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HIGHLIGHTS

• The stability/instability to necking of a filament
of complex fluid after an extensional step-strain is
considered.

• A linear stability analysis is used to derive two an-
alytical criteria for the onset of necking.

• Three different constitutive models are examined:
Oldroyd-B, Giesekus, and Rolie-Poly.

• The linear stabibility criteria agree well with the
early time regime of non-linear slender filament
simulations.

• For the stretch Rolie-Poly model, delayed necking
is observed, as seen experimentally by Wang and
predicted theoretically by the Copenhagen group.
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Necking after extensional filament stretching of complex fluids and soft solids

D. M. Hoyle∗ and S. M. Fielding
Department of Physics, University of Durham, Science Laboratories,

South Road, Durham, DH1 3LE, United Kingdom
(Dated: June 30, 2017)

We perform linear stability analysis and nonlinear slender filament simulations of extensional
necking in complex fluids and soft solids, during the stress relaxation process following an interrupted
strain ramp. We start by deriving analytical criteria for necking within a highly simplified and
generalised scalar constitutive model. Within this, we find two different possible modes of necking:
one associated with an upward curvature in the stress relaxation function on a log-linear plot, and
another related to a carefully defined ‘elastic’ derivative of the tensile force with respect to an
imagined sudden strain increment. We showed these two criteria to agree fully with simulations
of the Oldroyd B and Giesekus models of polymeric solutions, and with the Rolie-Poly model
of more concentrated polymeric solutions and melts, without polymer chain stretch. With chain
stretch included, we find a slightly more complicated analytical criterion for necking during the
stress relaxation, although with key ingredients that closely mirror counterpart ingredients of the
simpler criteria obtained within the scalar model. We show this criterion to agree fully with slender
filament simulations of the Rolie-Poly model with chain stretch, and with the scenario discussed by
the Copenhagen group in Refs. [1, 2]. In particular, we see delayed necking after strain ramps with an
accumulated strain exceeding ε̄ ≈ 0.7, for ramp rates exceeding the inverse chain stretch relaxation
timescale. We discuss finally an analogy between this delayed necking following an interrupted
extensional strain ramp and delayed shear banding following an interrupted shear strain ramp [3].
This work provides the counterpart, for interrupted extensional strain ramps, to earlier papers giving
criteria for necking in the protocols of constant imposed Hencky strain rate [4] and of constant
imposed tensile stress or constant imposed tensile force [5].

I. INTRODUCTION

Extensional flows provide an important test of the con-
stitutive properties of complex fluids and soft solids such
as linear [6], star [7], branched [8, 9] and associative poly-
mers [10, 11], wormlike micellar surfactants [12], bubble
rafts [13] and colloidal suspensions [14]. Typically, they
subject the underlying material microstructure (polymer
chains, wormlike micelles, foam bubbles, etc.) to much
more severe reorganisation than is experienced in shear.
As a result, many nonlinear flow phenomena manifest
themselves only in extension. An obvious example is
the strain hardening seen in extensional flows of poly-
meric fluids [15, 16], compared with thinning in shear.
Extensional flows therefore provide an important way
of characterising a material’s underlying microstructure
and molecular architecture [17, 18], and of discriminating
between alternative constitutive theories. For reviews,
see [19, 20].

Perhaps the most common extensional flow experiment
consists of taking an initially cylindrical filament (or pla-
nar sheet) and stretching it out in length under condi-
tions of constant imposed Hencky strain rate [21–24].
Other commonly used protocols are those of constant
imposed tensile stress [25, 26], constant imposed tensile
force [27, 28], large amplitude oscillatory extension [29],
or a ramp of finite strain amplitude that is then inter-
rupted [2, 30–36]. The usual aim in any such experiment
is to draw the sample out in as uniform a way as pos-
sible, in order to characterise its homogeneous flow re-
sponse. Almost ubiquitously observed, however, is the
phenomenon of necking [8, 9, 13, 14, 20, 22, 31, 37], in

which some region along the filament’s length thins more
quickly than the rest, forming a neck. This often leads
the filament to fail altogether at the neck, aborting the
experiment.

Necking has been studied theoretically in Refs. [4, 5,
38–50]. Much early work was based on the Considère
criterion for necking in solids [38], which predicts insta-
bility to necking in any regime where the tensile force F
in the filament is a declining function of the accumulated
Hencky strain ε. However, in failing to take account of
the rate of extension, this criterion is unable to address
necking in viscoelastic materials, in which the rate at
which the strain is applied (compared with the material’s
intrinsic rate of stress relaxation 1/τ) is an important
variable, alongside the total accumulated strain.

Motivated by this shortcoming, we recently provided
criteria for necking in viscoelastic fluids and soft solids,
separately for the protocols of constant imposed Hencky
strain rate [4, 51, 52], constant imposed tensile stress [5],
and constant imposed tensile force [5]. These criteria
were derived analytically within a simplified constitu-
tive model of highly generalised form, with the aim that
they should be as fluid-universal as possible, independent
of the particular assumptions of any given constitutive
model. They were then confirmed against numerical sim-
ulations of several of the most widely used constitutive
models of dilute polymer solutions, concentrated solu-
tions and melts of entangled linear and branched poly-
mers, wormlike micellar surfactants, and soft glassy ma-
terials.

In the present manuscript, we turn to another im-
portant filament stretching protocol: that of an inter-
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rupted extensional “strain ramp” [2, 30–36]. In this pro-
tocol, an initially uniform cylindrical filament (or planar
sheet) is subject to the switch-on at some time t = 0
of a constant Hencky strain rate ¯̇ε. (The overbar signi-
fies the nominal strain rate averaged along the filament’s
length. Should the flow become heterogeneous, the ac-
tual strain rate will vary as a function of position locally
along the filament.) The filament length then increases
as L(t) = L(0) exp(¯̇εt). At some time t0 the strain is
switched off and the sample is held in its strained state
with new length L(t0) = L(0) exp(¯̇εt0) for all subsequent
times. The tensile stress that accumulated during the
initial straining process then progressively relaxes as a
function of the time since the straining stopped. Indeed,
this test is widely used to investigate a material’s stress
relaxation properties [30, 34–36, 53, 54] and the associ-
ated damping function [15, 55].

Observed in many cases during the process of stress
relaxation after the straining has stopped, however, is a
delayed necking instability, which often leads the filament
to fail entirely [31–34, 53, 54]. Any such failure clearly
hampers attempts to characterise a material’s stress re-
laxation properties: when the sample fails the stress falls
catastrophically and the measurement terminates.

This phenomenon of delayed necking after an inter-
rupted extensional strain ramp was studied by numerical
simulation in the insightful earlier work of Refs. [1, 2].
These studies showed that the effect could be completely
accounted for within continuum models of polymer rhe-
ology, based on long-standing concepts of tube dynam-
ics [56], provided these are augmented to include the con-
cept of chain stretch [57–60]. Important physical conclu-
sions of the work were that (i) during the initial strain-
ing process, the samples could be extended to nominal
Hencky strains ε̄ ≈ 2 without necking, (ii) after the
straining stops, samples that had been strained up to
ε̄ ≈ 0.6 would remain intact, avoiding any necking in-
stability, while (iii) any samples that had been strained
beyond ε̄ ≈ 0.8 would show delayed necking after the
straining stops, and finally that (iv) this delayed necking
sets in on a timescale much shorter than the material’s
terminal reptation time.

The aim of the present manuscript is to build on the
simulation results of Ref. [1, 2] by performing analytical
linear stability calculations complemented by nonlinear
simulations of necking in complex fluids and soft solids,
for this interrupted strain ramp protocol. In particular,
we shall analytically derive criteria for the onset of neck-
ing after the end of the straining process. We do this first
within a simplified constitutive model written in a highly
generalised form, with the aim that the criteria we pro-
vide are as fluid-universal as possible, independent of the
assumptions of any particular constitutive model. We
then show the criteria to be in excellent agreement with
the behaviour of the Oldroyd B and Giesekus models
of polymer solutions, and the Rolie-Poly model of con-
centrated solutions and melts of entangled linear poly-
mers, and wormlike micellar surfactant solutions, pro-

vided chain stretch is ignored.
We then proceed to incorporate polymer chain stretch.

With this included, we find a slightly more complicated
analytical criterion for the onset of necking. However
the key ingredients of this updated criterion closely mir-
ror counterpart ingredients of the simpler criteria derived
within the generalised model (and checked against Ol-
droyd B, Giesekus and non-stretch Rolie-Poly). We show
that this new criterion agrees fully with our numerical
simulations of the Rolie-Poly model with chain stretch
included, and with the conclusions of Refs. [1, 2]: in
particular in predicting delayed necking after fast strain
ramps with a total accumulated strain exceeding ε̄ ≈ 0.7.
We also perform a quantitative comparison of our simu-
lations with the experiments of Ref. [31], demonstrating
excellent agreement. Finally, we elucidate a close anal-
ogy between this scenario of delayed necking following
an interrupted extensional strain ramp and that of de-
layed shear banding following an interrupted shear strain
ramp, as first put forward by one of the present authors
together with Moorcroft in Ref. [3].

Throughout we focus on the case of a highly viscoelas-
tic filament of sufficiently large initial cross sectional area
that surface tension can be safely ignored in comparison
with the bulk viscoelastic stresses, at least in considering
the initial stages of neck formation. In this way, we ignore
any filament breakup and beading instabilities driven by
surface tension [61–65].

The paper is structured as follows. In Sec. II we intro-
duce the continuum models to be studied. Sec. III defines
the flow protocol and geometry. In Sec. IV we perform
a linear stability analysis to derive criteria for the initial
onset of necking, and show them to be in excellent agree-
ment with numerical simulations of several of the most
commonly used constitutive models of polymeric fluids.
Sec. V reports our simulations of nonlinear necking dy-
namics, once the necking perturbations have grown to be
no longer small. In particular, we quantitatively com-
pare our calculations with the experiments of Ref. [31],
demonstrating excellent agreement. In Sec. VI we dis-
cuss the analogy with shear banding after an interrupted
shear strain ramp. Sec. VII contains our conclusions and
outlook for future work.

While this manuscript is intended to be self contained
in its own right, it would best be read after our earlier
manuscripts in Refs. [4, 5]. In making this manuscript
self-contained, the discussion in some places (particularly
the earlier introductory sections) inevitably mirrors that
of those earlier papers [4, 5] to some degree.

II. RHEOLOGICAL MODELS

We assume the stress T (r, t) in a fluid element at
position r at time t to comprise a Newtonian solvent
contribution with viscosity η, an isotropic contribution
from a pressure field p(r, t), and a viscoelastic contribu-
tion Σ(r, t) arising from the internal fluid microstructure
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(polymer chains, wormlike micelles, etc.), giving:

T = Σ + 2ηD − pI. (II.1)

In this expression, D = 1
2 (K + KT ) is the symmetrised

strain rate tensor, with Kαβ = ∂αvβ , and v(r, t) is the
velocity field of the fluid flow. We assume creeping flow
in which the condition of force balance gives:

∇ · T = 0. (II.2)

We also assume the flow to be incompressible, with the
pressure field p(r, t) determined by the requirement that
the velocity field remains divergence free:

∇ · v = 0. (II.3)

The dynamics of the viscoelastic stress Σ comprises
loading driven by the velocity gradients of any imposed
flow, combined with relaxation back towards an un-
stressed equilibrium state. For any given fluid, these two
physical processes are governed by a rheological consti-
tutive equation. In this work we shall consider several
different constitutive models, which we specify now.

The phenomenological Oldroyd B model describes the
rheology of a dilute polymer solution by representing each
polymer molecule as a dumbbell formed of two beads
linked by a Hookean spring. The viscoelastic stress

Σ = G (W − I) , (II.4)

in which G is a constant modulus and W = 〈RR〉 is a
conformation tensor formed from the ensemble average
of the outer dyad of the dumbbell end-to-end vector R.

This is assigned dynamics in flow as follows:

∇
W = −1

τ
(W − I) , (II.5)

with a relaxation time τ . The upper convected derivative

∇
W =

∂W

∂t
+ v · ∇W −W ·K−KT ·W . (II.6)

The Giesekus model describes more concentrated poly-
mer solutions by incorporating an anisotropic drag char-
acterised by a parameter α, with 0 ≤ α ≤ 1. This en-
codes the basic idea that the relaxation dynamics of any
dumbbell is altered when its surrounding dumbbells are
oriented [66], giving the modified dynamical equation

∇
W = −1

τ
(W − I)− α

τ
(W − I)

2
. (II.7)

The Oldroyd B model is recovered for α = 0.
The Rolie-Poly model [67] describes more concentrated

solutions or melts of entangled linear polymers, or solu-
tions of wormlike micellar surfactants. It is based on the
tube theory of polymer dynamics [56], in which any given
polymer chain (or wormlike micelle) is assumed to be dy-
namically restricted by entanglements with its surround-
ing chains (or micelles). Over time the chain refreshes
its configuration by a process of ‘reptation’, i.e., curvi-
linear diffusion back and forth along the tube contour,
on a timescale τd. An applied flow also induces stretch
of any chain along its tube. This relaxes on a timescale
τs, providing an additional mechanism for relaxing en-
tanglement points, known as ‘convective constraint re-
lease’ [68–70]. With all these processes accounted for,
the conformation tensor W = 〈RR〉, in which R is the
end-to-end vector of a polymer chain, has dynamics:

∇
W = − 1

τd
(W − I)− 2

τs

(
1−

√
3

T

)[
W + β

(
T

3

)δ
(W − I)

]
. (II.8)

In this equation, T =
∑
iWii is the trace of the con-

formation tensor. The parameter β sets the degree of
convective constraint release, with 0 ≤ β ≤ 1.

The timescales of reptation and chain stretch relax-
ation are assumed to be in the ratio

τd
τs

= 3Zent, (II.9)

where Zent is the number of entanglements per chain.
For highly entangled chains, Zent � 1, reptation occurs
much more slowly than the relaxation of chain stretch:
τd � τs. In this case, for flow rates much less than 1/τs,
we can use the simpler, non-stretching form of the model:

∇
W = − 1

τd
(W −I)− 2

3
K : W [W + β(W − I)] , (II.10)

in which the limit τs → 0 has been taken upfront.

In both the Giesekus and Rolie-Poly models, the vis-
coelastic stress is specified in terms of the conformation
tensor by Eqn. II.4, as in the Oldroyd B model. Through-
out we use units in which the modulus G = 1, the relax-
ation time τ = 1 (Oldroyd B and Giesekus) or τd = 1
(Rolie-Poly), and the initial filament length L(0) = 1.

III. FLOW PROTOCOL AND GEOMETRY

Before any flow commences, the filament is assumed
to be prepared in the shape of an undeformed uniform
cylinder of length L(0) = 1 in the z direction, with a
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cross sectional area A(0) in the xy plane. All viscoelastic
stresses are taken to be well relaxed, with W (0) = I.

At some time t = 0, the filament is subject to the
switch-on of a Hencky strain rate ¯̇ε that stretches the
filament out along the z axis, with a flow field

K̄ = ¯̇ε



− 1

2 0 0
0 − 1

2 0
0 0 1


 . (III.1)

(As noted above, the overbars signify that ¯̇ε is the nom-
inal Hencky strain rate averaged along the length of the
filament. Once any necking arises, the strain rate will
vary locally as a function of position z along the fila-
ment’s length.) This strain rate ¯̇ε is held constant during
a time interval 0 < t < t0, with the filament progressively
drawing out in length according to L(t) = L(0) exp(¯̇εt).
Its cross sectional area thins accordingly, to satisfy in-
compressibility. During this straining process, viscoelas-
tic tensile stresses develop as a function of the time t
since the inception of the flow.

After a time t = t0, once a strain ε̄0 = ¯̇εt0 has ac-
cumulated and the sample has attained a new length
L(t0) = L(0) exp(ε̄0), the strain rate is set back to zero
and the filament is held in this strained state with length
L(t0) for all times t > t0, during which the viscoelastic
stresses progressively relax back to zero.

We shall call this procedure, comprising both the ini-
tial straining and the stress relaxation that follows it, a
‘strain ramp protocol’. Any such ramp is fully specified
by the two parameters ε̄0, ¯̇ε, which respectively denote
the total strain applied ε̄0 and the rate ¯̇ε at which it
is applied. Clearly, during the initial stretching process
this strain ramp protocol coincides with the simpler pro-
tocol in which a constant Hencky strain rate ¯̇ε = const.
is applied indefinitely, for all times t > 0 after the initial
switch-on. In earlier papers, we considered the dynamics
of necking under those conditions [4, 51]. The key differ-
ence in the strain ramp protocol considered here is that
the straining only persists for a finite time 0 < t < t0.

A key aim in what follows will be to determine whether,
for any given fluid and strain ramp, necking will arise
at any stage during the protocol. We further aim to
determine whether any such necking will occur primar-
ily during the initial stretching, or primarily during the
stress relaxation that follows it (or roughly equally during
both). Clearly, any case in which necking mainly occurs
during the initial stretching process is already covered by
our earlier results for the protocol of a constant Hencky
strain rate applied indefinitely after the initial switch-
ons [4, 51]. Therefore, our particular interest here will
be in cases where necking is actually suppressed during
the initial stretching process itself, then occurs with de-
layed onset during the subsequent stress relaxation.

Throughout we use a slender filament approximation
[42, 71, 72], which assumes the characteristic wavelengths
of any necking variations in cross sectional area that de-
velop along the filament’s length to be large compared
with the filament’s radius. This in turn allows the flow

variables to be averaged over the filament’s cross section
at any location z along its length. This approximation
has been carefully tested against full axisymmetric simu-
lations and shown to remain excellent even well into the
nonlinear regime, where the amplitude of perturbations
becomes large and the shear contribution might be ex-
pected to be large [63]. The dynamical variables to be
considered are then the cross sectional area A(z, t), the
area-averaged fluid velocity in the z direction V (z, t), the
extension rate ε̇(z, t) = ∂zV , and any viscoelastic vari-
ables, as governed by the relevant rheological constitutive
equations set out in Sec. II. The z-average of the local
extension rate ε̇(z, t) is the nominal Hencky strain rate ¯̇ε
defined above.

Within this slender filament approximation, the mass
balance condition (II.3) becomes

∂tA(z, t) + V ∂zA = −ε̇A. (III.2)

The force balance condition (II.2) becomes

0 = ∂zF, (III.3)

in which the tensile force

F (t) = A(z, t)σE(z, t), (III.4)

and the total tensile stress

σE = G (Wzz −Wxx) + 3ηε̇. (III.5)

The Lagrangian derivative of any constitutive model
(first two terms on the right hand side of Eqn. II.6) is
written at this level of slender filament as:

D

Dt
=

∂

∂t
+ V

∂

∂z
. (III.6)

In any given fluid, the viscoelastic stress Wzz−Wxx in
Eqn. III.5 (recall the modulus G = 1 in our units) is de-
termined by the time-dependent components Wij(z, t) of
the appropriate tensorial constitutive equation of Sec. II.
To allow analytical progress in our linear stability calcu-
lation of Sec. IV below, however, we shall initially con-
sider a simplified scalar constitutive model that denotes
Wzz −Wxx as a single variable Z, for which it then pos-
tulates highly generalised constitutive dynamics:

DZ

Dt
= ε̇f(Z)− 1

τ
g(Z). (III.7)

This has separate loading and relaxation terms charac-
terised by the functions f and g respectively. In the first
part of our analysis below, we shall intentionally refrain
from specifying any particular functional forms for f and
g, in order that the criteria for necking that we shall de-
rive are as fluid universal as possible, independent of the
particular assumptions of any given constitutive model.
For notational simplicity in this scalar model, we also
renormalise the solvent stress η → η/3. The total stress
in Eqn. III.5 then simply reads

σE = GZ + ηε̇. (III.8)
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For any ramp protocol, we set the initial cross sectional
area of the filament A(0) = 1. Note that this is in addi-
tion to our having set the initial cylinder length L(0) = 1
via our choice of length units above. However it is im-
portant to realise that we are not actually restricting the
initial cylinder radius and length to be in any given ratio:
any information about this quantity has simply been lost
as a consequence of our having made the slender filament
approximation.

For clarity, we shall drop the subscript E from the ten-
sile stress σE for the rest of the paper.

IV. LINEAR STABILITY ANALYSIS

We now perform a linear stability analysis to determine
the dynamics of the initial stage in the development of
any neck that forms during the strain-ramp protocol de-
fined above, in which a filament is strained at a rate ¯̇ε
during times 0 < t < t0 to a total strain ε̄0 = ¯̇εt0, then
held at this strain for all subsequent times t > t0, during
which any viscoelastic stresses that developed during the
the straining process progressively relax.

Our main objective will be to derive fluid universal
criteria for the onset of necking that do not depend on
the detailed assumptions of any given constitutive model.
To allow analytical progress, we shall first perform this
calculation within the simplified, generalised scalar con-
stitutive model defined in Sec. III. The analogous calcu-
lation for the fully tensorial models of Sec. II is equiv-
alent in principle, but more cumbersome, and we shall
not write it down. Readers are referred to [4] for de-
tails. Our numerical results below are, however, for the
full tensorial constitutive models. As will be seen, these
(mostly) agree extremely well with our criteria derived
in the simplified scalar model.

In performing the linear stability analysis, we start by
considering a homogeneous “base state” corresponding to
a filament that remains a uniform cylinder, with the flow
variables uniform along it, both during the initial strain-
ing and the stress relaxation that follows it. We shall
denote this base state with the subscript 0. We then
add to it small amplitude perturbations describing any
initial small heterogeneities along the filament’s length,
which are the precursor of a neck. Expanding the gov-
erning equations to first order in the amplitude of these
perturbations yields linearised equations that govern the
dynamics of the perturbations. Our interest then lies
in determining whether these perturbations grow to give
a necked state, or decay to leave a uniform filament. If
they do grow, our main aim is to determine at what stage
during the experiment they first start to do so.

Consider first, then, a uniform base state correspond-
ing to a filament that remains a perfect cylinder during
the entire protocol. This obeys the homogeneous form
of Eqns. III.2 to III.4, III.7 and III.8. The condition of
mass balance accordingly gives

Ȧ0(t) = −ε̇0(t)A0. (IV.1)

The tensile force

F0(t) = A0σ0, (IV.2)

with tensile stress

σ0(t) = GZ0 + ηε̇0. (IV.3)

The viscoelastic variable evolves according to

Ż0(t) = ε̇0(t)f(Z0)− 1

τ
g(Z0). (IV.4)

For the strain ramp protocol of interest here, the strain
rate ε̇0 = ¯̇ε for times 0 < t < t0, and zero otherwise.

We now add to this homogeneous, time-evolving
base state small amplitude heterogeneous perturbations,
which are the precursor of any neck. As noted above,
the dynamics of any necking perturbations under condi-
tions of a constant Hencky strain rate, indefinitely sus-
tained for all times t > 0, have already been studied in
our earlier work [4]. Because such conditions also per-
tain to the first (straining) phase of the ramp protocol
considered here, our results from [4] automatically apply
during that straining phase. Accordingly, we shall write
here only the equations governing the fate of any necking
perturbations after the straining has stopped, during the
subsequent stress relaxation, when the base state’s strain
rate ε̇0 = 0. For convenience we decompose these pertur-
bations into Fourier modes with wavevectors q reciprocal
to the distance z along the filament’s length:



ε̇(z, t)
a(z, t)
Z(z, t)


 =




0
a0
Z0(t)


+

∑

q



δε̇(t)
δa(t)
δZ(t)



q

exp(iqz).

(IV.5)
Although the globally averaged (base state) strain rate

ε̇0 = 0 after the straining has stopped, as just noted, flows
with zero z−averaged strain rate will nonetheless develop
internally along the filament as part of any necking pro-
cess, characterised by δε̇q(t). The variable δaq(t) deter-
mines the amplitude of any variations in cross sectional
area along the filament, and so characterises the degree
of necking at any time t. A key aim in what follows will
be to compute the time-dependence of this quantity for
any given fluid and strain ramp protocol. In particular,
we seek to distinguish regimes in which δaq(t) grows in
time, leading to the development of a neck, from those
in which it decays, leaving a uniform filament.

We now substitute expression IV.5 into Eqns. III.2 to
III.4, III.7 and III.8. Expanding these then in succes-
sive powers of the perturbation amplitude, and retaining
only terms of first order in that amplitude, gives a set of
linearised equations governing the dynamics of the per-
turbations.

The linearised mass balance equation is

∂tδaq = −δε̇q. (IV.6)

The linearised force balance equation is

0 = σ0δaq +GδZq + ηδε̇q, (IV.7)
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and the linearised viscoelastic constitutive dynamics

∂tδZq = δε̇qf(Z0) + CδZq, (IV.8)

in which

C = −1

τ
g′(Z0). (IV.9)

Here prime denotes differentiation with respect to a func-
tion’s own argument.

Combining these gives finally

∂t



δa(t)

δZ(t)



q

= M(t) ·



δa(t)

δZ(t)



q

, (IV.10)

governed by the stability matrix

M(t) =




σ0
η

G

η

−f(Z0)σ0
η

−f(Z0)G

η
+ C



. (IV.11)

We note that this stability matrix has inherited the time-
dependence of the relaxing base state conformation and
stress variables, Z0(t), σ0(t), upon which it depends.

In writing the necking perturbations in this linearised
analysis in the form exp(iqz), we have effectively assumed
periodic boundary conditions between the two ends of the
filament, thereby implicitly taking the filament to corre-
spond to a torus being stretched. In Ref. [4], we showed
that this simplifying assumption does not strongly af-
fect any conclusions with regards the onset of necking.
Nonetheless, our full nonlinear simulations in Sec. V use
more realistic boundary conditions approximating the
no-slip condition that pertains where each end of the
filament meets the rheometer plates. We have checked
that the early time dynamics of our nonlinear simula-
tions, with quasi no-slip, match those of the linear sta-
bility analysis, with periodic boundary conditions.

We note, however, that the stability matrix M(t) does
not in fact depend on the wavevector q. In consequence,
all Fourier modes exp(iqz) are predicted to have the same
dynamics. The mode that dominates the necking pro-
cess in practice is therefore expected to be that which
is seeded most strongly by external factors such as ther-
mal or mechanical noise, endplate effects, or any slight
imperfections in the way the sample is prepared initially.
Among these, we expect the dominant seeding effect to
be that imposed by the (quasi) no-slip condition where
the filament meets the rheometer plates, as discussed in
the previous paragraph. This inhibits stretching of the
filament in the vicinity of the sample ends, thereby tend-
ing to seed a single neck mid-sample.

In Eqns. IV.10 and IV.11, then, we have arrived at an
equation set governing the linearised dynamics of necking
perturbations, in the regime where the amplitude of these

perturbations remains small. As noted above, the sta-
bility matrix (IV.11) depends on the time-evolving base
state. Our aim now is to relate any regime in which the
degree of necking δa(t) grows as a function of time t to
characteristic signatures in the time-evolution of the base
state quantities in the stability matrix (IV.11). Further-
more, because those quantities by definition correspond
to their counterpart globally measured rheological quan-
tities in any regime where the necking perturbations re-
main small, these signatures in the base state directly
correspond to counterpart signatures in the time-evolving
globally measured rheological quantities. Our calculation
will therefore allow us to report what signatures in the
globally measured rheological quantities correspond to
the development of necking. Given the correspondence
just discussed, we now drop the 0 subscript from the base
state quantities for simplicity.

Returning to the stability matrix IV.11, we note that
its determinant and trace are respectively:

∆ =
1

η
σC =

1

η
σ
σ̈

σ̇
, (IV.12)

and

T = −1

η
(f − σ). (IV.13)

(The solvent viscosity η is small compared with the zero
shear viscosity of the viscoelastic component, so we ig-
nore any subleading terms in η here and throughout.) In
the expression for the determinant, the second equality
follows from the first by combining Eqn IV.4, differenti-
ated with respect to time, with Eqn. IV.3. In any regime
where T 2 � 4|∆| (which holds unless |f − σ| is small),
the two eigenvalues of IV.11 are

ω1 = − 1

f − σ σ
σ̈

σ̇
, (IV.14)

and

ω2 = −1

η
(f − σ). (IV.15)

Had these eigenvalues been time-independent, they
would have exactly prescribed the rate of growth (or
decay) of necking perturbations. However, because
the base state upon which the eigenvalues depend is
time-dependent, the eigenvalues are themselves time-
dependent. In particular, the first eigenvalue (IV.14)
predicts that the necking perturbations grow (or decay)
on a timescale commensurate with the timescale of the
evolution of the base state, and so also of the evolu-
tion of the eigenvalue itself. Put differently: the rate
at which the perturbations are predicted to change itself
changes as fast as the perturbations themselves. To re-
solve this shortcoming, we performed a more thorough
analysis (not detailed here), to show that the rate of
growth (or decay) of necking associated with this eigen-
value at any time during the stress relaxation is in fact
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given by

δ̇a

δa
=

1

f − σ σ
(
σ̇

σ
− σ̈

σ̇

)
,

=
1

f − σ

[
−σ

2

σ̇

]
d2

dt2
log σ. “stress curvature mode”

Here and throughout, the notation “log” denotes the nat-
ural logarithm.

The expression in the square brackets is always posi-
tive, because σ̇ < 0 as the stress relaxes over time. In
most regimes, the first term involving f − σ is also pos-
itive. Therefore, whether necking perturbations grow or
decay via this mode is determined by the curvature on a
log-linear plot of the stress relaxation function. Accord-
ingly, we call this mode of necking the “stress curvature
mode”.

The second eigenvalue (IV.15) is large, predicting a
fast rate of growth (or decay) of necking perturbations
on a short timescale η/G compared with the much longer
timescale τ on which the base state evolves. Concerns
about the time-dependence of this eigenvalue are there-
fore much less serious: indeed, the eigenvalue predicts
the rate of growth of necking perturbations at any time
during the stress relaxation to excellent approximation:

δ̇a

δa
= −1

η
(f − σ),

= −1

η

1

A

∂F

∂ε
|elastic. “elastic Considère mode”

The second equality here can be proved by combining
Eqns. IV.2 to IV.4. The derivative of the force F with
respect to strain ε that it contains needs very careful
physical interpretation. Indeed, during the stress relax-
ation part of the strain-ramp protocol that is our concern
here, no strain is actually being applied. The derivative
denoted |elastic instead defines the incremental change in
tensile force F that would occur, were there to be a sud-
den incremental strain. In that very particular sense,
this mode provides the equivalent in these viscoelastic
materials of the Considère criterion for solids [38], which
states that necking will occur in any regime where the
force is a decreasing function of strain. This concept has
been discussed in detail in our earlier papers [4, 5].

Our analysis up to this point has been highly general,
independent of the assumptions of any particular con-
stitutive model. We now seek to apply the two necking
criteria (“stress curvature” and “elastic Considère ”) that
it has allowed us to derive to the various tensorial con-
stitutive models of Sec. II. As a first step, we recall from
Ref. [4] that the dynamics of our simplified scalar model
of Eqn. III.7 can be made closely to mimic the Oldroyd
B, Giesekus and non-stretch Rolie-Poly models by taking

f = 3 + nZ − 2
3 (1 + β)Z2. (IV.16)

and

g = Z + αZ2. (IV.17)

The case α = 0, β = −1, n = 2 gives a good approxima-
tion to the Oldroyd B model; 0 < α < 1, β = −1, n = 2 to
the Giesekus model; and α = 0, 0 < β < 1, n = 1 to the
non-stretch Rolie-Poly model. We shall use these simpli-
fied scalar forms of the three tensorial constitutive models
in the next three subsections in turn to understand our
numerical results for each of these three models. We em-
phasise that those numerical results were obtained in the
full tensorial form of each model.

Recognising that during the stress relaxation the strain
rate ¯̇ε = 0, and therefore that the total tensile stress
σ and the viscoelastic strain variable Z coincide up to
a prefactor G = 1, we shall use the symbols Z and σ
interchangeably in what follows.

A. Oldroyd B model

Our numerical results for the linearised necking dy-
namics of the full tensorial Oldroyd B model are shown
in Fig. 1. The left panel shows the evolution of the stress:
first (in the left subpanel of this left panel) as a function
of strain while the sample is being stretched, and then
(in the right subpanel) as a function of time during the
relaxation of the stress after the straining has stopped.
The colourscale superposed on this stress evolution indi-
cates the rate of growth of necking perturbations at any
stage in the protocol. (Any regime where the growth is
negative, indicating decay, is shown in black.) As can
be seen, no growth of necking occurs during the stress
relaxation after the straining stops.

This can be understood by applying the two crite-
ria developed in Sec. IV to the simplified scalar version
of the Oldroyd B model. In this, the loading function
f = 3 + 2σ. This gives f − σ = 3 + σ, which is is al-
ways positive, both during the initial straining and after
the straining stops. Accordingly, the elastic Considère
mode remains stable at all times and causes no necking.
The relaxation function g = σ, so after the straining has
stopped the stress relaxes as σ̇ = −σ/τ , and therefore as
σ(t) = σ(0) exp(−t). (We define the origin of time here
to coincide with the end of straining. Previously we used
it to indicate the start of straining.) The curvature of
the stress decay on a log-linear plot is therefore zero, and
the stress curvature mode predicts neutral stability with
respect to necking. In this way, our analytically derived
necking criteria, applied to the (simplified, scalarised)
Oldroyd B model, predict no growth of necking pertur-
bations during the stress relaxation post-straining, con-
sistent with our numerical results in Fig. 1.

Some necking does however occur during the first part
of the protocol, while the strain is being applied. As
noted above, during this regime the flow coincides with
the simpler protocol in which a constant Hencky strain
rate is applied indefinitely for all times after the initial
switch on. It is accordingly covered by our results in
Ref. [4, 51], to which the reader is referred for details.
Here, we merely recall that in the Oldroyd B model any
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FIG. 1. Linearised necking dynamics in the Oldroyd B model during and after extensional straining. Left: stress as a function
of strain during straining, and as a function of time after the straining has stopped. Colour scale here shows the instantaneous
rate of necking per unit strain, δa′/δa, at any strain during straining (where ′ denotes differential with respect to strain), and

the instantaneous rate of necking per unit time, δ̇a/δa at any time after straining. Centre: colour map (with a logarithmic
colour scale) of δa(ε, ε̇)/δa(ε = 0, ε̇), showing the total degree of necking that accumulates during the initial straining process,
normalised by its value before straining commenced, as a function of the strain imposed and the rate at which it is imposed.
Right: colour map (with a logarithmic colour scale) of δa(ε, ε̇, t→∞)/δa(ε, ε̇, t = 0), showing the total degree of necking that
accumulates during the full stress relaxation process after the strain has stopped, normalised by its value at the start of the
stress relaxation (i.e., by its value at the end of the straining process), as a function of the total strain that had initially been
applied, and the strain rate at which it had been applied. Parameter values: η = 10−4.

significant necking during straining arises only for strain
rates ¯̇ε < 0.5, and via the stress curvature mode (gen-
eralised to the case of a non-zero strain rate; the stress
curvature mode derived above holds for the particular
case of zero strain rate).

The results just discussed in the left panel of Fig. 1 per-
tain to nine different strain ramp protocols, each with a
different value of the imposed strain rate ¯̇ε, but each with
the same total applied strain ε̄0 = 3.0, as indicated by the
crosses in the middle panel of the figure. Beyond these
nine individual runs, we also investigated a much fuller
range of values of ¯̇ε and ε̄. The results are represented in
a compact way in the middle and right panels of Fig. 1.

In the middle panel, the colourscale at any coordinate
pair (¯̇ε, ε̄0) denotes the total amount of necking that is
predicted (at the level of this linear calculation) to accu-
mulate during the first, straining part of a strain ramp
protocol, in which a total strain of ε̄0 is applied at a con-
stant rate ¯̇ε. (In this way, the colourscale at the location
of the nine crosses in the middle panel is effectively an
integral over the data shown by the colourscale in the
individual runs of the left subpanel of the left panel.)

In the right panel, the colourscale at each coordinate
pair (¯̇ε, ε̄0) denotes the total amount of necking that fur-
ther accumulates during the stress relaxation after the
straining has stopped, for a ramp in which a total strain
of ε̄0 has been applied at a constant rate ¯̇ε. (In this way,
the colourscale at the location of the nine crosses in the
right panel is effectively an integral over the data shown
by the colourscale in the individual runs of the right sub-
panel of the left panel.) This panel is essentially however
redundant in this particular model, given that no further
necking is predicted after the straining stops.

To summarise, in the Oldroyd B model some neck-
ing occurs during the straining process itself for imposed
strain rates ¯̇ε < 0.5. No further necking is predicted to
accumulate during the stress relaxation after the strain-
ing stops.

B. Giesekus model

Our numerical results for the linearised necking dy-
namics of the full tensorial Giesekus model are shown in
Fig. 2. These are presented in the same way as for the
Oldroyd B model in Fig. 1 so we shall not explain the
figure in detail again, but focus on drawing out the main
similarities and differences between the two models.

In the left panel of Fig. 2, we see that the relaxation
of the stress post-straining displays some initial upward
curvature (in the log-linear representation used here):

d2

dt2
log σ > 0. (IV.18)

Associated with this upward curvature is some instability
to necking at early times in this stress relaxation process,
as seen by the bright patch in the colourscheme. This
then gradually diminishes over time.

This behaviour can be understood within the simpli-
fied scalar form of the Giesekus model as follows. Its
relaxation function g = σ + ασ2 (with Oldroyd B dy-
namics recovered only for α = 0). Accordingly, during
the stress relaxation after the straining has stopped, σ̇/σ
is more negative for larger values of sigma: the stress
relaxation proceeds more quickly at earlier times, then
progressively slows down as the stress decays. This in-
deed gives upward curvature of the rate of decay of the
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FIG. 2. Linearised necking dynamics in the Giesekus model during and after extensional straining. Left: stress as a function
of strain during straining, and as a function of time after the straining has stopped. Colour scale here shows the instantaneous
rate of necking per unit strain, δa′/δa, at any strain during straining (where ′ denotes differential with respect to strain), and

the instantaneous rate of necking per unit time, δ̇a/δa at any time after straining. Centre: colour map (with a logarithmic
colour scale) of δa(ε, ε̇)/δa(ε = 0, ε̇), showing the total degree of necking that accumulates during the initial straining process,
normalised by its value before straining commenced, as a function of the strain imposed and the rate at which it is imposed.
Right: colour map (with a logarithmic colour scale) of δa(ε, ε̇, t→∞)/δa(ε, ε̇, t = 0), showing the total degree of necking that
accumulates during the full stress relaxation process after the strain has stopped, normalised by its value at the start of the
stress relaxation (i.e., by its value at the end of the straining process), as a function of the total strain that had initially been
applied, and the strain rate at which it had been applied. Parameter values: η = 10−4, α = 0.01.

log-stress, as seen in the right subpanel of the left panel
of Fig. 2. Accordingly, the stress curvature mode predicts
instability to necking during the first part of the stress
decay post-straining. (In contrast, the loading function
of the scalar Giesekus model is the same as that of scalar
Oldroyd B: f = 3 + 2σ. Accordingly, the elastic Con-
sidère mode remains stable in the Giesekus model, as in
Oldroyd B, both during and after straining.)

The results in the left panel of Fig. 2 pertain to nine
different strain ramps, each performed at a different value
of the strain rate ¯̇ε, but each with a total applied strain
ε̄0 = 3.0, as indicated by the crosses in the middle panel.

In the middle and right panels of Fig. 2 we explore a
much fuller range of pairs of values of ¯̇ε, ε̄0. As in Fig. 1
for Oldroyd B, the colourscale in the middle panel shows
the total degree of necking that accumulates during the
straining process for a ramp performed with any given
pairing of ¯̇ε, ε̄0. As noted above, during this straining
part of the protocol the dynamics will coincide with those
of the simpler protocol in which a constant strain rate is
applied indefinitely for all times after the initial switch
on. Accordingly, our results in the middle panel for the
degree of necking that accumulates during straining fol-
low directly from those in Fig. 3b of our earlier work of
Ref. [4] for that protocol of a constant applied strain rate.
In the right panel of Fig. 2, we show by the colourscale
the total degree of necking that further accumulates dur-
ing the stress relaxation after the straining stops, for a
ramp that had been performed at any ¯̇ε, ε̄0.

Compared with Oldroyd B, the most significant fea-
ture (at least of principle) in the Giesekus model is that
some further necking does take place during the stress
relaxation after the straining stops, for ramps with rates

¯̇ε & 1 and strains ε̄0 & 1, via the stress curvature mode.
Comparing the colourscales in the middle and the right
panels, however, we see that for any given ramp as spec-
ified by ¯̇ε, ε̄0, the degree of necking that further accumu-
lates after the straining stops (right panel) is always very
modest compared with that which took place during the
straining itself (middle panel). Indeed, for any case in
which noticeable further necking might in principle have
accumulated post-strain, the sample will almost certainly
have anyway already failed entirely during the straining
process itself.

Our analytical calculations in this section were per-
formed in the simplified scalar version of the Giesekus
model. In contrast, our numerical results in Fig. 2 are
for the fully tensorial form of the model. To demonstrate
the equivalence of these, Fig. 8 in the Appendix shows
numerical results for the scalar version of the Giesekus
model. Reassuringly, we see close agreement with those
of Fig. 2 for the fully tensorial form. Further evidence
of the close correspondence between the scalar version
of each model (Oldroyd B, Giesekus, non-stretch Rolie-
Poly) and its full tensorial counterpart is given in Ref. [4].

C. Non-stretch Rolie-Poly model

Our numerical results for the linearised necking dy-
namics of the tensorial Rolie-Poly model without chain
stretch (which we shall call the nRP model) are shown
in Fig. 3, in the same format as in Figs. 1 and 2 for
the Oldroyd B and Giesekus models. As can be seen in
the left panel, after the straining stops the stress relaxes
exponentially. During the first part of this stress relax-
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FIG. 3. Linearised necking dynamics in non-stretching Rolie Poly model during and after extensional straining. Left: stress
as a function of strain during straining, and as a function of time after the straining has stopped. Colour scale here shows the
instantaneous rate of necking per unit strain, δa′/δa, at any strain during straining (where ′ denotes differential with respect

to strain), and the instantaneous rate of necking per unit time, δ̇a/δa at any time after straining. Centre: colour map (with
a logarithmic colour scale) of δa(ε, ε̇)/δa(ε = 0, ε̇), showing the total degree of necking that accumulates during the initial
straining process, normalised by its value before straining commenced, as a function of the strain imposed and the rate at
which it is imposed. Right: colour map (with a logarithmic colour scale) of δa(ε, ε̇, t → ∞)/δa(ε, ε̇, t = 0), showing the total
degree of necking that accumulates during the full stress relaxation process after the strain has stopped, normalised by its value
at the start of the stress relaxation (i.e., by its value at the end of the straining process), as a function of the total strain that
had initially been applied, and the strain rate at which it had been applied. Parameter values: η = 0.0033, β = 0.0.

ation, the system displays instability to necking for those
ramps in which the stress had exceeded a threshold value
σc approximately equal to two by the end of the straining
process.

These observations can be understood within the sim-
plified scalar version of the nRP model as follows. The
relaxation function of this model is the same as for the
(scalar) Oldroyd B model: g = σ. This gives exponential
stress relaxation σ = exp(−t) as a function of the time
t since the straining stops, consistent with the numer-
ics: the stress decay plotted in log-linear representation
is linear. In this way, the stress curvature mode is al-
ways stable against necking post-strain. In contrast, the
loading function f = 3 + σ − 2

3 (1 + β)σ2, and the fac-
tor f − σ that appears in the criterion for the elastic
Considère mode to be unstable will become negative if
sufficient stress σ > σc = 3/

√
2 ≈ 2.12 (for β = 0.0) de-

velops during the straining process. Necking instability
will then arise via this elastic Considère mode, and per-
sist after straining stops until such a time as the stress
decays to be again below σc, returning f−σ to positivity.
This can be seen via the bright patch in the colourscale
during the early part of the stress relaxation in the left
panel of Fig. 3, for the ramps performed at the higher
strain rate values.

In this left panel, we show results for strain ramps
performed at nine different values of the imposed strain
rate ¯̇ε, with a total imposed strain ε̄0 = 3.0 in each case,
as indicated by the crosses in the middle panel. We now
consider more broadly in what region of the full plane
of values of ¯̇ε, ε̄0 will f − σ become negative by the end
of the straining process, and so by the start of the stress
relaxation post-ramp, signifying instability to necking via
the elastic Considère mode during the first part of the

stress relaxation in the manner just described.
We studied this by integrating the model equations

to obtain the base state stress σ(ε̄, ¯̇ε) as a function of
accumulated strain ε̄ and imposed strain rate ¯̇ε. Doing
so, we find f−σ to be negative at the end of the straining
process, and so at the start of the stress relaxation, for
values of ε̄, ¯̇ε above and to the right of the dot-dashed line
in the middle and right panels of Fig. 3. In the limit of
large strain rates ¯̇ε → ∞, the criterion for f − σ to be
negative tends to the condition

ε̄ > −1

3
log

(√
2− 1

2 +
√

2

)
≈ 0.703, (IV.19)

as seen by the asymptote of the dot-dashed line at the
the right hand side of these panels. In the limit of large
strains ε̄ → ∞, the criterion for f − σ to be negative
tends to the condition ¯̇ε > 1, as seen by the asymptote
at the top of the panels.

The right panel of Fig. 3 shows as a colourscale the
total degree of necking predicted to accumulate during
the entire stress relaxation after the straining has stopped
as a result of this elastic Considère mode, as a function
of the rate ¯̇ε at which the strain had been applied, and
the total strain imposed, ε̄0. Consistent with the above
analytical prediction, significant necking indeed occurs
during the stress relaxation in the region of the plane of
¯̇ε, ε̄0 above the dot-dashed line.

This finding however proves to be mainly of pedagogi-
cal interest in this non-stretching version of the model, for
the following reason. Comparing the right panel of Fig. 3
(showing the total necking that accumulates post-strain)
with the middle panel, which shows the total necking
accumulated during the straining process itself, we see



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

C Non-stretch Rolie-Poly model 12

that for any given pair of values of ¯̇ε, ε̄0 in which signifi-
cant further necking might in principle accumulate after
the straining stops, the sample will almost certainly have
anyway failed altogether due to the very large degree of
necking predicted during the straining process.

To summarise our results so far: in this and the pre-
vious two subsections, we have discussed the linearised
necking dynamics of the Oldroyd B, Giesekus and non-
stretch Rolie-Poly models during the stress relaxation af-
ter the straining stops. In the Oldroyd B model, we saw
no further necking during the stress relaxation (beyond
any that had already accumulated during straining in
ramps for which ¯̇ε < 0.5). In contrast, the Giesekus and
non-stretch Rolie-Poly models do predict some further
necking during the stress relaxation. In each case, how-
ever, a much larger degree of necking is predicted to have
already occurred during the straining process itself, likely
causing the filament fail altogether during the strain-
ing. The discussion of the previous three subsections
can therefore be viewed as being primarily pedagogical,
in helping us to understand the general conditions under
which necking might occur after straining stops. Overall,
perhaps the principal physical conclusion for the dilute
or semi-dilute solutions modelled by the Oldroyd B and
Giesekus models is that necking after straining stops is
unlikely to be an important physical effect compared with
any that takes place during the straining process itself.

In the next subsection, we turn to the Rolie-Poly model
of concentrated solutions and melts of entangled linear
polymers, and wormlike micellar surfactant solutions,
with chain stretch included. In this case, we shall find
an important new regime in which necking is suppressed
during the straining process itself, due to the accumu-
lation of chain stretch, but in which significant necking
then occurs with a delayed onset after the straining stops,
as the chain stretch relaxes on the short timescale τs, but
before the orientational contribution to the stress relaxes
on the much longer timescale τd. Such a physical sce-
nario was predicted in the insightful earlier work of the
Copenhagen group in this context of extensional neck-
ing [1, 2]. (An analogous scenario was predicted by one
of the present authors, with others, in the context of
shear banding following a shear strain ramp [3, 73]. We
shall return to discuss this in Sec. VI below.) Here we
build on that intuition, in particular by providing an an-
alytical criterion for necking, and showing that it agrees
fully with the regimes and rates of necking seen in the
numerical simulations.

D. Stretching Rolie-Poly model

Our numerical results for the Rolie-Poly model with
chain stretch included are shown in Fig. 4, in the same
format as in Figs. 1 to 3 for the Oldroyd B, Giesekus and
non-stretch Rolie-Poly models. The new necking physics
inherent to this model with chain stretch included is ev-
ident already in the left panel of Fig. 4, which shows the

stress as a function of strain during the straining process,
and as a function of time during the relaxation after the
straining has stopped. The superposed colourscale indi-
cates the rate of necking at any given strain (or time).

For the lowest imposed strain rates, ¯̇ε . 1/τd = 1,
there is a modest rate of necking during the straining
process itself, then essentially no further necking during
the stress relaxation after the straining stops. For inter-
mediate strain rates, 1/τd . ¯̇ε . 1/τs, there is a high rate
of necking during the straining. This originates from a
significant vestige, in this stretching form of the model,
of the elastic Considère mode of necking instability in
the non-stretching model. (We shall return to discuss
this in more detail below.) Fast necking is also predicted
to continue after the straining stops (for the same rea-
son). However that prediction of post-strain instability
may be largely irrelevant: the very fast necking during
the straining process itself is likely to cause the filament
to fail altogether even before the straining stops.

The important new physics of the stretching model
arises at high imposed strain rates, ¯̇ε & 1/τs. In this
regime, the sample is strongly stabilised against neck-
ing during the straining process by the accumulation of
chain stretch. (This was discussed at length in our ear-
lier work [4, 51], and we do not repeat the details here.)
Once the straining stops and the stress starts to relax,
however, strong necking instability sets in.

Two separate regimes are evident in the stress relax-
ation. The first occurs on the fast timescale τs over which
the chain stretch relaxes, with the stress quickly falling
from its high initial value to an intermediate plateau
value. During this first regime we see a fast rate of neck-
ing, which in fact becomes ever faster as that first regime
proceeds to completion. The second regime occurs on
the much slower timescale τd of reptation, with the stress
finally decaying from its intermediate plateau value to-
wards zero. The rate of necking falls in tandem with the
stress, and the system is predicted to recover stability
against necking once the stress falls below a threshold
value σc ≈ 2. This predicted return to stability may be
unimportant in practice, however, as the sample is likely
to have failed altogether by this time.

The left panel of Fig. 4 pertains to nine different strain
ramps, each performed at a different imposed strain rate
¯̇ε, but with a total imposed strain ε̄0 = 3.0 in each case,
as indicated by the crosses in the middle panel. In the
middle and right panels we explore a much wider range
of pairs of values of ε̄0, ¯̇ε. As before, the colourscale in
the middle panel shows the total degree of necking that
accumulates during the straining process itself, for any
given imposed ε̄0, ¯̇ε. The right panel shows the total de-
gree of necking predicted further to accumulate during
the stress relaxation post-strain, again as a function of
the variables ε̄0, ¯̇ε that prescribed the ramp.

The important new physical regime in this stretching
version of the Rolie-Poly model is that for which the
imposed strain rate ¯̇ε & 1/τs and the imposed strain
ε̄0 & 0.703. For such ramps, the accumulation of chain
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FIG. 4. Linearised necking dynamics in the stretching Rolie Poly model during and after extensional straining. Left: stress
as a function of strain during straining, and as a function of time after the straining has stopped. Colour scale here shows the
instantaneous rate of necking per unit strain, δa′/δa, at any strain during straining (where ′ denotes differential with respect

to strain), and the instantaneous rate of necking per unit time, δ̇a/δa at any time after straining. Centre: colour map (with
a logarithmic colour scale) of δa(ε, ε̇)/δa(ε = 0, ε̇), showing the total degree of necking that accumulates during the initial
straining process, normalised by its value before straining commenced, as a function of the strain imposed and the rate at
which it is imposed. Right: colour map (with a logarithmic colour scale) of δa(ε, ε̇, t → ∞)/δa(ε, ε̇, t = 0), showing the total
degree of necking that accumulates during the full stress relaxation process after the strain has stopped, normalised by its
value at the start of the stress relaxation (i.e., by its value at the end of the straining process), as a function of the total strain
that had initially been applied, and the strain rate at which it had been applied. Parameter values: η = 10−4, β = 0.0 and
τR = 0.0083 (corresponding to an entanglement number Zent = 40).

stretch stabilises the filament against necking during the
straining process itself. A strong delayed necking then
sets in as the chain stretch relaxes post-straining. For
imposed strains ε̄0 < 0.703 (recall that ε̄0 = 0.703 is the
asymptote of the dot-dashed line at high strain rates), no
significant necking occurs either during or after straining.
For value pairings above the dot-dashed line but with
¯̇ε < 1/τs, the sample is likely to fail altogether during
the straining process itself, with any prediction of further
necking post-ramp accordingly essentially irrelevant.

We now sketch an analytical calculation to enable us
to understand these numerical results of Fig. 4 in more
detail. As ever, at the level of a slender filament approx-
imation the condition of mass balance gives:

∂tA+ V ∂zA = −ε̇A. (IV.20)

The force balance condition gives

0 = ∂zF, (IV.21)

in which the tensile force

F (t) = A(z, t)σE(z, t), (IV.22)

and the total tensile stress

σE = G (Wzz −Wxx) + 3ηε̇. (IV.23)

The evolution in flow of the components Wzz and Wxx

is given by Eqn. II.8. For simplicity in this analyti-
cal calculation we set the convective constraint release
parameter β = 0, as in our numerical calculations of
Fig. 4. (Additional numerical results shown in Fig. 9 in

the Appendix confirm essentially the same physical sce-
nario for β = 1, at the opposite end of the allowed range
0 < β < 1.) We adopt the notation for the viscoelastic
tensile stress variable σ = Wzz − Wxx (recall that the
modulus G = 1 in our units) and for the chain stretch
variable T =

∑
iWii, and then further define the vari-

able s = 3σ/T that quantifies the chain orientation. The
components of Eqn. II.8 then yield equations of motion
respectively for the variable s that quantifies the polymer
chain orientation, and for the variable T that quantifies
polymer chain stretch:

Ds

Dt
= ε̇f(s)− 1

τd

3s

T
,

DT

Dt
=

2

3
ε̇sT − 1

τd
(T − 3)− 2

τs

(
1−

√
3

T

)
T.

(IV.24)

in which (for β = 0)

f(s) = 3 + s− 2

3
s2. (IV.25)

With these equations, we now perform the usual lin-
ear stability analysis, considering an underlying homoge-
neous base state corresponding to a cylinder that remains
perfectly uniform, to which are then added small ampli-
tude spatially varying perturbations, which are the pre-
cursor of a neck. We specialise to the time regime after
the straining has stopped, recalling that the behaviour
during straining has already been studied in Ref. [4].

The quantities pertaining to the homogeneous base



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

D Stretching Rolie-Poly model 14

state relax post-strain according to

ṡ = − 1

τd

3s

T
,

Ṫ = − 1

τd
(T − 3)− 2

τs

(
1−

√
3

T

)
T. (IV.26)

(We have omitted the subscript 0 used previously to de-
note the base state, having already noted above that the
base state quantities coincide with their experimentally
measured global rheological counterparts as long as the
necking perturbations remain small.) From the second of
Eqns. IV.26 one can show that the chain stretch relaxes
back to its equilibrium value T = 3 as a function of the
time t post-strain on a fast timescale τs � τd as

√
T (t) =

√
T (0) + (

√
3−

√
T (0))

[
1− exp

(
− t

τs

)]
.

(IV.27)
Note that for ramps with strain ε̄0 & 1 imposed at a fast
rate ¯̇ε� 1, the initial value T (0) at the start of the stress
relaxation (ie, at the end of the straining) can be large.

The variable s associated with chain orientation relaxes
on the much longer timescale τd ≡ 1 according to

s(t) = s(0) exp(−t). (IV.28)

Taken together, Eqns. IV.27 and IV.28 confirm that
the tensile stress σ = sT/3 has two regimes of relax-
ation: the first associated with relaxation of the chain
stretch variable T on the fast timescale τs, and the sec-
ond with relaxation of the chain orientation variable s
on the slower timescale τd, consistent with our numerical
results in the left panel of Fig. 4.

Turning now to consider the small amplitude necking
perturbations to the homogeneous underlying base state
just discussed, we write linearised equations analogous
to those in Eqns. IV.6 to IV.11 for the simplified scalar
model. From these, it is possible to show (though we do
not provide the details) that the rate of necking at any
time during the stress relaxation process is given by

δ̇a

δa
= −1

3
(f(s)− s)

(
Ṫ

T
− T̈

Ṫ

)
,

= −1

3
(f(s)− s)

[
−T
Ṫ

]
d2

dt2
log T. (IV.29)

(The quantity in the square brackets is always positive,
because the trace T decays as a function of time post-
straining, Ṫ < 0.) This result contains two important
factors that closely mirror analogous quantities in our
earlier criteria for necking in the simplified scalar consti-
tutive model. The first resembles the factor f(σ)− σ in
the criterion for instability of the elastic Considère mode,
but expressed now in terms of the chain orientation vari-
able s = 3σ/T . (In the non-stretch Rolie-Poly model,
T = 3 at all times and s = σ.) The second resembles

the factor d2

dt2 log σ of the stress curvature mode, but ex-
pressed in terms of the chain stretch variable T =

∑
i Tii.

We consider now the behaviour of each of these two fac-
tors in turn, as a function of the time t after the straining
stops. It is easy to show from the second of Eqns. IV.26
that the factor involving T as written in its form in the
first of Eqns. IV.29 obeys (for τd � τs) the relation

Ṫ

T
− T̈

Ṫ
=

1

τs

√
3

T
. (IV.30)

This is always positive, and is in general large in mag-
nitude because the stretch relaxation timescale τs is
small. Having thus shown that the T -curvature factor
in Eqn. IV.29 is always positive, we recognise that any
counterpart of the curvature mode of instability of the
scalar model will always be stable in this context of the
stretching Rolie-Poly model.

In consequence, the stability/instability to necking
must be determined by the other, elastic Considère -like
factor f(s)−s in Eqn. IV.29, with instability for f−s < 0.
For high imposed strain rates, this orientational variable
s in the stretching Rolie-Poly model follows essentially
the same dynamics as the variable σ in the non-stretching
form of the model. Accordingly, the factor f(s) − s can
become negative during strain ramps of sufficiently large
strain performed sufficiently quickly. The region of the
plane of imposed strain ε̄0 and strain rate ¯̇ε for which
f(s) − s is indeed negative by the end of the straining
process is that above the dot-dashed line in the middle
and right panels of Fig. 4. This coincides with the coun-
terpart line shown in Fig. 3 for the non-stretching model,
and asymptotes to ε̄0 = 0.703 as ¯̇ε→∞.

In any regime where indeed f −s < 0, Eqn. IV.30 sub-
stituted into Eqn. IV.29 tells us that the necking will
develop with a characteristic rate that scales as 1/τs,
and that actually becomes progressively larger during
the course of the first regime of stress relaxation post-
straining, as the chain stretch relaxes from its large initial
value T (0) to its equilibrium value T = 3.

The rate of growth of necking during the stress relax-
ation, as predicted by the analytical form in Eqn. IV.29,
is plotted as a colourscale in Fig. 5. As can be seen by
comparision with the right subpanel of the left panel of
Fig. 4, it agrees well with with our simulation data.

Consistent with this analytical prediction, our numer-
ical results shown by the colourscale in the right panel
of Fig. 4 indeed display significant necking post-ramp for
values of ε̄0, ¯̇ε above the dot-dashed line. The middle
panel of Fig. 4 shows the total necking predicted to accu-
mulate during the straining process itself. As can be seen,
ramps with ε̄0, ¯̇ε values that lie above the dot-dashed line
but that also satisfy ¯̇ε < 1/τs (effectively recovering non-
stretching Rolie-Poly dynamics) suffer sufficiently strong
necking during the straining process itself that the fila-
ment is likely to fail altogether during straining, render-
ing any prediction of further necking post-strain largely
irrelevant. The important new regime lies at high strain
rates ¯̇ε & 1/τs for imposed strains ε̄0 > 0.703, where we
find stability against necking during the straining pro-
cess itself due to the accumulation of chain stretch, as
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FIG. 5. Relaxation of the stress σ = sT/3, with the
colourscale showing the analytical prediction IV.29 for the
rate of growth of necking perturbations. This analytical pre-
diction for the rate of growth of necking should be com-
pared with the corresponding numerical results shown by the
colourscale in the right subpanel for the left panel of Fig. 4.

discussed earlier in Ref. [4], but with a strong delayed
necking after the straining stops. Ramps with imposed
strains ε̄0 < 0.703 give no necking, even post-strain.

V. NONLINEAR DYNAMICS

So far, we have discussed the dynamics of necking per-
turbations to an initially homogeneous underlying base
state in the linear regime, where the amplitude of the per-
turbations remains small. We now consider the dynamics
of necking out of that linear regime, when the amplitude
of the perturbations is no longer small. To do so, we
numerically evolve the nonlinear slender filament equa-
tions by discretizing them on a mesh, and time-stepping
them using an explicit Euler algorithm for the spatially
local terms and first order upwinding for the convective
terms [74]. Details are given in Ref. [4], together with a
discussion of convergence on the space and time-steps.

The slender filament approach that we use through-
out this work is not capable of properly implementing
the no-slip condition that pertains where the fluid makes
contact with the end-plates. To circumvent this, we use
an approximate mimic of that condition by adopting an
artificially divergent viscosity near each plate, according
to Eqn. VII.1 of Ref. [4]. This strongly limits the ex-
tensional stretching that can occur in the filament in the
vicinity of each plate, and thereby constrains the filament
area to remain close its initial value at each plate, even
as the sample as a whole is stretched out. This has the
effect of forcing the sample to thin more quickly in the
middle than at its ends. This purely geometrical effect

seeds a single neck mid-filament, which is then picked up
by the mechanical necking instability that is our focus.

We perform these simulations in the Rolie-Poly model
with chain stretch. Using this model, we attempt a
quantitative comparison with the experimental data of
Ref. [31], focusing in particular on their monodisperse
styrene-butadiene rubber (SBR 250K), which has mod-
ulus G = 0.68MPa, reptation time τd = 310s, and chain
stretch relaxation time τs = 4.1s= 0.0132τd. For all these
non-linear simulations we set 3η = 0.001Gτd, but also
checked that our results are robust to reasonable vari-
ations in this value. In using the Rolie-Poly model we
are adopting a course-grained approximation of an en-
tangled linear polymer chain, whereas a multimode ap-
proach would be needed to capture the full quantitative
behaviour of a real polymeric fluid [67]. We therefore
only expect to obtain qualitative agreement with exper-
imental data.

The results are shown in Figs. 6 and 7. In Fig. 6
we compare the results of our theoretical calculations
with the experiments of Ref. [31] for the time-evolution
of the tensile engineering stress during and after three
different strain ramps, each performed at an imposed
strain rate ¯̇ε = 0.8s−1 = 248/τd = 3.28/τs, and with
imposed strains ε̄0 = 0.6, 1.0 and 1.4 respectively. The
middle panel shows the counterpart results for the ten-
sile engineering stress in our numerical simulations of the
Rolie-Poly model, with model and flow-protocol param-
eter values matched to those of the experimental data
(and with an assumed solvent viscosity much smaller
than the viscoelastic one, which, as noted above, does
not affect the results). The right panel shows the evo-
lution of the area at the filament’s midpoint, again ob-
tained in our numerical simulations. Fig. 7 shows di-
rectly corresponding panels to those in Fig. 6, but now
for four different strain ramps, each performed to a to-
tal strain ε̄0 = 1.0, and with imposed strain rates ¯̇ε =
0.22s = 68.2/τd = 0.902/τs, 0.45s = 140/τd = 1.85/τs.
0.9s = 248/τd = 3.49/τs and 1.8s = 558/τd = 7.38/τs. In
each case, our numerical simulations are seen to capture
the overall qualitative features of the experimental data.
Full quantitative agreement would not be expected, due
to our use of a simplified constitutive model.

Each of these ramps shown in Figs. 6 and 7 lies in the
regime where the imposed strain rate exceeds (or nearly
exceeds, for the slowest ramp) the inverse chain stretch
relaxation time. According to our arguments in Sec. IV
above, then, we should expect the filament to be sta-
bilised against necking during the straining process itself,
but then to display delayed failure during the subsequent
process of stress relaxation, provided the applied strain
ε̄0 > 0.703. Precisely this scenario is indeed observed: de-
layed failure is seen in all the ramps that have ε̄ > 0.703.
In contrast, the ramp with ε̄0 = 0.6 in Fig. 6 displays full
stress relaxation without filament failure.
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FIG. 6. Left: Experimental data taken from Ref. [31] for a monodisperse styrene-butadiene rubber (SBR 250K) for which the
modulus G = 0.68MPa, the reptation time τd = 310s and the chain stretch relaxation time τs = 4.1s= 0.0132τd. Shown is the
evolution of the tensile stress during and after three different strain ramps: each with an imposed strain rate ¯̇ε = 0.8s−1 =
248/τd = 3.28/τs, and with imposed strains ε̄0 = 0.6, 1.0 and 1.4 respectively. Middle: Direct counterpart evolution of the
stress during strain ramp in our nonlinear simulations of the Rolie-Poly model with chain stretch included. Flow protocol and
polymeric material parameter values are matched to those of the experimental data, and we further assumed a value for the
Newtonian viscosity 3η = 0.001Gτd. Right: Corresponding simulation data for the area at the mid-point of the filament.

FIG. 7. Left: Experimental data taken from Ref. [31] for a monodisperse styrene-butadiene rubber (SBR 250K) for which
the modulus G = 0.68MPa, the reptation time τd = 310s and the chain stretch relaxation time τs = 4.1s= 0.0132τd. Shown
is the evolution of the tensile stress during and after three different strain ramps: each with an imposed strain ε̄0 = 1.0,
and with imposed strain rates ¯̇ε0 = 0.22s = 68.2/τd = 0.902/τs, 0.45s = 140/τd = 1.85/τs. 0.9s = 248/τd = 3.49/τs and
1.8s = 558/τd = 7.38/τs respectively. Middle: Direct counterpart evolution of the stress during strain ramp in our nonlinear
simulations of the Rolie-Poly model with chain stretch included. Flow protocol and polymeric material parameter values are
matched to those of the experimental data, and we further assumed a value for the Newtonian viscosity 3η = 0.001Gτd. Right:
Corresponding simulation data for the area at the mid-point of the filament.

VI. ANALOGY WITH SHEAR BANDING

In Ref. [3], one of the present authors together with
Moorcroft studied the direct counterpart in shear of the
protocol considered in this manuscript in extension: the
imposition of a given total shear strain γ0 at an applied
shear strain rate ¯̇γ, after which the straining is switched
off and the sample held in its strained state with shear
strain γ0 for all times thereafter. The interest in that
work lay in the possibility that delayed shear banding

might arise during the process of stress relaxation after
the straining stops, by analogy with the necking after an
interrupted extensional strain as considered here. That
delayed shear banding effect had also been considered in
the earlier work of Ref. [73].

Fig. 9 of Ref. [3] showed their results for the stretch-
ing Rolie-Poly model in that protocol, for two different
values of the imposed strain rate: one in the regime
1/τd � ¯̇γ � 1/τs and another in the regime ¯̇γ � 1/τs.
As can be seen by direct comparison with the left panel
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of Fig. 4 in this work, an analogous scenario with the
necking dynamics reported in this manuscript is indeed
evident. In particular, for the case 1/τd � ¯̇γ � 1/τs, sig-
nificant instability to shear banding was seen both dur-
ing the straining process itself, and during the stress re-
laxation that follows it. In the second case ¯̇γ � 1/τs,
instability to shear banding was suppressed during the
straining process itself. However significant instability
to shear banding then arose during the first part of the
stress decay, on a timescale τs, associated with the re-
laxation of chain stretch. Stability against banding was
later recovered on the the longer timescale τd on which
the chain orientation progressively relaxed.

VII. CONCLUSIONS

In this work, we have performed linear stability anal-
ysis and nonlinear slender filament simulations of exten-
sional necking in complex fluids and soft solids, for the
flow protocol in which an initially cylindrical filament (or
planar sheet) is subject to a constant extensional strain
rate for a given time interval, after which the strain rate
is then set to zero. Our focus has been on the conditions
required for a sample to neck during the process of stress
relaxation after the end of the strain ramp.

We derived analytical criteria for necking during the
stress relaxation, within a highly simplified and gener-
alised scalar constitutive model. Within this model we
found two different possible modes of necking. The first

is associated with an upward curvature in the stress re-
laxation function shown on a log-linear plot. The sec-
ond is related to a particular, carefully defined ‘elastic’
derivative of the tensile force with respect to an imagined
sudden strain increment. We showed these two criteria to
be in excellent agreement with the behaviour of the Ol-
droyd B and Giesekus models, and the Rolie-Poly model
with chain stretch ignored.

With chain stretch included in the Rolie-Poly model,
we obtained a slightly more complicated analytical cri-
terion for necking during the stress relaxation, although
with key ingredients closely mirroring counterpart ingre-
dients of the simpler criteria derived within the simplified
scalar model. We showed this criterion to be in full agree-
ment with nonlinear slender filament simulations of the
Rolie-Poly model with chain stretch, and with the sce-
nario discussed by the Copenhagen group in Refs. [1, 2].
In particular, we found delayed necking after ramps with
a total accumulated strain exceeding ε̄ ≈ 0.7, for ramp
rates exceeding the inverse strain relaxation timescale.

We discussed finally a close analogy between this de-
layed necking following an interrupted extensional strain
ramp and that of delayed shear banding following an
interrupted shear strain ramp, as discussed earlier in
Ref. [3, 73].
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APPENDIX I: CORRESPONDENCE OF
TENSORIAL AND SCALAR CONSTITUTIVE

MODELS

Our analytical calculations in Sec. IV B were per-
formed in the simplified scalar version of the Giesekus
model. In contrast, our numerical results in Fig. 2 are
for the fully tensorial form of the model. To demonstrate
the equivalence of these, in Fig. 8 we show numerical
results for the scalar version of the Giesekus model. Re-
assuringly, we see close agreement with those of Fig. 2
for the fully tensorial form.

APPENDIX II: EFFECT OF CONVECTIVE
CONSTRAINT RELEASE

In Fig. 4 of the main text, we demonstrated the neck-
ing dynamics post-straining of the Rolie-Poly model with
chain stretch including, for a value of the convective con-
straint release parameter β = 0.0. In Fig. 9, we show
the exactly counterpart results for a value β = 1.0 at the
other end of the allowed range 0 < β < 1, demonstrating
qualitatively the same scenario even with convective con-
straint release included to its maximum allowable extent.
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FIG. 8. Direct counterpart to the numerical results shown for the linearised necking dynamics in the fully tensorial Giesekus
model Fig. 2, now in the scalar equivalent of that model.

FIG. 9. Direct counterpart of Fig. 4 in the main text, now for a value of the convective constraint release parameter β = 1.0.


