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Cellular senescence drives age-dependent hepatic
steatosis
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The incidence of non-alcoholic fatty liver disease (NAFLD) increases with age. Cellular

senescence refers to a state of irreversible cell-cycle arrest combined with the secretion

of proinflammatory cytokines and mitochondrial dysfunction. Senescent cells contribute to

age-related tissue degeneration. Here we show that the accumulation of senescent cells

promotes hepatic fat accumulation and steatosis. We report a close correlation between

hepatic fat accumulation and markers of hepatocyte senescence. The elimination of

senescent cells by suicide gene-meditated ablation of p16Ink4a-expressing senescent cells in

INK-ATTAC mice or by treatment with a combination of the senolytic drugs dasatinib and

quercetin (DþQ) reduces overall hepatic steatosis. Conversely, inducing hepatocyte

senescence promotes fat accumulation in vitro and in vivo. Mechanistically, we show that

mitochondria in senescent cells lose the ability to metabolize fatty acids efficiently. Our study

demonstrates that cellular senescence drives hepatic steatosis and elimination of senescent

cells may be a novel therapeutic strategy to reduce steatosis.
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N
on-alcoholic fatty liver disease (NAFLD) is characterized
by excess hepatic fat (steatosis) in individuals who
drink little or no alcohol. NAFLD is more prevalent in

older populations and it ranges from simple liver steatosis,
through non-alcoholic steatohepatitis (NASH) to advanced
fibrosis, cirrhosis and hepatocellular carcinoma (HCC)1. The
mechanisms underlying this condition are not understood nor is
why its prevalence increases with ageing. It has been speculated
that ageing processes may promote NAFLD via different
mechanisms, including adipose tissue dysfunction2, impaired
autophagy3 and oxidative stress4.

Cellular senescence is a state of irreversible cell-cycle arrest, which
can be induced by a variety of stressors, including telomere
dysfunction and genotoxic and oxidative stress5. Senescent cells
frequently have increased secretion of a broad repertoire of
proinflammatory factors, collectively known as the senescence-
associated secretory phenotype, which can induce tissue dysfunction
in a paracrine manner6. Senescent cells have mitochondrial
dysfunction, with decreased oxidative phosphorylation and conco-
mitantly increased generation of reactive oxygen species (ROS)7,8,
caused at least partly by failing mitophagy9. Recent studies have
demonstrated that selectively eliminating senescent cells can
attenuate several age-dependent disorders10–12. A significant
fraction of hepatocytes develop a senescent phenotype during the
life course of mice13 and with age-related liver disease in humans14.
However, the relationship between cellular senescence and liver fat
accumulation remains unclear. Here we hypothesized that cellular
senescence results in impaired fat metabolism and that removal of
senescent cells may diminish liver steatosis.

We found a close relationship between senescence markers
and fat accumulation in hepatocytes of mice fed ad libitum (AL),
dietary restricted (DR) or following dietary crossover and
in a small cohort of NAFLD patients. Furthermore, clearance
of senescent cells by suicide gene-meditated ablation of p16Ink4a-
expressing senescent cells in INK-ATTAC mice and a senolytic
cocktail of dasatinib plus quercetin (DþQ) reduced overall
hepatic steatosis in ageing, obese and diabetic mice. In contrast,
hepatocyte-specific induction of senescence by a local DNA repair
defect resulted in liver steatosis. Finally, we found that induction
of senescence in mouse fibroblasts and hepatocytes resulted in
decreased ability to metabolize fat. Our findings suggest that
interventions targeting senescent cells may be developed into
therapies to reduce steatosis during NAFLD.

Results
DR protects against liver fat deposition. In order to investigate
the relationship between fat deposition in hepatocytes and
hepatocyte senescence, C57BL/6 male mice were randomly
assigned to AL or DR at 3 months of age. At 12 months of age,
half the animals underwent a dietary switch (crossover) for 3
months, until the age of 15 months, when all mice were killed
(Fig. 1a). As shown previously15, both long- and short-term DR
were able to rescue body weight increase under AL
(Supplementary Fig. 1). Interestingly, and consistent with
earlier observations15, liver weight increased in adulthood
under AL conditions even faster than body weight (Fig. 1b),
and this was due to hepatic fat deposition (Fig. 1c–e). Life-long
DR suppressed fatty liver development (Fig. 1c–e). Importantly,
short-term DR starting at middle age, reversed the increased liver
mass (Fig. 1b) and liver fat accumulation (Fig. 1c–e). Contrarily,
short-term return to AL after long-term DR increased body and
liver weight but hepatic fat deposition remained low for at least 3
months (Fig. 1b–e). Histopathological grading confirmed
progressive steatosis in AL mice and absence or minimal
steatosis in DR mice (Supplementary Fig. 1b).

DR protects against hepatocyte senescence. Telomere dysfunc-
tion leads to activation of a persistent DNA damage response
(DDR) and is a feature of cellular senescence16. Telomere-
associated DNA damage foci (TAF, denoting co-localization of
gH2A.X with a telomere PNA probe assessed by immuno-
fluorescent in situ hybridization (FISH)) increase with age in
mouse hepatocytes17. Presence of three or more TAF in a cell
(Fig. 2a) is a sensitive and robust marker of senescence18. The
frequency of hepatocytes harbouring three or more TAF
increased significantly with age in AL animals but was main-
tained at a constant low level in DR animals (Fig. 2a,b). Both
types of crossover animals (AL to DR and DR to AL) showed a
significantly lower frequency of hepatocytes containing three or
more TAF than AL animals, remaining at a level similar to that
found in DR animals. The same pattern was observed when
analysing the average number of TAF per hepatocyte but not total
frequencies of DNA damage foci (Supplementary Fig. 2a,b). We
next analysed the frequencies of hepatocytes harbouring another
marker of cellular senescence, senescence-associated distension of
satellites (SADS) (Fig. 2c). Swanson et al.19 first reported that
satellite DNA found at human and mouse centromeres unraveled
from its compact state during senescence, a characteristic they
designated as SADS. We found that, similarly to TAF, frequency
of SADS increased with age in hepatocytes and this was largely
prevented by DR (Supplementary Fig. 2c). Importantly,
frequencies of hepatocytes containing Z4 SADS (Fig. 2c,d)
faithfully mirrored the pattern of TAF-positive cells (Fig. 2b).
Hepatocyte senescence is also characterized by karyomegaly20.
We analysed hepatocyte nuclear size by morphometric analysis of
4,6-diamidino-2-phenylindole (DAPI)-stained liver sections and
quantified frequencies of hepatocytes with a nuclear area
4127 mm2. Again, this senescence marker exhibited exactly the
same pattern as TAF and SADS (Fig. 2e): hepatocyte karyomegaly
increased with age under AL, it was maintained at low levels
under long-term DR, and was reduced during late-onset short-
term DR and for at least 3 months following cessation of DR. In
fact, karyomegaly and SADS resulted in very similar quantitative
estimates of senescent hepatocyte frequencies, while frequencies
of cells with Z3 TAFs were consistently lower (Supplementary
Fig. 2d), confirming earlier results showing that between two and
three TAF are necessary and sufficient to induce senescence18,21.
Furthermore, hepatocytes sorted into fractions with normal
and karyomegalic nuclei via measuring nucleus size using ImageJ
showed that significantly more karyomegalic hepatocytes
expressed markers of senescence, including phospho-p38
(ref. 8), 4-HNE (ref. 22), TAF and SADS, than hepatocytes with
normal-sized nuclei (Supplementary Fig. 2e–h).

In order to define the impact of DR and AL dietary crossovers
on senescence and fat accumulation, we conducted whole
transcriptome RNA-sequencing. We then identified all genes
whose expression followed the same pattern as the senescence
markers across all experimental groups (Fig. 2f). Analysis of the
10 most significantly enriched (false discovery rate r5%) Gene
Ontology (GO) categories for the genes that followed this pattern
included ‘lipid modification’, as well as several GO terms
associated with inflammatory processes, such as ‘phagocytosis’
and ‘lymphocyte and leucocyte differentiation’ (Fig. 2g).

The parallelism between senescence markers and genes
involved in inflammatory responses was anticipated because
senescence entails molecular reprogramming and production of a
unique secretome characterized by the increased release of
cytokines, chemokines, extracellular matrix remodelling factors
and growth factors23. These factors play a role in the recruitment
of immune cells, such as T cells and macrophages, which may
facilitate clearance of senescent cells24,25. Moreover, excessive fat
deposition has been associated with enhanced inflammation26.
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Consistent with this, we found by immunohistochemistry
that infiltration of CD3þ and CD68þ immune cells
correlated with senescent markers and fat deposition in the
liver of mice under the abovementioned dietary regimes (Supple-
mentary Fig. 2i,j).

Senescent cell clearance decreases liver fat accumulation. To
test whether senescent cells were a cause or consequence of fat
accumulation, we used two different strategies to eliminate
senescent cells from older animals: (i) the INK-ATTAC mouse,
in which a small molecule, AP20187 (AP) induces apoptosis
through dimerization of FKBP-fused Casp8, resulting in
elimination of p16-expressing cells10,27 and (ii) the senolytic
combination of the drugs DþQ, which selectively ablates
senescent cells in vitro and in vivo12. We first used
INK-ATTAC mice at 24 months of age and treated them
with either AP or with DþQ and then killed the animals at
27 months of age (Fig. 3a). None of the treatments significantly
altered body or liver weight (Supplementary Fig. 3a,b). As
expected, untreated INK-ATTAC mice at 27 months of age
displayed higher frequencies of TAF-positive (Fig. 3b) and
karyomegalic (Fig. 3c) hepatocytes than control AL mice at 15
months of age (compare with Fig. 2b,e). Both AP and DþQ
treatment reduced the frequencies of TAF-positive hepatocytes
(Fig. 3b) and the average numbers of TAF per hepatocyte
(Supplementary Fig. 3d), but total DNA damage was only
significantly changed with AP but not with DþQ treatment
(Supplementary Fig 3c). Moreover, AP also reduced the

percentage of karyomegalic hepatocytes, while DþQ treatment
resulted in a trend towards karyomegaly reduction (Fig. 3c).
Importantly, we found that both AP and DþQ administration
resulted in a significant reduction in hepatic fat deposition
(Fig. 3d). Furthermore, we exposed 6 month-old INK-ATTAC
mice to normal chow or high-fat (HF) diet until animals were
killed at 15 months of age (Fig. 3e). HF diet increased the
frequency of a variety of senescent markers in hepatocytes,
including TAF, karyomegaly, mRNA expression of p16
(measured by p16 and eGFP RNA-ISH) and senescence-
associated b-galactosidase (SA-b-Gal) activity (Fig. 3f–k and
Supplementary Fig. 3e,f). Started at 11 months of age, treatment
with AP significantly reduced all analysed senescent markers in
mice on HF diet (Fig. 3f–k). In accordance with the observations
made in aged mice, specific elimination of senescent cells
significantly reduced hepatic fat deposition in mice exposed to
HF diet (Fig. 3l). Interestingly, we found across all INK-ATTAC
mice (irrespectively of treatment and age) that the percentage of
p16- or eGFP-positive (detected by RNA-ISH) and karyomegalic
hepatocytes positively correlated with the average number of
TAF (Supplementary Fig. 3g–i), which further validates its utility
as a marker of senescence.

To independently confirm these results, we used db/db
mice that carry a mutation in the leptin receptor gene and are
a well-established model of type 2 diabetes and are characterized
by liver steatosis28. In db/db mice, treatment with senolytic
cocktail DþQ was able not only to suppress the increased
fraction of TAF-containing senescent cells but also significantly
reduce liver fat accumulation (Supplementary Fig. 3k–m).
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Figure 1 | DR is protective against liver fat deposition. (a) Three-month-old male mice were split into two groups and assigned to ad libitum (AL) or

dietary restricted (DR) food supply (animals were matched by body mass and food intake). DR animals were offered 60% of AL intake as one food ration

per day. After 9 months of diet (at the age of 12 months), mice were split into 4 groups liver-weight to body-weight: AL (remaining on AL feeding, n¼9),
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supply, n¼ 7). Animals stayed on the assigned food regime for 3 months until killed at 15 months of age. (b) Liver-weight to body-weight ratios in all the

experimental groups. Data per animal (dots) and means±s.d. are shown. (c) Micrographs showing Oil Red O staining on frozen liver sections in 15-month-

old animals in the indicated groups (red¼Oil Red O, blue¼ haematoxylin, scale bar 100mm). (d) Percentage of Oil Red O staining was determined using

ImageJ (n¼ 5). (e) Representative micrographs showing decreased Nile red staining in DR in comparison to AL animals at 15 month of age (scale bar

20mm, in Merge: blue¼DAPI, red¼Nile red, green¼Actin green). Grade of steatosis was independently assessed by a liver pathologist who confirmed Oil

Red O and Nile red results. All data are mean±s.d. with 5–10 animals per group. Significant differences (one-way analysis of variance) are indicated with

*Pr0.05 and **Pr0.001.
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Hepatocyte-specific senescence induces liver fat. We then
proceeded to test whether induction of senescence specifically
in hepatocytes resulted in liver fat accumulation. For this, we
generated mice with liver-specific inactivation of the DNA repair
gene Xpg, hereafter designated Alb-Xpg mice, which results in
accumulation of DDR markers and accelerated karyomegaly
specific in hepatocytes29. We found that hepatocytes lacking Xpg
over time exhibit increased markers of senescence such as TAF
(Fig. 4a and Supplementary Fig. 4), karyomegaly (Fig. 4b) and
p21 activation (Fig. 4c,d), which occurred concomitantly with
increased age-dependent fat accumulation (Fig. 4e,f). Altogether,
these data support the hypothesis that senescent cells are causally
implicated in steatosis.

Cell senescence could potentially stimulate fat accumulation in
a cell-autonomous fashion. Given that the efficacy of mitochon-
drial ATP synthesis by coupled respiration decreases during
ageing7 and in senescence8 and that a change in mitochondrial
function is indeed essential for the establishment of the senescent
phenotype30, we hypothesized that senescence might decrease

the capacity of mitochondria to oxidize fatty acids, thus
contributing to fat accumulation. To test this hypothesis, we
induced senescence in hepatocyte cultures isolated from young
mice using X-ray irradiation, as previous studies indicated that
activation of a DDR was central to the initiation of hepatocyte
senescence20,31. Accordingly, we found that a senescent pheno-
type develops in cultured hepatocytes 1 week after irradiation, as
shown by enhanced SA-b-Gal activity (Fig. 5a,b) and persistent
DNA damage foci (Fig. 5c,d). Similarly to what we observed
in vivo, fat droplet intensity measured by Nile red increased when
comparing senescent to non-senescent hepatocytes (Fig. 5e,f).
These results were confirmed independently using the lipid
probe BODIPY 493/503 (Supplementary Fig. 5a–d). In order
to investigate whether fat accumulation was due to impaired
fatty acid oxidation, we measured cellular oxygen consumption
in intact (non-permeabilized) hepatocytes. When the fatty
acid palmitate was supplied as substrate, oxygen consumption
increased to a lower extent in senescent hepatocytes than controls
(Fig. 5g), indicating that senescent hepatocytes had indeed
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decreased capacity to oxidize fatty acid. This was confirmed
when mitochondrial fatty acid oxidation was inhibited by
etomoxir. In the latter case, oxygen consumption was reduced
more in controls than senescent hepatocytes (Fig. 5h). To further
investigate whether this phenomenon was restricted to
hepatocytes, we performed similar experiments in mouse adult
fibroblasts (MAFs). Similarly to mouse hepatocytes, we found
that X-ray irradiation resulted in induction of senescent markers
(Supplementary Fig. 5e–i), which occurred within the same
time frame as the accumulation of cytosolic fat droplets
(Supplementary Fig. 5k–m). Consistent with a link between
mitochondrial dysfunction and increased cytosolic fat, we found
that mitochondria in senescent fibroblasts had a significantly
lower respiratory control ratio (state 3/state 4 respiration rate)
using the complex I-linked substrates, pyruvate and malate,
resulting in reduced capacity to generate ATP by coupled
respiration (Supplementary Fig. 5n,o) together with decreased
capacity to oxidize fatty acids (Supplementary Fig. 5p,q). Finally,

consistent with a causal link between mitochondrial dysfunction,
senescence and fat accumulation, we found that treatment
of MAFs with the mitochondrial complex I inhibitor rotenone
induced markers of senescence (Supplementary Fig. 5r,s) coupled
with increased cytosolic fat droplet accumulation (Supplementary
Fig. 5t). Together, these data indicate that senescence-associated
mitochondrial dysfunction reduces cellular fatty acid oxidation
capacity resulting in increased fat deposition.

Hepatocyte senescence correlates with severity of NAFLD.
Finally, as it has been shown that telomere length decreases and
DNA damage increases with steatosis grade32, we evaluated
whether TAF, which we found to be a more robust marker of
senescence17,18, and p21 in hepatocytes correlate with the severity
of NAFLD. We analysed liver biopsies from nine NAFLD
patients, whose demographic and histological characteristics are
summarized in Table 1. Seven patients had simple steatosis or
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Figure 4 | Hepatocyte-specific senescence leads to fat accumulation in the liver. (a) Six (n¼ 3) and 12 month (n¼ 5) old Alb-Xpg mice show increased

numbers of hepatocytes positive for TAF. (b) Alb-Xpg mice display increased percentage of karyomegalic hepatocytes. (c) Representative images of p21
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blue¼ haematoxylin) (d) Immunohistochemistry staining shows significantly increased levels of p21-positive hepatocytes in 12-month-old Alb-Xpg mice.
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O, blue¼ haematoxylin). (f) Percentage of Oil Red O staining per area is significantly increased in Alb-Xpg mice at 12 months of age. All data are
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steatosis with non-specific inflammation and two patients had
steatohepatitis. We found that TAF and p21 are significantly
increased in subjects with high fat content in the liver (Fig. 6a–c,
Supplementary Fig. 6a). Furthermore, the percentage of TAF- and
p21-positive hepatocytes (Fig. 6d,e) and the average number
of TAF per cell (Supplementary Fig. 6b) positively correlates
with the NAFLD activity score. Additionally, the average
number of TAF- and p21-positive hepatocytes (R¼ 0.4287,
P value¼ 0.055, Supplementary Fig. 6e) and the percentage of
TAF- and p21-positive hepatocytes (R¼ 0.3893, P value¼ 0.0726,
Fig. 6f) were correlated and TAF and p21 were positively related
with steatosis grade (Supplementary Fig. 6c,d). Importantly, TAF
correlated better than p21 with all clinical scores, confirming the
potential of TAF as a robust and specific marker of senescence in
human clinical settings. Interestingly, the expression of p21 was

restricted to hepatocytes and not found in any other liver cell
types.

Together, our data provide evidence that senescence in
hepatocytes is a major driver of liver steatosis, possibly through
mitochondrial dysfunction and impaired lipid metabolism,
perhaps explaining progression of NAFLD.

Discussion
Ageing and obesity are the major risk factors for many
age-related diseases, including diabetes, cancer, cardiovascular
disease and NAFLD33. NAFLD and NASH are frequently
associated with obesity, metabolic syndrome and type II
diabetes34. It is thought that increased lipid dietary consu-
mption, lipid synthesis or decreased lipid catabolism are major
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Table 1 | Clinicopathological features of patients.

1 2 3 4 5 6 7 8 9

Age at diagnosis, years 66 68 26 36 55 52 58 45 41
Gender F F F M F F F M M
Steatosis grade 1 2 1 1 2 2 3 1 3
% Steatotic hepatocytes 8 40 10 10 35 35 80 10 70
Acinar zone 3 2þ 3 Non-zonal 3 3 3 Pan-zonal Non-zonal 2þ 3
Hepatocyte ballooning 0 1 0 0 0 0 1 0 0
Lobular inflammation 1 1 0 1 1 1 1 1 1
Portal inflammation 1 0 0 0 1 1 1 0 0
Nuclear glycogenation 1 1 1 1 1 1 1 1 1
Megamitochondria 0 1 0 0 1 1 0 0 0
Lipogranulomas 1 0 0 0 1 1 1 0 1
SAF activity score 1 2 0 1 1 1 2 1 1
NAS score 2 4 1 2 3 3 5 2 4
Fibrosis stage 0 1 0 0 0 0 0 0 0

F, female; M, male; NAS, non-alcoholic fatty liver disease (NAFLD) activity score; SAF, steatosis, activity and fibrosis.
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contributors to the excessive hepatic fat observed during
NAFLD34. Chronic steatosis has been proposed to contribute
to liver injury by inducing inflammation, cell death, fibrosis
and HCC35.

Cellular senescence has been implicated in the progression of
liver disease. However, the mechanisms are not yet completely
understood, and in some cases, senescence has been associated
with detrimental effects but in others it is not. For instance,
telomere dysfunction, a major driver of hepatocyte senescence,
has been shown to impair liver regeneration and induce liver
cirrhosis in mice36 but was not significantly changed during
ageing in the human liver37 and did not predict NAFLD32.
Furthermore, chronic inflammation has been reported to
drive hepatocyte senescence and contribute to liver fibrosis18

and HCC38. Senescent cells have been found in the livers of
NAFLD32, cirrhotic patients39 and in the liver of HF-fed mice40.

In contrast, it has been suggested that p53-dependent
senescence of hepatic stellate cells contributes to reduced
secretion of fibrogenic proteins and is, as a result, antifibrotic25.
However, another report suggested that activation of a
proinflammatory phenotype in hepatic stellate cells could in
fact drive obesity-mediated HCC41. Thus altogether it is still
unclear if and how senescence contributes to liver dysfunction
during ageing and disease.

In this study, we found that modulation of dietary intake has
similar effects on hepatocyte senescence and fat accumulation
during ageing in mice. Interestingly, we found that DR reduced
both hepatocyte senescence and fat accumulation for a long
period after its cessation in agreement with the concept of a
‘metabolic memory’15. This led us to hypothesize a common
mechanism driving both phenotypes, namely, that an impaired
ability to catabolize fat could be related to the senescent
phenotype.

If this was the case, strategies aimed at removing senescent cells
would be viable therapeutic strategies for reducing hepatic
steatosis. Consistent with this, using the INK-ATTAC mouse
model in which senescent cells can be specifically deleted; we
showed a reduction in liver fat content in older mice and mice
exposed to HF diet, demonstrating a causal link between
senescence and liver fat accumulation. We note that deletion of
p16INK4a-expressing cells improves multiple ageing phenotypes in
progeroid mice10 and extends healthspan parameters in wild-type
chronically aged mice and may increase their median
lifespan11,27,42. In these studies, senescent cell clearance from
INK-ATTAC mice was observed in multiple tissues. We therefore
do not exclude the possibility that the reduced steatosis we
discovered is partially a secondary outcome of clearing senescent
cells from other tissues besides the liver, specifically from adipose
tissue where adipocyte senescence might compromise fat
storage43. Nonetheless, using a liver-specific mouse model of
impaired DNA repair, Alb-Xpg29, we found that induction of
senescence specifically in hepatocytes resulted in increased fat
deposition, which suggests that the effect can be cell autonomous.
Moreover, using the combination of senolytic drugs, D and Q, we
can effectively attain the same outcome in ageing and diabetic
mice, opening the door to novel therapeutic approaches.

Our results show that cell senescence can cause steatosis
cell autonomously by inducing mitochondrial dysfunction,
resulting in reduced fat metabolism. Senescence-associated
mitochondrial dysfunction is a regulated process driven by
signalling through p21 and p38 mitogen-activated protein
kinases8 and is associated with deregulation of the mammalian
target of rapamycin pathway9,44. This constitutes part of a central
feedback loop that stabilizes the senescent phenotype8,30.
Mitochondrial dysfunction is a feature shared by both ageing
and obesity-related pathology, especially insulin resistance, and
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has been associated with impaired ability to produce energy and
also increases production of ROS45. In fact, markers of ROS-
derived damage have been identified in the liver of obese
individuals46. Furthermore, mitochondrial-derived ROS has been
shown to induce telomere dysfunction, thereby contributing to
cellular senescence5. Consistent with this, our data demonstrate
that mitochondria from senescent hepatocytes cultured in vitro
are not as effective as young hepatocytes in catabolizing the fatty
acid palmitate causing accumulation of lipids in the cytosol.

In summary, our study reveals that cellular senescence drives
hepatic steatosis and suggests that targeting senescent cells may
be a novel pharmacological strategy to reduce steatosis.

Methods
Animals. Experiments were performed in male C57Bl/6 mice aged 3, 12 and
14.2±1.2 months15 purchased from Harlan (Blackthorn, UK). Mice were housed
in same-sex cages in groups of 4–6 (56� 38� 18 cm3, North Kent Plastics,
Kent, UK) and individually identified by an ear notch. Mice were housed at
20±2 �C under a 12 h light/12 h dark photoperiod with lights on at 0700 hours.
The diet used was standard rodent pelleted chow (CRM (P); Special Diets Services,
Witham, UK) for AL-fed mice and the same diet, but as smaller pellets, was offered
to DR mice. The smaller pellet size reduced competition for food. DR mice were
offered 60% of AL intake (calculated based on average food intake in 90 control
AL mice between 5 and 12 months of age) as one ration at 0930 hours daily. Half of
the animals were subjected to DR, while the other half, matched for body mass,
food intake and age, served as AL controls. Additionally, control, young mice
were killed at 3 months of age. DR was introduced at 3 months of age and lasted for
9–12 months. At the age of 12 months, some mice from the AL and DR groups had
their dietary regime changed AL to DR or DR to AL for 3 months. All mice were
killed at the time points mentioned above and at the end of the experiment. All
work complied with the guiding principles for the care and use of laboratory
animals and was licensed by the UK Home Office (PPL60/3864).

A variety of tissues were collected. Tissues were frozen in optimal cutting
temperature compound or OCT media for cryosections, snap-frozen in liquid
nitrogen for biochemistry and fixed in 10% formalin for 24 h before processing and
paraffin embedding. Cryosectioning was performed at 10 mm intervals and
paraffin-embedded tissues were cut at 3 mm intervals. Haematoxylin–eosin (H&E)-
stained mouse liver sections were graded for steatosis by a single expert liver
pathologist (DT) who was not aware of the genotype/treatment.

Alb-Xpg transgenic mice, with a liver-specific Xpg gene inactivation, were
generated and genotyped as previously described29. (We used organs produced in
the previous study but generated additional mice under the same conditions to
increase group size.) Xpgf/� Alb-Creþ mice (in a C57BL6J/FVB F1 hybrid
background; referred to as Alb-Cre) are heterozygous for Xpg in their entire body,
except for the hepatocytes in the liver, which are homozygous for Xpg after Cre
excision of the floxed allele. Littermates, with and without Cre-recombinase
expression (Xpgf/þ Alb-Creþ and Xpgf/� Alb-Cre� respectively), were used as
controls (referred to as wt). Mice were maintained in a controlled environment
(20–22 �C, 12 h light; 12 h dark cycle) and were housed in individual ventilated
cages under specific pathogen-free conditions. All animals had AL access to water
and standard mouse food (CRM pellets, SDS BP Nutrition Ltd.; gross energy
content 4.39 kcal g� 1 dry mass, digestible energy 3.2 kcal g� 1). At 6 (control: 6
male, Xpg: 6 male, 1 female) and 12 months (control: 4 male, 2 female and Xpg: 3
male, 3 female) of age, mice were killed for tissue collection. Tissues were
snap-frozen in liquid nitrogen, embedded in TissueTek and sliced in 10 mm thick
cryosections or fixed overnight in 10% phosphate-buffered formalin, paraffin-
embedded, sectioned at 3 mm and mounted on Superfrost Plus glass slides. Oil Red
O and H&E images were generated using the NanoZoomer Digital slide scanner
with the NDP view software (Hamamatsu Photonics, Japan).

A new stock of INK-ATTAC transgenic mice was generated and genotyped as
previously described10. Mice were house at 2–5 mice per cage in a 12 h light/12 h
dark cycle at 24 �C with free access to food (standard mouse diet, Lab Diet 5053, St
Louis, MO, USA) and water in a pathogen-free facility. AP20187 (10 mg kg� 1) was
administered to 24-month-old mice by intraperitoneal injection every 3 days, for 3
months. For senolytic treatment, vehicle or D (5 mg kg� 1) and Q (10 mg kg� 1) in
combination were administered by oral gavage once per month for 3 months. For
dietary intervention studies, INK-ATTAC mice were housed 2–5 per cage, at
22±0.5 �C on a 12–12-h day–night cycle and provided food and water AL. Mice
were randomly assigned into the chow diet or HF diet group. HF food was
purchased from Research Diets (cat no #D12492, 60% of calories in this diet are
from fat). Mice were injected intraperitoneally with AP20187 (10 mg kg� 1) or
vehicle for 3 days every 2 weeks for 10 weeks. All mice were killed at the age
of 15 months (6 male HF (3 vehicle, 3 AP), 9 female HF (4 vehicle, 5 AP), 8 male
control (4 vehicle, 4 AP) and 5 female control (2 vehicle, 3 AP)).

Db/db mice homozygotic males and females were purchased from Jackson
Laboratory (Bar Harbor, ME, stock number: 000642). Mixed gender cohort
consisting of 13 male db/db, 10 female db/db, 8 male db/þ and 8 female
db/þ was first time treated at the age of 4 months. In total, four treatments

(D (5 mg kg� 1) and Q (50 mg kg� 1) or vehicle (60% Phosal, 10% ethanol and 30%
PEG-400) were administered for 5 consecutive days biweekly via oral gavage.).
Animals were killed at the age of 6 months.

Ethical approval was granted by the LERC Newcastle University, UK Dutch
Ethical Committee at Erasmus MC (permit # 139-12-18) and the IACUC at Mayo
Clinic (Protocols A26713, A40312). The work was licensed by the UK Home Office
(PPL 60/3864) and complied with the guiding principles for the care and use of
laboratory animals.

Mouse adult fibroblasts. Ear clippings were transported and stored (not longer
than 1 h) in DMEM on ice. Punches were washed three times with serum-free
media, finely cut and incubated for 2–3 h at 37 �C in 2 mg ml� 1 collagenase A in
DMEM. A single-cell suspension was obtained by repeated pipetting and passing
through a 24-G fine needle. Cells were centrifuged for 10 min at 1,000 r.p.m. and
cultured in Advanced D-MEM/F-12 (DMEM, Invitrogen) plus 10% FCS (Sigma) in
3% O2 5% CO2. Each cell strain was derived from a separate donor. MAFs were
seeded and allowed to grow for 24 h and then X-ray irradiated with 5 or 10 Gy
using a PXI X-Rad 225 (RPS Services Ltd) to induce cellular senescence.
Alternatively, MAFs were treated with 100 nM of complex I inhibitor rotenone,
which was replaced daily. Following 10 days of treatment, induction of senescent
markers was observed.

Hepatocytes. Hepatocytes were isolated from the livers of wild-type mice by
digestion with collagenase from Clostridium histolyticum (Sigma) and then filtered
through a 70-mm cell strainer. Cells were collected by centrifugation (500 r.p.m. for
3 min), washed three times in Krebs–Ringer buffer (Sigma) and re-suspended
in Williams medium E with 10% serum (WME Gibco) and plated onto
collagen-coated plates (type I collagen, BD Biosciences). After 4 h, medium was
removed and cells were cultured in fresh 10% or 0.5% Williams medium
E. Hepatocytes were incubated at 37 �C and 3% oxygen overnight and were
exposed the next day to 10 Gy irradiation in order to induce senescence. Following
10 Gy X-ray irradiation, hepatocytes acquire a morphology characteristic of
senescence and SA-b-Gal activity after 6 days. Monitoring cell numbers revealed
that a small percentage of hepatocytes experienced cell death after irradiation;
however, most of the cells survived and acquired a senescent-like phenotype.
Non-irradiated controls were analysed 1–2 days following isolation, at the same
time as irradiation took place for the irradiated cells (this was necessary to prevent
overgrowth of other cell types, which are present in very low numbers).

Subjects and histological examination of liver biopsies. Nine individuals with
biopsy-proven NAFLD were evaluated. Demographic data are shown in Table 1.
Liver biopsy was performed under radiological guidance. Liver tissue cores of mean
length 16.3 mm, length range 9–30 mm were fixed in 10% neutral formalin and
embedded in paraffin for histological examination. Tissue sections were stained
with H&E and with Sirius Red Fast Green for visualizing collagen. Liver biopsies
were reviewed by a single expert liver pathologist (DT) who was not aware of the
clinical or immunohistochemical data. Histological diagnosis was based on
currently accepted histopathological criteria for NAFLD/NASH47. The grade of
steatosis (0–3), disease activity, including semi-quantification of lobular
inflammation and hepatocyte ballooning, and stage of fibrosis (0–4) were
assessed according to Kleiner et al.48 and Bedossa et al.49. The NAFLD activity
score (range 0–8: sum of grade of steatosis, lobular inflammation 0–3 and
hepatocyte ballooning 0–2)48 and activity according to SAF (range 0–4: sum of
lobular inflammation 0–2 and hepatocyte ballooning 0–2)49 were calculated for
each biopsy.

Oil Red O. Preparation of Oil Red O (Sigma-Aldrich, #O1391) working solution
and staining of slides was performed according to Mehlem et al.50 and the
manufacturer’s instructions. Briefly, Oil Red O working solution was prepared
from stock solution mixed 3:2 with water and incubated at 4 �C for 10 min.
Solution was filtered through 0.45-mm filters and applied on OCT-embedded liver
sections for 5 min. Slides were washed twice in water, 15 min each wash, and
mounted in vectashield mounting media. For representative images, sections were
counterstained with haematoxylin. Samples were imaged within 6 h. Surface of
lipid droplets was quantified using the ImageJ software by measuring area occupied
by red pixels.

Nile red. In all, 2 ml of Nile red solution (Nile red (Sigma N3013) 150 mg ml� 1 in
acetone) were added to 1 ml 80% glycerol. Frozen OCT-embedded liver 10-mm
sections were air dried for 30 min. MAFs were washed briefly with PBS and fixed
for 10 min with 2% paraformaldehyde dissolved in PBS. DAPI solution was added
for 10 min and afterwards sections were washed with PBS for 5 min. Some sections
were stained with ActinGreen 488 (ThermoFisher, 1 drop in 0.5 ml PBS) for 30 min
and washed with PBS for 3� 5 min. In all, 20–30 ml of Nile red/glycerol were
directly added to each section, mounted on a glass microscope slide and covered
with a cover slip. Images were taken immediately after mounting.
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BODIPY 493/503 staining. MAFs were washed briefly with PBS and fixed for
10 min with 2% paraformaldehyde dissolved in PBS. Cells were permeabilized with
PBG for 30 min and incubated for 10 min with 4 ml ml� 1 of BODIPY. Cells were
washed with PBS for 3� 5 min, stained with DAPI solution and mounted.

Histochemistry and immunofluorescence (IF). Paraffin sections were depar-
affinized with Histoclear and ethanol, and antigen was retrieved by incubation in
0.01 M citrate buffer (pH 6.0) at 95 �C for 10 min. Slides were incubated in 0.9%
H2O2 for 30 min and afterwards placed in blocking buffer (normal goat serum 1:60
in PBS/BSA, #S-1000; Vector Laboratories) for 30–60 min at room temperature
(RT). Livers were further blocked with Avidin/Biotin (Vector Laboratories, no.
SP-2001) for 15 min each. MAFs were washed briefly with PBS and fixed for 10 min
with 2% paraformaldehyde dissolved in PBS. Cells were permeabilized for 45 min
with PBG (0.5% BSA, 0.2% Fish Gelatine, 0.5% Triton X-100 in PBS). Primary
antibodies were applied overnight at 4 �C. Slides were washed three times with PBS
and incubated for 30 min with secondary antibody (no. PK-6101; Vector Lab).
Antibodies were detected using a rabbit peroxidase ABC Kit (no. PK-6101; Vector
Lab) according to the manufacturer’s instructions. Substrate was developed using
NovaRed (no. SK-4800; Vector Lab) or 3030-diaminobenzidine (no. SK4100, Vector
Lab). Sections were counterstained with haematoxylin. For IF, sections were treated
as before, and after the secondary antibody incubation, Fluorescein Avidin DCS
(1:500 in PBS, no. A-2011, Vector Lab) was applied for 20 min. For IF on MAFs,
Alexa Fluor secondary antibody (1:2,000; Molecular Probes) was applied for 30 min
at RT. Sections or cells were stained with DAPI for 5–10 min and mounted in
vectashield mounting media.

p21 immunohistochemistry was performed on formalin-fixed sections using rat
anti-p21 antibody (clone HUGO 291H, Abcam, UK) and the ImPRESS Rat
immunodetection system (MP-7444, Vector laboratories, Country) using
3030-diaminobenzidine (Dako, UK) as chromagen followed by counterstaining with
haematoxylin. Sections were then dehydrated and coverslipped. Ten blinded
consecutive non-overlapping fields were acquired at � 200 magnification and
quantified as previously described51.

Antibodies and dilutions. The nature, source and dilution of all antibodies used
in the study are listed in Table 2.

RNA in situ hybridization. RNA-ISH was performed after RNAscope protocol
from Advanced Cell Diagnostics Inc. (ACD). Paraffin sections were deparaffinized
with Histoclear, rehydrated in graded ethanol (EtOH) and H2O2 was applied for
10 min at RT followed by two washes in H2O. Sections were placed in hot retrieval
reagent and heated for 30 min. After washes in H2O and 100% EtOH, sections were
air dried. Sections were treated with protease plus for 30 min at 40 �C, washed with
H2O and incubated with target probe (p16, eGFP) for 2 h at 40 �C. Afterwards,
slides were washed with H2O followed by incubation with AMP1 (30 min at 40 �C)
and next washed with wash buffer (WB) and AMP2 (15 min at 40 �C), WB and
AMP3 (30 min at 40 �C), WB and AMP4 (15 min at 40 �C), WB and AMP5
(30 min at RT) and WB and, finally, AMP6 (15 min at RT). Finally, RNAscope 2.5
HD Reagent kit-RED was used for chromogenic labelling. After counterstaining
with haematoxylin, sections were mounted and coverslipped.

Telomere and centromere fluorescent ISH. After g-H2A.X IF, slides were
washed three times in PBS, crosslinked with 4% paraformaldehyde for 20 min and
dehydrated in graded ethanol. Sections were denatured for 10 min at 80 �C in
hybridization buffer (70% formamide (Sigma UK), 25 mM MgCl2, 0.1 M Tris

(pH 7.2), 5% blocking reagent (Roche, Germany)) containing 2.5 mg ml� 1

Cy-3-labelled telomere-specific (CCCTAA) or FAM-labelled, CENPB-specific
(centromere) (ATTCGTTGGAAACGGGA) peptide nucleic acid probe
(Panagene), followed by hybridization for 2 h at RT in the dark. Slides were
washed twice with 70% formamide in 2� SSC for 15 min, followed by washes in
2� SSC and PBS for 10 min. Sections were incubated with DAPI, mounted and
imaged. In-depth Z-stacking was used (a minimum of 40 optical slices with � 63
objective) followed by Huygens (SVI) deconvolution. Relative telomere length was
measured by telomere intensity per nucleus in one z plane.

Number of TAF per cell was assessed by quantification of partially or fully
overlapping (in the same optical slice) signals from telomere probe and g-H2A.X in
slice-by-slice analysis. Number of decondensed centromeres was assessed by
quantification of decondensed/elongated centromeres.

SA-b-Gal activity. For SA-b-Gal activity, cells were fixed with 2% paraf-
ormaldehyde for 5 min, washed and incubated at 37 �C with fresh SA-b-Gal
solution: 1 mg of 5-bromo-4-chloro-3-indolyl P3-D-galactoside (X-Gal) per ml
(stock¼ 20 mg of dimethylformamide per ml)/40 mM citric acid/sodium phos-
phate, pH 5.5/5 mM potassium ferrocyanide/5 mM potassium ferricyanide/150 mM
NaCl/2 mM MgCl2. Staining was evident after 24 h. Cells were washed and stained
with DAPI for 10 min, washed and mounted. For SA-b-Gal activity on the liver,
5-mm frozen sections were fixed with 0.5% glutaraldehyde for 15 min, washed with
PBS and were incubated in SA-b-Gal staining solution for 18 h at 37 �C. Washed
after incubation and counterstained with haematoxylin. Sections were dehydrated
and mounted and 10–15 random fields were imaged per sections. Senescent
hepatocytes were counted as a percentage of all hepatocytes per field.

Karyomegaly. In order to quantify the frequency of karyomegalic nuclei in the
mouse liver precisely, nuclear staining was performed. Preparation of samples was
performed as described by Wang et al.52. Briefly, OCT-embedded liver sections
were washed three times with PBS and mounted in DAPI-containing mounting
media and imaged. In-depth Z-stacking was used (a minimum of 40 optical slices
with � 63 objective). Analysis of karyomegaly was performed using the ImageJ
software. Karyomegaly was assessed using maximum-Z projections with a
threshold of 127mm2 of the nucleus area for cells to be considered karyomegalic.

Measurements of cellular bioenergetics. Cellular oxygen consumption rates
were measured in a Seahorse XF24 Analyzer using unbuffered media (DMEM
(Sigma, D-5030) supplemented with 5 mM D-glucose (Sigma), 2% L-Glutamate, 3%
calf serum), and the relative changes in oxygen consumption rates after the
addition of palmitate (100 mM) and etomoxir (4 mM) were calculated. Mitochon-
drial function in MAF was also determined in a Seahorse XF24 Analyzer (Agilent
Technologies) by permeabilizing the cells using XF Plasma Membrane Permea-
bilizer (Agilent Technologies) according to the manufacturer’s instruction using
complex I-linked substrate, pyruvate (10 mM)/Malate (1 mM). The state 3 was
achieved by addition of 4 mM ADP and the state 4 by oligomycin (1 mg ml� 1).

RNA-Seq. Strand-specific paired-end libraries for RNA-Seq were generated
from DNAse-treated total RNA using Ribozero and ScriptSeq systems
(Epicentre/Illumina) and run on an Illumina 2500 sequencer to obtain 100 base
paired-end reads. Low quality reads were filtered out by Kraken53. The resulting
filtered reads were mapped to the mouse genome version mm10 using Tophat54.
Mapped reads were counted with htseq-count55 and read counts were normalized
using deseq2 (ref. 56). In order to capture genes with the same expression pattern

Table 2 | Nature, source and dilution of all antibodies used in the study.

Name of an antigen Company producing primary
antibody and catalogue number

Primary antibody:
origin and
concentration

Secondary antibody: origin
and concentration

Tertiary antibody or
developing system

g-H2A.X Cell Signalling, #9718S Rabbit, 1:250 Anti-rabbit, biotinylated, Goat,
1:200

DSC-fluorescein (Vector Lab)

CD3 AbD Serotec #MCA1477 Rat, 1:100 Anti-rat, biotinylated, Goat,
1:200

Horseradish peroxidase ABC
kit, NovaRed (Vector Lab)

p21 (HUGO 291) Abcam #ab107099 Rat, 1:250 Anti-rat, biotinylated, Goat,
1:200

Horseradish peroxidase ABC
kit, NovaRed (Vector Lab)

p-p38 (Thr180/Tyr182) Cell Signalling #4631 Rabbit, 1:100 Anti-rabbit, biotinylated, Goat,
1:200

Horseradish peroxidase ABC
kit, NovaRed (Vector Lab)

53BP1 Novus Biologicals #NB100-304 Rabbit, 1:200 Goat anti-rabbit secondary AB,
Alexa Fluor 594 1:2,000

4-HNE (HNEJ-2) JaICA, #MHN-100P Mouse 1:100 Anti-mouse, biotinylated,
Goat, 1:200

Horseradish peroxidase ABC
kit, NovaRed (Vector Lab)

CD68 Aviva Systems Biology,
#OABB00472

Rabbit 1:250 Anti-rabbit, biotinylated, Goat,
1:200

Horseradish peroxidase ABC
kit, NovaRed (Vector Lab)
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as the TAF and Oil Red O staining, said values were inserted into the normalized
expression data set and then clustered with Biolayout express57 using a
0.7 minimum Pearson correlation and a 95 correlation value. Clustering was
conducted using MCL implementation of Markov Cluster Algorithm58 using an
inflation coefficient of 2.2 and a preinflation coefficient of 3.0. The cluster of genes
with included TAF and oil lipid data were extracted and analysed for GO
over-representation using the PANTHER database59.

Statistical analysis. Normal distribution and equal variance were assessed using
the statistical software from Sigma Plot vs11.0. We conducted one-way analysis of
variance, two-tailed t-test and linear and nonlinear regression analysis tests using
Sigma Plot v11.0 and GraphPad Prism 7.

Ethics. Approval was obtained from ‘Newcastle and North Tyneside Research
Ethics Committee’ for the use of anonymized patient samples (approval reference:
REC 06/Q0905/150).

Data availability. RNA-Seq data have been deposited in arrayexpress/ENA under
accession code E-MTAB-5645. All data generated or analysed during this study are
available within the paper and its Supplementary Information files and from the
corresponding author on request.

References
1. Hardy, T., Oakley, F., Anstee, Q. M. & Day, C. P. Nonalcoholic fatty liver

disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. 11, 451–496
(2016).

2. Duval, C. et al. Adipose tissue dysfunction signals progression of hepatic
steatosis towards nonalcoholic steatohepatitis in C57Bl/6 mice. Diabetes 59,
3181–3191 (2010).
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