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We present the first calculation of direct photon production at next-to-next-to-leading order (NNLO)
accuracy in QCD. For this process, although the final-state cuts mandate only the presence of a single
electroweak boson, the underlying kinematics resembles that of a generic vector boson plus jet topology.
In order to regulate the infrared singularities present at this order, we use the N-jettiness slicing procedure,
applied for the first time to a final state that at the Born level includes colored partons but no required jet.
We compare our predictions to ATLAS 8 TeV data and find that the inclusion of the NNLO terms in the
perturbative expansion, supplemented by electroweak corrections, provides an excellent description of the
data with greatly reduced theoretical uncertainties.
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Introduction.—Direct (or inclusive) photon production at
hadron colliders provides an excellent testing ground for
probing the predictions of the standard model (SM) in fine
detail. The LHC, which is currently in its second major
data-taking period, provides a powerful tool to study this
process [1–4]. For the first time, the experimental uncer-
tainties are under such good control that, over a large region
of phase space, they are significantly smaller than the
corresponding theoretical ones. Additionally, the most
recent data from the LHC highlight the fact that existing
theoretical tools are inadequate for describing the exper-
imental measurements[4].
This remarkable achievement of experimental science

challenges the theoretical community to provide more
sophisticated predictions that have theoretical errors com-
mensurate with the errors in the data. Given the special
nature of this final state, the poor description provided by
existing theoretical predictions for this channel has serious
ramifications for the LHC program. Direct photon produc-
tion (pp → γ þ X) and the associated process in which a jet
is explicitly reconstructed (pp → γ þ j) are the highest-
rate electroweak processes at the LHC. As such, they
represent critical standard candles for the exploration of the
SM at the LHC. For instance, measurements over a wide
range of kinematic configurations—corresponding to dif-
ferent rapidities and transverse momenta of the photon—
could be used to provide a precision probe of parton
distribution functions (PDFs) [5]. However, up to now,
the large theoretical uncertainty has meant that these data
are not routinely used in fits. Moreover, the similarity
of this process to Z þ jet production can also be exploited
to provide a better understanding of the Zð→ νν̄Þ þ jet
process, which gives rise to leading backgrounds in
searches for dark matter and supersymmetry. This is
especially useful in the high transverse momentum region,

where there are limited experimental data from the process
pp → Zð→ lþl−Þ þ X [6].
Over the past 15 years, the theoretical benchmark for

direct photon studies has been the next-to-leading-order
(NLO) Monte Carlo code JETPHOX [7]. Recent calculations,
implemented in the code PETER, have extended the NLO
prediction to include both threshold resummation at
the next-to–next-to–next-to-leading-logarithmic accuracy
(N3LL) and electroweak Sudakov corrections at leading-
logarithmic accuracy [8]. By including the resummed
terms, the agreement with the data is somewhat improved,
compared to the pure NLO prediction.
It is clearly highly desirable to have a next-to–next-

to-leading order (NNLO) prediction for direct photon
production that can be compared with LHC data. This is
the primary aim of this Letter. Although direct photon
production can be defined merely through fiducial cuts on
the photon, it proceeds at LO in the perturbation theory
through the recoil of the photon against a quark or gluon.
Therefore, the underlying structure of the calculation is
almost identical to that of the γ þ j process. The presence
of a final-state colored parton means that a NNLO
calculation of this process represents a considerable theo-
retical challenge.
Over the past few years, significant progress has been

made in the field of NNLO calculations, allowing for the
calculation of processes involving one [9–15] or two
[16,17] massless partons in the final state for the first time.
One of the developments that has proven very fruitful for
computing NNLO corrections is a novel method for
regulating the infrared (IR) singular structure known as
N-jettiness slicing (or subtraction). Originally used in a
NNLO calculation of top quark decay [18], the method has
since been extended and applied to general LHC processes
[12,19]. This method splits the phase space into two
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components based on the global event shape, N-jettiness
(τN) [20]. Crucially, for an N-jet final state, the double-
unresolved IR poles occur when τN ¼ 0, so that τN > τcutN
corresponds to a region in which the calculation has at most
single-unresolved limits and therefore resembles a NLO
calculation. Furthermore, the cross section in the region
τN < τcutN can be obtained from a factorization formula
derived from the soft-collinear effective theory (SCET)
[21–25]. The method can therefore be used as a slicing
procedure, with the usual caveat that τcutN should be taken as
small as possible to minimize power corrections to the
below-cut factorization theorem. (For recent work on
reducing the dependence on the power corrections, see
Refs. [26,27].)
Calculation.—In this section, we briefly outline the

technical details relating to our calculation. In the N-
jettiness slicing approach, the calculation naturally splits
into two components, corresponding to the contributions
above and below τN ¼ τcutN . Below τcutN , the factorization
theorem of the SCET describes the cross section as a
convolution of a process-dependent hard function H, with
process-independent beam functions B that describe initial-
state collinear singularities, jet functions J for final-state
collinear singularities, and a soft function S that describes
soft radiation. Expansions accurate to Oðα2sÞ that are
relevant for our calculation can be found in Refs. [28,29],
[30,31], and [32] for the beam, jet, and soft functions,
respectively. The process-independent functions have
already been used in the calculation of NNLO corrections
to the similarW þ j [12] and Z þ j [14] processes. For our
purposes, we use the implementation of these contributions
in MCFM as outlined in Ref. [14] and also, for the
color-singlet case, in Ref. [33]. We have calculated the
process-dependent hard function H using the results for
the double-virtual pp → γj matrix elements, calculated in
Ref. [34]. The helicity amplitudes for the gg → γg one-loop
contribution, that also enter the hard function, have been
computed using analytic unitarity techniques [35–37]. We
have checked that we find agreement between the
N-jettiness slicing method and a more traditional Catani-
Seymour dipole [38] calculation at NLO.
In addition to the ingredients required from the SCET

factorization theorem, we also require the pieces associated
with τN > τcutN , which corresponds to the NLO calculation
of γ þ 2j. This process has been studied at NLO in Ref. [6].
We have recomputed the virtual corrections to this process
using unitarity methods and checked our calculation using
an in-house implementation of the D-dimensional numeri-
cal algorithm described in Ref. [39]. The amplitudes have
also been cross-checked numerically at specific phase
space points using M adgraph5_aMC@NLO[40].
We now turn our attention to the discussion of N-

jettiness slicing for the case at hand. Direct photon
production is representative of an interesting class of
processes to compute at NNLO, where no final-state jet

is required but the nonzero recoil of the photon mandates
some colored radiation in the final state. (Similar studies for
inclusive Higgs and Z boson production at finite pT can be
found in Refs. [15,41,42].) The N-jettiness slicing pro-
cedure therefore has to be defined in this context. Clearly,
the final-state parton will induce singularities at NNLO that
cannot be regulated by a cut on 0-jettiness, τ0 (for instance,
corresponding to the triple-collinear splitting of a final-state
parton). Thus, it is clear that a cut must be made on the
1-jettiness event shape variable, which naturally requires a
definition of a jet direction nj. Therefore, one has to be
careful that the regulating variable τcut1 , which requires a jet
definition, does not interfere with the inclusive nature of the
final state, which does not.
In order to achieve this, we start with the usual definition

of τcut1 :

τcut1 ¼
XM
k¼1

min
i¼a;b;1

�
2qi · pk

Qi

�
: ð1Þ

This equation involves the momenta of the parton-level
configuration, fpkg, and the set of momenta that is
obtained after application of a jet-clustering algorithm,
fqig. The scaleQi is a measure of the jet or beam hardness,
which we take asQi ¼ 2Ei. In order to be well defined, the
contribution from the jet direction that enters in Eq. (1)
must correspond to a sufficiently hard jet. This is guaran-
teed by the cut on the photon transverse momentum (pT).
In the Born phase space, the transverse momentum of the
jet clearly balances that of the photon. In the real-virtual
phase space, this constraint is somewhat relaxed, so that the
transverse momentum of the leading jet is constrained by
p1
T > pγ

T=2. In the double-real contribution, the constraint
is p1

T > pγ
T=3. Thus, as long as we consider sufficiently

hard photons, τcut1 is well defined.
A subtlety to this procedure still arises in practice.

Although the jet-clustering procedure is used only to
identify the jet direction, with no pT cut necessary, there
is still a dependence on the cone size R. An example of this
dependence is illustrated in Fig. 1, which makes it clear
that, depending on the cone size, radiation may or may not
be clustered together to form a jet. In the figure, the smaller
cone R1 results in a different jettiness direction than the
larger cone R2. Crucially, although these two jettiness
directions nR1

j and nR2

j will differ at large τcut1 , in the limit in
which τcut1 → 0, the difference vanishes. Different choices
of R will therefore result in different power corrections at
large τcut1 , but the cross section should become insensitive to
this choice in the double-unresolved limit τcut1 → 0.
Results.—In order to properly define the process of direct

photon production, it is necessary to apply isolation
conditions to the photon. In this Letter, we apply the
following smooth-cone isolation [43] criterion:
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X
Ehad
T ðRÞ < ϵγE

γ
T

�
1 − cosR
1 − cosR0

�
n ∀ R < R0: ð2Þ

This requirement constrains the sum of the hadronic energy
inside a cone of radius R, for all separations R that are
smaller than a chosen cone size R0. Note that arbitrarily soft
radiation will always pass the condition, but collinear
(R → 0) radiation is forbidden. Therefore, the contributions
from collinear fragmentation functions are eliminated. This
isolation prescription is therefore highly desirable from a
theoretical viewpoint.
Unfortunately, the continuous nature of this isolation

prescription cannot be reproduced easily in the experimen-
tal setup, in which discrete calorimeter cells are used.
Therefore, the smooth-cone procedure is not feasible for
use in experimental studies. However, at NLO, it is possible
to choose smooth-cone parameters (ϵγ, n, and R0) such that
the theoretical prediction using smooth-cone isolation is
close to the one obtained using fragmentation functions and
isolation conditions that mimic the experimental cuts. Such
a matching was performed in Ref. [44] for the case of
photon pair production. We adopt the same parameters
(n ¼ 2, ϵγ ¼ 0.1, and R0 ¼ 0.4) that were suggested in that
study, finding NLO rates that are within 1%–2% of the
JETPHOX [7] results quoted in Ref. [4].
All of the results presented here are for the LHC

operating at
ffiffiffi
s

p ¼ 8 TeV. The photon is constrained by
a simple set of cuts:

pγ
T > 65 GeV; jηγj < 0.6: ð3Þ

The theoretical predictions are all obtained using the
CT14 NNLO PDF set [45] with renormalization (μR)
and factorization (μF) scales equal to pγ

T . When included,
PDF uncertainties are quoted at 68% C.L. The rate for
this process is proportional to the electromagnetic coupling
αem. We choose to evaluate αem at the scale of the
photon transverse momentum, using one-loop running
with αemðmZÞ ¼ 1=127.9. When we include higher-
order electroweak (EW) corrections, they are evaluated
at αð0Þ ¼ 1=137, appropriate for real photons, so that we

are using a modified Gμ scheme [46]. As we will shortly
observe, this choice is supported phenomenologically by an
improved description of the ATLAS data [4,8].
In order to validate our calculation, we first study the

dependence of the power corrections on the jet cone size R
that is indicated in Fig. 1.We compute theNNLOcoefficient
in the perturbative expansion of the cross section (ΔσNNLO),
for anti-kT jets [47] with R ¼ 0.2 and R ¼ 0.4, for photons
with pγ

T > 150 GeV. Our results are shown in Fig. 2. We
observe that for τcut1 ≳ 0.14 GeV the power corrections
result in predictions for the NNLO coefficient that are quite
different for the two values of R. However, for τcut1 ≲
0.14 GeV the predictions tend towards the same result
and are in much better agreement. We note that the
calculation for R ¼ 0.2 becomes numerically unstable for
τcut1 < 0.08 GeV but that the prediction already shows little
sensitivity to τcut1 well before this value is reached.
Given that our calculation is ultimately insensitive to R,

we can thus choose our value to expedite the onset of
asymptotic behavior. We thus choose R ¼ 0.2 henceforth.
In Fig. 3, we present the τcut1 dependence for the softer
region 65 < pγ

T < 150 GeV, which corresponds to the
softest photons we study in this Letter. It is clear that
the power corrections are sizable for τcut1 ≳ 0.2 GeV but
that there is little dependence on τcut1 in the region
τcut1 ≤ 0.1 GeV. This is in line with the expected scaling
from the harder (> 150 GeV) region we studied previously.
For our subsequent comparison with the ATLAS data, we
set τcut1 ¼ f0.1; 0.2; 0.7g GeV for the phase space regions
pγ
T > f65; 150; 470g GeV, respectively.

FIG. 1. An illustration of the dependence on R in theN-jettiness
algorithm. The same event, clustered with two different R values,
results in differing orientations of the jettiness axis. This results in
different power corrections for τ1 > 0. In the limit τ1 → 0, the
dependence on R vanishes.

FIG. 2. The dependence of the NNLO coefficient on the
parameter τcut1 and the clustering cone size R. Two choices are
shown corresponding to R ¼ 0.4 (red) and R ¼ 0.2 (blue). The
R ¼ 0.4 results have been offset slightly to improve visibility.

FIG. 3. The dependence of the NNLO coefficient on the
parameter τcut1 for the transverse momentum window
65 < pγ

T < 150 GeV.
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In Fig. 4, we compare our NNLO (and NLO) predictions
from MCFM with 8 TeV ATLAS data [4]. In the middle
panel, the shaded bands represent the scale uncertainty,
obtained by considering relative deviations using a six-
point scale variation about our central choice: fμR; μFg ¼
fλ1pγ

T; λ2p
γ
Tg with λi ∈ f2; 1; 1=2g and λ1 ≠ λ−12 . It is clear

that the scale dependence is greatly reduced for the NNLO
prediction when compared to NLO. For the central scale
choice, the NNLO prediction is around 5% larger than
NLO. The central scale is close to the maximum of the
uncertainty band, with deviations around þ1% and −4%
over much of the range. The tendency of the theoretical
prediction to overestimate the data in the high-pT region is
more pronounced when the NNLO correction is included.
In the lower panel in Fig. 4, we present the PDF
uncertainties and their combination with the scale variation.
We observe that the PDF uncertainties are of the same size
or larger than the scale variation, particularly at high pT .
The tension with the data for pT < 100 GeV is much
reduced when the PDF and experimental luminosity errors
are included. The fact that the PDF uncertainties are larger
than both the scale and experimental uncertainties high-
lights the potential of this channel to provide invaluable
constraints on PDFs in the future. However, there is still
significant tension in the pT > 500 GeV region.
Given the small uncertainty in the NNLO QCD pre-

diction, and the resulting tension with the data, it is
especially important to investigate the impact of additional

theoretical effects not included in the pure QCD prediction.
At high energies it is well known that the impact of
Sudakov effects, arising from the virtual radiation of heavy
electroweak bosons, is important for this process [8,48–50].
We thus improve our NNLO prediction to include electro-
weak effects by rescaling it by a factor of [1þ ΔEW], where
ΔEW is computed using the one-loop high-energy limit
expressions of Ref. [48].(We have checked that an alternate
formulation of the EW corrections, that captures the effect
of leading-logarithmic electroweak corrections [50], gives
practically identical results.)
Accounting for both NNLO QCD and electroweak

effects in this way provides the improved prediction shown
in Fig. 5. This shows a dramatic improvement in the overall
agreement between our theoretical prediction and the data
after the inclusion of electroweak effects. The most
accurate calculation available until now is one that
accounted for threshold resummation to N3LL accuracy
and electroweak effects [8]. We note in passing that,
although the central prediction of that calculation and
our NNLO one are similar, the scale uncertainty in the
NNLO calculation is around a factor of 3 smaller than the
equivalent uncertainty obtained there. We see from Fig. 5
that, after a full accounting of both experimental and
theoretical uncertainties has been performed, there is
excellent agreement between the NNLOð1þ ΔEWÞ pre-
diction and the measured distribution for Eγ

T < 500 GeV. It
is a remarkable feat that the uncertainties are now under
good enough control that the inclusion of electroweak
corrections becomes mandatory to ensure agreement
between the theory and data at energies as low as a few
hundred GeV. For Eγ

T > 500 GeV the theoretical prediction
still appears to overshoot the ATLAS data somewhat, but
the two predictions still agree within their respective
uncertainties. A preliminary study using a number of
alternative PDFs suggests that this disagreement is not a
feature of our use of the CT14 PDF set.
Conclusions.—We have presented a calculation of direct

photon production at NNLO accuracy obtained using the
N-jettiness slicing approach. We compared our prediction

FIG. 4. A comparison of the MCFM predictions for the
transverse momentum of the photon to ATLAS 8 TeV data
[4]. The middle panel presents the scale variation for NLO and
NNLO, while the lower panel shows the combination of PDF and
scale uncertainties. The dashed line indicates the experimental
luminosity uncertainty.

FIG. 5. The effect of including electroweak corrections in
addition to the NNLO predictions provided by MCFM, together
with scale and PDF (shaded bands) and luminosity (dashed line)
uncertainties.
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to ATLAS 8 TeV data for pγ
T > 65 GeV and jηγj < 0.6. We

found that, by combining the NNLO QCD calculation with
EW effects, our calculation describes the data very well.
Our results represent a significant improvement compared
to previous theoretical predictions. The future study of this
process, over a wider phase space and at larger center of
mass energies, presents an exciting opportunity for pre-
cision QCD at colliders. The smallness of the scale
variation and experimental uncertainties, set against the
sensitivity to PDF uncertainties, underline how useful this
channel can be for future PDF fits. In addition, the
calculation of ratios of photon momenta for different
rapidity regions has interesting potential. The ratios have
the advantage of canceling the leading dependence on αem
and simultaneously the experimental luminosity uncer-
tainty. We leave such detailed phenomenological studies
to a future publication.
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