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1 Introduction

N = 4 Super Yang-Mills theory (SYM) is singled out amongst all four-dimensional quantum

field theories for its remarkable symmetry and mathematical structure along with its key

role in the AdS/CFT correspondence. Further simplification and intriguing structures arise

in the planar limit where the number of colours in the gauge group becomes large.

The fundamental objects of interest in any conformal theory are gauge-invariant op-

erators and their correlation functions. The simplest operator in N = 4 SYM is O(x) =

Tr(ϕ(x)2) where ϕ(x) is one of the six scalars. This is a special operator: related via

superconformal symmetry to both the stress-energy tensor and the on-shell Lagrangian;

protected from renormalisation, and annihilated by half of the supercharges in the theory.

Two- and three-point correlators of such operators are protected from renormalisation tak-

ing their free value, therefore making the four-point correlator the first non-trivial case.
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This correlator has been well studied over a number of years and has been computed to

three loops fully and to ten loops at the level of the integrand [1–9]. It was the discovery

of a hidden permutation symmetry at the integrand level — vastly reducing the basis of

integrands to a problem of enumerating planar graphs with certain conformal properties [5]

— which made these results possible. The basis is given in terms of so-called f graphs,

which at ` loops are graphs with (4 + `)-vertices, containing both edges and numerator

lines with resulting conformal weight four. This provides a compact representation of the

correlation function for which we provide examples in subsection 2.1. Efficient graphical

methods have since been developed for obtaining the coefficients of the f graphs and hence

fully determining the correlator.

Another set of key quantities in N = 4 SYM are the integrands of scattering am-

plitudes, possessing remarkable mathematical structure and at the forefront of current

research [8–16]. A feature of planar N = 4 SYM relates the aforementioned objects to

one another via the correlator/amplitude duality. This equates the correlator (divided by

its Born contribution) in a polygonal light-like limit to the square of the scattering ampli-

tude normalised by its MHV tree-level value [17–19]. The duality was later extended to

incorporate supersymmetry [20–22].

One can consider this duality for a correlator of any number of points, but it is partic-

ularly interesting to apply it to the four -point correlator integrand. In this case, taking an

n-point light-like limit (involving internal integration points as well as “external” points

— the permutation symmetry means there is no distinction) gives the sum of products of

all n-point helicity superamplitudes with their helicity conjugates. This remarkable fea-

ture makes use of the fact that the `-loop 4-point correlator integrand is itself an n-point

(`+4−n)-loop correlator with 4 scalar operators and n−4 Lagrangians, which are in turn

related by supersymmetry to O(x).

Concretely then, taking the n-point light-like limit of the (`+n−4)-loop, 4-point cor-

relator, represented by F (`+n−4) (whose precise definition will be given later) we obtain

the following combination of NkMHV, m-loop, n-point superamplitudes (normalised by the

MHV tree-level superamplitude), A(m)
n;k ,

lim
n-gon

light-like

(
ξ(n)F (`+n−4)

)
=

1

2

∑̀
m=0

n−4∑
k=0

A(m)
n;k A

(`−m)
n;n−4−k/(A

(0)
n;n−4), (1.1)

where ξ(n) is a simple algebraic factor.

Note that this sum involves all NkMHV amplitudes at ` loops, as well as lower-loop am-

plitudes. Furthermore, these are all combined together into a simple scalar function of the

external momenta only, F (`), without any complicated helicity/superspace dependence —

the correlator, F (`), is a much simpler object than the constituent amplitudes themselves.

The question we address in this paper is whether F (`) contains all the information

about these constituent amplitudes, or put another way, whether one can extract all the

individual superamplitudes themselves purely from the combination F (`). We know this can

be achieved at four- and five-points [5, 6, 16]. This may seem unlikely for higher points at
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first glance: on the left-hand side, F (`) is a purely scalar function of the momenta, whereas

the superamplitudes on the right-hand side can exhibit complicated helicity structure.

Our findings are consistent with the following conjecture: assuming the tree-level MHV

and anti-MHV amplitudes, parity, Yangian symmetry and a dual conformally invariant

basis of planar integrands:1 all n-point NkMHV scattering amplitude integrands at any loop

order (modulo sign2) can be obtained from the four-point correlator, which thus packages

all of this information together into a simple scalar function.

Let us now make the above statement more precise and specify what information can

be obtained from the correlator at each loop level. First note that the (`+n−4)-loop

correlator combination (1.1) involves the parity-even `-loop combinations (consider m = 0

and m = ` in (1.1))

A(`)
n;kA

(0)
n;n−k−4 +A(`)

n;n−k−4A
(0)
n;k = A(`)

n;kA
(0)
n;k +A(`)

n;kA
(0)
n;k, (1.2)

together with lower-loop amplitudes. Thus from this combination alone, the correlator at

this loop level cannot see ambiguities in the amplitude of the form

A(`)
k → A

(`)
k +A(0)

k I
(`)
k-ambiguity, A(`)

n−k−4 → A
(`)
n−k−4 −A

(0)
n−k−4I

(`)
k-ambiguity, (1.3)

where I(`)k-ambiguity is any combination of `-loop integrands.3 Remarkably, we find that (1.3)

is the only form of ambiguity arising from the duality at this loop level, and even more

remarkably, this ambiguity is resolved by considering the correlator at one loop higher.

Imposing parity reduces the ambiguity I(`)k-ambiguity to the space of parity-odd integrands

only, and imposing cyclicity further reduces this to just the space of cyclic combinations of

parity-odd integrands.

More precisely then, the conjecture is that knowing all n-point amplitudes fully to

(`−2) loops, as well as the parity-even pieces (as defined in (1.2)) at (`−1) loops, then

from the light-like limit of the (`+n−4)-loop four-point correlator, we can extract the

“parity-even” part of all `-loop amplitudes along with fixing the remaining ambiguities at

(`−1) loops. Thus, we can recursively extract the parity-even part of the `-loop amplitude

from the m-loop correlator, F (m) with m = 1, . . . , `+n−4, and the entire amplitude if we

additionally use F (`+n−3).

In this paper, we verify this statement by checking at six points and seven points up

to two loops for the parity-even part.

In order to achieve this, we use a basis of planar dual conformal `-loop integrands, I(`)j
to construct an ansatz for the superamplitudes. The integrands are functions of x2ab, where

1At two loops, we use the smaller prescriptive basis of Bourjaily & Trnka [11] for simplicity.
2The amplitude is fixed up to an overall sign ambiguity for each 0<k≤ (n − 4)/2 which the correlator

can never fix. This is because the correlator always gives combinations of the form An;kAn;n−k−4 which is

invariant under the simultaneous transformations: An;k → −An;k, An;n−k−4 → −An;n−k−4. However, we

stress that this ambiguity is an overall sign for the entire all-loop amplitude that can be fixed once and for

all at tree level. There is then also an additional overall sign ambiguity for the entire parity-odd sector of

the MHV/anti-MHV amplitude for a similar reason. This second type of sign ambiguity can be fixed once

and for all at 1 loop.
3Note that for the special case of k=n−k−4, this ambiguity is absent. This is the case for NMHV six

points as we shall see later.
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xa, xb are dual momenta (external or loop co-ordinates) together with the parity-odd dual

conformal covariant, most straightforwardly expressed as ε(Xa1 , Xa2 , Xa3 , Xa4 , Xa5 , Xa6)

where the Xa are 6d embedding dual momentum co-ordinates. At two loops we use a

refinement of this basis, namely the prescriptive basis of [10–12] which we show can be

written in terms of the above basis.

We also need to control the helicity structures of the superamplitudes. For this we use

a basis of Yangian-invariant Grassmannian integrals, Rk;i and as a technical aid, we use

amplituhedron co-ordinates [23–26]. We thus write an ansatz for the constituent superam-

plitudes of the form

A(`)
n;k =

∑
ij

αijRk;iI
(`)
j , (1.4)

which we substitute into the duality equation (1.1) in order to determine the coefficients αij .

To extract the combination (1.1) from this ansatz, we use a number of tools: dual-

space, momentum twistors, the Grassmannian, amplituhedron co-ordinates, rules from

the amplituhedron, and an understanding of the duality in question. For completeness, we

review these ideas — starting with f graphs and the correlator/amplitude duality. We then

review momentum twistors, the Grassmannian, amplituhedron co-ordinates and proceed

with the six-point extractions.

Finally, we repeat the idea for seven particles which invokes the Grassmannian to

derive invariants and draw conclusions from our results.

2 Review of key ideas

2.1 Representing the correlator with f graphs

The four-point correlator of interest is

G4(x1, x2, x3, x4) ≡ 〈O(x1)O(x2)O(x3)O(x4)〉, (2.1)

involving the protected operator O(x) = Tr(ϕ2) for any scalar ϕ in the theory. We define

F (`) as the `-loop integrand of (2.1)

G(`)4 (x1, x2, x3, x4;x5, . . . , x4+`) = 2x413x
4
24F (`)(x1, . . . x4+`), (2.2)

where x5, . . . , x4+` are the `-loop integration variables. Note that we have a unique defi-

nition of this integrand via the (4+`)-point correlator involving ` Lagrangian insertions in

addition to the four operators in (2.1).

There is a powerful hidden symmetry [5] possessed by this integrand (for ` > 0) which

simply states that F (`) is invariant under any S4+` permutation of its variables. This

therefore places “external” variables x1, x2, x3, x4 on the same level as internal variables,

x5, . . . , x4+`. The symmetry vastly reduces the basis of potential integrands for the corre-

lator to that of objects f
(`)
i ,

F (`) ≡
∑
i

c`i f
(`)
i . (2.3)
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These basis elements f
(`)
i are equivalent to so-called f graphs, which at ` loops are undi-

rected graphs with (4 + `)-vertices composed of both solid (denominator), dashed (numera-

tor) lines and signed degree (number of edges minus number of numerator lines leaving each

vertex) equal to four. The solid edges must contribute to a simple planar graph. These

graphs and their coefficients have been determined up to ten loops using combinations of

various efficient graphical methods [9]. The above provides a compact representation of

the correlation function with expressions up to four loops displayed below

f (1) ≡ f (2) ≡ f (3) ≡

f
(4)
1 ≡ f

(4)
2 ≡ f

(4)
3 ≡

(2.4)

where F (1) = f (1), F (2) = f (2), F (3) = f (3) and F (4) = f
(4)
1 +f

(4)
2 −f

(4)
3 all come with unit-

magnitude coefficients up to four loops. Each graph corresponds to an algebraic expression

(we are not careful to distinguish the graphs and their corresponding expressions) as follows:

label the vertices with labels 1 to 4+`. Then a solid or dashed edge between vertices a and

b is represented by 1/x2ab or x2ab, respectively. The property of undirectedness is apparent

by the property x2ab = x2ba. Then sum over all possible inequivalent labellings of the graph.

For example, the three-loop correlator is explicitly given as

=
1
20

(
(x212)

2x234x
2
37x

2
45x

2
56x

2
67 + S7 permutations

)∏
a<b x

2
ab

.

The above example for f (3) has a single dashed line coming from the (x212)
2 in the numerator

which is only partially cancelled by the denominator.
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Summing over inequivalent labellings is the same as summing over all permutations and

dividing by the size of the automorphism group (symmetry factor) of the graph (20 in the

above example). This representation keeps graph labels implicit, so that a given unlabelled

graph is defined by a labelled expression summed over all symmetric permutations.

2.2 The correlator/amplitude duality

The fully supersymmetric correlator/amplitude duality is conjectured to relate integrands

for the m-point super-correlator to the square of m-point super-amplitude integrands in

an m-gon light-like limit. However, the maximally nilpotent piece of the m-point super-

correlator is equivalent to the 4-point correlator. We thus consider the four-point correlator,

F (`) under various n-gon light-like limits for n ≥ 4. Remarkably, this correlator contains

information about all higher point amplitudes in the n-gon limits [16, 20, 22].

It is natural to study amplitude integrands as functions of external and loop momenta.

It was however observed in [27] that it is often useful to reparametrise to “dual momenta”

via pa = xa+1 − xa where xa are understood mod n. These dual momenta xa of the am-

plitude are identified with the Minkowski co-ordinates xa of the correlator via the duality.

The conformal invariance of correlation functions then implies a hidden dual conformal

invariance known to be a property of planar amplitudes in N = 4 SYM [28–30].

The simplest case of the duality then states that the 4-point light-like limit (where four

consecutive points become light-like separated, x212, x
2
23, x

2
34, x

2
14 → 0) outputs four-particle

amplitudes squared. At the integrand level at fixed loop level, we get

lim
4-gon

light-like

(
ξ(4)F (`)

)
=

1

2

∑̀
m=0

A(m)
4 A

(`−m)
4 , (2.5)

for ξ(4) = x212x
2
23x

2
34x

2
14(x

2
13x

2
24)

2. Note that both sides are interpreted as integrands: on

the right-hand side, A(m) depends on m integration variables and A(`−m) depends on

the remaining (` − m) integration variables. The result is then symmetrised over all `

integration variables. Furthermore, all amplitudes (throughout the paper) are understood

to be divided by the corresponding tree-level MHV superamplitude.

At higher points, it is convenient to consider superamplitudes written in the chiral

superspace formalism of dual Minkowski superspace [29]:

λαaη
I
a ≡ θαIa+1 − θαIa , (2.6)

for SU(4) index I = 1, 2, 3, 4, where ηIa are Nair Grassmann-odd super-momentum vari-

ables and λαa spinor helicity variables. In complete analogy to region momenta, we define

“dual/region super momenta”, θαIa so that super-momentum conservation is trivialised.

The higher-point generalisation of (2.5) then involves the n-point light-like limit

(x212, x
2
23, . . . , x

2
n1 → 0) giving

lim
n-gon

light-like

(
ξ(n)F (`+n−4)

)
=

1

2

∑̀
m=0

n−4∑
k=0

A(m)
n;k A

(`−m)
n;n−4−k

A(0)
n;n−4

. (2.7)
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Here A(`)
n;k is the superamplitude divided by the tree-level MHV superamplitude so that

Atree
n;0 = 1, and ξ(n) generalises ξ(4) as follows

ξ(n) ≡
n∏
a=1

x2aa+1x
2
aa+2. (2.8)

Similarly to the four-point case, on the right-hand side of (2.7), A(m)
n;k is understood to

depend on n external variables xa, θa together with m loop variables xa and A(`−m)
n;n−4−k to

depend on the same external variables, but the other (`−m) loop variables — these are

then symmetrised over. Note that the numerator on the right-hand side is a maximally

nilpotent superconformal invariant. Since there is a unique maximally nilpotent invariant,

this is proportional to the maximally nilpotent invariant amplitude A(0)
n;n−4 and therefore

the ratio in (2.7) makes sense and removes all θ dependence. We will see explicit examples

of the use of this equation shortly and find amplituhedron variables to be the most useful

way of dealing with the Grassmann-odd structure.

2.3 (Super) momentum twistors and amplituhedron coordinates

It is convenient to recast in terms of “momentum twistors” [23, 31]. Complex Minkowski

space is equivalent to the Grassmannian of 2-planes in C4, XA
α ∈ Gr(2, 4) where α = 1, 2,

A = 1, . . . , 4 and

XA
α ∼Mα

βXA
β , (2.9)

for any GL(2) matrix M . Here the rows XA
1 and XA

2 are basis elements of the 2-plane and

the equivalence relation corresponds to a change of basis. One choice of basis fixes the first

2x2 block to the identity and the next 2x2 block corresponds to standard co-ordinates for

Minkowski space (in spinor notation)

XB
α ∼ (δβα, xαβ̇). (2.10)

Two Minkowski co-ordinates that are light-like separated correspond to two planes which

intersect. In the case of the light-like limit of the correlator where we have n consecutively

light-like separated co-ordinates, it makes sense to choose the basis for the corresponding

2-planes to be the lines of intersection. Thus we have

XA
aα ∼

(
zAa−1
zAa

)
, (2.11)

where a = 1, . . . , n is the particle number. In this case, the zAa are known as momen-

tum twistors.

One often considers projective twistor space P3 and so points in dual momentum space

are associated to projective lines in P3 which intersect if the corresponding space-time points

are light-like separated. Thus for the n-gon light-like limit we get the picture illustrated

in figure 1. Loop variables in x space also correspond to lines in momentum-twistor space

which will not intersect with other lines. These can be specified by two twistors each in

the same way.
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xn x1

x2

x3

x4x5

pn

p1

p2

p3

p4

zn

z1

z2

z3

z4

Figure 1. The transformation between dual-momentum space and momentum-twistor space.

Dual conformal symmetry acts linearly on the A index of the momentum twistors and

so a natural dual conformal covariant is provided by the (momentum) twistor four-bracket

defined as the determinant of the square matrix formed by four twistors

〈abcd〉 ≡ det{za, zb, zc, zd} ∝ εABCD zAa zBb zCc zDd . (2.12)

Another way of thinking of Minkowski space is to take an SL(2) invariant combination of

the Gr(2, 4) co-ordinates

XAB = XA
αX

B
β ε

αβ . (2.13)

Since XAB is anti-symmetric in its indices, it is equivalent to a 6-vector and these are

precisely the 6d embedding co-ordinates for Minkowski space. Notice that the above rela-

tions imply

εABCDX
AB
a XCD

b ∼ 〈a−1 a b−1 b〉 ∼ x2ab. (2.14)

In a similar way, chiral superspace can be thought of as the Grassmannian of 2-planes

in C4|4

Xα
A ∼Mα

βXβ
A, (2.15)

and the entire discussion above gets similarly uplifted into C(4|4). We obtain super-

momentum twistors, ZAa , living in C4|4,

ZAa ≡
(
zAa ;χIa

)
∈ C4|4. (2.16)

Beyond the MHV sector, dual superconformal symmetry implies that the superamplitudes

can be written in terms of dual superconformal invariants [29]. For example, at the NMHV

level, these are known as R invariants and defined by a (dual) conformal ratio of four

brackets and a Grassmann-odd delta function

[abcde] ≡
δ4
(
χa〈bcde〉+ χb〈cdea〉+ χc〈deab〉+ χd〈eabc〉+ χe〈abcd〉

)
〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉

. (2.17)

It is also convenient to further change variables to “bosonised dual momentum super-

space co-ordinates” or “amplituhedron co-ordinates” following [25, 31]. For an NkMHV

– 8 –
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superamplitude, these variables live in a (4 + k)-dimensional purely bosonic space and are

defined as

Ẑa ≡ (za, χa.ϕ) ∈ C4+k, (2.18)

where we have introduced the global Grassmann-odd variables ϕαI , α = 1, . . . , k which

converts the χ co-ordinate into additional k augmented momentum-twistor co-ordinates.

For example, for k = 1, we convert supermomenta to 5-dimensional co-ordinates, then

the superconformal invariant (2.17) becomes the ratio of five-brackets and four-brackets:

[abcde] ≡ 〈abcde〉4

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (2.19)

Here the 5-brackets are the obvious 5d generalisations of the 4-brackets:

〈abcde〉 ≡ det{Ẑa, Ẑb, Ẑc, Ẑd, Ẑe}. (2.20)

This rewriting will be useful later as it will trivialise the multiplication of R invariants which

we will need when considering products of amplitudes. The expression (2.19) becomes equal

to (2.17) after integrating out the additional ϕ co-ordinate.

Note that the anti-MHV n-point tree-level superamplitude has the following simple

form in amplituhedron co-ordinates

A(0)
n;n−4 =

〈12 . . . n〉4

〈1234〉〈2345〉 . . . 〈n123〉
. (2.21)

2.4 Yangian invariants from the Grassmannian

We will need to expand higher k amplitudes in terms of higher k analogues of the R

invariants (2.17), (2.19). For any k, these superconformal (indeed Yangian) invariants can

be understood as residues of a Grassmannian integral in planar N =4 SYM [24, 32–35]. The

main goal here is to introduce the tools needed to take the residues of the Grassmannian,

directly in amplituhedron space and thus derive covariant forms for higher k analogues of

the R invariants (2.19). Let us therefore introduce the Grassmannian representation for

n-particle NkMHV Yangian invariants [35]:

1

vol[GL(k)]

∫
dk×nCαa

(1 · · · k)(2 · · · k+1) · · · (n · · · k−1)

k∏
α=1

δ4|4(CαaZAa ). (2.22)

Cαa is the k×n matrix defining a Grassmannian of k-planes in n dimensions, Gr(k, n) and

ZAa are super twistor co-ordinates. The GL(k)-redundancy reflects a change of basis for k

planes. The denominator is simply given as k-minors constructed from columns of C

(a1 · · · ak) = det{Cα1, . . . , Cαk}. (2.23)

We need a contour of integration. Note that the integral is k×(n−k) dimensional (after

division by vol[GL(k)]), and there are 4k bosonic delta functions, leaving k×(n−k−4) non-

trivial integrals. The non-trivial contributions to these integrals arise from k×(n−k−4)-

dimensional poles of the integrand. A spanning set of all possible integrals of this form

– 9 –
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is thus provided by the residues of these poles, which define a codimension k×(n−k−4)

integration region. This then corresponds to a 4k dimensional “cell” of Gr(k, n). These are

in turn classified by permutations (see [35], in particular section 12). From this formalism,

one can obtain (positive)4 canonical co-ordinates α1, . . . , α4k for this cell inside Gr(k, n)

such that the measure in (2.22), reduces to the simple 4k dlog form

Ωk(n−k) ≡
1

vol[GL(k)]

dk×nCαa
(1 · · · k)(2 · · · k+1) · · · (n · · · k−1)

−→ Ω4k =
dα1 . . . dα4k

α1 . . . α4k
.

(2.24)

Now we wish to write these Yangian invariants in amplituhedron co-ordinates (which in

particular makes multiplying invariants together much simpler). In amplituhedron co-

ordinates, the Grassmannian integral (2.22), translates simply to∫
Ω δ4k(Y ;Y0). (2.25)

Here we have defined

Y Ã
α ≡ CαaẐÃa , Y B̃

0α ≡
(

0Bα , δ
β
α

)
, (2.26)

where Ẑ is defined in (2.18) and we have split the 4+k index B̃ into an ordinary twistor

index and k additional indices B̃ = (B, β). Note that Y ∈ Gr(k, k+4), and δ4k(Y ;Y0) is the

natural Grassmannian invariant δ-function whose precise definition can be found in [25].

The natural brackets in amplituhedron space, C4+k, are (4+k)-brackets, but using

Y ∈ Gr(k, k + 4) we can form (4+k)-brackets with four Ẑa’s and Y , for example

〈Y abcd〉 ≡ 〈Y1 · · ·Yk ẐaẐbẐcẐd〉 ≡ det{Y1, . . . , Yk, Ẑa, Ẑb, Ẑc, Ẑd}. (2.27)

We could equally replace Y in (2.27) with k Ẑs to form Y -independent (4+k)-brackets.

There is an efficient way to arrive at a fully covariant form for a Yangian invariant

corresponding to a particular residue via the canonical co-ordinates for this residue. To

do this, we think of the reduced measure Ω4k as a differential form on Y ∈ Gr(k, k + 4)

(simply a change of co-ordinates). Therefore

Ω4k = 〈Y d4Y1〉 · · · 〈Y d4Yk〉 × Yn;k(Ẑ1, . . . , Ẑn, Y ), (2.28)

where Yn;k is a function of weight −(k+ 4) in Y , rendering Ω4k Y -weightless. Here

〈Y d4Y1〉 · · · 〈Y d4Yk〉 is the natural Grassmannian invariant measure, using (2.27) but with

the anti-symmetric differential form d4Yi in the last 4 slots of the (4+k)-bracket.

If we can write Ω4k in this way, the Yangian invariant (2.25) is simply∫
Ω4k δ

4k(Y ;Y0) = Yn;k(Ẑ1, . . . , Ẑn, Y0), (2.29)

noting that the brackets involving Y then reduce to 4-brackets 〈Y0abcd〉 = 〈abcd〉.
4Positive means the ordered minors of the Grassmannian matrix are all strictly positive if and only

if αi > 0.
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In fact, we will be able to jump directly from the canonical co-ordinates and corre-

sponding dlog form (2.24) to the Yangian invariant Yn;k(Ẑ1, . . . , Ẑn, Y ) by a covariantisa-

tion procedure. We illustrate this with the example of seven-point k = 2 Yangian invariants

in section 4.

Note that the amplituhedron (bosonised) form for super-invariants have a number of

advantages over the standard form. In particular, non-trivial identities which are very

hard to see in the superspace formalism arise naturally as Schouten-like identities of the

bosonised quantities. One potential question is how to extract components from this form.

There is a straightforward way to think of this without first converting back to the standard

form for the super-invariant in terms of χ’s. This is particularly straightforward if we seek

a component of the form χ4
aχ

4
b . Such components are extractable in a canonical way by

placing the points a, b adjacent to one another in the six-bracket representation and simply

removing them, thus projecting to four brackets, e.g.(
〈123456〉〈1237〉−〈123457〉〈1236〉)4

∣∣
χ4
1χ

4
3

= (−〈132456〉〈1237〉+ 〈132457〉〈1236〉)4
∣∣
χ4
1χ

4
3

= (−〈2456〉〈1237〉+ 〈2457〉〈1236〉)4.

3 Six-point integrands

Let us now consider the hexagonal light-like limit of the four-point correlator, taking six

points of the correlator to be consecutively light-like separated: x212 = x223 = x234 = x245 =

x256=x216=0. The duality, (2.7) becomes

lim
6-gon

light-like

(
ξ(6)F (`+2)

)
=
∑̀
m=0

A(m)
6;0 A

(`−m)
6;2 + 1

2A
(m)
6;1 A

(`−m)
6;1

A(0)
6;2

. (3.1)

We will restrict this statement to various orders of perturbation, using the known correlator

to predict amplitude integrands on the right-hand side. This leads to a simple linear

algebra problem for matching coefficients from a sensible ansatz for the amplitude to the

known correlator.

3.1 Tree level

At tree level, ` = 0, the duality (3.1) becomes

lim
6-gon

light-like

ξ(6)F (2) = 1 +
1

2

(
A(0)

6;1

)2
/A(0)

6;2, (3.2)

recalling that all amplitudes are understood to be divided by the tree-level MHV amplitude

and thus A(0)
6;0 = 1. Evaluating the left-hand side of (3.2) amounts to symmetrising f (2) over

S6, multiplying by ξ(6) = x212x
2
23x

2
34x

2
45x

2
56x

2
61x

2
13x

2
24x

2
35x

2
46x

2
51x

2
62 and applying the 6-gon

limit. Using (2.4), one straightforwardly obtains

lim
6-gon

light-like

ξ(6)F (2) = 1 +
x215x

2
24

x214x
2
25

+
x226x

2
35

x225x
2
36

+
x213x

2
46

x214x
2
36

. (3.3)
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Equating (3.2) and (3.3) then gives a prediction for 1
2

(
A(0)

6;1

)2
/A(0)

6;2 in terms of finite cross

ratios. We now wish to derive the NMHV tree-level amplitude itself, A(0)
6;1 from this com-

bination. We start with an ansatz for A(0)
6;1 in terms of R invariants (the six-point Yangian

invariants). At six points, an R invariant in the square-bracket notation is uniquely speci-

fied by the index it is missing

Ra ≡ [bcdef ] =
〈bcdef〉4

〈bcde〉〈cdef〉〈def b〉〈ef bc〉〈f bcd〉
, (3.4)

we will use this notation for the rest of this section. These six R invariants are not

independent since

R1 −R2 +R3 −R4 +R5 = R6, (3.5)

so we use only five of these in our basis. Thus we have the following ansatz

A(0)
6;1 = α1R1 + α2R2 + α3R3 + α4R4 + α5R5, (3.6)

with arbitrary coefficients αa. Since R2
a = 0, the square is:(

A(0)
6;1

)2
= 2

∑
a<b

αaαbRaRb. (3.7)

To proceed, we need a rule for multiplying two NMHV R invariants to produce the numer-

ator of the unique six-point N2MHV invariant. In the numerator of the above, we have

combinations such as

〈abcde〉4〈abcdf〉4 = 〈abcdef〉4〈abcd〉4. (3.8)

For six external points, there is a unique non-trivial six bracket. As the above is N2MHV,

the right-hand side must contain 〈123456〉4. Dual conformal invariance then uniquely

fixes the remaining 4-brackets. This rule gives all products RaRb in terms of 〈123456〉4.
Equation (3.2) requires (3.7) to be divided by the N2MHV tree-level amplitude, A(0)

6;2. This

is the anti-MHV amplitude (2.21) which at six points is5

Atree
6;N2MHV

= A(0)
6;2 =

〈123456〉4

〈1234〉〈2345〉〈3456〉〈4561〉〈5612〉〈6123〉
. (3.9)

As an example, consider the product R1R2

R1R2 =
〈23456〉4〈34561〉4

〈2345〉〈3456〉〈4562〉〈5623〉〈6234〉〈3456〉〈4561〉〈5613〉〈6134〉〈1345〉

=
〈123456〉4〈3456〉4

〈2345〉〈3456〉〈4562〉〈5623〉〈6234〉〈3456〉〈4561〉〈5613〉〈6134〉〈1345〉
,

where in the second line, the amplituhedron rule (3.8) was used.

5Note that we use the tree-level anti-MHV superamplitude (2.21) as input in our procedure.
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Proceeding in a similar way for all other products in (3.7), we obtain simple rules for

all products of R invariants divided by the anti-MHV tree-level amplitude (3.9) in terms

of ordinary bosonic twistor brackets:

R1R2

Atree
6;N2MHV

=
〈1234〉〈1236〉〈1256〉〈3456〉3

〈1345〉〈1346〉〈1356〉〈2346〉〈2356〉〈2456〉
,

R1R3

Atree
6;N2MHV

=
〈1234〉〈1236〉〈2456〉2

〈1245〉〈1246〉〈2346〉〈2356〉
,

R1R4

Atree
6;N2MHV

=
〈1234〉〈1456〉〈2356〉2

〈1235〉〈1356〉〈2346〉〈2456〉
,

(3.10)

together with cyclic permutations of these.

Plugging these products into the ansatz for the square of the NMHV amplitude (3.7)

and then into the duality equation (3.2), we equate the resulting expression6 to the known

correlator (3.3) (with the replacement x2ab → 〈a−1 a b−1 b〉, see (2.14)).

The resulting system of equations has the following solution:

α1 = α3 = α5 = ±1, α2 = α4 = 0, (3.11)

so that

A(0)
6;1 = ±(R1 +R3 +R5). (3.12)

Thus we have derived the NMHV six-point tree-level amplitude from the 4-point correlator

up to an overall sign. Both signs yield the desired result for the correlator(
A(0)

6;1

)2
Atree

6;N2MHV

= 2

(
x213x

2
46

x214x
2
36

+
x215x

2
24

x214x
2
25

+
x226x

2
35

x225x
2
36

)
.

The known result is indeed given by (3.12) with the positive sign choice [29]. This sign can

clearly never be predicted purely by the correlator since the procedure predicts the square

of the amplitude. If on the other hand we choose the wrong sign at tree level, this error

will persist at higher loops and we will obtain the entire NMHV amplitude to all loops but

with the wrong sign.

3.2 One loop

At one loop, the duality (3.1) reads:

lim
6-gon

light-like

ξ(6)F (3) = A(1)
6;0 +

A(1)
6;2

A(0)
6;2

+
A(1)

6;1A
(0)
6;1

A(0)
6;2

. (3.13)

The first two terms form the MHV amplitude plus its parity conjugate whilst the last term

is a product of NMHV tree- and one-loop amplitudes.7

6To avoid complicated twistor bracket identities, one can either do this numerically or by rewriting

twistor brackets in terms of z̃a − z̃b via the relation 〈abcd〉 = εabcdef (z̃e − z̃f ), where z̃a ∈ C. This

co-ordinate change was first used in [36].
7This calculation differs from that of equation (4.19) in [22] where the 5-point 2-loop correlator was

studied and the NMHV amplitude was given linearly.
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As mentioned in the introduction, in order to go beyond tree level we require a basis

of integrands. At one loop we have the following basis of 23 independent planar boxes and

parity-odd pentagons:

I(1)1 =
x213x

2
24

x21`x
2
2`x

2
3`x

2
4`

one mass (6)

I(1)7 =
x213x

2
25

x21`x
2
2`x

2
3`x

2
5`

two-mass hard (6)

I(1)13 =
x214x

2
25

x21`x
2
2`x

2
4`x

2
5`

two-mass easy (3)

I(1)16 =
x215x

2
24

x21`x
2
2`x

2
4`x

2
5`

two-mass easy (3)

I(1)19 =
iε12345`

x21`x
2
2`x

2
3`x

2
4`x

2
5`

parity-odd pentagon (5) (3.14)

where the list is understood to include all those related by cycling the six external variables

(the numbers of independent integrands in each class is given in parentheses after each).

Note that there are only 5 independent parity-odd pentagons rather than 6 that one would

expect from cyclicity. This is because there is an identity of the form

I(1)19 − I
(1)
20 + I(1)21 − I

(1)
22 + I(1)23 − I

(1)
24 = 0, (3.15)

which we use to solve for I(1)24 in terms of the others. This identity is easily understood in

the 6d embedding formalism where it can be written as

ε[L12345X6] ·XL

(X1 ·XL)(X2 ·XL)(X3 ·XL)(X4 ·XL)(X5 ·XL)(X6 ·XL)
= 0. (3.16)

Here the square bracket indicates anti-symmetrisation over 7 variables which yields zero in

6 dimensions.

Our one-loop ansätze (see (1.4)) for the amplitudes thus reads

A(1)
6;0 =

23∑
j=1

ajI(1)j , A(1)
6;1 =

5∑
i=1

23∑
j=1

bijRiI(1)j , A(1)
6;2 = A(0)

6;2

23∑
j=1

cjI(1)j . (3.17)

The problem now involves solving a system of equations for the 23× (1 + 5 + 1) = 161

coefficients obtained by plugging these ansätze together with the previously found tree-level

result (3.12) into (3.13). We will require the products of R invariants (3.10). Moreover, we

can use parity and cyclicity to immediately reduce the number of free coefficients.

Equation (3.13) can be evaluated at generic kinematic configurations. The Mathe-

matica package in [11] generates convenient configurations of small magnitude in random

rational numbers. This process is repeated many times yielding a quadratic system over

the rational numbers.

Solving the system of equations with 161 coefficients arising from (3.13) we obtain a

solution with 23 free coefficients. Remarkably, the NMHV sector is entirely (and correctly)

solved consistent with the comment in footnote 3. The anti-MHV sector is then fixed in
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terms of the MHV sector which is itself completely unfixed (hence 23 free coefficients — one

for each integrand) and consistent with the ambiguity (1.3). Imposing parity invariance,

which takes A6;0 ↔ A6;2 then reduces the number of free coefficients down to 5 — the

number of parity-odd integrands. Further imposing cyclicity reduces this down to just 1

free coefficient.

The resulting solution can be written as

2A(1)
6;0 =

6∑
j=1

I(1)j +
15∑
j=13

(
I(1)j − I

(1)
j+3

)
− α

(
I(1)19 + I(1)21 + I(1)23

)

2A(1)
6;2 =

 6∑
j=1

I(1)j +

15∑
j=13

(
I(1)j − I

(1)
j+3

)
+ α

(
I(1)19 + I(1)21 + I(1)23

)A(0)
6;2

2A(1)
6;1 = R1

(
I(1)3 + I(1)6 + I(1)8 + I(1)11 +

1

3

(
I(1)20 + I(1)21 − I

(1)
23 − I

(1)
24

))
+ cyclic.

(3.18)

In the (anti-)MHV sector, we recognise the well known 1-loop result of a sum over one-

mass and two-mass easy boxes together with an as yet undetermined parity-odd sector.

The NMHV amplitude on the other hand is completely determined in terms of one-mass,

two-mass hard boxes and parity-odd pentagons.

This prediction (3.18) agrees precisely with the known answer for α = 1. We will

return to this as yet undetermined parameter α in the next subsection.

3.3 Two loops

We now proceed to two loops, using as input the one-loop solution obtained above (3.18).

We first need a basis of two-loop integrals. A natural basis purely in position space is pro-

vided by dual conformal parity-even planar double boxes, pentaboxes, and pentapentagons,

with all possible numerators, together with parity-odd pentaboxes and pentapentagons in-

volving the 6d ε-tensor.

However, a convenient alternative dual conformal basis has been provided (together

with an associated Mathematica package) in [11, 12] called the prescriptive basis. Al-

though originally given in twistor space, all elements of this two-loop prescriptive basis can

be rewritten in dual momentum space in terms of the planar basis described in the previous

paragraph. We attach this x-space translation as a file to the work’s arXiv submission.

The prescriptive basis at two loops consists of 87 elements. These integrands we simply

label as I(2)i with i = 1, . . . , 87.

We now insert the ansätze for the two-loop six-point amplitudes

A(2)
6;0 =

87∑
j=1

ajI(2)j , A(2)
6;1 =

5∑
i=1

87∑
j=1

bijRiI(2)j , A(2)
6;2 = A(0)

6;2

87∑
j=1

cjI(2)j , (3.19)

comprising of 87+5×87+87=609 free coefficients, into the duality formula (3.1) which at

this loop level reads

lim
6-gon

light-like

ξ(6)F (4) = A(2)
6;0 +

A(2)
6;2

A(0)
6;2

+
A(1)

6;0A
(1)
6;2

A(0)
6;2

+
A(2)

6;1A
(0)
6;1

A(0)
6;2

+
1

2

(
A(1)

6;1

)2
A(0)

6;2

. (3.20)

– 15 –



J
H
E
P
0
7
(
2
0
1
8
)
0
6
8

Like the one-loop case, the whole NMHV sector at two loops is completely fixed by this

equation. There are 87 free undetermined coefficients in total, the anti-MHV sector being

completely fixed in terms of the MHV sector, but the MHV sector itself being completely

unfixed. This is precisely as expected in (1.3) and the accompanying footnote. Imposing

parity then reduces the number of free coefficients to 36 — the number of parity-odd two-

loop planar dual conformal integrands. Further imposing cyclicity reduces this down to 6

— the number of cyclic classes of parity-odd integrands. We expect these to be determined

at the next loop order and cannot see any obstructions going to higher order.

The equations also (almost) determine the value of α in (3.18): the ambiguity at

one loop. The equations are clearly quadratic in one-loop parameters and in fact, this

gives rise to two possible solutions. This is evident as the correlator determines only the

parity-symmetric product

A(1)
6;0A

(1)
6;2

A(0)
6;2

=
(
M(1)

6

∣∣
even

)2−(M(1)
6

∣∣
odd

)2
, (3.21)

for M(1)
6

∣∣
even

=
(
M(`)

6 +M(`)
6

)
/2 and M(1)

6

∣∣
odd

=
(
M(`)

6 −M
(`)
6

)
/2 where M6, M6 are the

MHV, anti-MHV amplitudes normalised by their respective tree-level amplitudes (soM6 =

A(1)
6;0, M6 = A(1)

6;2/A
(0)
6;2). The even piece was determined at one loop whilst (M(1)

6

∣∣
odd

)2 is

determined by this equation. This yields α2=1 so α=±1. We thus see that this procedure

alone cannot resolve the sign of the parity-odd part at one loop. This additional sign

ambiguity is only present for MHV amplitudes and is a purely one-loop effect. Note that

the ambiguity simply interchanges the MHV and anti-MHV solutions.

As a final note, the resulting integrand is consistent with that obtained in [11] and can

be retrieved explicitly via the associated Mathematica package.

4 Seven-point integrands

In this section, we study the seven-point light-like limit of the correlator, continuing our

extraction of amplitudes from the correlator. The construction now involves the null sep-

aration of seven adjacent points. The statement of the duality from (2.7) is

lim
7-gon

light-like

(
ξ(7)F (`+3)

)
=
∑̀
m=0

A(m)
7;0 A

(`−m)
7;3 +A(m)

7;1 A
(`−m)
7;2

A(0)
7;3

, (4.1)

where all amplitudes are normalised by the tree-level MHV amplitude.

Just like six points, we will proceed order-by-order in the coupling, making amplitude

integrand predictions from the correlator. To do so, we first require an understanding of the

building blocks involved. In particular, we need to understand the N2MHV super-invariants

at seven points and how to multiply these with NMHV R invariants.

4.1 The Yangian invariants

The tree-level anti-MHV (=N3MHV) amplitude is (2.21)

Atree
7;N3MHV

= A(0)
7;3 =

〈1234567〉4

〈1234〉〈2345〉〈3456〉〈4567〉〈5671〉〈6712〉〈7123〉
. (4.2)
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At the NMHV level, we assume an expansion of the amplitude in terms of R invariants.

Let us define a short-hand notation for the seven-point k= 1 R invariants (2.19):

R
(k=1)
7;(a),(b) ≡ [cdef g], (4.3)

which is just the ordered R invariant involving external points c, d, e, f, g with a, b missing.

In fact, this notation is very natural from the point of view of the Grassmannian: the

R invariant R
(k=1)
7;(a),(b) corresponds to the residue of the relevant Grassmannian integral

(Gr(1, 7)) evaluated at the poles (a) = 0, (b) = 0.

There are clearly 21 of these R invariants, however they are not all independent. The

identities the R invariants satisfy arise from the six-point identity (3.5), namely for any

six points

[abcde]− [abcdf ] + [abcef ]− [abdef ] + [acdef ]− [bcdef ] = 0. (4.4)

At seven points, there are 7 such identities, but only 6 of them are in fact independent.

We are therefore left with 21 − 6 = 15 independent R invariants.

The N2MHV sector however requires more thought. We follow the procedure outlined

in subsection 2.4 to obtain N2MHV Yangian invariants in amplituhedron space from the

Grassmannian. We illustrate this for the simplest example and provide the ingredients for

every other seven-point residue in appendix A.

Recall from equation (2.22) that any 7-point NkMHV Yangian invariant can be repre-

sented as the Grassmannian integral

1

vol[GL(2)]

∫
d2×7Cαa

(12)(23)(34)(45)(56)(67)(71)

2∏
α=1

δ4|4(CαaZAa ). (4.5)

The integration is 10 dimensional (after dividing by the four-dimensional vol[GL(2)]) and

there are 8 bosonic delta functions, leaving 2 non-trivial integrations. These we can choose

to circle two poles and use the residue theorem.

There are three classes of residues from the following vanishing minors

(67) = (71) = 0, (12) = (34) = 0, (12) = (45) = 0, (4.6)

where all other invariants are related by cyclicity. The simplest case is the residue at the

pole (67) = (71) = 0. We can pick canonical positive co-ordinates on the Grassmannian

restricted to this subspace, as found in [35]

Cαa =

[
1 α2+α4+α6+α8 (α2+α4+α6)α7 (α2+α4)α5 α2α3 0 0

0 1 α7 α5 α3 α1 0

]
, (4.7)

for which the (residue of the) measure of the Grassmannian integral becomes

Ω =

∫
dα1 . . . dα8

α1 . . . α8
. (4.8)
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From (2.28), we can then jump straight to the Yangian invariant in amplituhedron space

by solving

Ω =
dα1 . . . dα8

α1 . . . α8
= 〈Y d4Y1〉〈Y d4Y2〉 × Y7;2(Ẑ1, . . . , Ẑ7, Y ), (4.9)

where Y = CαaẐ
Ã
a . Using GL(6) invariance, we can choose amplituhedron co-ordinates as

ẐÃa =


1 0 0 0 0 0 A
0 1 0 0 0 0 B
0 0 1 0 0 0 C
0 0 0 1 0 0 D
0 0 0 0 1 0 E
0 0 0 0 0 1 F

 , (4.10)

giving

Y Ã
α =

[
1 α2+α4+α6+α8 (α2+α4+α6)α7 (α2+α4)α5 α2α3 0

0 1 α7 α5 α3 α1

]
, (4.11)

which in turn yields

〈Y d4Y1〉〈Y d4Y2〉 = α1α3α5α7 dα1 . . . dα8. (4.12)

The differential form is clearly weight 6 in Y giving us the freedom to divide by any six

brackets to obtain a Y -weightless volume form, let us choose:

〈Y d4Y1〉〈Y d4Y2〉
〈Y 1234〉〈Y 1236〉〈Y 1456〉〈Y 2345〉〈Y 2346〉〈Y 3456〉

=
dα1 . . . dα8

α1α2α2
3α4α8

. (4.13)

Therefore, the (67) = (71) = 0 residue is given as

Ω(67),(71) ≡
dα1 . . . dα8

α1 . . . α8
=

α3〈Y d4Y1〉〈Y d4Y2〉
α5α6α7 〈Y 1234〉〈Y 1236〉〈Y 1456〉〈Y 2345〉〈Y 2346〉〈Y 3456〉

.

(4.14)

We now wish to covariantise this expression. To achieve this, we simply need covariant

expressions for the Grassmannian co-ordinates — which are the following:

α1 =
〈Y 2345〉
〈Y 3456〉

, α2 = −〈Y 1234〉〈Y 3456〉
〈Y 2345〉〈Y 2346〉

, α3 = −〈Y 2346〉
〈Y 3456〉

, α4 = −〈Y 1236〉〈Y 3456〉
〈Y 2346〉〈Y 2356〉

,

α5 =
〈Y 2356〉
〈Y 3456〉

, α6 = −〈Y 1256〉〈Y 3456〉
〈Y 2356〉〈Y 2456〉

, α7 = −〈Y 2456〉
〈Y 3456〉

, α8 = −〈Y 1456〉
〈Y 2456〉

.

(4.15)

We require the above cross ratios to be Y -weightless, so that their combinations in (4.14)

are Y -weightless. Plugging these in yields

Ω(67),(71) →
〈Y d4Y1〉〈Y d4Y2〉

〈Y 1234〉〈Y 2345〉〈Y 3456〉〈Y 4561〉〈Y 5612〉〈Y 6123〉
. (4.16)

Whilst the expression is weightless in Y , the external particles are still weighted. Although

this is correct for the choice of co-ordinates (4.10), we use the following (Y -weightless) re-

lations

A = −〈234567〉, B = 〈134567〉, C = −〈124567〉,
D = 〈123567〉, E = −〈123467〉, F = 〈123457〉, 1 = 〈123456〉,

(4.17)
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to obtain a co-ordinate independent result (in general, the result would depend non-trivially

on the unfixed co-ordinates A,B, . . .). The natural modification here is simply to multiply

by 〈123456〉4 = 1

Ω(67),(71) →
〈Y d4Y1〉〈Y d4Y2〉〈123456〉4

〈Y 1234〉〈Y 2345〉〈Y 3456〉〈Y 4561〉〈Y 5612〉〈Y 6123〉
, (4.18)

which is the covariant expression for the desired residue. This example is somewhat trivial

and indeed could have been obtained by simply realising that the invariant is secretly the

unique six-point N2MHV Yangian invariant.

The other cases in (4.6) are less trivial but can be computed using this same method.

An outline for deriving these from the Grassmannian can be found in appendix A and we

simply present them here:

R
(k=2)
(67),(71) ≡

〈123456〉4

〈1234〉〈2345〉〈3456〉〈4561〉〈5612〉〈6123〉
,

R
(k=2)
(12),(34) ≡

(〈[1|567〉〈|2]34567〉)4

〈1267〉〈1567〉〈2567〉〈3456〉〈3567〉〈4567〉〈125[7|〉〈345|6]〉〈12[6|7〉〈34|5]7〉
,

R
(k=2)
(12),(45) ≡

(〈[2|367〉〈|1]34567〉)4

〈1237〉〈1267〉〈1367〉〈2367〉〈3456〉〈3467〉〈3567〉〈4567〉〈123[7|〉〈345|6]〉
,

(4.19)

where for example, 〈[1|567〉〈|2]34567〉 ≡ 〈1567〉〈234567〉−〈2567〉〈134567〉 is an ordered

anti-symmetrisation for two points enclosed in a square bracket.

These 21 N2MHV invariants are conjugates to the 21 NMHV R invariants as follows

[34567] = R
(k=1)
(1),(2) = R

(k=2)
(45),(56),

[24567] = R
(k=1)
(1),(3) = R

(k=2)
(45),(67),

[23467] = R
(k=1)
(1),(5) = R

(k=2)
(45),(12).

(4.20)

These conjugation relations can be seen from the Grassmannian. In complete generality,

conjugation relates ordered minors in the Gr(k, n) Grassmannian to those of the conjugate

Grassmannian Gr(n−k−4, n) as follows8

(a, a+1, . . . , a+k−1)
conjugation−−−−−−−→ (a+k+2, a+k+3, . . . , a+n−3). (4.21)

In the current context, conjugation takes the k=1 poles (a) to the k=2 poles (a+3, a+4).

This then implies the corresponding relations between Yangian invariants (4.20).

8There are two equivalent Grassmannian formulae for NkMHV amplitudes, the Gr(k, n) one we use here

which manifests dual conformal symmetry, and the Gr(k+ 2, n) one which manifests the original conformal

symmetry. Conjugation is more transparent in the Gr(k+2, n) case where it takes C → C⊥ ∈ Gr(n−k−2, n)

where the minors are related via (a, b, . . . , c) = εa,b,...,c,d,e,...,f (d, e, . . . , f)⊥. The relation between ordered

minors in Gr(k, n) and those in Gr(k+2, n) is simply Gr(k, n) 3 (a a+1, . . . , a+k−1) = (a−1, a, . . . , a+k) ∈
Gr(k+ 2, n) [37]. From here we see the conjugation relation (4.21) for minors in the Gr(k, n) formalism we

are considering.
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With these conjugation relations, we can immediately obtain the N2MHV identities

which now follow directly from (4.4). Just like the NMHV R invariants, there are therefore

6 independent identities leaving 15 independent N2MHV invariants.

As well as the Yangian invariants themselves, we also need an understanding on how

to take products of NMHV and N2MHV Yangians. Again, this is essentially determined

by considering the conformal weights, similarly to (3.8), namely if a six- and five-bracket

have five points in common, this gives a vanishing result. The only other possibility at

seven points is that they have four points in common in which case we get

〈abcdef〉4〈abcdg〉4 = 〈abcdef g〉4〈abcd〉4. (4.22)

4.2 Tree level

We now proceed similarly to six points: we first write down an ansatz for the seven-point

NMHV (N2MHV) amplitudes as an arbitrary linear combination of the independent k = 1

(k = 2) Yangian invariants (15 each)

A(0)
7;1 =

15∑
i=1

aiR
(k=1)
i , A(0)

7;2 =

15∑
i=1

biR
(k=2)
i , (4.23)

where we list an arbitrary set of independent super-invariants (defined in the previous

subsection) by R
(k)
i .

We then plug these ansätze into the duality formula (4.1) which at tree level becomes

lim
7-gon

light-like

ξ(7)F (3) = 1 +
A(0)

7;1A
(0)
7;2

A(0)
7;3

. (4.24)

Using the formula for taking products (4.22) as well as the known N3MHV tree-level

amplitude (4.2) yields an algebraic equation in the 30 unknowns. For convenience, we

provide explicit expressions for all the products of Yangian invariants in an attached

Mathematica notebook.

Again proceeding numerically, evaluating all twistor brackets at random rational points

many times, one obtains a 1-parameter solution — so far without imposing parity or

cyclicity. This free parameter is an overall scaling of the NMHV amplitude with the

inverse scaling of the N2MHV sector, which the light-like correlator will not detect

A7;NMHV×A7;N2MHV = αA7;NMHV×
1

α
A7;N2MHV. (4.25)

However, imposing parity invariance clearly fixes α = 1/α, so that α = ±1. We can

therefore fix the tree-level amplitude up to a sign from the correlator; the result can be

written (with the correct choice of sign):

Atree
7;NMHV = R

(k=1)
(5),(6) +R

(k=1)
(6),(1) +R

(k=1)
(1),(2) +R

(k=1)
(1),(4) +R

(k=1)
(3),(6) +R

(k=1)
(3),(4),

Atree
7;N2MHV

= R
(k=2)
(12),(23) +R

(k=2)
(23),(45) +R

(k=2)
(45),(56) +R

(k=2)
(45),(71) +R

(k=2)
(67),(23) +R

(k=2)
(67),(71).

Note that cyclicity was not input: the result is of course cyclically invariant although one

has to use the identities to see this.
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4.3 One loop

We now wish to extract all seven-point one-loop amplitudes from the correlator. A complete

basis of dual conformal one-loop integrands is given by the following parity-even integrands

together with their 7 cyclic versions each

I(1)1 =
x213x

2
24

x21`x
2
2`x

2
3`x

2
4`

one mass

I(1)8 =
x213x

2
25

x21`x
2
2`x

2
3`x

2
5`

two-mass hard

I(1)15 =
x213x

2
26

x21`x
2
2`x

2
3`x

2
6`

two-mass hard

I(1)22 =
x214x

2
25

x21`x
2
2`x

2
4`x

2
5`

two-mass easy

I(1)29 =
x215x

2
24

x21`x
2
2`x

2
4`x

2
5`

two-mass easy

I(1)36 =
x214x

2
26

x21`x
2
2`x

2
4`x

2
6`

three mass

I(1)43 =
x216x

2
24

x21`x
2
2`x

2
4`x

2
6`

three mass (4.26)

giving 49 independent parity-even integrands in total. There are also 21 parity-odd pen-

tagons

I(1)abcde =
iεabcde`

x2a`x
2
b`x

2
c`x

2
d`x

2
e`

. (4.27)

These parity-odd pentagons satisfy identities which follow directly from (3.16). Amusingly,

these are exactly the same six-term identity that the NMHV R invariants [abcde] satisfy,

thus there are 15 independent parity-odd integrands (the same number as independent R

invariants). In total, there are 49+15=64 independent one-loop integrands at seven points.

So the ansätze for the one-loop amplitudes at seven points are

A(1)
7;0 =

64∑
j=1

ajI(1)j , A(1)
7;1 =

15∑
i=1

64∑
j=1

bijR
(k=1)
i I(1)j ,

A(1)
7;2 =

15∑
i=1

64∑
j=1

cijR
(k=2)
i I(1)j , A(1)

7;3 = A(0)
7;3

64∑
j=1

djI(1)j , (4.28)

with 64×(1+15+15+1) = 2048 coefficients.

The correlator/amplitude duality at this order gives

lim
7-gon

light-like

ξ(7)F (4) = A(1)
7;0 +

A(1)
7;3

A(0)
7;3

+
A(1)

7;1A
(0)
7;2

A(0)
7;3

+
A(1)

7;2A
(0)
7;1

A(0)
7;3

. (4.29)

Plugging in the above ansätze and using the product rule between k= 1 and k= 2 invari-

ants (4.22) gives a set of equations for the coefficients in terms of twistor brackets.
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Solving the resulting equation (numerically using random rationals for the twistors),

we obtain a solution with 128 free coefficients. This is precisely as expected from the

general discussion of (1.3); there is an ambiguity of both the MHV and NMHV amplitude

in the form of the tree-level amplitude times any combination of the 64 one-loop integrands.

The N2MHV and N3MHV amplitudes are then fixed in terms of these.

Parity reduces the solution down to 15+15=30 coefficients — the ambiguity projects

to only parity-odd integrands. Applying cyclicity in addition reduces this down to 3+3=6

free coefficients, corresponding to the 3 cyclic classes of parity-odd integrands for both

MHV and NMHV sectors.

4.4 Two loops

Finally, we proceed to two loops expecting to fix the remaining one-loop coefficients as well

as determining the parity-even part of the two-loop answer.

As for six points, the two-loop basis consists of all dual conformal double boxes,

pentaboxes and pentapentas, built either from x2ab only (parity-even) or in addition, a

single six-dimensional ε-tensor. Just like six points, we again find it convenient to use the

smaller prescriptive basis of [11] and the accompanying package. These were all originally

given in terms of twistor brackets, but can all be converted to an x-space representation

where they are all linear combinations of this dual conformal x-basis. We provide the

result of this translation explicitly in a file attached to the arXiv submission. There are

378 integrands in the two-loop seven-point prescriptive basis which we label here as I(2)i .

So we have the following ansätze for the two-loop amplitudes

A(2)
7;0 =

378∑
j=1

ajI(2)j , A(2)
7;1 =

15∑
i=1

378∑
j=1

bijR
(k=1)
i I(2)j ,

A(2)
7;2 =

15∑
i=1

378∑
j=1

cijR
(k=2)
i I(2)j , A(2)

7;3 = A(0)
7;3

378∑
j=1

djI(2)j , (4.30)

with (1+15+15+1)×378=12, 096 free coefficients, together with the one-loop result (with

its 6 free coefficients) into the duality equation, which at this loop order reads:

lim
7-gon

light-like

ξ(7)F (5) = A(2)
7;0 +

A(2)
7;3

A(0)
7;3

+
A(1)

7;0A
(1)
7;3

A(0)
7;3

+
A(2)

7;1A
(0)
7;2

A(0)
7;3

+
A(2)

7;2A
(0)
7;1

A(0)
7;3

+
A(1)

7;1A
(1)
7;2

A(0)
7;3

. (4.31)

The solution has 378+378=756 free coefficients, 378 parameters for NMHV/N2MHV and

378 for MHV/N3MHV consistent with the ambiguity (1.3). Imposing parity invariance

reduces this to 168+168=336 free coefficients, with 168=7×24 being the number of inde-

pendent parity-odd integrands in the prescriptive basis. Finally, imposing cyclic invariance

in addition yields a final solution with 24+24 = 48 parameters at two loops, with 24 un-

derstood as the number of cyclic families of parity-odd integrands. In the process of doing

so, the remaining one-loop sector is obtained (up to a sign ambiguity of the parity-odd

integrands of the (anti-)MHV amplitudes as seen at six points (3.21).) We expect these

48 remaining coefficients to be fixed by going one loop higher. We reiterate that at this
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order, the correlator/amplitude duality (4.31) solves the seven-point parity-even part of

the amplitude up to two loops.

5 Conclusions

One consequence of the correlator/amplitude duality is that the simplest (four-point) cor-

relator contains a certain combination of all n-point superamplitudes for any n. In this

paper, we provide evidence for the conjecture that this combination contains all the infor-

mation from the individual amplitudes — the four-point correlator contains all information

about every amplitude integrand. We show this by extracting the individual amplitudes

from the null correlator. From the correlator to four loops we extract the six particle tree-

level, one-loop and parity-even part of the two-loop amplitude. From the correlator up to

five loops we extract the six and seven particle tree-level, one-loop and parity-even part of

the two-loop amplitude. An obvious future direction is to test this at higher loops/points.

To perform the extraction of individual amplitudes at six and seven points, we com-

pared to an ansatz for the amplitudes and resorted to numerical evaluation of the rational

integrands and solved the resulting equations. This method is in stark contrast to the

extraction of four [6] and five [16] point amplitudes from the correlator, where the duality

is seen algebraically (rather than just numerically), and in the four-point and five-point

parity-odd case, even graphically. In these cases there are simple graphical rules for deter-

mining all amplitude integrand graphs from the correlator f graphs without ever needing

to introduce an ansatz. Consistency of these graphical amplitude extraction rules with the

hidden symmetry inherent in the f -graph structure led to the discovery of graphical rules

which gave the higher-loop correlator in terms of the lower-loop one [9]. The (vastly effi-

cient) graphical nature of these procedures allows for the determination of the four-point

correlator to ten loops.

The next step left for future work is to attempt to understand the higher-point duality

discussed here from a more algebraic or even graphical perspective. The main complication

is the presence of spurious poles in the basis of Yangian invariants that appear from NMHV

and onwards. These must cancel in the sum, but this is difficult to see algebraically and

requires non-trivial algebraic identities, thus spoiling a transparent approach. Neverthe-

less, it may still be possible to read off graphically, directly from the correlator, certain

integrands (with their coefficients) which appear in the amplitudes.

Another complication that appears from six points is that it is no longer automatically

clear from the topology of a graph whether it contributes to a particular loop amplitude

or to the product of lower-loop amplitudes.

For example, in figure 2, the third graph in the figure could arise from a one-loop times

one-loop product, or be a two-loop graph contribution. At four- and five-points, planarity

ruled out such ambiguities.

With or without such a graphical approach however, this four-point correlator approach

to obtaining amplitudes provides a highly efficient method for obtaining amplitudes directly

as local integrands at any number of points as well as informing us something highly non-

trivial about their structure. Note that the four-point correlator can be obtained directly
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Figure 2. Disc planar contributions of highlighted-box integrands to four, five, six and seven

(light-like) cycles.

from the four-point amplitude, and so one can phrase this as a method for obtaining all

amplitudes from the four-point amplitude!

Finally, it would be very interesting to combine these considerations with the geo-

metrical polyhedral approach of the amplituhedron [25, 26]. In particular, all the squared

amplitudes in [38] were found to be given by explicit geometrical regions in an appropriate

Grassmannian. Combining this with additional topological information — the winding

number of [39] — may give the separate contributions in the sum (1.1).
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A Seven-point N2MHV Yangian invariants

We use the following co-ordinates for Ẑ (using GL(6) invariance) throughout this appendix

ẐÃa =


1 0 0 0 0 0 A
0 1 0 0 0 0 B
0 0 1 0 0 0 C
0 0 0 1 0 0 D
0 0 0 0 1 0 E
0 0 0 0 0 1 F

 , (A.1)

so that

A = −〈234567〉, B = 〈134567〉, C = −〈124567〉,
D = 〈123567〉, E = −〈123467〉, F = 〈123457〉, 1 = 〈123456〉.

(A.2)

– 24 –



J
H
E
P
0
7
(
2
0
1
8
)
0
6
8

A.1 (12) = (34) = 0 residue

Canonical positive co-ordinates on the Grassmannian are [35]

Cαa =

[
1 α8 α2+α4+α6 (α2+α4 +α6)α7 (α2 +α4)α5 α2α3 0

0 0 1 α7 α5 α3 α1

]

⇒ Y Ã
α =

[
1 α8 α2+α4+α6 (α2+α4+α6)α7 (α2+α4)α5 α2α3

Aα1 Bα1 1+Cα1 Dα1+α7 Eα1+α5 Fα1+α3

]
.

(A.3)

The Y -weighted differential form is found to be

〈Y d4Y1〉〈Y d4Y2〉 = α1α3α5(D−Cα7)(B−Aα8)dα1 . . . dα8. (A.4)

The differential form is normalised to be Y -weightless

〈Y d4Y1〉〈Y d4Y2〉
〈Y 2567〉〈Y 3456〉〈Y 3457〉〈Y 3467〉〈Y 3567〉〈Y 4567〉

= − dα1 . . . dα8

α7(B −Aα8)4
. (A.5)

Therefore, the (12) = (34) = 0 residue is given as

Ω(12),(34) = − (B −Aα8)
4〈Y d4Y1〉〈Y d4Y2〉

α1α2α3α4α5α6α8 〈Y 2567〉〈Y 3456〉〈Y 3457〉〈Y 3467〉〈Y 3567〉〈Y 4567〉
.

(A.6)

The Y -weightless cross ratios for the positive co-ordinates are:

α1 =
〈Y 3456〉
〈Y 4567〉

, α2 =
〈Y 4567〉 (〈Y 1257〉〈Y 3456〉−〈Y 1256〉〈Y 3457〉)

〈Y 2567〉〈Y 3456〉〈Y 3457〉
,

α3 =
〈Y 3475〉
〈Y 4567〉

, α4 =
〈Y 4567〉 (〈Y 1267〉〈Y 3457〉−〈Y 1257〉〈Y 3467〉)

〈Y 2567〉〈Y 3457〉〈Y 3467〉
,

α5 =
〈Y 3467〉
〈Y 4567〉

, α6 = −〈Y 1267〉〈Y 4567〉
〈Y 2567〉〈Y 3467〉

, α7 = −〈Y 3567〉
〈Y 4567〉

, α8 = −〈Y 1567〉
〈Y 2567〉

.

(A.7)

Substituting these into (A.6) yields a covariant expression for the residue

〈Y d4Y1〉〈Y d4Y2〉(〈Y [1|567〉〈|2]34567〉)4

〈Y 1267〉〈Y 1567〉〈Y 2567〉〈Y 3456〉〈Y 3567〉〈Y 4567〉〈Y 125[7|〉〈Y 345|6]〉〈Y 12[6|7〉〈Y 34|5]7〉 .

A.2 (12) = (45) = 0 residue

Canonical positive co-ordinates on the Grassmannian are [35]

Cαa =

[
1 α8 α2+α4+α7 (α2+α4)α6 (α2 +α4)α5 α2α3 0

0 0 1 α6 α5 α3 α1

]

⇒ Y Ã
α =

[
1 α8 α2+α4+α7 (α2+α4)α6 (α2+α4)α5 α2α3

Aα1 Bα1 1+Cα1 Dα1+α6 Eα1+α5 Fα1+α3

]
.

(A.8)

The Y -weighted differential form is found to be

〈Y d4Y1〉〈Y d4Y2〉 = α1α3(Dα5−Eα6)(B−Aα8)dα1 . . . dα8. (A.9)
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The differential form is normalised to be Y -weightless

〈Y d4Y1〉〈Y d4Y2〉
〈Y 1267〉〈Y 3456〉〈Y 3457〉〈Y 3467〉〈Y 3567〉〈Y 4567〉

=
dα1 . . . dα8

α5α6α7(B −Aα8)4
. (A.10)

Therefore, the (12) = (45) = 0 residue is given as

Ω(12),(45) =
(B −Aα8)

4〈Y d4Y1〉〈Y d4Y2〉
α1α2α3α4α8 〈Y 1267〉〈Y 3456〉〈Y 3457〉〈Y 3467〉〈Y 3567〉〈Y 4567〉

. (A.11)

The cross ratios for the positive co-ordinates are:

α1 =
〈Y 3456〉
〈Y 4567〉

, α2 =
〈Y 4567〉 (〈Y 1237〉〈Y 3456〉−〈Y 1236〉〈Y 3457〉)

〈Y 2367〉〈Y 3456〉〈Y 3457〉
,

α3 =
〈Y 3475〉
〈Y 4567〉

, α4 = −〈Y 1237〉〈Y 4567〉
〈Y 2367〉〈Y 3457〉

, α5 =
〈Y 3467〉
〈Y 4567〉

, α6 = −〈Y 3567〉
〈Y 4567〉

,

α7 =
〈Y 1267〉〈Y 4567〉

〈123567〉〈Y 3467〉 − 〈123467〉〈Y 3567〉
, α8 = −〈Y 1367〉

〈Y 2367〉
.

(A.12)

We note that α7 is not weightless in Y but (A.11) is independent of α7. Substituting these

into (A.11) yields the following

〈Y d4Y1〉〈Y d4Y2〉(〈Y [2|367〉〈|1]34567〉)4

〈Y 1237〉〈Y 1267〉〈Y 1367〉〈Y 2367〉〈Y 3456〉〈Y 3467〉〈Y 3567〉〈Y 4567〉〈Y 123[7|〉〈Y 345|6]〉
.
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