂P1

(∏
r∈R

ψλ1λ2r,n δ4(P )

)
. (D.8)

Following a similar calculation with two h−x states we find that

A(h−x h
−
x h

+ . . . h+) = 〈12〉4
(
A1 ·

∂

∂P1

)(
A2 ·

∂

∂P2

)(∏
r∈R

ψλ1λ2r,n δ4(P )

)
(D.9)

where A1,2 are vectors in the wavefunctions of particles 1,2.
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