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ABSTRACT. 

We study Danish adult gambling behavior with an emphasis on discovering patterns relevant to
public health forecasting and economic welfare assessment of policy. Methodological innovations
include measurement of formative in addition to reflective constructs, estimation of prospective risk
for developing GD rather than risk of being falsely negatively diagnosed, analysis with attention to
sample weights and correction for sample selection bias, estimation of the impact of trigger
questions on prevalence estimates and sample characteristics, and distinguishing between total and
marginal effects of risk-indicating factors. The most significant novelty in our design is that nobody
was excluded on the basis of their response to a ‘trigger’ or ‘gateway’ question about previous
gambling history. Our sample consists of 8,405 adult Danes. We administered the Focal Adult
Gambling Screen to all subjects and estimate prospective risk for Disordered Gambling. We find
that 87.6% of the population is indicated for No Detectable Risk, 5.4% is indicated for Early Risk,
1.7% is indicated for Intermediate Risk, 2.6% is indicated for Advanced Risk, and 2.6% is indicated
for Disordered Gambling. Correcting for sample weights and controlling for sample selection has a
significant effect on prevalence rates. Although these estimates of the ‘at risk’ fraction of the
population are significantly higher than conventionally reported, we infer a significant decrease in
overall prevalence rates of detectable risk with these corrections, since gambling behavior is
positively correlated with the decision to participate in gambling surveys. We also find that imposing
a threshold gambling history leads to underestimation of the prevalence of gambling problems.
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1. Introduction

We surveyed gambling behavior, and particularly disordered gambling behavior, in the general

adult population of Denmark. The survey was administered in 2015 to provide precursor data, and to

pre-identify subject strata for recruitment purposes, for a series of economic experiments with

gamblers. The primary aim of our survey was therefore not to furnish comprehensive new prevalence

data for the sake of informing Danish public health policy. Nor was our aim to be able to compare

disordered gambling prevalence in Denmark with prevalence in other jurisdictions. The unusual nature

of the motivations for our survey, in contrast with standard prevalence studies, gave us freedom to

introduce a number of methodological innovations. Motivating and illustrating these is the immediate

objective. Of course, the value of methods is ultimately determined by the usefulness and reliability of

the results they yield. Thus we include full presentation of our results in the standard way. However,

they are not our first-order focus of attention here.

As economists, our primary interest is in predicting and understanding the welfare

consequences of policies and institutions. These consequences are not restricted to those that would

be deemed relevant in a clinical context, though of course those are important. This wider focus of

concern is the first general driver of our methodological innovations. A second general motivation is

to generate data that facilitate experimental interventions with gamblers, both in the laboratory and the

field. Analysis of experimental data depends on structural modeling of the risk preferences and beliefs

of subjects that are inferred rather than directly observed. These inferences are based on gathering

different information about our sample than is typically included in disordered gambling prevalence

studies.

An explicit goal of much historical survey research on gambling disorder is to mimic

prevalence estimates that would be obtained from face to face assessments by trained clinicians. This

objective also explains the revisions that have been made through the various editions of the Diagnostic
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and Statistical Manual of Mental Disorders (DSM), which have in turn strongly influenced the design of

gambling disorder screens. We discuss methodological limitations of these screens not because we

doubt their value for estimating potential demand for clinical services, but because the screens are not,

unsurprisingly, ideally adapted to all purposes, including those that motivate us. On the other hand,

the relationship between results obtained using standard screens and other kinds of instruments is

highly relevant, especially as clinically relevant harms from gambling are among the welfare

consequences of economic concern even though they do not exhaust them.

In Section 2 we identify potential terminological confusions around ‘problem,’ ‘pathological’

and ‘disordered’ gambling that arise from the history of the literature, and particularly from the history

of the DSM. In section 3 we review the methodological limitations of standard gambling disorder

screens that our Danish survey was designed to transcend. Section 4 describes our survey design. In

Section 5 we describe our results. Section 6 provides a concluding critical discussion.

2. Classification of Disordered Gamblers

Prevalence surveys of gambling problems have often aimed at binary classification of

individuals as ‘pathological’ gamblers, or not, where these terms are defined either directly or

approximately in terms of DSM-IV clinical criteria presented in American Psychiatric Association

[1994]. Respondents reporting five or more of ten of these criteria have historically been so classified.

DSM-IV listed Pathological Gambling among “Impulse Control Disorders Not Elsewhere Classified.”

In DSM-5, presented in American Psychiatric Association [2013] growing evidence of behavioral,

etiological, and clinical response similarities between pathological gambling and addictive substance

dependencies inspired its reclassification among “Substance-Related and Addictive Disorders,” and to

its being re-named as “Gambling Disorder.” 

Introduction of this new terminology, more consistent with other DSM nomenclature, offers
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the prospect of correcting historical inconsistency in use of the term ‘pathological gambling’ as

sometimes contrasted with, and sometimes used as synonymous with, ‘problem gambling’ (as noted by

the Committee on the Social and Economic Impact of Pathological Gambling [1999]). It had been

argued by some authors, including Petry et al. [2014; p.494], that ‘pathological gambling’ should be

retired from professional use because it is associated with social stigmatization. However, the

implication of this motivation, that ‘gambling disorder’ should replace ‘pathological gambling,’ has not

become consensus practice. 

Researchers analyzing data from recent waves of the National Epidemiologic Survey on

Alcohol and Related Conditions (NESARC), such as Pietrzak et al. [2007], Algeria et al. [2009] and

Nower et al. [2013], following a sub-tradition of using ‘problem gambling’ to refer to the presence of

‘pathological gambling’ at pre-clinical levels, and as denoting an early or risk-indicating possible

precursor stage to full-blown ‘pathological gambling,’ have applied ‘pathological gambling’ to the most

severe manifestation of ‘gambling disorder’ and applied ‘problem gambling’ to less acute cases of

‘gambling disorder.’ These authors, to whom we will refer for brevity as ‘NESARC analysts,’ have

applied a scoring rule to the DSM-based screen due to Fisher [2000], according to which a sub-clinical

‘problem gambler’ is someone who who has between one and four positive responses with at least one

of these being to one of the final three DSM-IV criteria.1 This policy leaves all three phrases in play,

and uses ‘gambling disorder’ to denote a larger class of people, namely all respondents satisfying

Fisher’s sub-clinical threshold, than the DSM-5 does. 

The usage interacts particularly confusingly with the measurement screen used most

commonly in recent prevalence studies, the Problem Gambling Severity Index (PGSI) of Ferris and

Wynne [2001]. In the PGSI, ‘problem gamblers’ are those comprising the highest severity category.

1 These are: (8) Have you been forced to go beyond what is strictly legal, in order to finance gambling
or to pay gambling debts?; (9) Have you risked or lost a significant relationship, job, educational or career
opportunity because of gambling?; (10) Have you sought help from others to provide money to relieve a
desperate financial situation caused by gambling?
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Thus, in effect, though not in intention, the PGSI uses ‘problem gambling’ as an approximate

synonym for the DSM-5 category ‘gambling disorder.’ Thus, PGSI-designated ‘problem gamblers’ and

‘problem gamblers’ in the usage of the NESARC analysts are intended to be disjoint sets!

In light of this semantic chaos, researchers must stipulate terminological policies, particularly

if, as we do, they use the PGSI. Henceforth, and aligned with usage in Harrison, Lau and Ross [2016],

where we refer to the clinical phenomenon ex cathedra we will follow DSM-5 and use ‘gambling

disorder’ (GD). We will refer to a representative person who has acquired the condition as a

‘disordered gambler’ (DG). Where we refer to previous work set in clinical contexts that used either

‘pathological’ or ‘problem’ gambling without distinguishing them, or intending that they be

distinguished (for example, in work applying the PGSI), we will anachronistically use the terms

‘gambling disorder’ and ‘disordered gambler.’ Given that DSM and PGSI threshold criteria are similar

but not identical, this unavoidably creates potential ambiguity when studies using different instruments

are compared, but it at least aligns intended references, so that the question of who is said to suffer

from GD depends on empirical facts rather than semantic decisions. Where we refer to a context in

which ‘problem gambling’ and ‘pathological gambling’ are distinguished, with the former denoting a

pre-clinical or warning state for the latter, we retain the distinction and use these older terms, making

this special departure from our policy explicit. As a factor that reduces scope for confusion, note that

the threshold for being scored as a DG in DSM-5 is the same as the threshold for being scored as a

pathological gambler in DSM-IV. Finally, when we talk about harmful consequences of gambling

outside the clinical context we use ‘gambling problems’ as a non-technical term of everyday English.
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3. Methodological Issues in Research Applications of Gambling Disorder Screens

We consider several critical issues that arise with screens based exactly or approximately on

DSM-IV criteria.

The first issue is that a DG is conceptualized as someone who would be diagnosed as such in a

clinical interview if they presented themselves for treatment at a mental health clinic or other suitable

facility. This is of course a legitimate indicator to want to detect, but is not the only basis for interest in

the prevalence of gambling problems for public health forecasting, and for economic welfare analysis

of the consequences of gambling policy. For these purposes we are also interested in identifying

people with histories of GD who are not currently manifesting symptoms, but who might thus be

vulnerable to re-occurrence under certain conditions, as well as people who may be regarded as at risk

because they satisfy a number of DSM criteria but do not reach the diagnostic threshold.  Such

gamblers are sometimes referred to as ‘sub-clinical’ cases (e.g. Blanco et al. [2006]), but most screens

other than the PGSI simply classify them with other respondents who are not DGs. This issue has

direct implications for the understanding of ‘risk for GD’ as this is operationalized in survey screens

and prevalence estimates. It is common for researchers to refer to people with positive by

sub-threshold scores as being ‘at risk,’ and the PGSI explicitly sorts sub-threshold respondents who

gamble into the categories of “Low risk” and “Moderate risk.”

The expression ‘risk’ here is not intended to refer, as it would in a standard public health

prevalence estimation exercise, to the relative probability of developing GD in the future, either

unconditionally or conditionally on measured factors. Rather, in the context of the clinical diagnostic

benchmark, it refers to the probability that the respondent would currently be diagnosed as a DG in a

longer, more probing clinical interview conducted by a medical professional. This special-purpose

understanding of ‘risk’ is unduly narrow, and problematic in having no forward-looking aspect, for

purposes of public health forecasting and welfare analysis.
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A second issue that all gambling survey instruments of which we are aware employ a ‘screener,’

‘gateway’ or ‘diagnostic stem’ question to filter out individuals who have never engaged in gambling

behavior beyond some pre-specified threshold. In many cases the filter is whether a respondent has

ever lost a certain amount of money in any one day of gambling, and in other cases it is whether they

have ever gambled more than a certain number of times in any year. Sometimes filtering criteria are

combined. For example, the National Comorbidity Survey Replication (NCS-R) documented by

Kessler et al. [2008] asks if the respondent has ever gambled 11 or more times in any one of a wide

range of activities and ever lost $365 or more in a year; the NESARC has a gateway question that asks

if the individual has ever gambled in any organized form 5 times in one year; and the Canadian

Community Health Survey (CCHS) Cycle 1.2 asked, inter alia, “In the past 12 months, how often have

you bet or spent more money than you wanted on gambling?” and excluded anyone that responded “I

am not a gambler” (Cox et al. [2005]).  

As Stone et al. [2015] have noted, this directly implies sample selection bias in analysis of

survey results for purposes of prevalence estimation. Harrison, Lau and Ross [2016] compute the

extent of this bias, using a correction method due to Heckman [1976][1979] that is a standard tool in

econometrics, with the NESARC gambling data. They find that the predicted mean of DSM scores in

the sample increases significantly, as does the estimated prevalence of GD. One of the DSM-IV

criteria for GD is that the respondent has lied to family or others to hide the extent of their gambling,

but the respondent is assumed not to do this when asked if they gamble in a survey, particularly in

response to the gateway question. The possibility that someone might lie in response to the gateway

question, to avoid being asked questions about their gambling behavior, is well documented in general

clinical test-retest interview settings: see Kessler et al. [2004; p.125]. 

A final issue is that clinical criteria can interact with political incentives when applied in general

population surveys (Sadler [2013]). It is not hard to discern from discussions of revisions to the DSM
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criteria for GD and clinically-based instruments that a recurring concern has been that prevalence

estimates cannot be allowed to get ‘too high,’ because that would imply a shortage of funding for

mental health treatment (Pierre [2013]). Clear (enough) statements of this ‘tail wags dog’ problem can

be easily found, and the issue is well known in the research folklore.2 In another important corner of

the supply-demand nexus, operators in the gambling industry welcome prevalence measures for

pathological gambling or gambling disorders that are very low. For instance, the American Gambling

Association, an industry lobbying body, notes that “Although the vast majority of Americans are able to

gamble responsibly, a small percentage of people – approximately 1 percent of the adult population –

cannot.”3  These prevalence estimates come from measures of GD defined by clinical criteria. The

thrust of the industry’s standard rhetoric on responsible gambling is that 99 out of 100 gamblers are

just having fun, and should be left alone, and regulators should only worry about the 1-in-100 who is

not gambling responsibly.

Again, we stress that these concerns arise for a simple reason: the general purpose survey

instruments were intended, by design, to mimic and correlate with the screening that would occur in a

clinical setting. Whether or not that setting might be a ‘gold standard’ for some mental health

screening purposes, it simply differs from other reasons for wanting to measure gambling problems.

Society may take a broader view of what constitutes a gambling problem, and economists concerned

with welfare estimation must certainly take a broader view.

2 For example, Regier et al. [1998; p. 110] comment that “Both the scientific and political implications
of these high prevalence rates were highlighted by the timing of this release during the national debate on
health reform. Major policy questions were raised about the need for mental health services that were implied
by these high rates, along with concerns about possible insurance cost-benefit consequences. Some major
media commentators identified such high rates as indicating a bottomless pit of possible demand for mental
health services.” More recently, from Petry et al. [2014; p.497]: “The American Psychiatric Association
requires strong empirical data in support of changes to DSM-5 that would substantially increase the base rate
of a disorder.” But the only motivation then mentioned is the circular argument that reducing the number of
threshold criteria would make the base rate increase.

3 On http://www.americangaming.org/social-responsibility/responsible-gaming, accessed
9/21/2014.
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Our primary objective, then, is to estimate the prevalence of gambling problems in a general

population and evaluate surveys of gambling problems that did not restrict themselves to clinical

criteria for gambling disorders. We want to see how well these measures correlate with traditional

clinically-oriented surveys, of course, if for no other reason than to integrate use of these instruments

into a wider constellation of scientific probes. At the same time, it should not be taken for granted that

finding low correlations between prevalence of clinical GD and prevalence of other forms of

welfare-reducing gambling behavior necessarily constitutes a problem.

Our secondary objective is to have a ‘wide screen’ for subjects to be recruited into subsequent

experiments designed to evaluate behavior in controlled gambling tasks. Our view is that the litmus

test for scientific value of these instruments is whether they can predict, or be reweighted or calibrated

to predict, actual gambling problems, in the sense of behavioral patterns that predict welfare loss.

Our overall survey design is intended to contribute to answering several methodological

questions. One, as noted, is the extent of correlation between different survey instruments of gambling

behavior, particularly instruments designed to identify different latent factors relevant to gambling

behavior. Another methodological issue is the value of randomization of question order, and in some

cases instrument order. A third issue is whether one uses lifetime or only more recent (e.g., past year’s)

gambling behavior as the time frame for responses. A final issue is the role of the ‘trigger’ or ‘gateway’

question. 

4. Sample Frame and Survey Instruments for the Danish Study

We contracted with Analyse Danmark (http://www.analysedanmark.dk/english) to obtain

10,000 completed survey responses from the adult population of Denmark between 18 and 75 years of

age. This sample was to be assigned equally to all treatments. Our completed sample consisted of

8,405, which is 12.8% of the sample frame of 65,592 Danes contacted. Of those contacted that did
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not complete the survey, 3,331 started but gave up before completing. The cost of these surveys was

272,425 DKK, which was just over US$45,400 at the time they were implemented.

The sample was stratified according to sex and age across three regions in Denmark: greater

Copenhagen, Jutland, and Funen & Zealand. We assigned different weights to the three regions, with a

50% weight on the sample from greater Copenhagen and a 25% weight on each sample from the two

other regions. This design allowed us to recruit subjects for later experiments from a relatively large

sample in greater Copenhagen. The respondents in our survey were recruited from two internet-based

panels with 165,000 active members.4 Invitations were sent by e-mail and respondents could answer

the survey questions on the internet using personal computers, mobile phones or tablets. They were

told in the invitation letter that 40 respondents who completed the survey would be randomly chosen

to receive a gift card of 500 kroner.5 Summary statistics for all participants and non-participants are

provided in Appendix C. 

A primary instrument we adopted for use in Denmark that has not featured in past GD

prevalence studies is the Focal Adult Gambling Screen (FLAGS) designed by Schellinck et al.

[2015a][2015b]. A first crucial design feature of the FLAGS relevant to our goals is that, unlike

gambling screens derived directly or approximately from the DSM criteria, it seeks to identify risk of

manifesting GD in the sense that is standard in public health surveys. That is, when the FLAGS sorts

respondents into categories labeled “No Detectable Risk,” “Early Risk,” “Intermediate Risk,”

“Advanced Risk,” and “Problem Gambler,” risk is to be understood as referring to the probability that

the respondent will develop GD at some time in the future (which might be immediate). This is in

 contrast to the interpretation of ‘risk’ intended explicitly by the designers of the PGSI, and often used

in interpreting data from DSM-based screens, which denotes the probability that the survey score

4 Analyse Danmark have a panel of 25,000 active members, and Userneeds have a panel of 140,000
members. The two internet panels are regularly updated and member are recruited via the internet (banners,
newsgroups, etc.), email, and by phone.

5 The gift cards were issued by www.gavekortet.dk, an internet based portal for gift cards.
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mis-predicts a current positive diagnosis that would be obtained through a clinical interview. A

second, related, design feature of the FLAGS is that it is intended to measure both reflective and

formative constructs associated with GD.  A reflective construct is an indicator of a latent variable that

is believed to partly constitute the reflected construct as manifest in behavior. A formative construct is

one that is often, but not always, found along the etiological pathway to the target behavioral marker.

Thus reflective constructs should show high inter-correlation, while no such restrictive expectation

applies, independently of a specified structural model, to formative constructs.

Most of the major surveys of gambling behavior based on clinical criteria rely solely on

reflective constructs. There have, however, been surveys of gambling propensity building on formative

constructs, most notably Breen and Zuckerman [1999]. They administered their own Gambling Beliefs

and Attitudes Survey (GABS) to college students, and then studied their actual gambling behavior in a

laboratory card-game. A formal psychometric evaluation of GABS was undertaken by Strong et al.

[2004a], boiling the original 35-item instrument down to a preferred 15-item instrument. The same

general psychometric methods can in principle be used to re-tool clinically based instruments to

identify a continuum of gambling types rather than just the binary classification into DGs and others:

see Strong et al. [2003][2004b] for an application to the South Oaks Gambling Screen (SOGS), Strong

and Kahler [2007] for an application to the Alcohol Use Disorder and Associated Disability Interview

Schedule – DSM-IV (AUDADIS-IV), and Sharp et al. [2012] for an application to the PGSI. The

efforts for SOGS and AUDADIS-IV did not met with great success, suggesting that more

fundamental ex ante survey design methods are needed as a complement to ex post statistical forensics.6

The use of formative constructs in the FLAGS invites development of structural models, of the kind

favored by economists and econometricians, in analyzing findings based on it, as opposed merely to

6 The inconclusive findings where the SOGS is concerned might also stem from the absence of a
conceptual or historical relationship between the SOGS and DSM criteria for GD.
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application of simple statistical significance tests.

The latest version of FLAGS contains 64 questions designed to measure 10 latent constructs.

As applied to machine gambling, these constructs are:

1. Risky Cognitions: Beliefs (RCB), such as irrational or inaccurate beliefs about machine
gambling.

2. Risky Cognitions: Motives (RCM), such as risky reasons for gambling (e.g., to pay off bills,
to escape problems, for self-esteem or status).

3. Preoccupation: Desire (POD), such as a strong drive to play the machines as much as
possible.

4. Impaired Control: Continue (ICC), such as the inability to stop playing slots/machines once
started.

5. Risky Practices: Earlier (RBE), such as less extreme types of risky practices that usually
precede more harmful practices (e.g., using bank card to get more money to play).

6. Risky Practices: Later (RBL), such as more extreme or harmful types of risky practices (e.g.,
using credit to finance play).

7. Impaired Control: Begin (ICB), such as an inability to resist or stop oneself from going to
play slots/machines.

8. Preoccupation: Obsessed (POO), such as excessive preoccupation, constantly thinking
about slot gambling or finding ways to gamble on machines.

9. Negative Consequences (NGC), such as negative impacts in at least 3 of 14 different areas
of life including financial, personal, family, work, health, social.

10. Persistence (PST): such as continuing to gamble, over an extended period, in a risky manner
that leads to harms.

Five of these constructs are regarded by the FLAGS designers7  as formative (items 1, 2 5, 6 and 9),

and the other five as reflective. The complete list of statements can be found in Appendix A.

We consider two other popular survey instruments for existing gambling problems. One is the

9-item PGSI. The second is based directly on the DSM-IV criteria for GD. Both the PGSI and the

DSM-IV screen are intended to measure reflective constructs associated with GD. 

Whether a construct should be regarded as formative or reflective is not independent of

theory. Consider, for example, visceral cravings or urges to gamble. In one sense cravings are

formative, in that their occurrence predicts GD but are not a necessary precursor to it. However, on

the current standard general conceptualization of addiction (Ross et al. [2008], Redish et al. [2008]), the

7 Personal communication, August 24, 2016.
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fact that a person experiences cravings is a very strong indicator, probably the most reliable indicator

of all, that gambling has become addictive for that person (Redish [2009]). In this theoretical context,

cravings are a reflective construct. Closely related to the cravings construct is that of preoccupation

with gambling, the extent to which thoughts about gambling tend to crowd out efforts to devote

attention to other activities. This ambiguity would necessarily be resolved in a structural model of

propensity to manifest GD, as invited by the interpretation of risk that informed design of the

FLAGS. The ambition to develop and empirically estimate such a model calls for gathering more

information than is obtained from any existing survey screens, including the FLAGS. Our study

incorporates two survey instruments aimed at cravings, the Gambling Craving Scale (GACS)

developed by Young and Wohl [2009], and the Gambling Urge Screen (GUS) developed by Raylu and

Oei [2004a]. We additionally use one instrument aimed at detecting preoccupation, the Gambling

Related Cognitions Scale (GRCS) developed by Raylu and Oei [2004b]. Appendix B explains how each

instrument was scored. In most cases the scores follow the standard algorithms, but in some instances

the scoring is not obvious.

In addition, we asked several questions to identify past gambling behavior, but we did not use

these as the basis for an exclusionary ‘trigger’ question. Subjects were separately asked, in the lifetime

frame, if they had ever lost more than 40 kroner or 500 kroner on gambling in a single day. The lower

amount corresponds to the price of a common Danish state lottery ticket, and the larger amount to a

naturally larger denomination that a typical Dane would likely recall. We asked these questions in the

lifetime frame for 50% of the sample and also asked these questions for 50% of the sample in the time

frame that spanned the previous 12 months. These questions allowed us to directly analyze the

consequences that would have obtained for prevalence estimates if they had been used as exclusionary

triggers.

There is a long history of interest in mental disorders that sometimes or often co-occur with
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GD. Indeed, some research points to virtually every measured psychiatric disorder as being correlated

with GD.8 The implication of much of this research is to focus attention on common causes of several

psychiatric disorders. Our evaluation cannot be that exhaustive, but we do consider instruments to

measure a number of conditions that have been most frequently reported as comorbidities. These

survey instrument are the Beck Anxiety Index (BAI) developed by Beck et al. [1988] and Beck and

Steer [1990], the Beck Depression Inventory (BDI) developed by Beck et al. [1961], and the Barratt

Impulsivity Scale (BIS) developed by Patton et al. [1995].9  Because alcohol abuse and/or dependence

is often reported as highly correlated with GD, and of particular concern in Denmark, we

implemented the Alcohol Use Disorders Identification Test (AUDIT) of Babor et al. [2001]. We also

asked respondents whether they currently smoked, and if so how many cigarettes per day.

To allow for the effects of recent life events, we asked if the individual had experienced the

death of an immediate family member (partner, child, parent or sibling) in the past 12 months, or had

been hospitalized for a major medical problem during the past 12 months. 

To evaluate the effects of order we only evaluated one instrument along with FLAGS for any

one person, and randomized the order of presentation. We split our sample into 10 treatments: (1)

FLAGS, PGSI, BIS; (2) PGSI, FLAGS, BIS; (3) FLAGS, DSM-IV, BAI, AUDIT; (4) DSM-IV,

FLAGS, BAI, AUDIT; (5) FLAGS, GACS, AUDIT; (6) GACS, FLAGS, AUDIT; (7) FLAGS, GUS,

BDI, AUDIT; (8) GUS, FLAGS, BDI, AUDIT; (9) FLAGS, GRCS, AUDIT; and (10) GRCS,

FLAGS, AUDIT. The only difference between the odd and even treatments here is the order of the

gambling instrument, to assess if comparisons of FLAGS with the other instruments are affected by

8 For instance, evaluating data from the NESARC Petry et al. [2005; Table 3, p. 570; model 3] report
lower bounds of 95% confidence intervals of Odds Ratios in excess of 1 for alcohol dependence, any drug
abuse, any drug dependence, nicotine dependence, major depressive episodes, dysthymic disorders, manic
episodes, panic disorders, social phobia, specific phobia, generalized anxiety, and every personality disorder
considered (avoidant, dependent, obsessive-compulsive, paranoid, schizoid, histrionic and antisocial). Kessler
et al. [2008; Table 2, p.1357] report a similar list from the NCS-R.

9 Major Depression and Anxiety are regarded as Axis-1 mental disorders. Impulsivity, in the
psychiatric literature, is constructed as a personality trait.
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participants having already completed the more expansive FLAGS.10 

We further split each treatment equally into cases in which the timeframe for the gambling

instruments FLAGS, PGSI and DSM-based screen are lifetime or past 12 months. 

For 50% of participants we randomize within each thematic block, when possible, and

otherwise present the questions in the standard order.11 The software used to implement the survey

did not allow randomization within a block unless the response formats were all the same, so we could

not randomize the order for AUDIT, the BDI, and our few concluding questions.

5. Results

We are interested in answering several questions through analyses of these data. First, what is

the distribution over the Danish adult population of GD indicators as assessed using the FLAGS

instrument? The answer to this question provides the sampling frame for subsequent experimental

evaluation of actual gambling behavior by individuals recruited into our incentivized experiments. We

want to evaluate the raw distribution, based on the sample that completed our surveys, since that is the

basis that is typically used to assess population GD risk (in what we have called the ‘standard public

health sense’ of risk).

Second, what is the inferred population distribution after correcting for sample weights and

sample selection? The correction for sample weights, based on observable differences in the

demographic mix of the sample and the population, is familiar in many survey settings, but is not

always applied in assessments of gambling problems. The correction for sample selection, based on

unobservable differences of the sampled and non-sampled population, has never been applied in

10 There is a natural aggregation of these 10 sub-blocks into three groupings, often used in the field
implementation of FLAGS (§1: RCB, RCM and POD, §2: ICC, RBE and RBL, and §3: ICB, POO, NGC and
PST). We do not randomize across those groupings but do randomize within each grouping.

11 In the development of FLAGS by Schellink et al. [2015a; p.149] the original 132 statements were
randomized.
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published assessments of GD prevalence in any population.

Third, how is the distribution of GD indicators affected by the treatments we considered?

Does it matter if FLAGS comes first or second among gambling screens, or if we randomize question

order? And how does the lifetime frame affect the distribution of GD indicators?

Fourth, what is the effect on inferences about the distribution of GD indicators of applying a

threshold trigger question based on past gambling history? These trigger questions are usually applied

ex ante the administration of the survey, and some gambling status then assumed for the individual.

Our design deliberately avoided such assumptions, allowing us to impose them ex post the

administration of the survey to study their effect.

Finally, what are the correlates of GD indicators, as assessed by FLAGS? We examine the

correlation between different instruments, and when possible the partial correlation holding constant

the effect of a third instrument.

A. GD Indicators in the Danish Sample

Table 1 shows the distribution of GD indicators in the Danish sample based on the FLAGS

instrument without application of any gambling history threshold. We find that 79.7% of the sample

is, in terms of FLAGS response categories, at No Detectable Risk for GD, 12% is at Early Risk, 3.9%

is at Intermediate Risk, 3.3% is at Advanced Risk, and 1.1% is classified as Problem Gamblers. Out of

8,405 in the sample, we detect 95 respondents who would, on the intended interpretation of FLAGS

data, be regarded as probable current DGs. 

Table 1 also shows the distribution of FLAGS outcome categories broken down by

comparison with the ‘risk’ levels explicitly identified by the PGSI and often used in interpreting DSM

screen results (e.g. Stone et al. [2015]). It is important to be reminded that this is not a comparison of

matched constructs, except with respect to those identified as probable current DGs. ‘Risk’ in the
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PGSI and the DSM-based assessments means ‘risk of being a current false negative,’ whereas ‘risk’ in

the FLAGS means ‘risk of manifesting GD at some future time (including the immediate future).’  

The PGSI and DSM-based screen samples shown in Table 1 are smaller, at 1,671 and 1,757

respectively, than the FLAGS sample, but the former were assigned at random within the complete

sample. For the DSM comparison, the biggest difference in classification in percentage terms is for

those that FLAGS classifies as current DGs. Notably, this is precisely the category on which the

screens are ‘intended’ by their respective design principles to agree with one another. Although the

sample of 12 is small, the DSM-based screen classifies only 1 of the 12 as a Pathological Gambler. The

other DSM-screen mismatch is for those that FLAGS classifies as being at Advanced Risk: DSM

classifies 98% (55 individuals) of those 56 individuals as being Non-Gamblers. The PGSI has a better

match with FLAGS on DGs (i.e., “Problem Gamblers” in the PGSI). However, of the 47 that FLAGS

classifies as being at Advanced (prospective) Risk, 27.7% are classified by PGSI as being

Non-Gamblers. Similarly, for those 62 individuals that FLAGS classifies as being at Intermediate

(prospective) Risk, the PGSI classifies 43.6% (27 individuals) as being Non-Gamblers. The number of

subjects identified by the FLAGS as being at some prospective risk for GD is significantly larger than

the number of subjects identified by the PGSI as being at risk of false current negative diagnosis. This

highlights one of the potential problems we identified with using a clinical screen as a research

instrument if one’s objectives are derived from interest in public health forecasting or economic

welfare assessment.

B. Disordered Gambling Propensity in Denmark

We focus next on GD propensity in Denmark, as indicated by our data, and address two

questions. Can we identify individual characteristics that are correlated with prospective risk for GD as

operationalized by the FLAGS? What is the inferred distribution of this risk in the population after
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applying sample weights and controlling for endogenous sample selection into the survey? We

estimate a Semi-Nonparametric Ordered Response model with and without sample weights and

corrections for sample selection.

Sample weights are constructed from administrative data at Statistics Denmark on the

population size of men and women in various age groups and regions in Denmark, and correct sample

estimates for overrepresentation of respondents by age, sex and region in the sample relative to the

population. 

We correct for sample selection bias using full information maximum likelihood estimation

of the Ordered Response model, and follow the direct likelihood approach originally due to Heckman

[1976][1979]. One important assumption in the sample selection model is to specify some structure for

the errors of the two equations, the sample selection equation and the main survey question. If the

survey question elicited a binary response, and both equations are modeled with probit specifications,

for example, the natural first assumption is that the errors are bivariate normal. We assume instead a

flexible semi-nonparametric (SNP) approach due to Gallant and Nychka [1987], applied to the sample

selection model by De Luca and Perotti [2011]. This SNP approach approximates the bivariate density

function of the errors by a Hermite polynomial expansion.12 We model the second (main) equation as

an ordered response, instead of a binary response, to reflect the FLAGS categories we are interested

in.13

12 This SNP approach is computationally less intensive than comparable approaches based on the
estimation of kernel densities. There is some evidence from Stewart [2005] and De Luca [2008] that this SNP
approach has good finite sample performance when compared to conventional parametric alternatives and
other SNP estimators. Stewart [2004; §3] provides an excellent discussion of the mild regularity conditions
required for the SNP approximation to be valid, and the manner in which it is implemented so as to ensure
that a special case is the (ordered) probit specification.

13 It is common to refer to different levels of severity of psychiatric disorders. For instance, the
American Psychiatric Association [2015; p.586] discusses GD as follows, referring to DSM-5 criteria:
“Severity is based on the number of criteria endorsed. Individuals with mild gambling disorder may exhibit
only 4-5 of the criteria, with the most frequently endorsed criteria usually related to preoccupation with
gambling and ‘chasing’ losses. Individuals with moderately severe gambling disorder exhibit more of the
criteria (i.e., 6-7). Individuals with the most severe form will exhibit all or most of the nine criteria (i.e., 8-9).”
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The Ordered Response models control for treatment variables and demographic

characteristics such as sex, age, income and smoking behavior. Indicators for trigger questions (applied

versus not applied) and subcontractor (Analyse Danmark or Userneeds) are also added as control

variables in the models. Appendix E documents the detailed estimates for each model. Table 2 shows

predicted risk levels from various models, to show the effects of sample weights and sample selection

corrections.

In model A we estimate gambling risk without using sample weights and without corrections

for sample selection. The predicted distribution of prospective risk for GD in the adult Danish

population in the panel of Table 2 without using sample weights and controls for sample selection, but

controlling for demographic characteristics and treatments, corresponds to the distribution reported in

Table 1: 79.7% are indicated for No Detectable Risk, 12% are indicated for Early Risk, 3.9% are

indicated for Intermediate Risk, 3.3% are indicated for Advanced Risk, and 1.1% are indicated as

Disordered Gamblers. In effect, the statistical model is regenerating the raw sample data faithfully. 

Model B in Table 2 employs sample weights, to be applied to the sample of 8,405 that

completed our survey. Allowing for sample weights has very little impact on the prevalence of GD risk

levels in the population.

Model C in Table 2 controls for endogenous sample selection as well as sample weights. We

find a significant association between response rates and age groups: compared to those aged between

30 and 39, younger subjects have lower response rates (. 2.3 pp on average), ripe aged subjects

between 40 and 49 have higher response rates (. 2.0 pp on average), and subjects older than 50 have

much higher response rates (. 13.1 pp on average). Women are significantly more likely to respond (.

1.1 pp on average). Both of these demographics, age and gender, point to our sample selecting on the

basis of characteristics that are known a priori to correlate with propensity to gamble and be at risk for

GD, but in opposite directions.
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We also find a significant positive correlation of 0.21 between the error terms in the main

equation and in the selection equation. This result indicates that people with higher gambling risk are

also more likely to participate in the survey, and this selection effect is due to unobservable characteristics

that are not captured by the demographic variables in the selection equation and the main equation.

The implication of these findings from the sample selection estimation is that we infer a much

higher prevalence of No Detectable Risk (87.6% compared to 79.2% in model B). Hence we infer a

lower prevalence of ‘at risk’ Danes once we correct for sample selection.

A particularly interesting result of correcting for sample selection is that the mix of ‘at risk’

Danes changes. With correction for sample selection we infer a sizeable reduction in the probability of

being indicated for Early Risk (5.4% versus 12.1% in model B), a reduction of just over 2 percentage

points in the probability of being indicated for Intermediate Risk (1.7% versus 3.6%), a reduction of

just over 1 percentage points in the probability of being indicated for Advanced Risk (2.6% versus

3.8%), and an increase in the probability of being indicated for Disordered Gambling (2.6% versus

1.3% in model B). 

Figures 1 through 5 display the marginal effects of important covariates on the probability of

each GD risk level, taking into account the sample selection effects as well as the probability of

specific risk levels. The dots in Figure 1, for example, show the point estimates of the effect of being

female, and the shaded bars show the 95% confidence interval, making it possible to see if the effect is

statistically significant. The vertical axis is the change in probability, so a value of +0.02 indicates a

change of 2 percentage points. Figure 1 shows that being a female significantly increases the

probability of being classified as having no detectable risk, and correspondingly decreases the

probability of being classified at different risk levels. Although the prediction for any one of the ‘at

risk” levels is not statistically significant, since the upper bound of the 95% confidence intervals just
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include zero, the joint effect is statistically significant.14 Figure 2 shows that lower income individuals

tend to be more at risk of GD, although the effects are not statistically significant at the exact 95%

level.15

C. Comparisons

We can compare our results to previous Danish gambling prevalence studies by Bonke and

Borregard [2006][2009] and Ekholm et al. [2012]. These two studies do not control for sample weights

and sample selection bias, and we therefore compare our uncorrected GD prevalence rates with the

prevalence rates they report.

Bonke and Borregard [2006][2009] used the National Opinion Research Center DSM (NODS)

screen to estimate prevalence of GD in a sample of 8,153 Adult Danes between 18 and 74 years of

age.16 The NODS, like the interpretation of DSM-based screens developed by Fisher [2000], uses a

pre-clinical ‘Problem Gambling’ construct that has no counterpart in the FLAGS and the PGSI. Like

other screens that treat accurate clinical diagnosis as an epistemological gold standard, it also uses

classifications of ‘risk’ that refer to probabilities of inaccurate prediction of current clinical diagnosis

rather than propensity to develop GD. In light of these issues, it is only meaningful to compare our

(uncorrected) GD prevalence prediction with the Pathological Gambling prevalence prediction of

Bronke and Borregard [2006][2009], and only for the past-year frame.17 Their sample frame of 11,737

14 This is implied by the fact that the ‘at risk’ levels are jointly complementary to the ‘no detectable
risk’ level, which is statistically significantly different from zero.

15 We do not dismiss results that cross the trip-wire of a 95% confidence interval, and simply avoid
referring to them as statistically significant.

16 The NODS was developed by Gerstein et al. [1999] and builds on the DSM-IV gambling screen. It
probes 17 reflective constructs with questions that measure lifetime and past-year risky gambling behaviors.
Bonke and Borregard [2006] compare the NODS instrument with the SOGS in a pre-test with 1,232 subjects
and find that the NODS detects a lower prevalence of GD.

17 Bronke and Borregard [2006][2009] also estimated prevalence based on a lifetime frame. Given the
interpretation of ‘risk’ at work in the NODS, the lifetime frame prevalence risk estimate should be understood
as referring to the probability that a respondent would have been falsely negatively diagnosed at some time in
his or her life. In light of the FLAGS risk concept being prospective, there is no corresponding interpretation
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people was randomly drawn from the Danish Central National Register and stratified according to sex,

age, geographical information and marital status. Their survey was conducted mainly by telephone and

in some cases by face-to-face interviews, and the overall response rate was 69.5%. They identify 0.26%

of their sample as being Pathological Gamblers. This is significantly lower that our (uncorrected)

FLAGS-based estimate of 1.1%. All of the respondents of Bronke and Borregard [2006][2009] were

first asked a trigger question on whether they had ever lost 35 kroner in a single day. They were

classified as non-gamblers without administering the full survey if they answered “No.” Bonke and

Borregard [2006][2009] report higher prevalence rates of Pathological Gambling for men than for

women, lower prevalence rates for respondents older than 45, and lower prevalence rates for

respondents in the highest income quartile than in lower quartiles. They find no significant effect of

using sample weights calculated for sex, age, region, and marital status on estimated prevalence rates.

Despite having access to administrative data for the full sample frame, the estimated coefficients by

Bonke and Borregard [2006][2009] are not corrected for endogenous sample selection, hence the

actual prevalence rate for the population may be smaller than their estimate for the sample. 

Ekholm et al. [2012] used data from the Danish Health Interview Survey in 2005 and the

Danish Health and Morbidity Survey in 2010. The two samples were randomly drawn from the

Danish Central National Register and included 10,916 respondents in 2005 and 23,405 respondents in

2010. After the main face-to-face interview the respondents were asked to complete a

self-administered questionnaire that, among other things, included two questions that are related to

gambling behavior. The so-called lie/bet questionnaire, which consists of two questions from the

DSM-IV screen, was used in the survey, and those respondents who answered yes to at least one of

the two questions are classified as DGs.18 The final sample contains 5,686 respondents in 2005 and

of any FLAGS measure.
18 The two questions are: “Have you ever lied to people important to you about how much you

gambled?” and “Have you ever felt the need to bet more and more money?” The possible answers were: Yes,
in the past 12 months; Yes, previously; No, I never gamble.
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14,670 respondents in 2010. Ekholm et al. [2012] find that the prevalence rate of past-year GD is

0.9% in 2005, and falls to 0.8% in 2010.19 This is is significantly lower than our FLAGS-based estimate

of 1.1%. Prevalence rates are higher among men than women and decrease with age. They do not

report any estimates that use sample weights or correct for endogenous sample selection, but mention

that they find no evidence of selection bias in unreported estimates.20

D. Effects of Treatments

The effects of treatments on gambling risk levels determined by FLAGS can be gauged by

standard measures of association applied to a 5×2 contingency table, but for more informative analysis

we use the SNP Ordered Response statistical model. The statistical model allows us to estimate the

size and significance of the effect of a variable on the probability of each level of prospective risk for

GD. It also allows us to examine the marginal effect of the treatment, controlling for other correlated

effects. For some inferential purposes we want to know the total (unconditional) effect, but typically

we are interested in the marginal effect.

We find that when FLAGS is presented first it does increase the likelihood of someone being

classified as having a detectable risk, particularly as being indicated for Early Risk.21 The opposite

qualitative effect occurs when we randomize question order within the FLAGS instrument.

Randomization significantly lowers the likelihood of being classified with a detectable risk, again with

the biggest effect on indication for Early Risk.

We analyzed the use of a lifetime frame for FLAGS questions as a treatment. This can be

understood as interrogating the interpretation of ‘risk’ as prospective that was intended in the design

19 Ekholm et al. [2012] also estimated lifetime-frame prevalence, which has the same interpretation as
in Bronke and Borregard [2006][2009], and again has no counterpart measure in a FLAGS lifetime frame.

20 Ekholm et al. [2012; p. 8] discuss whether differences in response rates between 2005 and 2010
may affect the results. They mention that “non-response adjusted prevalence estimates did not indicate that
non-response bias affects the conclusion of the present study (data not shown).”

21 A Pearson χ2 test of the hypothesis of no association has a p-value less than 0.001.
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of the FLAGS; it amounts to asking what information about current prospective risk of developing

GD is carried by a person’s ever having manifested FLAGS indicators.22 One might have expected a

priori to find indication of greater prospective risk for GD, since no one can have revealed fewer

indications of gambling problems over their lifetime than they have over the past year alone. However,

we find a significant and large reduction in detectable risk using the statistical model.23 We implement

the lifetime gambling frame by asking the respondents to “…think about your lifetime gambling

experiences,” as opposed to “…think about your gambling experiences in the last year.” It is likely that

some respondents answered “yes” to a question when they were asked to consider their behavior in

the last year and “no” when they were asked to consider their lifetime behavior. For example,

respondents were asked to consider the following question “I would like to gamble almost every day”

and answer “yes” or “no.” It is possible that respondents interpreted the lifetime frame ambiguously,

as excluding the very recent past (and in particular the past year). Thus someone who recently has

developed a gambling problem might answer “yes” when the question is framed over the past year and

answer “no” when the question is framed over the lifetime. It is also possible that a serious, episodic

gambling experience is recalled when a person is asked to reflect on the previous year, but not when

asked to reflect over a lifetime. 

E. Effects of Trigger Questions Based on Gambling History

Our design allows an immediate data-only comparison of the effects of using trigger questions

based on gambling history to make inferences about prospective risk for GD. The usual tabulations do

not do justice to the careful language used in scoring FLAGS when gambling history is used. An

22 This value of setting FLAGS questions in a lifetime frame is thus conceptually distinct from the
value of using lifetime frames for screens that understand ‘risk’ as probability of incorrect false diagnosis.

23 A Pearson χ2 test of the hypothesis of no association has a p-value less than 0.001. This is a
two-sided test, but the direction of the effect is in the opposite of the alternative hypothesis that lifetime risks
can be no smaller than recent risks.
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individual is classified as a Non-Gambler in FLAGS if the threshold gambling history is applied, with

this explanation of that category by Schellinck et al. [2011]:

FLAGS instrument categorizes a person’s risk based on their perceptions about and
behaviors associated with gambling. It cannot therefore categorize a person’s risk if
they do not have gambling experience within the last year. There is a long list of
correlates that have been shown to be associated with risk of problem gambling that
we have left out of FLAGS that if possessed by an individual could indicate risk for
problem gambling should they start to gamble. It was decided that in order to keep the
instrument to a reasonable size its constructs would only be gambling specific; from
the point of view of FLAGS these risk factors are therefore latent or unobservable. 

This is saying that one could develop a different instrument if the intention was to consider gambling

history as a determining factor for prospective gambling risk. On the other hand, FLAGS contains

many more formative constructs suited to detecting latent risk than the clinically-referenced screens.

Thus the above statement is exactly correct, and well stated in terms of latent and unobservable

tendencies. It can be understood as pointing to the potential value of complementing the FLAGS with

probes aimed at gathering data to inform development of a structural model of latent vulnerability to

GD.

The same qualifications apply to the FLAGS construction of No Detectable Risk. This is

defined as follows by Schellinck et al. [2011]:

Those at No Detectable Risk do not flag on any of the risk indicators although it is
possible that they answered yes to one or more statements making up some of the
constructs. For those who answered yes to at least one statement there was insufficient
certainty for us to say there was an indication on one of the dimensions. These people
may still have unobservable or latent characteristics that would make them susceptible
to becoming a problem gambler should the right conditions exist.

Again, the emphasis is on latent tendencies to develop and exhibit GD, which we seek to measure.

Thus when we study the effects of the trigger question on our FLAGS-based estimates, and

find these effects to be significant, this should not be interpreted as criticism of the FLAGS design.

Instead, it should be understood as motivating development of complementary techniques for

extending insight into latent risk indicators for GD, which could and should influence public
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forecasting and economic welfare assessment of gambling policies. 

We find dramatic effects of imposing a gambling history threshold on administration of

FLAGS questions. Figure 6 displays the results.24 With the 500 kroner and 40 kroner threshold

applied, we overstate the fraction of Danes that have no detectable risk, and understate those that

have detectable prospective risk for GD. The bottom panel of Figure 6 rescales just on the detectable

gambling risks, to provide more information on these effects. We find that 95% of the sample of

8,405 had not lost 500 kroner in gambling in one day, and that 18.1% of those had some detectable risk.

Certainly those that had lost 500 kroner from gambling had a higher likelihood of exhibiting some

prospective risk for GD according to FLAGS, as one would expect. But the crucial point is that it is

not the case that individuals with no historical gambling losses of 500 kroner can be safely assumed to have

no detectible risk, nor can those individuals with these losses be assumed to have some detectable risk. We

stress again that the FLAGS classifications, properly interpreted, are clear on this point. Out of the

complete sample, 46 individuals are indicated by the FLAGS instrument to be DGs, but did not say

that they had lost 500 kroner in the past year. This is almost exactly the same number of individuals

(49) indicated as DGs who did say that they had lost 500 kroner. 

The 40 kroner threshold has a predictably smaller effect, since many Danes would have met

this threshold compared to the 500 kroner threshold. In fact, 3,206 of the sample say that they had

lost 40 kroner, compared to only 414 saying that they had lost 500 kroner. The fraction (38%) is less

than a majority in the sample.

Figure 7 shows the effect of the thresholds for the classification of risk levels using the PGSI.

Given the intended interpretation of ‘risk’ in the PGSI, which is focused on estimating the extent of

currently undiagnosed GD in a population, significant effects are of greater critical concern. 

24 Table E1 in Appendix E tabulates the detailed results.
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F. Correlates of Disordered Gambling Risk

Figure 8 shows the unconditional correlations of the FLAGS scores with the scores on other

GD screens (DSM-based and PGSI), related gambling-related instruments (GACS, GRCS and GUS),

an instrument measuring alcohol abuse and dependence (AUDIT), and instruments measuring anxiety,

depression and impulsiveness (BAI, BDI and BIS, respectively). All correlations are statistically

significantly different than zero at p-values less than 0.001, except the correlation with the BIS, which

has a p-value of 0.094.

Where the GD screens are concerned, FLAGS is more strongly correlated with PGSI than

with the DSM-based instrument, although both have positive and large correlation coefficients. The

correlation of FLAGS with indicators of cravings, GACS and GUS, respectively, is very high, but the

correlation with GRCS, which focuses on cognitive confusions about gambling and probability, is

quite low. The correlation coefficient between FLAGS and the substance abuse instrument for alcohol

is very low, as are the pairwise correlation coefficients with the measures of anxiety, depression and

impulsiveness.

We find a different pattern of correlation when we examine each of the instruments in the

context of our statistical model of the determinants of FLAGS prospective risk levels. This model

controls for all the observable demographics and treatments considered earlier: we simply add the

score or level of the instrument being studied and re-estimate. In each case the detailed impact varies

with the FLAGS risk level, but the pattern is by now familiar from other marginal effects considered.

The impact on the No Detectable Risk level is the opposite sign as the impact on the 4 detectable risk

levels, and the largest impact on a detectable risk level is for Early Risk.

Results for these marginal effects from the statistical model are shown in Appendix D. In

summary, they show the predicted effects in terms of direction: someone that scores more highly on

the DSM-based screen or PGSI also scores more highly on FLAGS. They also show much higher
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connections between the formative constructs of anxiety and depression than the unconditional

correlations discussed above, and there is now a positive association between prospective risk for GD

and the measure of impulsivity.  

Detailed analyses of the statistical interactions of the elements of these related instruments, in

this and other samples, furnish an empirical basis for the major project and methodological innovation

of building a structural model of latent vulnerability to GD.

This objective merits some explanation, especially for non-economists. Gathering information

about gambling behavior by directly asking subjects about it involves reliance on a restricted source

that is likely to be systematically biased. In effect, it involves implicitly inferring patterns in actual

gambling behavior from subjects’ own conscious awareness of this behavior, which is likely to be less

than complete, and inaccurate in some respects. We should also expect self-reports to often be

self-exculpatory, or to reflect aversion to cognitive dissonance concerning a respondent’s self-image. 

In addition, researchers are not always in a position to be able to recruit large groups of

gamblers, which include adequately-powered subsamples of potential DGs, to complete long surveys

such as the FLAGS. One might instead only be able to administer a shorter screen such as the PGSI,

with all of the methodological limitations we have identified. Such epistemic limitations can be partly

mitigated if one has an evidence-based model of general statistical relationships between FLAGS

responses and PGSI responses that go beyond mere correlations. Data on which patterns of response

to both screens are conditioned can provide crucial mediating leverage for this.

Self-report surveys that are only about gambling are poor instruments for revealing

information about underlying causal factors that aren’t themselves gambling behaviors. Though there

are multiple paths to GD and to gambling problems more generally, and likely more than the three

clusters identified in the ‘pathways’ model of Blaszczynski and Nower [2002], to suppose that each

DG is a purely idiosyncratic case would be tantamount to believing that no general account of the
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causes of gambling problems is possible at all. Again, however, we can make progress toward such a

theory only by systematically analyzing gambling survey data in conjunction with other data about

gamblers and their environments.

In economics, the use of data that are not directly about a modeled phenomenon to reveal

underlying structure in the data that do directly describe the modeled phenomena is known as model

calibration. For an example of calibration applied to another phenomenon where reliance on

self-reports alone leads to demonstrable bias (in this instance, values assigned by people to

environmental goods), see Blackburn, Harrison and Rutström [1994] and Harrison [2006]. Examining

how scores on FLAGS or other screens are conditioned on independent demographic and other

variables can allow us to build up structural models of the phenomenon that incorporate hypothesized

causal mechanisms. These, in turn, guide the design of experiments to supply data that can support or

undermine the structural hypotheses in question.

6. Summary and Conclusions

We studied Danish adult gambling behavior with an emphasis on discovering patterns relevant

to public health forecasting and economic welfare assessment of policy. The survey is a precursor to

experimental work that is in turn intended to inform development of a structural model of latent

vulnerability to gambling problems. By itself, the survey is primarily an indicator of prevalence that

provides crucial data for recruiting informative samples for further work. This purpose, however, leads

to methodological innovations in prevalence estimation, by comparison with previous efforts that

have been focused on determining proportions of populations that would be recommended for

clinical interventions. The methodological innovations include measurement of formative in addition

to reflective constructs, estimation of prospective risk for developing GD rather than risk of being

falsely negatively diagnosed, analysis with attention to sample weights and correction for sample
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selection bias, estimation of the impact of trigger questions on prevalence estimates and sample

characteristics, and distinguishing between total and marginal effects of risk-indicating factors. The

most significant novelty in our design is that nobody was excluded on the basis of their response to a

trigger question about previous gambling history, allowing us to assess the impact of the more typical

methodological practice. 

We find that 79.7% of the realized sample are indicated for no detectable prospective risk for

GD as measured by the FLAGS, 12% are indicated for Early Risk, 3.9% are indicated for Intermediate

Risk, 3.3% are indicated for Advanced Risk, and 1.1% are indicated as afflicted with GD. Using

sample weights and controlling for sample selection has a significant negative effect on prevalence

rates, and the corrected estimates of gambling risk show that 87.6% of the population are indicated for

No Detectable Risk, 5.4% are indicated for Early Risk, 1.7% are indicated for Intermediate Risk, 1.7%

are indicated for Advanced Risk, and 2.6% are indicated as DGs.

There are significant (unconditional and conditional) correlations of the FLAGS prospective

risk levels with the negative misdiagnosis risk levels of screens for reflective constructs (DSM-based

and PGSI), related instruments measuring extent of other formative gambling-related constructs, an

instrument measuring alcohol dependence and abuse, and instruments measuring anxiety, depression

and impulsivity. All correlations are positive and statistically significantly different than zero: for

example, someone that scores more highly on PGSI also scores more highly on FLAGS. 

In interpreting the relationships among survey screens, attention must be given to the different

methodologies that informed the designs of the instruments. The correlation reported above is telling

us more than that the instruments are tracking, with somewhat different measures, the same

underlying phenomena. The FLAGS was designed, through its mixture of reflective and formative

constructs, to measure the risk that a given person will develop a gambling disorder, whereas the other

screens are intended to measure the risk that a short screen score misses positive identifications that
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would be obtained in a clinical setting. It is hardly surprising that risk conceived in these two ways

should be correlated. Equally, however, given the fact that the conceptions are different, it would be

surprising and indeed somewhat troubling if the approaches yielded almost identical results. The

relationship between observable formation of gambling disorders and frequency estimation of already

existing disorders, relative to diagnostic tools, is directly relevant to design of public health

intervention policies, which to date has not been pursued in the research literature.

We find significant effects of imposing a threshold gambling history on the measurement of

prospective risk for GD. When 500 kroner and 40 kroner loss thresholds are imposed as filters, the

consequence is a significant understatement of the fraction of Danes with detectable prospective risk

levels. Hence the standard practice in surveys of using these thresholds leads to an underestimate of

the prevalence of gambling problems in the general population.

Taken together, these results remind us that qualitative effects of using sample weights and

correcting for sample selection bias are inherently unpredictable a priori, reinforcing the importance of

eliciting responses using methods that allow such bias to be corrected. There may often be correlations

between subjects’ motivation to furnish full information, from which they can opt out by answering

“no” to a trigger or gateway question, and the dependent variable of interest. It might be conjectured

on an intuitive basis that such correlation would always underestimate prevalence because DGs might

prefer to conceal their condition. However, there is also anecdotal evidence, including some from our

own experience in other populations, that DGs are more interested in focusing attention on gambling

than are people for whom gambling is an activity of casual and slight importance. However, among

such people are the DGs of the future. To the extent that their risk can be detected before they

themselves, or their families or associates, become aware of it, public health policies could have

enhanced beneficial impact and the welfare consequences of changes in the regulation of gambling

could be more accurately estimated and assessed. 
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Ultimately, these objectives will require more than survey data. The ‘gold standard’ for

scientific knowledge, as opposed to only treatment effectiveness, is understanding of the causal

structures that relate biological vulnerabilities, cultural facilitators and safeguards, cognitive capacities

and information, policy responses, and clinical resources. In short, the aim is for a theory of the

complete causal nexus underlying GD. This will call upon experimentation, both natural and designed,

and carried out in both the laboratory and the field. Constructing the experimental agenda in turn

depends on detailed and sophisticated statistical modeling of samples and of our methods of recruiting

and probing them.
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Table 1: Sample Tabulation of FLAGS, DSM and PGSI Risk Levels

A. Full FLAGS Sample

FLAGS Risk Level N Percent

No Detectable Risk 6,698 79.7%

Early Risk 1,010 12.0%

Intermediate Risk 328 3.9%

Advanced Risk 274 3.3%

Problem Gambler 95 1.1%

Total 8.405 100%

B. DSM Sub-Sample

DSM Risk Level

FLAGS Risk Level N Percent Non-Gambler Pathological Gambler

No Detectable Risk 1,360 81.4% 1,360 0

Early Risk 177 10.6% 177 0

Intermediate Risk 66 3.9% 66 0

Advanced Risk 56 3.4% 55 1

Problem Gambler 12 0.7% 11 1

Total 1,671 100% 1,669 2

C. PGSI Sub-Sample

PGSI Risk Level

FLAGS Risk Level N Percent
Non-

Gambler
Low
Risk

Moderate
Risk

Problem
Gambler

No Detectable Risk 1,399 79.6% 1,291 93 14 1

Early Risk 229 13.0% 161 53 15 0

Intermediate Risk 62 3.5% 27 25 10 0

Advanced Risk 47 2.7% 13 12 19 3

Problem Gambler 20 1.1% 0 0 2 18

Total 1,757 100% 1,492 183 60 22
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Table 2: Predicted FLAGS Risk Levels

A. No Sample Weights

FLAGS Risk Level Prediction 95% Confidence Interval

No Detectable Risk 79.7% 79.3% : 80.1%

Early Risk 12.0% 11.8% : 12.1%

Intermediate Risk 3.9% 3.8% : 4.0%

Advanced Risk 3.3% 3.2% : 3.4%

Problem Gambler 1.1% 1.0% : 1.1%

B. Sample Weights

FLAGS Risk Level Prediction 95% Confidence Interval

No Detectable Risk 79.2% 78.9% : 79.5%

Early Risk 12.1% 11.9% : 12.2%

Intermediate Risk 3.6% 3.6% : 3.7%

Advanced Risk 3.8% 3.7% : 3.9%

Problem Gambler 1.3% 1.2% :1.3%

C. Sample Weights and Sample Selection Correction

FLAGS Risk Level Prediction 95% Confidence Interval

No Detectable Risk 87.6% 87.3% : 87.8%

Early Risk 5.4% 5.3% : 5.5%

Intermediate Risk 1.7% 1.7% : 1.8%

Advanced Risk 2.6% 2.6% :2.7%

Problem Gambler 2.6% 2.6% : 2.7%

Note: The predicted levels of risk are based on the estimated semi-nonparametric Ordered Response
model explained in the text. Predictions for blocks A and B are made for the 8,405
participants, and predictions for block C are made for the 65,580 in the sampling frame.
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