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ABSTRACT

We explore a phase formalism that underpins a method of calculation of the
cumulative density of states of one-dimensional photonic crystals based on the node-
counting theorem. Node counting is achieved by considering the spatial dependence
of a phase variable proportional to the logarithmic derivative of the electric field
in the structure. The properties of the phase variable are considered for photonic
crystals in general, and illustrative algebraic and numerical results are presented for
the phase variable and cumulative density of states of a model crystal. It is also
shown how a simple extension of the theory can facilitate the calculation of the
reflectivity of finite samples. For a disordered model crystal, a differential equation
for the distribution function of the phase variable is derived and then used to obtain
a closed-form expression for the ensemble-averaged cumulative density of states and
numerical results to illustrate band tailing in the photonic bandgap.
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1. Introduction

The cumulative (or integrated) density of states of a photonic structure for a given
frequency is the number of electromagnetic states per unit volume with frequency less
than that value. Greshnov et al (1 , 2 ) have reported calculations of the cumulative
density of states of one-dimensional disordered photonic crystals based on the node-
counting theorem (3–5 ), which has a well-documented history of use in numerical and
analytical calculations of the density of states as a function of energy of a quantum
particle in a one-dimensional random potential (see for example the original work of
(4–6 ) and the reviews of (7 , 8 )).

One approach to counting nodes in the quantum problem is to define a phase (6 ,
8 ) in terms of the logarithmic derivative of real wavefunctions of the system. In a
disordered system that phase can be treated as a stochastic variable whose probability
distribution can be used to determine the cumulative density of states. Greshnov et al
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(1 , 2 ) were the first to use an analogous approach to calculate the density of photonic
states of a disordered one-dimensional photonic crystal. They considered a structure
consisting of equal-thickness alternating layers of two different dielectric materials
where some randomness was introduced into the values of the refractive indices of
the layers. With the aid of some judicious approximations they were able to derive a
Fokker-Planck equation (9 ) for the distribution function of the phase and then solve
that equation to predict the density of states at frequencies in and close to the lowest-
frequency bandgap of the structure. In later work (10 ) the light localization length
was studied using similar techniques.

The main motivation for the work reported in (1 , 2 ) was to provide an analysis of
the numerical studies reported in (11 ) of disorder-induced band tailing in the bandgap
of a specific type of photonic crystal. While that aim was achieved, constraints of
paper length and the focus on a specific problem meant that it was not possible
to discuss some additional interesting features of the phase formalism, including its
application to calculating the density of states of perfect photonic crystals as well as
disordered structures. Therefore in this paper we consider the more general potential
of the approach and also describe an in-depth study of the theory of a particular model
system with a simplicity that facilitates the analysis and hence allows the discussion
to concentrate on further interesting aspects of the phase formalism.

Photonic bandgaps are manifested in the reflection spectrum of a photonic structure
and we show in section 4 how the wave admittance of the electromagnetic field in a
one-dimensional structure, which is also defined in terms of the logarithmic derivative
of the electric field, may be used to advantage in the calculation of the reflectivity of
certain crystals.

2. A method for calculating the cumulative density of states of a

photonic structure using the phase formalism

We consider the problem of calculating the cumulative density of states of a one-
dimensional photonic structure described by a refractive index profile n(x) as a func-
tion of position x. Consideration is restricted to states that have spatial variation only
in the x-direction. Those states have have orthogonal electric and magnetic fields in
the y-z plane and all the calculations presented refer to just one of the two independent
field-polarizations that can be chosen.

The method of calculation is based on the node-counting theorem (3 , 4 , 7 , 8 ) which,
in the electromagnetic context considered here, states that the number of frequency
eigenvalues of the wave equation not exceeding any given angular frequency ω in a
system of given length does not differ by more than unity from the number of zeroes
of the electric field at frequency ω when it has a real logarithmic derivative at one end of
the system. However, it should be noted that the electric field functions calculated with
such a boundary condition will not normally be eigenfunctions of the wave equation.

Using the complex notation, we consider electric fields that have a dependence on
x and time t of the form E(x) exp[i(ωt+ δ)], where E(x) is a real function of position
and δ is a phase constant. Then the problem reduces to counting the number of zeroes
in the function E(x) as a function of ω. To count the zeroes in the electric field it
is convenient to consider a dimensionless quantity proportional to the logarithmic
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derivative of the electric field:

X(x) =
α/k0

E(x)

dE(x)

dx
, (1)

where k0 = ω/c (with c the velocity of light) and α is a constant. At each zero in E(x)
there will be a divergence in X(x) and the counting of those is facilitated by writing

X(x) = cot(φ(x)/2). (2)

It is apparent from equation 2 that the zeroes in E(x) occur when the phase variable
φ(x) = 0, ±2π, ±4π . . . and hence with uniform density 1/2π in φ-space. It follows
that the cumulative density of states per unit length N (ω) is given by

N (ω) = (φ(x2) − φ(x1)) /2π(x2 − x1) (3)

as x2 − x1 → ∞. It should be noted that although the detailed behaviour of φ(x)
depends on the choice of the constant α in equation 2, that choice does not affect the
values of x at which φ becomes an integer multiple of 2π and hence equation 3 for
N (ω) is universally applicable.

It is clear from equation 3 that N (ω) follows directly from a knowledge of φ(x). A
differential equation determining φ(x) can be obtained by first deriving the equation
obeyed by X(x). From equation 1 we have

dX(x)

dx
=

α

k0

(

E
(

d2E/dx2
)

− (dE/dx)2

E2

)

= −αk0n(x)2 − (k0/α)X(x)2, (4)

where we have made use of the wave equation for electric field,

d2E

dx2
+ n(x)2k2

0E = 0, (5)

in the second equality. Substituting equation 2 into 4 gives a differential equation for
the phase φ(x),

dφ

dx
= (k0/α)

[(

1 + α2n(x)2
)

+
(

1 − α2n(x)2
)

cosφ
]

, (6)

which will normally have to be solved numerically.

3. An example of the application of the phase formalism to a model

one-dimensional photonic crystal

We begin our study of the application of the phase formalism to the calculation of
the cumulative density of states of one-dimensional photonic crystals by considering
a simple model of a perfect crystal in which the relative permittivity has a sinusoidal
variation with x of fractional amplitude γ and period a about a mean value n2

0:

n(x)2 = n2
0 (1 + γ sinpx) , (7)
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where n(x) is the refractive index and p = 2π/a. Equation 7 describes a mathematically
convenient model system but we will find that as well as having the virtue of simplicity,
it exhibits properties that are common to more practical structures and provides useful
theoretical insight into those properties. We consider a particular case of the crystal
with n0 = 2.5 and γ = 0.5, giving a refractive index that oscillates between 1.77 to
3.06. A high dielectric contrast has been chosen to provide a stringent test for the
approximations that will be used in the analysis.

Note that with a modulation defined in terms of a continuously varying relative
permittivity and a high dielectric contrast, the example considered here is rather
different from the structure considered in (2 ) with its step-function modulation of
the refractive index and much lower dielectric contrast.

Substituting equation 7 in equation 6, choosing α = 1/n0 and writing y = px gives

dφ

dy
= n0σ [2 + γ sin y(1− cosφ)] , (8)

where σ = k0/p = ωa/2πc. Instead of attempting to solve equation 8 directly there is
some advantage in considering the deviation of the phase from the value it would have
in a homogeneous medium with the relative permittivity n2

0, which we will call the
effective medium value. The solution to equation 8 when γ = 0 (so that n(x) = n0) is
simply φ(y) = 2n0σy. Then if we write

φ(y) = 2n0σy + θ(y), (9)

and substitute φ into equation 8, we see that θ(y) can be determined by solving

dθ(y)

dy
= n0σ γ sin y [1 − cos(2n0σy + θ(y))] . (10)

It follows from equation 3 that the cumulative density of states per unit cell of the
structure is given by

Nuc(ω) =
θ(y2) − θ(y1)

y2 − y1
+ 2n0σ. (11)

The second term in equation 11 contributes a constant linear increase in the cumulative
density of states with frequency. Numerical solution of equation 10 shows that the
contribution of the first term is relatively small except at the band edges, and in the
bandgap where its decrease with frequency exactly cancels the increase given by the
first term.

The spatial dependence of θ is shown in figure 1 for σ = 0.1, corresponding to the
middle of the first band, in the region around 100 unit cells from the point y = 0
where θ is set to zero as the boundary condition for the calculation. The oscillatory
behaviour of θ is superimposed on a slow increase of its mean value, indicating that
the cumulative density of states at this frequency is essentially identical to that of a
homogeneous medium of refractive index n0. Because the oscillations have relatively
small amplitude about θ ≈ π/2 they can be reproduced to a good approximation by
taking θ = π/2 on the right hand side of equation 10 and then integrating over y.

Although there is no net change in phase across the photonic structure in the
bandgap, the phase does exhibit spatial oscillations which are frequency-dependent.
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Figure 1. The phase variable θ (defined by equations 2 and 9) as a function of position in four crystal periods

in the body of a photonic crystal in which the square root of the mean relative permittivity is n0 = 2.5 and
the fractional amplitude of the sinusoidal permittivity modulation is γ = 0.5. σ = ωa/2πc = 0.1, which is at

the centre of the lowest photonic band.

To study the spatial and frequency dependence of the phase in the bandgap it is in-
structive to consider how φ departs from its effective medium value in the bandgap.
Basic diffraction considerations suggest that the first bandgap exists at the wavevector
p/2 and hence around frequency ω ≈ ωg = πc/n0a and σ ≈ 1/2n0. Hence we take the
effective medium value of 2n0σy to be simply y and write

φ(y) = y + ψ(y) (12)

Substituting for φ in equation 8 gives

dψ(y)

dy
= 2n0σ − 1 + n0σ γ sin y [1 − cos(y + ψ(y))] . (13)

Equation 13 may be solved numerically and figure 2 shows a typical example of how
ψ is a periodic function of position inside the bandgap. Figure 3 shows that the mean
value of ψ varies with frequency and takes the value π close to the gap centre. Outside
the bandgap ψ is no longer periodic and its mean value changes monotonically from
unit cell to unit cell.

The cumulative density of states per unit cell may be obtained by numerical solution
of equation 13 and then use of

Nuc(ω) =
ψ(y2) − ψ(y1)

y2 − y1
+ 1, (14)

which is derived from equation 3, y = px and φ(y) = y + ψ(y).
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Figure 2. The solid line shows the phase variable ψ (defined by equations 2 and 12) as a function of position

in four crystal periods in the body of the structure described in the caption of figure 1. The dashed line shows
the mean value of ψ. σ = ωa/2πc = 0.215, which corresponds to the upper half of the lowest bandgap.

However, equation 13 may be simplified somewhat by using approximations based
on the periodicity of the structure and of ψ, and the relatively small amplitude of
oscillation of ψ. Expanding the cosine term in equation 13 and neglecting the oscillation
of ψ while averaging over a unit cell of the structure gives

dψa
dy

= F +G sinψa, (15)

where F = 2n0σ − 1 = (ω/ωg) − 1, G = n0σ γ/2 = (γ/4)(ω/ωg) and the subscript a
on ψ denotes an approximate solution.

For F 2 ≤ G2 equation 15 may be integrated (12 ) to give

1√
G2 − F 2

ln

(

F tan(ψa/2) +G−
√
G2 − F 2

F tan(ψa/2) +G+
√
G2 − F 2

)

= y + A, (16)

where A is an arbitrary constant. As y → ±∞, tan(ψa/2) → −(G±
√
G2 − F 2)/F or

equivalently

ψa = arcsin(−F/G), (17)

which when substituted into equation 15 gives dψa/dy = 0. Alternatively we could
have argued rather more directly that for F 2 ≤ G2 there is a real stationary solution
to equation 15 that is equation 17. In support of the validity of the approximations
made, it is clear from figure 3 that the variation of ψa with frequency is very close to
the mean value of ψ obtained by numerical solution of equation 13.
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Figure 3. The mean value of the phase variableψ as a function of the normalized angular frequencyωa/2πc (=

σ) in the first bandgap of the photonic crystal described in the caption of figure 1. The solid curve has been
obtained by numerical solution of equation 13 and the dashed curve is ψa as defined by equation 17.

Since our approximation to ψ, ψa, does not change with y there is no contribution
to Nuc(ω) from the first term on the right hand side of equation 14 and Nuc(ω) = 1.
With no change of the cumulative density of states with ω in the frequency range for
which F 2 ≤ G2, we can say there is a bandgap. The condition F 2 = G2 gives the edges
of the bandgap as

ω = ωg

(

1 ± γ

4

)

−1
≈ ωg

(

1 ∓ γ

4

)

(18)

For F 2 > G2 equation 15 may be integrated (12 ) to give

2√
F 2 −G2

arctan

(

F tan(ψa/2) +G√
F 2 −G2

)

= y +B, (19)

where B is an arbitrary constant. This gives the relationship between ψa and y outside
the bandgap as long as we interpret the arctan function in a way that allows values of
ψa over an infinite range instead of just in the interval (−π/2 ,+π/2) used to define the
principal value. However, consideration of only that interval is sufficient to calculate
the cumulative density of states. Taking the difference of equation 19 for the cases
ψa = π and ψa = −π gives

y(π)− y(−π) = 2π sign(F )/
√

F 2 −G2,

where sign denotes the signum function. Then the simple result for the cumulative
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density of states outside the bandgap,

Nuc(ω) = 1 + sign(F )
√

F 2 −G2 , (20)

follows from equation 14. The cumulative density of states near the first bandgap
predicted by equation 20 is shown by the solid curve in figure 4 and closely reproduces
the density of states found from a full numerical solution of equation 13.

For frequencies sufficiently close to the upper edge of the lowest band we can expand
F 2−G2 in equation 20 about the frequency of the bandgap edge given by equation 18,
which we denote by ωbe. For the case of γ = 0.5 considered here we can then derive
an approximate formula for the cumulative density of states,

Nuc(ω) ≈ 1 −
(

γ

2ωg

)1/2

(ωbe − ω)1/2, (21)

which is of the general form expected at the band edge in one dimension. Taking ω → 0
in equation 20 gives

Nuc(ω) ≈ ω/ωg (22)

near the bottom of the band, which is the result we would expect from consideration
of the mean electric and displacement fields when the wavelength is much larger than
the period of the structure (13 ).
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Figure 4. Solid curve: The cumulative density of states per unit cell versus normalized angular frequency

ωa/2πc (= σ) near the lowest bandgap of the photonic crystal described in the caption of figure 1. Solid curve:
as given by equation 20 for the perfect crystal. Dotted curve: for a disordered crystal (see section 5) with

∆ = 0.0266. Dashed curve: for a disordered crystal with ∆ = 0.1333.

To gain a physical picture of the solutions to equation 15 we note that it can be
considered to be the high friction limit (inertial effects neglected) of the equation of
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motion in ‘time’ [y] of a phase point at ‘position’ [ψ] under the action of a ‘force per
unit mass’ resulting from a constant component [2n0σ−1] and a sinusoidal component
[(n0σγ/2) sinψ]. That ‘force’ can be described by a tilted cosinusoidal potential in ψ-
space.

It is interesting to note that equation 15 is very similar in form to equation 17 in
(2 ) despite the refractive index profile of the photonic crystal considered being rather
different. The crystal considered in that paper comprises alternate homogeneous layers
of two different materials, but a common feature with the photonic crystal considered
here is the equal thickness of the component layers resulting in an odd symmetry of
the refractive index profile about the interlayer interface. With such structures the
averaging procedure adopted to approximate equation 13 is generally expected to lead
to similar results.

4. Reflectivity of the model one-dimensional photonic crystal

The wave admittance of a wave in the photonic crystal is Y (x) = B(x)/µ0E(x), where
B(x) is the magnetic induction. If we define a normalized wave admittance Ỹ (x) by
dividing Y (x) by the intrinsic admittance of free space, (µ0c)

−1, then

Ỹ (x) =
cB(x)

E(x)
=

−i/k0

E(x)

dE(x)

dx
, (23)

which is also a logarithmic derivative of the electric field but, in contrast to the defi-
nition of X(x) in equations 2, E(x) is generally a complex quantity here.

The potential of the impedance/admittance concept to describe the optical proper-
ties of structures comprising discrete layers was recognized decades ago (see for exam-
ple (14 , 15 )) but the more flexible and powerful transfer matrix method (16 ) is now
generally preferred. However, the admittance approach does have some virtue in de-
scribing systems where the dielectric properties vary continuously. For example, we can
use Ỹ (x) to calculate the normal-incidence reflectivity of our model one-dimensional
photonic crystal when it has finite extent. Consider a wave in a medium of refractive
index ni propagating in the x-direction and incident on the model photonic crystal
and a transmitted wave emerging into a medium of refractive index nt. The amplitude
reflection coefficient r is given by

r =
Ỹ0i − Ỹint

Ỹ0i + Ỹint
=
ni − Ỹint

ni + Ỹint
, (24)

where Ỹ0i is the normalized intrinsic admittance of the medium of incidence and Ỹint is
the normalized wave admittance at the interface of incidence and can be considered to
be the normalized input admittance presented to the incident wave by the structure.
The intrinsic impedance of the medium of incidence is simply ni.

To calculate Ỹint we note that the wave admittance is continuous across any inter-
faces in the system including the one between the photonic structure and the external
medium of transmission. Hence Ỹt = Ỹ0t where Ỹt is the normalized wave admittance
at the interface with the transmission medium and Ỹ0t = nt is the normalized intrinsic
admittance of the external transmission medium. With a knowledge of Ỹt and the
dependence of the refractive index n(x) on position x in the photonic structure, Ỹi
and hence r in equation 24 may be obtained.
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Comparing equations 2 and 23, it is apparent that the equation determining Ỹ (x)
can be obtained by substituting X = iαỸ into equation 4 to give

dỸ (x)

dx
= ik0

(

n(x)2 − Ỹ (x)2
)

. (25)

For the particular case of the model photonic structure with relative permittivity
profile defined by equation 7,

dỸ (y)

dy
= iσ

(

n2
0(1 + γ sin y) − Ỹ (y)2

)

. (26)

Note that while X defined in equation 1 is real and exhibits singularities that are the
very essence of its usefulness, for the type of propagating wave problem considered
here, Ỹ is generally complex and there are no divergences to complicate a numerical
solution of equation 26.

For the purposes of illustration we consider the specific case where the photonic
crystal has 10 unit cells, n0 = 2.5, γ = 0.5 and ni = nt = 1. The existence of the
photonic bandgap seen in the density of states calculations of section 3 is apparent in
the reflectivity spectrum as the band where |r| is very close to unity in figure 5, and
can be attributed to the large magnitude of the normalized input admittance at the
incident interface.

0 0.05 0.1 0.15 0.2 0.25 0.3
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Figure 5. The normal-incidence amplitude reflection spectrum of a one-dimensional photonic crystal with a
sinusoidal modulation of the relative permittivity. The square root of the mean relative permittivity is n0 = 2.5;

the fractional amplitude of the permittivity modulation is γ = 0.5; the thickness of the structure is 10 unit
cells and the external medium is vacuum.

The admittance method does not provide a direct means of calculating the transmis-
sion spectrum and can only provide information on the magnitude of the transmission
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coefficient t in a lossless system, where the conservation of energy may be used to give

|t| =
√

ni(1 − |r|2)/nt .

5. Using the phase formalism to calculate the cumulative density of

states of a disordered photonic crystal

The cumulative density of states of a disordered photonic crystal may be calculated
by using the same approach as for a perfect crystal when a suitable random com-
ponent is included in the relative permittivity function, n(x)2. For a sufficiently large
sample, self-averaging means that the density of states is the same as the configuration-
averaged density of states obtained by considering a large ensemble of systems. That
correspondence facilitates an alternative method of calculation in some circumstances.
Such an approach (1 , 2 , 9 ) is to obtain the distribution function of ψ for an ensem-
ble of systems and then use that to calculate the mean value of Nuc(ω), as given in
equation 14.

To consider the effect of disorder on our model crystal, we take the relative permit-
tivity to be given by

n(y)2 = n2
0(1 + γ sin y + Γ(y)), (27)

where Γ describes a random modulation in addition to the periodic modulation con-
sidered hitherto. In (1 , 2 ) random fluctuations of the refractive index from layer to
layer were considered, but here we consider a very different kind of disorder. We take
the disorder in the relative permittivity to be on a much shorter length scale and
described by a white noise autocorrelation function,

〈Γ(y)Γ(y′)〉 = 2∆δ(y − y′), (28)

where δ(y − y′) is a Dirac delta function. This model of disorder allows us to use
directly some well-established theory of stochastic processes to derive an equation for
the distribution function of ψ. However, as we are interested in the behaviour of ψ
over many unit cells for the calculation of the density of states, there is scope for using
this zero-correlation-length model more generally to describe various types of disorder
on a range of length scales by suitable choice of the spectral power density.

In the presence of the disorder, equation 13 becomes

dψ(y)

dy
= 2n0σ − 1 + n0σ [γ sin y + Γ(y)] [1 − cos(y + ψ(y))] , (29)

which can be considered to be a Langevin equation (17 ) of the dynamical
system described at the end of section 3 when there is a fluctuating ‘force’
n0σ [1 − cos(y + ψ(y))]Γ(y). In contrast to the Langevin equation for the photonic
structure considered in (1 , 2 ), the fluctuating ‘force’ Γ(y) is multiplied by a y-
dependent quantity and is therefore a case of what is called multiplicative noise in
the literature. In the case of a perfect crystal (Γ(y) = 0), Nuc has been calculated
using equation 14 as the ‘mean velocity of ψ’ plus unity. When there is randomness
the ‘velocity’ can be calculated numerically for each system in an ensemble and then
the ensemble average taken. However, further algebraic analysis is possible by deriving
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an equation for the distribution function of ψ and then using it to obtain the mean
‘velocity’ as done by (1 , 2 ). Such a Fokker-Planck equation corresponding to equa-
tion 29 can be derived following the general procedure described by Risken and Coffey
et al (9 , 17 ), and is

∂W (ψ, y)

∂y
= − ∂

∂ψ
D(1)W (ψ, y) +

∂2

∂ψ2
D(2)W (ψ, y) = −∂S

∂ψ
, (30)

where W (ψ, y) is the distribution function of ψ and

D(1) = 2n0σ − 1 + n0σγ sin y [1 − cos(y + ψ)] +
∆n2

0σ
2

2

∂

∂y
[1 − cos(y + ψ)]2 ,

D(2) = ∆n2
0σ

2 [1− cos(y + ψ)]2 .

The second equality in equation 30 casts it in the form of a continuity equation with
probability current S.

For the calculation of the cumulative density of states our interest is in solutions
for the distribution function that are representative of the states in the bulk of a
large structure. If the coefficients D(1) and D(2) were independent of y we would seek
stationary solutions of equation 30 (that is solutions for which ∂W (ψ, y)/∂y = 0
everywhere). However, since that is not the case, to make further algebraic progress
we must approximate equation 30 while bearing in mind the type of solution required.
In a similar spirit to our analysis in section 3, here we seek approximate solutions that
are stationary in the sense that the net change in W (ψ, y) across a photonic crystal
unit cell is zero. Then integrating equation 30 over a unit cell while neglecting the
y-variation of W (ψ, y) gives

− ∂

∂ψ
(F +G sinψ)W + Θ

∂2W

∂ψ2
= −∂S

∂ψ
= 0 (31)

and hence

Θ
∂W

∂ψ
= (F +G sinψ)W − S, (32)

where Θ = 3n2
0σ

2∆/2 = (3∆/8)(ω/ωg) and F and G are as defined earlier. The
probability current S is a constant by virtue of equation 31 and is proportional to the
ensemble-averaged ‘velocity’, which we wish to obtain.

The problem is analogous to that of the high friction limit of Brownian motion of
a particle in a tilted cosinusoidal potential, studies of which have been extensively
reported in the literature. The solution of equation 32 has been described in some
detail by Risken (9 ) and we closely follow that approach here. The general solution to
equation 32 is

W (ψ) = exp (−V (ψ)/Θ)

[

N − S

Θ

∫ ψ

0
exp

(

V (ψ′)/Θ
)

dψ′

]

, (33)

where V (ψ) = G cosψ − Fψ and N is an arbitrary constant. However, we require the
distribution function W (ψ) to be bounded for all ψ and Risken shows that under those
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circumstances N must be given by

N =
SH+

2π

Θ (1 − exp(−2πF/Θ))
, (34)

where

H+
2π =

∫ 2π

0
exp

(

V (ψ′)/Θ
)

dψ′. (35)

Furthermore, W (ψ) is then periodic with period 2π and it is appropriate to normalize
it over one period:

∫ 2π

0

W (ψ) dψ = 1. (36)

As previously explained, the ensemble-averaged cumulative density of states is given
by 〈ψ(y2) − ψ(y1))/(y2 − y1)〉 + 1 where the angular brackets denote the ensemble-
averaging. Using the stationary distribution function W (ψ) we can write

〈ψ(y2) − ψ(y1))/(y2 − y1)〉 = 〈∂ψ/∂y〉 =

∫ 2π

0
W (ψ) ∂ψ/∂ydψ.

It follows from equations 29, 15, 32 and the periodicity of W (ψ) that

〈∂ψ/∂y〉 = 〈F +G sinψ〉 = 〈Θ∂W/∂ψ + S〉 = 2πS.

Therefore the calculation of 〈∂ψ/∂y〉 reduces to the determination of the current S.
As is apparent from equations 33 and 34, an explicit expression for S follows from the
normalization of W and the ensemble-averaged cumulative density of states per unit
cell 〈Nuc〉 is given by

〈Nuc〉 = 1 + 2πS = 1 +
2πΘ (1− exp(−2πF/Θ))

H+
2πH

−

2π − (1 − exp(−2πF/Θ))H+
ψH

−

2π

, (37)

where

H−

β =

∫ β

0
exp

(

−V (ψ′)/Θ
)

dψ′.

Figure 4 shows the cumulative density of states predicted by equation 37 for photonic
crystals with two levels of disorder (∆ = 0.0266 and ∆ = 0.1333) in comparison
with the perfect crystal. The density of states per unit angular frequency per unit
cell can be obtained by differentiating 〈Nuc(ω)〉 with respect to ω, and inspection of
the gradient of the curve for ∆ = 0.0266 shows there is significant encroachment by
states into the bandgap of the perfect crystal. Nevertheless the cumulative density of
states is constant (and hence the density of states per unit angular frequency is zero)
throughout most of the bandgap. As expected, the band tailing increases with the level
of disorder; it is markedly greater for the case of ∆ = 0.1333 illustrated and increasing
the disorder further eventually obliterates the bandgap. However, it is apparent for
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the cases illustrated in figure 4 that the cumulative density of states remains unity at
the centre of the gap. In fact equation 37 predicts that, whatever the level of disorder,
〈Nuc(ωg)〉 = 1 because when ω → ωg, F = (ω − ωg)/ωg → 0, and

〈Nuc〉 → 1 + F/H+
2πH

−

2π → 1 + F/ [I0((G/Θ)]2 ,

where I0 is a modified Bessel function of zero order.

6. Conclusions

We have studied the properties of a phase formalism in the calculation of the cumu-
lative density of states of one-dimensional photonic crystals. To simplify the analysis
and provide a clear illustration of the properties, we have deliberately chosen a simple
model of the photonic crystal. However, the results are of more general application
and, in particular, it is apparent from the analysis that the theoretical framework will
be similar for more practical structures that share the property of alternating dielectric
layers of equal thickness and, with a little more analysis, for more general structures.
The differential equation describing the phase variable has been solved numerically to
show the spatial dependence of the phase in the first photonic bandgap, where its be-
haviour is not so intuitively predictable, as well as in the lowest allowed band. Also by
making some straightforward approximations to the differential equation, it has been
possible to derive a simple formula for the cumulative density of states. In addition it
has been shown that related theory may be used in numerical calculations of the re-
flectivity of finite photonic crystals, and is an approach with some advantages over the
popular transfer matrix method when the refractive index profile varies continuously.

In a disordered photonic crystal the phase becomes a stochastic variable. For cer-
tain models of disorder it is possible to derive a differential equation to describe the
distribution function of the phase variable and then use the solution of that to obtain
the ensemble-averaged cumulative density of states. In the case of the model crystal
studied we have demonstrated that the problem can be reduced to one that is analo-
gous to Brownian motion in a tilted-cosinusoidal potential. Using the theory, analytical
and numerical results have been obtained to illustrate how increasing disorder causes
increasing band-tailing in the first photonic bandgap.
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