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SUMMARY 

Proteins often assemble in multimeric complexes to perform a specific biological function. 

Trapping these high-order conformations is however difficult experimentally. Therefore, 

predicting how proteins assemble using in silico techniques can be of great help. The size 

of the associated conformational space and the fact that proteins are intrinsically flexible 

structures make, however, this optimization problem extremely challenging. Nonetheless, 

known experimental spatial restraints can guide the search process, contributing to model 

biologically relevant states. We present here a swarm intelligence optimization protocol 

able to predict the arrangement of protein symmetric assemblies by exploiting a limited 

amount of experimental restraints and steric interactions. Importantly, within this scheme 

the native flexibility of each protein subunit is taken into account as extracted from 

molecular dynamics simulations. We show that this is a key ingredient for the prediction of 

biologically functional assemblies when, upon oligomerization, subunits explore activated 

states undergoing significant conformational changes. 
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INTRODUCTION 

Proteins often assemble in multimeric states to perform specific biological functions (Gavin 

et al., 2002). As the native folded state of single proteins, the most stable conformation of 

these macromolecular assemblies corresponds to an arrangement that is unique. 

Unfortunately, it is usually difficult to characterize the structure of multimeric assemblies at 

atomistic resolution. This is due to both their size and complexity, which make the 

production of sufficiently pure crystal for X-ray crystallography challenging. Moreover, if the 

assembly is amphipathic, such as in the case of transmembrane structures, crystallization 

is even more difficult. For this reason, in silico methodologies aiming at predicting how 

multiple protein copies arrange to form a multimeric complex would be desirable. The 

prediction of protein assembly can be interpreted as a minimization problem having an 

extremely large and complex search space. In principle, knowing the structure of an 

individual subunit should be sufficient to reconstruct the structure of the whole assembly. 

However, both the complexity of the search space and the fact that proteins are 

intrinsically dynamic objects, often undergoing conformational changes when multimerizing 

(Bahadur and Zacharias, 2008), contribute to making the prediction of a macromolecular 

assembly structure an extremely challenging task. 

To tackle this problem several solutions have been proposed to date. Some 

approaches, such as SymmDock (Schneidman-Duhovny et al.), M-ZDOCK (Pierce et al., 

2005) or MolFit (Berchanski et al., 2005), exploit the fact that often multimers respect a 

specific symmetry (Plaxco and Gross, 2009), (Goodsell and Olson, 2000). These methods 

reduce the search space by imposing a specific symmetry and subsequently rigidly dock 

the binding partners, so that a predefined energy function is minimized. The 

aforementioned schemes are ab initio, i.e. they do not directly exploit any previous 

knowledge about the system being studied. Still, it is important to point out that, while 

producing an X-ray structure of a macromolecular assembly is challenging, low-resolution 

data is usually more accessible. While this structural information can be used to filter or re-

rank the models produced by ab initio methods, it can also be used to directly guide the 

assembly process by providing geometric restraints that the final assembly should respect 

(Lensink and Wodak, 2010),(Alber et al., 2008). The advantage of such approach is that 

the search space can be greatly reduced, as a consequence reducing the computational 

effort needed to explore the assembly's conformational space. Shih et al., presenting a 

thorough analysis on the effect of quantity and precision of distance constraints, showed 
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that their prediction scheme based on distance restraints, DPPD, performs equally or 

better than ab initio methods (Shih and Hwang, 2012). In the context of experiment-driven 

protein assembly prediction one of the major efforts is represented by IMP (Integrative 

Modeling Platform) (Russel et al., 2012). IMP is able to deal with a variety of experimental 

restraints and predicts the rigid body arrangement of very large and heterogeneous 

macromolecular assemblies (Alber et al., 2007), (Lasker et al., 2012) via Monte Carlo and 

conjugate gradient search. On a similar side, HADDOCK (de Vries et al., 2007) can not 

only deal with a large variety of experimental restraints, but also with protein flexibility by 

first rigidly docking up to six subunits according to a predefined symmetry, and 

subsequently refining the result via simulated annealing. Another approach, Rosetta, has 

been shown to precisely predict multimeric arrangements according to several 

symmetries, also keeping into account both backbone and side-chain flexibility via a Monte 

Carlo-based multistep refinement procedure (Andre et al., 2007). 

Upon assembly, constituent subunits often explore regions of their conformational 

space that can be markedly different from those captured by high-resolution X-ray 

crystallography or NMR structures of the single subunit. If additional activation processes 

are required to trigger assembly, such as proteolytic cleavage, post-translational 

modifications, etc., the conformation of subunits in the assembled (bound) state is 

expected to significantly differ from that observed in the free, unbound state. Importantly, 

there is increasing evidence of conformational selection playing an important role in the 

recognition process of protein binding (Boehr et al., 2009), (Lange et al., 2008), (Peters 

and de Groot, 2012). Protein bound conformations are thus expected to already populate 

the accessible conformational space explored by the unbound protein. Therefore, this 

opens the intriguing possibility to characterize the ensemble of states that are relevant for 

assembly by a thorough exploration of the conformational space of single subunits. 

Nowadays this task is possible thanks to the ever-increasing sampling power of large-

scale molecular dynamics (MD) simulations of proteins in their native environment (Dror et 

al., 2012). Importantly, improved performances have been demonstrated by methods 

keeping into account protein’s conformational space by docking ensembles of structures 

generated via MD simulations (Grunberg et al., 2004) (Smith et al., 2005), linear 

combinations of eigenvectors extracted by essential dynamics analysis (Mustard and 

Ritchie, 2005) or NMR experiments (Chaudhury and Gray, 2008). A hurdle in ensemble 

docking is however represented by its larger computational weight. 
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Our goal is to predict multimeric symmetric arrangements using both the structural 

and dynamic information of the monomeric state, guided by low-resolution spatial 

restraints characterizing the final assembly. In this context, minimization algorithms based 

on classical mathematical approaches (such as steepest descent or conjugate gradient) 

are unsuitable, since they tend to fail to converge to the global minimum. We tackled this 

problem by adopting a Particle Swarm Optimization (PSO) algorithm. PSO is a distributed 

heuristic optimization technique which has been shown to be both highly robust to local 

minima and usually converging as fast, and in some cases even faster, than other heuristic 

approaches such as genetic algorithm or simulated annealing (Besozzi et al., 2009), 

(Elbeltagi et al., 2005), (Namasivayam and Günther, 2007), (Angeline, 1998), (Abraham 

and Liu, 2009). PSO has been used successfully for docking small molecules in protein 

active sites (Chen et al., 2007), (Morris et al., 1999), (Meier et al., 2010) but, in our 

knowledge, our implementation is the first example of PSO applied to the broad domain of 

protein multimeric assembly. 

In order to keep large portions of protein conformational space into account and 

understand the assembly mechanism, we exploit the increasing sampling capabilities of 

MD simulations as an additional resource. Importantly, in our method this conformational 

space is directly added to PSO search space. We show that our approach can quickly 

predict a reasonable protein arrangement in a symmetrical multimeric conformation by 

selecting, if necessary, the most suitable structure within the available conformations. 

Assembly prediction is performed in a variety of assembly situations, and guided by a 

limited amount of geometric restraints. 

 

RESULTS 

We aim at finding quickly a reasonable prediction for a multimeric structure arrangement 

on the basis of structural information about its subunits and experimental measures acting 

as search restraints (Figure 1). In a first step, an ensemble of monomer conformations is 

generated from molecular dynamics simulations or, alternatively, from structural biology 

experiments; this will be treated as a conformational database (see Experimental 

Procedure). The advantage of such an approach is that assembly prediction is performed 

using physically plausible structures. Subsequently, upon definition of a list of geometric 

restraints and a specific circular symmetry, a new kind of Particle Swarm Optimization 
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(PSO) search dynamically explores the conformational database. PSO searches for a 

multimeric assembly respecting all the given restraints and presenting no steric clashes. 

Geometric restraints can be typically provided by low-resolution electron density maps or 

experiments such as cross-linking disulfide scanning, labeling or FRET. If necessary, 

multimers can be assembled on a given substrate. At PSO search completion, a large set 

of solutions having a good score is usually generated. A smaller set of representative 

solutions, typically less than ten (Table 1), is returned by clustering the accepted solutions 

according to their respective Root Mean Square Deviation (RMSD). At present, the 

structure of hetero-dimers (thus addressing general protein-protein interactions) or homo-

multimers with or without a target substrate (if a circular symmetry is imposed) can be 

predicted. This process is usually very fast, and can produce small ensemble of solutions 

being sufficiently good to generate biologically sound working hypotheses, and act as 

seeds for further optimization steps using more computationally expensive techniques. 

We tested our protocol on a variety of systems having been already solved in their 

multimeric conformation. These cases ranged from a dimer having no imposed symmetry 

up to a 24-mer having an imposed circular symmetry, where we use the structure of 

subunits in the bound conformation to perform prediction. In all tests, a variety of 

geometric restraints plausibly derived from experiments of different nature were exploited 

and their influence on final predictions tested. In a second phase, we applied our method 

to three cases in which both the protein’s bound and unbound conformations are known. 

Here, the conformational spaces of the unbound states were characterized by means of 

molecular dynamics simulations. Finally, we tackled a real case: the prediction of the 

heptameric conformation of pore-forming toxin aerolysin on the basis of known cryo-EM 

maps. In this case, we demonstrate that accounting for protein flexibility plays a key role in 

the prediction of biologically relevant states. 

 

Rigid Assembly using Symmetry and Stoichiometry 

We applied our method to protein complexes exploiting information usually accessible, like 

their stoichiometry and relative produced symmetry, to test its correctness. We selected a 

set of bound complexes (for which we use the bound monomeric conformation to rigidly 

reconstruct the assembly) spanning several symmetry classes, namely Chorismate 

Mutase (C3 symmetry) Acyl Carrier Protein Synthase (C3), Lumazine Synthase (C5), SM 
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Archeal Protein (C7) and EscJ (C24). We also included one case, PhoQ (C2), where no 

symmetry was imposed a priori and disulfide cross-linking data were used to guide 

assembly ((Goldberg et al., 2008)(Lemmin et al., 2013), see SI for further details). It should 

be noted that some of these proteins have been also adopted as test cases in the context 

of de novo prediction (Andre et al., 2007). In all the cases we attempted to reconstruct the 

original multimer on the basis of a known stoichiometry by providing various combinations 

of experimentally plausible geometric restraints (see details in Supplemental Information, 

SI). In SI further tests aimed at assessing the influence of restraint choice (i.e., quantity, 

quality and nature) on the final prediction are also presented. Results with relative 

computation timing are reported in Table 1, and best structures superimposed to the 

known crystal structure are shown in Figure 2A-D.  

With the increase of geometric restraints stringency, the amount of obtained models 

decreases and their quality increases (Figure 3A, and Figure S3 for a complete 

benchmark). Importantly, in all our test cases at least one good model (RMSD < 2 Å, Table 

1, Figure 2A-D) was generated and, when using at least 4 distance restraints, most 

produced models were consistent with the original crystal. Since docking was rigid at this 

stage, i.e. proteins were not deformed during optimization, part of RMSD difference is 

explained by the small differences within assembled subunits. Despite producing clash-

free models consistent with imposed restraints, the fitness function in its current simple 

implementation (see Experimental Procedure) is not able to optimally rank obtained 

structures. On the other side, this limitation is balanced by the very limited set of solutions 

produced by our method (Table 1), which allows a direct (e.g. in silico and/or in vitro) 

assessment of the biological significance of the ensemble. Execution time is affected by 

the protein size and the complexity of desired geometric restraints. The largest contributor 

to execution time is however the post-processing phase, which is affected by the amount 

of final solutions that need to be generated. By imposing more severe filtering and 

clustering thresholds, a smaller number of solutions can be obtained. In these examples, a 

small number of possible assemblies were produced, in most cases in less than five 

minutes. 
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Assembly Considering Protein Native Flexibility 

Whereas the previous tests are to be considered as ideal cases for exploring the general 

correctness and performance of our method, keeping into account the intrinsic flexibility of 

the unbound monomeric subunit can be crucial for sampling conformations more favorable 

to form the final assembly. To address this point, we selected three cases where both the 

unbound and bound structures have been solved at atomistic resolution. The first was 

phospholipase A2, having an RMSD within bound and unbound conformation equal to 0.8 

Å. The second and third, harder cases, were Flavivirus trimeric envelope glycoprotein and 

HIV-1 hexameric capsomer, having an RMSD of 4.4 Å and 10.5 Å, respectively. These 

proteins have been also used by (Mashiach-Farkash et al., 2011) for benchmarking their 

refinement method SymmRef against the de novo modeling program SymmDock. As 

before, tests have been run for assessing the effect and nature of the restraints for 

prediction (Figure S4-5). In this context, our strategy was to explore the conformational 

space of the unbound state using MD simulations and to include this conformational 

ensemble during the optimization step (see Experimental Procedure). 

When the difference between bound and unbound states is mild, such in the case of 

phospholipase A2, no major difference between the results obtained with a rigid and 

flexible approach can be observed (Table 1, Figure 2E). In fact, rigidly docking the 

unbound structure was sufficient to obtain very good results. By imposing more than one 

geometric restraint, less than 3 models could always be produced, all of them having a 

RMSD smaller than 2 Å with respect to the known assembly (Figure 3B, S4 and S5). This 

result is better than the first acceptable solution produced by SymmDock (9.2 Å) 

(Mashiach-Farkash et al., 2011). 

Unlike phospholipase A2, the case of Flavivirus envelope glycoprotein could not be 

considered as simple. A ~250 ns simulation was run and exploited as conformational 

database. While the RMSD between crystallographic bound and unbound states is 4.4 Å, 

during MD simulation RMSD values as low as 3.5 Å were explored. A more thorough 

observation of the trajectory revealed that the protein, very elongated, flexes along its main 

axis. Seven eigenvectors, that represented 80% of protein motion, were automatically 

selected as additional dimensions in the search space (see Experimental Procedure). 

Exploring this conformational space, 13 models were finally produced, the best one having 

a RMSD of 4.2 Å with respect to the known assembled crystal, 3.8 Å excluding most 

flexible and solvent exposed loops (Figure 2F, Table 1). Interestingly, the final RMSD is 
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lower than that between unbound and bound state and is, in fact, built by automatically 

selecting one of the best MD frames available (i.e., RMSD of 3.6 Å with respect to the 

bound state). By comparison with the unbound structure the selected frame has the 

important advantage of better capturing the protein-wide motion involved in the binding 

process, making it therefore a more suitable candidate for assembly prediction. This result 

is comparable to the first acceptable result produced by SymmDock (3.5 Å) (Mashiach-

Farkash et al., 2011). 

A more striking case is constituted by the HIV-1 hexameric capsomer, which is 

composed of two domains connected by a flexible linker. We performed a ~500 ns long 

MD simulation of the unbound conformation and tracked its RMSD with respect to the 

known bound conformation. While a large majority of structures were very different from 

the bound state (RMSD greater than 10 Å), during a rearrangement of the two domains the 

RMSD was as low as 2.9 Å (Figure 4A). This indicates that states very close to the bound 

conformation, although less populated, are present in the conformational space of the 

unbound state. We ran three optimizations one for the bound state, one for the unbound 

state, and one keeping into account the MD ensemble, using the same geometric 

restraints. Not surprisingly, no acceptable model was obtained when using the unbound 

conformation. Conversely, when using the bound state, 9 solutions were produced, the 

best one having a RMSD equal to 0.6 Å with respect to the known crystal. As comparison, 

this result is better than the first acceptable solution produced by SymmDock (1.7 Å) and, 

remarkably, comparable to its refinement via SymmRef (0.9 Å) (Mashiach-Farkash et al., 

2011). Finally, we attempted to produce a model by exploiting the whole MD trajectory of 

the protein’s unbound state. Two eigenvectors were sufficient to describe 84% of the 

protein motion (Figure 4B), and PSO finally produced 16 models, the best one having a 

RMSD equal to 3.7 Å. Importantly, our method assembled this model by automatically 

selecting as building block the MD frame with the lowest RMSD with respect to the bound 

state (Figure 4C,D). Moreover, all the produced models were built using monomers having 

RMSD values lower than 3.5 Å with respect to the bound state.  

These latter results clearly highlight how our method is able to pinpoint the most 

suitable structure for assembly within a conformational ensemble, outperforming a purely 

rigid docking approach and producing states that can be further refined by minimization or 

molecular simulation techniques. If the complete conformational space could be sampled 

by MD, one might expect that the PSO-based search would eventually find the optimal 
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state to assemble the multimeric complex. In practice, in the case of Flavivirus envelope 

glycoprotein MD was not able to explore states very close to the bound conformation in a 

102 ns timescale. This is likely because the rearrangements involved upon assembly 

would have required a longer sampling time. On the other hand, in the same timescales 

MD explored states close to the bound conformation for the case of the HIV-1 hexameric 

capsomer, due to the quaternary architecture of the protein.  

 

Assembly Considering Activation-Induced Protein Flexibility 

In order to study a real assembly prediction situation, we applied our method to the 

prediction of the heptameric conformation of Aeromonas hydrophila pore-forming toxin 

aerolysin (monomeric pdb: 1PRE (Parker et al., 1994)). For this protein, flexibility plays an 

extremely important role: in fact, pore-forming toxins often undergo large conformational 

changes in order to assemble into a transmembrane complex. Interestingly, point mutation 

Y221G has been found to be able to impair the aerolysin assembly membrane insertion, 

leading to the creation of a hydrophilic multimer (i.e., prepore state) for which a cryo-EM 

map was obtained at a resolution of 16 Å (Tsitrin et al., 2002). We have already shown 

that the aerolysin C-terminal peptide (CTP, Figure 5A) acts as an intramolecular 

chaperone to preserve the correct folding of the monomer, but its cleavage and removal 

from aerolysin main lobe is then necessary for pore formation (Iacovache et al., 2011). 

Therefore, we characterized the dynamic features of both the inactive Y221G aerolysin 

(i.e. complexed with CTP as in the X-ray structure, Figure 5A) and the activated form, 

where the CTP was removed from the main lobe. We observed that the presence of the 

CTP largely affects the internal motion of aerolysin: while the inactive form explores 

conformations very close to the X-ray structure, the active form shows a larger interdomain 

flexibility and additional internal rotation of the domain originally holding the CTP (Figure 

5A,B). 

We used the knowledge about the activated conformational space of aerolysin in 

order to model its heptameric prepore assembly within our optimization framework. As 

restraints, the measures of Y221G cryo-EM map were adopted (i.e. height and width equal 

to 85±5 Å and 150±5 Å respectively, and pore radius equal to 5±2 Å, EM maps has been 

filtered at 0.5 and width and height were measured on the resulting volume, Figure 5C,D). 

In particular, two independent runs were performed, one providing as input an ensemble of 



 11 

conformations generated from a ~200 ns MD simulation of Y221G aerolysin without the 

CTP, and one providing the X-ray structure of Y221G aerolysin pruned a posteriori of the 

CTP coordinates; the latter being representative of the relatively compacted 

conformational ensemble explored by MD (Figure 5B). In the first case, by keeping into 

account monomer flexibility as described by the 3 main PCA eigenvectors (94.5% of 

protein’s movement), we obtained 6 models. All the models when docked into the Y221G 

EM using Situs (Wriggers, 2010) presented a good cross-correlation coefficient (CCC) with 

respect to it. The highest ranked structure had a CCC of 0.72, a single subunit of this 

model having an RMSD equal to 4.3 Å with respect to the original aerolysin crystal (Figure 

5C). Importantly, this assembly appears to recapitulate all known biophysical and 

biochemical data for wild-type and Y221G aerolysin (whose impact is investigated in a 

forthcoming work). Conversely, when only the X-ray based CTP-bound conformation was 

used to assemble a multimer, none of the solutions explored met the solutions filtering 

criteria (Figure 5B,D). This indicates that no structure satisfying the given geometric 

restraints could be found. We docked the best solution (fitness equal to 4.75) into the 

Y221G cryo-EM map obtaining a CCC of 0.57, value significantly lower than what obtained 

using the dynamic modeling protocol and presenting several inconsistencies with respect 

to known experimental data. 

Altogether, this blind result, along with tests on unbound cases (Figure 4), shows 

that using an ensemble of structures representative of monomer native flexibility, which 

also can take into account activated states, leads eventually to improved performances in 

assembly prediction and to the generation of more biologically sound structural models. 

 

Effect of Quantity and Quality of Restraints 

The quantity and accuracy of used restraints may greatly influence the performance of any 

protein assembly prediction methodology. To better validate our method, we performed a 

set of benchmarks involving a variable number of restraints, as well as a different error on 

the given experimental target measures (Figure 3, see also SI and Figures S3-5 for 

extended benchmarks). We selected the trimeric phospholipase A2 (both using its 

unbound structure and a ~500 ns MD ensemble) and acyl carrier protein as test structures. 

For both proteins, an ensemble of protein-protein contacts was first identified for the 

available multimeric structure. In order to test how our pipeline is affected by the amount of 
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provided restraints, we selected combinations from one to five contacts as restraint (Figure 

3). To test the effect of noise on the target measure, all these tests were repeated by 

imposing errors from 1 to 6 Å on every target measure. Results are summarized in Figures 

3 and S3-S5. 

In all tests we observe that, not surprisingly, the amount of obtained models 

decreases rapidly the larger the amount of used restraints. The average solutions quality 

also improves with a higher number of restraints. Results show that, when using at least 4 

restraints, a large majority of produced structures is consistent with the original complex 

(Figure 3), even when imposing a fairly large error on the measures, such as 6 Å (Figure 

S3-S5). Importantly, in any performed test at least one good solution (bRMSD < 2 Å) was 

present within the produced models. Using a MD trajectory as input (Figures 3B and S5) 

instead of a single structure (Figure S4) results in a larger amount of solutions to be 

produced when using a small amount of constraints. Phospholipase A2 features a flexible 

loop, which is the major responsible of a different RMSD within the produced models. If no 

restraints involving this loop are set, a large amount of solutions is produced. However, 

using a larger amount of restraints (more than 3) leads to performances comparable to the 

ones obtained using a single structure as input. We observe that the location of restraints 

on the assembly surface can affect the optimization process. Contacts involving residues 

located in a protein cavity, for instance, would impose more severe geometric restraints 

than contacts involving completely exposed protein regions. Relative location of restraints 

also plays an important role. Better results are usually obtained when identified contacts 

are spread on the whole protein-protein interface, especially when the error on individual 

measures becomes large. 

 

DISCUSSION 

We presented a new method based on swarm intelligence optimization that is able to 

predict, exploiting a limited set of low-resolution experimental spatial restraints, the 

conformation of homo-multimers according to a predefined circular symmetry or general 

protein-protein interactions. A first major strength of our algorithm is that, thanks to a 

novel, robust and efficient PSO implementation, it can quickly return a small set of possible 

structures respecting the imposed restraints and presenting no severe clashes. These 

models can be subsequently refined and re-ranked with techniques such as SymmRef 
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(Mashiach-Farkash et al., 2011) or MDFF if a density map is available (Trabuco et al., 

2008). 

Furthermore, our method is designed to take native protein flexibility into account by 

automatically extracting relevant conformations from a provided structural ensemble. In 

this context we use the sampling power of molecular dynamics that currently allow 

exploring relevant portions of the conformational space accessible to protein subunits. The 

advantage of such approach is that significant conformational changes, involving for 

instance inter-domain rearrangements, can be kept into account. Recent evidence 

indicates conformational selection as a major mechanism implicated in recognition 

processes as protein binding and assembly. Namely, bound conformations are already 

expected to populate the accessible conformational space explored by unbound proteins. 

Thus, in principle, the investigation of the conformational ensemble of single subunits 

alone can already provide useful information about their state upon assembly. Using 

aerolysin as a real case, we demonstrated indeed that exploiting a structural ensemble 

produced by MD simulations greatly improved the prediction outcome. We expect that, 

with the ever-growing sampling capabilities of current molecular dynamics simulations, the 

hybrid strategy implemented in our method will offer in the future an unprecedented, robust 

and efficient way to address molecular assembly through dynamic modeling.  

As a matter of fact, such conformational ensemble could be generated via other 

techniques (e.g. Monte Carlo simulation, NMR experiments) allowing the exploration of a 

macromolecule conformational space. In this context, one of the possible extensions is the 

possibility of automatically performing a normal modes analysis on a single provided 

structure. Exploration of the conformational space constituted by a linear combination of 

the main discovered modes would subsequently take place. The immediate advantage of 

this approach is clearly its extremely affordable computational cost. On the other side, 

flexibility extracted from a harmonic approximation of protein molecular interactions is 

limited to a specific equilibrium state and cannot access further conformational 

arrangements as seen in MD simulations, especially for further activated states (Figure 5). 

Assembly predictions can be guided by virtually any possible experimental results 

providing insights about proteins structure. Macroscopic measures such as height and 

width extracted from cryo-EM experiments, atomic distances obtained for instance from 

FRET, disulfide cross-linking, chemical cross-linking coupled to mass spectrometry 

experiments or identification of location of specific amino acids in the assembly structure 
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(for instance from gold labeling or alanine scanning) can all effectively lead to a correct 

assembly prediction. At present, cryo-EM maps only provide our protocol with information 

about the assembly general shapes (height, width, concavity, pore radius, etc.). PSO can, 

however, deal with any kind of fitness function. Thus, a natural extension of our protocol 

will be the direct assembly of homo- and hetero-multimers into a provided electron density 

map. 

It has to be pointed out that our approach is based on a purely geometric 

optimization, side chain arrangement is therefore not refined at the moment. In fact, our 

aim at this stage was to quickly generate a small ensemble of reasonable protein 

arrangements. Even though we do not produce a refined de novo prediction, our results 

can provide important insights into multimeric arrangement and guide the design of new 

experiments. The current energetic contribution to the fitness function is simply constituted 

by a coarse potential on the protein scaffold used to avoid steric clashes. Energy scoring 

based on molecular mechanics contribution of the monomer-to-monomer binding would 

likely help to rank the best solutions and address completely experimentally blind 

assembly searches. The goal is to obtain a lightweight but more accurate energetic 

contribution, better describing van der Waals interactions and accounting for electrostatic 

contributions. In this respect, taking care of side chains refinement could also lead to 

significant improvements. 

In conclusion, we believe we just scratched the surface of the capabilities of this 

novel approach. In fact, since the PSO engine is not sensitive to the kind of imposed 

symmetry, implementing other common symmetries (such as helical or icosahedral) is 

trivial, and is part of our future development plans. Moreover, improvements on the fitness 

function, by including a broader set of geometric restraints, and the energy scoring, with 

the use of more accurate molecular mechanics potentials, will certainly enhance the 

quality of the predicted assemblies, and eventually address the prediction of protein-

protein interactions. Finally, the increasing capability of MD coupled to this optimization 

protocol has the great advantage to account for native protein flexibility, activation 

processes and conformational selection of relevant states upon assembly. Given the 

number of multi-protein complexes, crucial for key cellular functions, that are amenable to 

low-resolution analyses but not X-ray crystallography, we believe that this dynamic 

modeling approach will be widely used in the future. 
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EXPERIMENTAL PROCEDURES 

Kick-and-Reseed Particle Swarm Optimization  

Let a function f(x), where x ∈ Fn ⊂ Rn. We call f the fitness function, and search space the 

multidimensional real space Fn in which the function is defined. We want to find a point 

xmin∈ Fn such that ymin=f(xmin) is the function's global minimum. PSO aims at finding the 

point xmin having the lowest fitness. This technique represents the search process as a 

model of birds' social behavior when flocking (Kennedy and Eberhart, 1995). To do so, an 

ensemble of solutions (also called particles) has its position and velocity randomly 

initialized in the multidimensional search space. Along the whole optimization process, 

every particle will keep track of the value fbest and position xbest of its best-found solution. At 

the beginning of every discrete timestep, particles p are updated about the swarm status, 

i.e. the current position of all particles, as well as their respective best found solution value 

and location. Subsequently, they will independently update their own velocity v, which in 

turn will be used to update their position x. This is repeated until a maximal number of 

timesteps is reached. Since, after having been updated about the swarm status, particles 

act as independent agents, PSO can be considered as embarrassingly parallel, easily 

benefiting from current multi-core architectures. Velocity update is affected by 3 factors. 

The first, inertia, determines how a particle's trajectory is preserved along time. The 

second, personal best, attracts particles towards their own best solution. The third, global 

best, attracts particles towards the best solution found by neighboring particles (Figure 6). 

In order to increase PSO robustness and convergence rate, we implemented a new kind of 

PSO called PSO kick and reseed (PSO-KaR, see full details in SI). In PSO-KaR, particles 

being too slow (i.e. stagnating in a minimum) have their position and velocity randomly 

reinitialized, and their memory erased. This PSO-based method is implemented in a code 

called Parallel Optimization Workbench – power, available as open source at 

http://lbm.epfl.ch. All the tests were performed running 3 PSO-KaR repetitions of 200 steps 

with 80 particles. PSO behavioral constants wstart, wend , cp and cn were set to 0.9, 0.4, 1.2 

and 1.4 (see SI). 4 processors on an Intel AMD64 dual-quad core machine were used. All 

reported execution times (Table 1) also include post-processing, i.e. solution filtering, 

clustering and generation of corresponding PDB files. 

 

 

http://lbm.epfl.ch/resources
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Search Space Definition and Data Manipulation 

Our scheme aims at predicting the assembly of two proteins or, by imposing a predefined 

symmetry, of multimeric assemblies. In particular, when docking two proteins, the search 

space is six-dimensional (protein translation and rotation around the x, y and z axis). If an 

ensemble of protein structures is available, namely obtained from a MD trajectory (or 

alternatively NMR or X-ray experiments), flexibility (or multiple conformations) can be 

introduced as set of further dimensions in the search space. To do so, a principal 

component analysis (PCA) is initially performed on the ensemble (Figure 1). The projection 

value of every trajectory frame along the most relevant eigenvectors, also called 

fluctuations, is computed. These are used as a way to index the trajectory frames, which 

we can consider as a protein conformation database. The search space is eventually 

characterized by three rotations, three translations, and n fluctuations. In order to produce 

the assembly corresponding to a specific position in the search space, the subunit in the 

database having its eigenvector projection being the closest to the desired fluctuation 

values is first extracted. Subsequently, the selected conformation is roto-translated. The 

main advantage of using an ensemble of conformations is that the protein conformations 

used to assemble the multimer will more closely respect protein native flexibility. 

This scheme is extended to assemble circular symmetric structures given a known 

stoichiometry. In this context, the conformational space is defined by the three rotation 

angles of a single monomer with respect to a center of symmetry aligned along the z axis, 

and a displacement with respect to it, which represents the radius of the assembly in its 

narrowest point. This methodology has been already successfully applied to model several 

isoforms of human C4b-binding protein (Hofmeyer et al., 2013). Our method has been also 

extended to flexibly assemble a multimeric complex on a rigid receptor, as recently done 

for the prediction of the basal body YscDJ complex of the Yersinia type III secretion 

system (in press). In this case additional degrees of freedom, i.e. the translation of the 

whole assembly along the z axis and the rotation around it, are also kept into account. 

 

Fitness Function and Clustering 

The fitness function scoring the quality of an assembly depends on two factors, geometry 

and energy. As geometric contribution, specific measures of the current multimer m are 

compared to target values t being experimentally known. Let c(m) an ensemble of 
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measures performed on a multimer. The geometric score G(m) of a multimer is determined 

by the Euclidean distance within obtained and target measures: 

G(m)= {[t-c(m)]·[t-c(m)]}1/2                        (1) 

In order to avoid steric clashes during assembly, a coarse energy potential is also taken 

into account. This "minimalistic" contribution is constituted by a 9-6 Lennard-Jones-type 

potential describing all the Cα and Cβ atoms of two neighboring monomers extracted from 

the assembly: 

E(m)= 4ε [(σ / r) 9 – (σ / r)6]           (2) 

where r are all the distances within couples of atoms being at a distance smaller than 12 

Å. ε=1 kcal/mol and σ=4.7 Å correspond instead to a coarse-grained model for Cα atoms 

(Alemani et al., 2010). The final fitness function f mixes geometric and energetic 

contributions by means of the following weighted sum: 

f(m)=c*E(m)+(1-c)*G(m)          (3) 

where c is a real value within 0 and 1. In preliminary systematic tests, we found that when 

c has a value smaller than 0.05 no suitable solution is usually found, whereas with values 

greater than 0.2 a large amount of solutions is returned (not shown). In our tests we set 

c=0.2. It should be noted that the rough energy function in eq. 1 only avoids clashes, and 

is therefore not sufficiently precise to allow a blind docking (i.e. without geometric restraint) 

and accurate ranking of the solutions. During execution, solutions having a fitness lower 

than 0 (i.e. most likely clash free and respecting the given geometric restraints) are 

retained. Solutions having their respective RMSD smaller than 1 Å are subsequently 

clustered; cluster representatives (centers) are finally selected. More details can be found 

in Supplemental Information. 
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TABLES 

 

Table 1. Summary of assembly prediction using various experimental restraints 

Symmetry, execution time (including post-processing), final number of independent 

solutions and best protein backbone RMSD (bRMSD) with respect to the known assembly 

are indicated. In brackets, the rank of the best solution is also indicated. Bound, unbound 

and aerolysin cases are reported in this order. Relative structural superimpositions are 

reported in Figures 2, 4 and 5. 

 

Protein symmetry time solutions bRMSD 

PhoQ C2 3m00s 6 (1) 1.85 Å 

Chorismate Mutase C3 2m16s 20 (3) 1.52 Å 

Acyl Carrier C3 2m59s 3 (1) 1.91 Å 

Lumazine Syntaze C5 3m53s 6 (5) 1.89 Å 

SM Archeal Protein C7 2m30s 6 (1) 0.95 Å 

EscJ C24 8m52s 9 (3) 2.04 Å 

Phospholipase A2 * C3 1m36s 2 (1) 1.58 Å 

Envelope Glycoprotein * C3 7m03s 14 (4) 3.81 Å 

Hexameric Capsomer * C6 6m50s 16 (14) 3.74 Å 

Aerolysin * C7 6m35s 6 (4) 0.72 ** 

 
*  unbound cases 
**  cross-correlation coefficient with respect to the density map 
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FIGURES LEGENDS 

 

Figure 1. Macromolecular assembly prediction workflow 

When a structural ensemble is provided (e.g. from a MD trajectory), principal component 

analysis (PCA) is first performed. Fluctuations of main eigenvectors are added to the 

search space, which also includes protein roto-translation dimensions. Every point in the 

search space is a protein assembly, which is evaluated by a fitness function taking into 

account both assembly energy and geometric restraints typically based on experimental 

evidence. Fitness function minima in the search space are sampled via a novel kind of 

Particle Swarm Optimization (PSO) algorithm (see Figure 6). The best solutions are 

filtered and clustered, and their corresponding multimeric structures produced. These can 

be subsequently refined via more expensive computational techniques. This method for 

macromolecular assembly is implemented in an open source code called Parallel 

Optimization Workbench – power, which is available at http://lbm.epfl.ch. 

 

Figure 2. Molecular assembly predictions 

Best symmetrical assembly predictions (in yellow) superimposed to known X-ray crystal 

structures (in blue) of bound (B, C, D) and unbound (E, F) cases. In panel A, no symmetry 

is imposed a priori for assembling the PhoQ dimer, and red spheres highlight the position 

of residues displaying high disulfide cross-linking efficiency used as distance restraints. 

See Table 1 for the relative RMSD numerical values. 

  

Figure 3. Assessing the effect of quality and quantity of imposed restraints 

An ensemble of six native contacts (distance 4±2 Å) has been selected for acyl carrier (A, 

bound case) and phospholipase A2 (B, unbound case). For every combination of these, an 

assembly prediction has been run. The amount of produced solutions (left column) and the 

distribution of model RMSD with respect to the known structure (right column, where red 

lines represent median, blue boxes the intervals between lower and upper quartiles, 

whiskers the lowest and highest observations, and red crosses the outliers) have been 

finally extracted. When increasing the number of imposed restraints, a smaller amount of 
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solutions is returned, most having an RMSD below 2 Å with respect to the known 

assembly. See Figures S3-S5 for a complete benchmark considering a broader noise-

range contribution on restraints. 

  

Figure 4. Molecular assembly prediction accounting for native dynamics 

 (A) Time evolution of monomeric HIV-1 hexameric capsomer RMSD with respect to initial 

unbound reference X-ray state. At around 300 ns, the protein visits conformations with low 

RMSD (less than 3 Å, indicated by a red dot) with respect to the bound state. (B) 

Projection of the first two eigenvectors calculated by PCA reveals that, in the MD 

eigenspace of the unbound state, some structures appear close to the bound state. (C) 

Superposition of the unbound structure and the best frame extracted from MD simulation 

that is close to the bound state. (D) Best model produced by our method (3.7 Å RMSD, in 

yellow) is superimposed to known X-ray crystal structure of the complex (in blue). A frame 

having a low RMSD in the conformational database (2.9 Å, indicated by the red dot in 

panels A and B) was automatically selected as building block. 

 

Figure 5. Molecular assembly prediction accounting for native flexibility upon 

activation 

(A) Aerolysin crystal structure and schematic representation of its two main modes of 

motion (black arrows). Removal of C-terminal peptide (CTP, in grey) activates the toxin, 

while mutation Y221G (in yellow) locks aerolysin assembly in a prepore conformation. (B) 

Projection of the first two eigenvectors calculated from PCA of the MD trajectories with 

CTP (in black) and without (in blue). Upon activation, a much larger conformational space 

with respect to the X-ray static structure (in red) is explored. (C) By keeping into account 

protein native flexibility upon activation (see B), a very good fit (CCC=0.72) is obtained 

with respect to the available EM map, and a structure fully compatible with available 

biological data is predicted. (D) By only using aerolysin crystal structure to predict the 

heptameric conformation of the prepore state, a model having a CCC equal to 0.57 is 

instead assembled. 
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Figure 6. PSO-KaR algorithm for molecular assembly prediction 

Pseudocode of the new Kick-and-Reseed Particle Swarm Optimization. At every timestep 

t, the position x and velocity v in the search space of every particle p is updated according 

to three factors: inertia, personal best and global best. These contributions are weighted 

by w, cp and cn coefficients, respectively. Every particle keeps track of the position xbest 

and value fbest of its best-found solution. When a particle’s velocity drops below a 

predefined threshold vmin (code in the rectangular box) its velocity is randomly reinitialized 

(“kick”), whereas if the current fitness value is lower than a threshold fmin, its position is 

restarted as well, and its memory erased (“reseed”). See Figures S1-S2 for performance 

on classic benchmark functions and Supplemental Information for details about the 

algorithm. 
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SUPPLEMENTAL FIGURES 

 

Figure S1, related to Figure 6: Results on multidimensional Sine (A, B) and Rastrigin (C, 

D) using PSO (A, C) and PSO-KaR (B, D). Every result is an average of 10 independent 

optimization runs. The more the function dimensionality increases, the more the fitness 

convergence is slow (cyan = 100D, red = 50D, green = 40D, blue = 30D). See Figure 6 of 

main text for the PSO-KaR pseudo-code. 
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Figure S2, related to Figure 6: Results on multidimensional Rastrigin function using 

different velocity thresholds for PSO-KaR optimization. The final fitness achieved with 

different threshold values is shown for runs on the 100D Rastringin (A) and 50D Rastrigin 

(B). Error bars indicate the standard deviation over 10 runs. In both cases, a too high 

threshold introduces too much noise, and a too low one that does not perturb the swarm 

sufficiently. Best results are obtained, in both cases, with a velocity threshold equal to 

0.01. See Figure 6 of main text for the PSO-KaR pseudo-code. 
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Figure S3, related to Figure 3: Performance on the prediction of multimeric conformation 

of Acyl Carrier using different quantities of distance restraints and imposing different errors 

on measurements. Left plots display the amount of final solutions; right plots the 

distribution of bRMSD [Å] of obtained solutions with respect of the known crystal structure. 

See Figure 3 of main text for a specific extract of these complete results. 
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Figure S4, related to Figure 3: Performance on the prediction of multimeric conformation 

of phospholipase A2 using different quantities of distance restraints and imposing different 

errors. Left plots display the amount of final solutions, right plots the distribution of bRMSD 

[Å] of obtained solutions with respect of the known crystal structure. See Figure 3 of main 

text for a specific extract of these complete results. 
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Figure S5, related to Figure 3: Performance on the prediction of multimeric conformation 

of phospholipase A2 using a ~500 ns MD simulation as input. Different quantities of 

distance restraints as well as errors on the measures are imposed. Left plots display the 

amount of final solutions, right plots the distribution of bRMSD [Å] of obtained solutions 

with respect of the known crystal structure. See Figure 3 of main text for a specific extract 

of these complete results. 
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SUPPLEMENTAL DATA 

1. PSO and PSO-KaR benchmark 

In order to assess the effect of the Kick and Reseed procedure (KaR) on PSO 

performance, and identify the most suitable value for the Kick threshold, we ran a set of 

function optimization tests. Two classic benchmark multidimentional functions were used: 

sine (used as a trivial test) and Rastrigin (used as an hard test). The sine function is 

defined as follows: 

f(x}=1+∑n sin(xn) / n 

In the interval [ 0,2π] one unique minima exists, f(3/2 π)=0. The Rastrigin function is 

defined as follows: 

f(x)=10+ ∑n [xn
2-10*cos(2πxn)] 

This function is particularly hard to optimize. In the interval [-5.12,5.12] it contains a large 

number of local minima, that get increasingly deep the closer they are to the unique global 

minima located in f(0)=0, 1, 2, 3, 5, 5, 10, 20, 30, 40, 50 and 100 dimensional Rastrigin 

and Sine function were submitted to PSO and PSO-KaR optimization. For PSO-KaR, the 

minimal velocity threshold was set to 0.01. For both PSO and PSO-KaR, every of these 

functions was optimized in 10 independent runs with 1000 steps and 80 particules. In both 

cases particles neighbors were defined as the particles having preceding and following 

indexes. The average fitness at every optimization step is shown in Figure S1. 

The KaR procedure improves fitness convergence when hard fitness functions are 

optimized, whereas it has no effect when optimizing easy functions. We notice that, in 

every case, the more a function dimensionality increases, the more fitness convergence 

rate decreases. Increasing the size of the search space has the effect of reducing the 

particles density in it. Therefore, finding the funnel leading to the global minima, and the 

right trajectory to find its lowest point, becomes increasingly difficult. On Rastrigin function, 

early convergence is immediately observable when using PSO. This phenomena becomes 

more dramatic when dimensionality increases. This is due both to the increased number of 

almost equivalent local minima, and by the already mentioned reduced particles density in 

the search space. 
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For simple fitness functions (such as sine or low dimensional Rastrigin) no relevant 

difference can be observed within the PSO and PSO-KaR procedures. However, when 

increasing the fitness function complexity, the effect the KaR procedure become more and 

more relevant. This shows that, while being comparable to PSO for easy fitness functions, 

PSO-KaR prevents early convergence in hard optimization problems. To assess the effect 

of the kick and reseed procedure and define an ideal value for the kicking threshold, we 

tested different velocity thresholds while running PSO-KaR optimizations on the two 

hardest fitness function used above, i.e. the 50 and 100 dimensional Rastrigin functions. 

Values equal to 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 and 0 (equivalent to 

the standard PSO) were tested. Averages of 10 independent runs with 1000 optimization 

steps and 80 particles are visible in Figure S2.  

For both the 50 and the 100 dimensional Rastringin, a threshold value equal to 1 

turns out to be too high. High thresholds introduce excessive noise in the swarm, which in 

turn converges with more difficulty. Conversely, thresholds being too low (such as 0.0001), 

do not perturb the swarm sufficiently to have a real positive effect in its search process. 

The best result, leading to improved performances with respect of the standard PSO, was 

obtained in both tests by a velocity threshold equal to 0.01. This value was therefore set as 

default in PSO implementation. Importantly, the KaR procedure does not affect negatively 

the precision of search process. Indeed, despite the addition of noise in the search 

process, the standard deviation in PSO-KaR does not increase with respect of the 

standard PSO. By comparing the results of the 100 and 50 dimensional Rastrigin, we 

observe that in the second case a broader range of threshold values leads to similar 

performances. Previously, we also observed that for very simple functions (sine) the KaR 

procedure has no effect. This indicates that the more the fitness function becomes 

complex, the more a good choice of velocity threshold becomes important. 

This algorithm is implemented in an open source code called Parallel Optimization 

Workbench – power, which is available at http://lbm.epfl.ch. 
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2. Molecular Assembly Prediction Details 

2.1 Structural Models Used in Test Cases 

We applied our scheme for assembly prediction to a set of model systems, on which we 

tested the robustness and accuracy of our approach on bound and unbound relevant 

cases. For each system a heterogeneous set of restraints were used and led to the results 

shown in Table 1 and Figures 2 and 4. Moreover, extended tests were performed in order 

to assess the influence of the number and nature of restraints on the overall result (Figures 

3, and S3-S5) 

Tests on bound cases 

Trimeric Streptococcus pneumoniae Acyl carrier protein synthase (AcpS) was crystallized 

at a resolution of 1.9 Å  with 3'5'-ADP bound in two of its three active sites, located at 

protein's interfaces (pdb: 1FTH (Chirgadze et al., 2000)). Chain A was extracted as 

representative structure. We imposed the assembly radius to be 0±2 Å, a negative radius 

leading to multimers crossing the center of symmetry. We generated a restraint by 

identifying the residues constituting the protein's binding site. In AcpS, Asp10 and His105 

bind the same phosphate group. For this reason, we set their distance to be 9±2 Å. 

Additionally, in order to assess the performance of our pipeline as a function of number of 

used constraints (Figures 3A and S5), combinations of six specific contacts (Asp10-

His105, Ile4-Glu117, Lys64-Ile103, Ile11-Ser104, Ile11-His105, His7-Ser113) were 

adopted. Backbone RMSD was computed taking into account all residues common to all 

three chains, i.e. residues 3 to 68, 75 to 99 and 101 to 118. 

Heptameric Pyrobaculum aerophilum SM Archeal Protein cationic pore was crystallized at 

a resolution of 1.75 Å (pdb: 1I8F (Mura et al., 2001)). We extracted chain A as a 

representative monomeric structure. We imposed the assembly's narrowest radius to be 

4±2 Å, which is a reasonable size for a cationic channel. a single restraint was imposed: 

we imposed residue Asp29 to be exposed to the pore lumen, therefore imposing its 

distance from the pore central axis to be smaller than 6 Å (i.e. the largest possible pore 

radius). Lumen-exposed residues can be typically identified by detecting channel 

conductivity alteration upon cysteine mutation and addition of MTS probes in solution. 

Residues 15 to 80 of all chains (i.e. the residues common to all the seven subunits in the 

crystal) were selected to compute the backbone RMSD within the PSO-generated 

solutions and the known crystal. 
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Clostridium thermocellum Chorismate Mutase was crystallized in a trimeric conformation 

(pdb: 1XHO). Assembly radius was bound to be within 0 and 3  

 and the height (42±4 Å) and width (49±4 Å) of the final assembly were adopted as unique 

geometric restraints. Such a restraint that can be typically obtained by measuring low-

resolution electron density maps obtained, for instance, via cryo-electron microscopy. 

Pentameric Lumazine Synthase from Saccharomyces cerevisiae was crystallized at a 

resolution of 1.85 Å (pdb: 1EJB (Meining et al., 2000)). Since the first 16 N-Terminal 

residues show a different coil conformation, we excluded them from our test. After removal 

of the first 16 N-Terminal residues, we supposed that all the five monomers could be 

considered as identical. Chain A was selected as representative structure. In this test we 

combined four different restraints. Height and width were set to be equal to 75±2 and 49±2 

Å respectively. Furthermore, we restrained the distance with two residues couples. The 

distance within two Asp103 facing each other was set to 3.8±2 Å, and the distance within 

Asp103 and neighboring His107 to 9.4±2 Å. Such measures are typically obtainable via 

cross-linking experiments. Assembly radius was set to 5±1 Å. Backbone RMSD was 

computed taking into account all the residues. 

Escherichia coli  24mer EscJ, part of type III secretion system's basal body, had a 4-mer 

basic unit crystallized (pdb: 1YJ7 (Yip et al., 2005)). Chain A was extracted as 

representative structure. We set the assembly radius to be 38±2 Å and imposed three 

different restraints. We set assembly's width to be 176±2 Å, its height to 55±2 Å and 

residue Pro99 to face inwards (distance from the origin smaller than 40, the largest 

acceptable radius). From the obtained 24-mer predicted models we extracted a 4-mer 

basic unit which was compared to the available crystal. Backbone RMSD was computed 

with respect of the tetrameric basic unit taking into account all residues common to all 

three chains, i.e. residues 21 to 91, 98 to 133 and 141 to 186. 

PhoQ is a two-component system histidine kinase responsible of detection of divalent 

cations at the inner bacterial membrane. Two X-ray structures of its periplasmic sensor 

domain (a.a.  45-186) are available: one from Salmonella enterica (pdb: 1YAX), and one 

from Escherichia coli (pdb: 3BQ8). The crystals being different, Goldberg et al. (Goldberg 

et al., 2008) determined via cross-linking experiments on the dimer's interface (α-helix 45-

62) that the structure from E.coli shows the most physiologically relevant arrangement. 

From the dimeric crystal 3BQ8, two individual monomers were extracted and defined as 

ligand (chain A) and receptor (chain B) respectively, while five cross-linking measures 
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displaying high efficiency (Thr47, Leu51, Gly54, Asn57, Leu58, see Figure 2A in main text) 

were used as geometric restraints. Since cross-linking efficiency does not provide a high-

resolution information about residues distance, we considered that the five most efficient 

cross-links simply indicate that residues’ Cα atoms are 9±3 Å apart, consistently with 

disulfide bond distances. All structures were compared to the known crystal by computing 

their backbone RMSD on residues Phe44 to Val183. C-Terminal residues Glu184 to 

Ser188, being random coils, were excluded. 6 different solutions were finally produced, the 

best one having a backbone RMSD equal to 1.85 Å. Its interfacing residues, located on α-

helix 46-62, had a backbone RMSD of 0.76 Å. Importantly, all the solutions respected the 

given geometric restraints and presented no steric clashes, possibly being representative 

conformations of alternative signaling states accessible to this sensor domain. 

Tests on unbound cases 

Phospholipase A2 from Naja naja was crystallized both in its monomeric (pdb: 1POA 

(Scott et al., 1990)) and trimeric (pdb: 1A3F  (Segelke et al., 1998)) form. The RMSD 

within the unbound and bound conformation (residues 1 to 117) is 0.7 Å, and is mainly due 

to a slightly different arrangement of a loop. In order to perform a molecular dynamics 

(MD) simulation of the unbound state, we first solvated the structure in a rectangular box of 

pre-equilibrated TIP3P water, and neutralized the system’s total charge by the addition of 

Na+ and Cl- ions. Molecular dynamics has been performed  using the Amber parm99sb 

force field (Case et al., 2010) on NAMD molecular dynamics engine (Phillips et al., 2005), 

with SHAKE algorithm on all the bonds, and Particle-mesh Ewald treating the electrostatic 

interactions in periodic boundary conditions. We chose an integration step of 2 fs. The 

systems had their energy initially minimized by means of 1000 conjugate gradient steps, 

and have subsequently been gradually heated from 0 to 300 K in 1 ns at 1 Atm. 

Simulations were run in the nPT ensemble at 1 atm and 300K. Temperature has been 

controlled by mean of Langevin forces, using a damping constant of 1 ps-1. The protein 

was simulated for 480 ns. From this simulation, one frame every 100 ps, i.e. 4800 frames, 

were extracted and used as conformational database for PSO optimization. In all tests, we 

set the assembly radius to be within 1 and 3 Å. In order to assess the performance of our 

pipeline as a function of number of used constraints, we selected six specific contacts 

(Lys6-Glu55, Tyr3-Tyr63, Tyr110-Lys115, Trp19-Gly31, Asn111-Lys115, Asn1-Trp61). 

These restraints were used for tests performed using the single unbound structure as 
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starting monomer, and the MD trajectory of unbound state described above (Figures 3E, 

S4 and S5). 

Flavivirus envelope glycoprotein was crystallized both in its monomeric (pdb: 1SVB, (Rey 

et al., 1995)) and trimeric state (1URZ, (Bressanelli et al., 2004)). The protein is composed 

of a large flexible domain (residues 1 to 300) connected to a small globular domain. We 

simulated 1SVB with MD for 230 ns using the same protocol detailed above for 

Phospholipase A2. In our tests, we subsequently used the larger domain only (having an 

RMSD of 4.4 Å with respect of the bound state), and used as restraints two contacts: 

Asp10-His105 and His7-Ser113. For both restraints we set a target distance equal to 4±2 

Å (Figure 2F). 2300 frames were then used as conformational database for our 

optimization protocol. In order to compute the obtained model’s RMSD with respect of the 

known bound state, we considered residues 8 to 97, 110 to 146, 160 to 202, resid 210 to 

247 and resid 252 to 296, i.e. all residues common to both structures, excluded long 

solvent exposed unstructured regions. 

HIV-1 Hexameric Capsomer was crystallized both in its monomeric (pdb: 1E6J, complexed 

with FAB13B5 protein (Monaco-Malbet et al., 2000)) and trimeric (pdb: 3MGE (Pornillos et 

al., 2010)) form. The RMSD between the two states (residues 11 to 140, 144 to 176 and 

189 to 219) is equal to 10.5 Å. The unbound protein, consisting of two rigid domains 

connected by a flexible linker, was extracted from1E6J crystal simulated for 500 ns using 

the same protocol detailed above for Phospholipase A2. One frame every 100 ps, i.e. 

5000 structures, was extracted and used as conformational database for our optimization 

protocol. We set the assembly radius to be within 0 and 3 Å, and set one geometric 

constraint per domain, i.e. Glu212-Lys140 and the disulfide bridge Cys42-Cys51. 

A crystal structure of dimeric proaerolysin mutant Y221G has been obtained with a 

resolution of 2.2 Å (pdb: 3C0N). A single monomer was extracted from the crystal. After 

100 ns production run, we manually removed the 40 residues long C-Terminal peptide 

(CTP). We assumed that this would mimic the effect of proteolytic cleavage leading to 

protein activation. The newly obtained protein, active Y221G aerolysin, was equilibrated 

and simulated during 200 ns using the same simulation protocol detailed above. 2000 

structures, one every 100 ps, were extracted from this latter trajectory, and submitted to 

PSO optimization as detailed in the main text. 
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3. Molecular assembly predictions 

3.1. Effect of quantity and quality of restraints 

Contacts selected in phospholipase A2 were Lys6-Glu55, Tyr3-Tyr63, Tyr110-Lys115, 

Trp19-Gly31, Asn111-Lys115, Asn1-Trp61. Contacts selected in acyl carrier were Asp10-

His105, Ile4-Glu117, Lys64-Ile103, Ile11-Ser104, Ile11-His105, His7-Ser113. 

We selected combinations of 1,2,3,4 and 5 contacts as restraint. Every test was repeated 

using six different combinations, and results collected in a unique dataset. To test the 

effect of error size on the target measure, all these tests were repeated by imposing errors 

of 1,2,3,4,5 and 6 Å on every target measure. Therefore, in this benchmark we ran a total 

of (3 proteins)*(5 contacts)*(6 combinations)*(6 errors) = 540 optimizations. Notice that 

benchmark data presented in main text (Figure 3A and 3B) are extracted from this same 

dataset (results obtained using an error equal to 2 A). 

RMSD distributions in all the experiments have been represented using boxplots 

computed using Matlab and default parameters (Figures 3, S3, S4 and S5). In these plots 

the red lines represent medians, blue boxes the intervals between lower and upper 

quartiles, whiskers the lowest and highest observations, and red crosses the outliers. 

3.2. Mixing different restraints 

In this section we report results obtained, for representative proteins, by adopting different 

geometric restraints and using the same experimental setup stated in main text (see 

Material and Methods). Not surprisingly, the amount of obtained valid models usually 

increases the less stringent the used geometric restraints are, and vice versa. In general, 

the more precise (and reasonable) restraints are provided, the better the result (i.e. a 

smaller amount of possible models is produced). In the following, w stands for “width”, h 

stands for “height” and d(r1,r2) the Euclidean distance within two residues, r1 and r2. 

SM Archeal Protein. This data is related to Table 1 and Figure 2C in main text. Table S1 

reports results using a variety of different geometric restraints. We tested the effect of 

making the same geometric condition less stringent, using a global measures (width and 

height), imposing a residue to face outside the complex (Pro80) or two residues in the pore 

center (Arg29 and Asp30) to be in contact. 
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Restraint time solutions bRMSD 

w=66±2 Å, h=40±2 Å 2m16s 2 1.52 Å 

d(Arg29,(0,0,0))<10 Å, w=66±2 Å, h=40±2 Å 
2m53s 

3 1.63 Å 

d(Arg29,(0,0,0))<10 Å 2m53s 15 1.28 Å 

d(Arg29,Asp30)<4 Å 2m56s 27 1.52 Å 

 

Table S1, related to Figure 3 and Table 1: Summary of PSO prediction results on SM 

Archeal Protein heptamer using several geometric restraints 

 

Chorismate Mutase. This data is related to Table 1 in main text. We tested the effect of 

making the same global geometric condition more stringent, and also applied geometric 

restraints on specific atoms. On this aspect, we constrained the N-Terminal residues 

(Val2) as well as residue Met74 (in protein's core) to be close. We notice that, as soon as 

restraints become more stringent (for instance by restraining the distance within two 

atoms), the amount of produced multimers drops. 

Restraint time solutions bRMSD 

w=49±2 Å, h=42±2 Å 2m20s 20 1.89 Å 

w=49±2 Å, h=42±2 Å, d(Met74,Met74)=3.5±1 Å 2m20s 3 1.72 Å 

w=49±4 Å, h=42±4 Å, d(Met74,Met74)=3.5±1 Å 2m26s 6 1.94 Å 

d(Met74,Met74)=3.5±1 Å, d(Val2,Val2)=8±1 Å 1m50s 2 1.59 Å 

w=49±3, h=42±3, d(Val2,Val2)=8±1 Å 1m55s 7 2.49 Å 

 

Table S2, related to Figure 3 and Table 1: Summary of PSO prediction results on 

Chorismate Mutase trimer using several geometric restraints 
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Acyl Carrier. This data is related to Table 1 in main text Table S3 reports results using a 

variety of different geometric restraints. The influence of using global measures (width and 

height), other residues part of the binding site (i.e. Lys64 and Asp55) and various mixes of 

these quantities were tested. 

Restraint 
time 

solutions bRMSD 

w=60±2 Å, h=47±2 Å 2m12s 9 1.80 Å 

w=60±2 Å, h=47±2 Å, d(Asp10,His105)=9±2 Å 1m59s 3 1.82 Å 

w=60±4 Å, h=47±4 Å, d(Asp10,His105)=9±4 Å 1m59s 
8 

1.98 Å 

d(Lys64,Asp55)=10±4 Å 2m14s 8 
1.86 Å 

d(Lys64,Asp55)=10±4 Å, d(Asp55,His105)=9±4 Å 2m20s 6 1.95 Å 

 

Table S3, related to Figure 3 and Table 1: Summary of PSO prediction results on Acyl 

Carrier trimer using several geometric restraints 

 

EscJ. This data is related to Table 1 and Figure 2D in main text. Table S4 reports results 

using a variety of different geometric restraints. On this test case, we tested the effect of 

using a unique, stringent set of global measures (height and width). We also coupled such 

measures with residues specific restraints. In particular, we tested the effect of imposing 

residue Lys178 to face upwards, and to combine this restraint with others. 

Restraint time solutions bRMSD 

w=176±2 Å, h=180±2 Å 6m52s 7 2.58 Å 

Lys178 on top, d(Pro99,(0,0,0))<40 
8m40s 

10 2.06 Å 

 

Table S4, related to Figure 3 and Table 1: Summary of PSO prediction results on EscJ 

using several geometric restraints 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

1. Kick-and-Reseed Particle Swarm Optimization (PSO-KaR)  

Even though PSO usually displays a fast convergence and is robust to local minima, it has 

also been shown that when the fitness function's profile becomes extremely rough, the 

search might still terminate with a premature convergence (that is, with all particles 

stagnating in local minima (Angeline, 1998)). In order to increase PSO robustness and 

convergence rate, several approaches have been proposed (Abraham and Liu, 2009) 

(Pasupuleti and Battiti, 2006) (Binkley and Hagiwara, 2008) (Clerc, 1999) (Ratnaweera et 

al., 2004) (Clerc and Kennedy, 2002). We implemented a new PSO flavor that we call kick 

and reseed (PSO-KaR, box in Figure 6). This method is meant to avoid early convergence 

and leads to an increased sampling. To do so, particles velocities are constantly 

monitored. When a particle slows below a predefined threshold velocity vmin, two possible 

actions are taken. If the current fitness value is above a predefined threshold fmin, the 

particle velocity is randomly reinitialized. Conversely, if the current fitness is below said 

threshold, the particle is also randomly reseeded in a new position of the search space, 

and its memory about its personal best erased. PSO-KaR has been tested on classic 

benchmark function, and proved to be more effective than standard PSO when dealing 

with rough fitness functions (see Figure S1-S2).  

In PSO-KaR, w, cp and cn scale the influence of inertia, personal best and global 

best, respectively. w varies within 0 and 1. It has been shown that improved performance 

can be achieved by starting inertia at high values and gradually reducing it while 

optimization proceeds (Shi and Eberhart, 1998). A high inertia value produces a more 

"turbulent" swarm, which is ideal for an initial exploratory phase. Reducing the inertia has a 

"cooling" effect, which is more suitable when areas of interest have been discovered. 

While in literature values for initial and final w to 0.9 and 0.4 are usually accepted, values 

of cn and cp are subject to debate. In this context, meta-optimization approaches 

(optimization of parameters to improve PSO performance for a specific problem) have 

been proposed (Pedersen and Chipperfield, 2010) (Meissner et al., 2006). 

In a typical PSO run, within 20 and 80 particles are initialized. A particle's 

neighborhood can be defined either as indexed, either as geographic. In the first case, an 

index is assigned to every particle, and particles having consecutive indices are 
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considered as neighbors. In geographic neighborhood, a particle will select as neighbors 

only the first n particles being close in the search space. Interestingly, it has been 

observed that a fully connected swarm would converge faster, but perform poorly than a 

partially connected one, being more sensitive to local minima (Kennedy, 1999) (Kennedy 

and Mendes, 2002). Search space boundary conditions can be enforced either as periodic 

or reflexive. In periodic boundary conditions, the unit cell containing the search space is 

replicated periodically in every direction. A particle leaving the unit cell will reappear in the 

neighboring cell. In reflexive boundary conditions, cell borders are considered as hard 

walls. Particles would therefore bounce elastically against them. An upper threshold for 

particles' velocity corresponding to the search space size is usually set. 

All the tests were performed running 3 PSO repetitions of 200 steps with 80 

particles. PSO behavioral constants wstart and wend were set to 0.9 and 0.4, respectively. 

On the base of preliminary systematic tests on cp and cn constants, we identified cp=1.2 

and cn=1.4 as the combination leading to the most effective performance in terms of 

space exploration and exploitation of areas having low fitness. Neighborhood was indexed 

and had size equal to 1, while and boundary conditions were periodic. 4 processors on an 

Intel AMD64 dual-quad core machine were used. 

 

2. Fitness Function and Clustering 

In preliminary systematic tests on Archeal SM and Acyl Carrier, we found that best results 

are obtained when setting as weighting factor c (see eq. 3 in main text) a value within 0.05 

and 0.2 (not shown). When using smaller values, no good solution is usually found 

whereas, when using larger values, a large amount of solutions is returned. Importantly, 

for problems having a small amount of constraints, the contribution of the energy term 

turned out to be critical for good predictions. 

All fitness evaluations obtained during PSO are collected, and solutions having a 

fitness lower than a predefined threshold are retained. In most applications the filtering 

criteria is set to 0. Such a value indicates that, most likely, the system's energy is negative 

(i.e. clash free) and geometric restraints are well respected. Since several solutions 

usually represent similar conformations, clustering is performed. Two ad hoc clustering 

approaches able to determine automatically the number of required clusters are available: 

the first groups solutions being close enough in the search space, whereas the second 
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clusters solutions generating assemblies having a small RMSD within themselves. We 

used here the latter approach. Cluster representatives are selected (cluster centers), 

ranked according to their fitness, and their corresponding assemblies returned as an 

ensemble of PDB files. 
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