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SOLVER COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA
BARRIER∗
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Abstract. The efficient solution of discretizations of coupled systems of partial differential equa-
tions (PDEs) is at the core of much of numerical simulation. Significant effort has been expended on
scalable algorithms to precondition Krylov iterations for the linear systems that arise. With few ex-
ceptions, the reported numerical implementation of such solution strategies is specific to a particular
model setup, and intimately ties the solver strategy to the discretization and PDE, especially when
the preconditioner requires auxiliary operators. In this paper, we present recent improvements in the
Firedrake finite element library that allow for straightforward development of the building blocks of
extensible, composable preconditioners that decouple the solver from the model formulation. Our
implementation extends the algebraic composability of linear solvers offered by the PETSc library by
augmenting operators, and hence preconditioners, with the ability to provide any necessary auxiliary
operators. Rather than specifying up front the full solver configuration tied to the model, solvers
can be developed independently of model formulation and configured at runtime. We illustrate with
examples from incompressible fluids and temperature-driven convection.
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1. Introduction. For over a decade, domain-specific languages for numerical
partial differential equations (henceforth PDEs) such as Sundance [30, 29], FEniCS
[28], and now Firedrake [40] have enabled users to efficiently generate algebraic sys-
tems from a high-level description of the variational problems. Both FEniCS and
Firedrake make use of the Unified Form Language (UFL) [1] as a description language
for the weak forms of PDEs, converting it into efficient low-level code for form eval-
uation. They also share a Python interface that, for the intersection of their feature
sets, is nearly source-compatible. These high-level PDE codes succeed by connecting
a rich description language for PDEs to effective lower-level solver libraries such as
PETSc [4, 5] or Trilinos [21] for the requisite, and performance-critical, numerical
(non)linear algebra.

These high-level PDE projects utilize the solver packages in an essentially unidi-
rectional way: the residuals are evaluated, Jacobians formed, and are then handed off
to mainly algebraic techniques. Hence, the codes work at their best when (composi-
tions of) existing black-box matrix techniques effectively solve the algebraic systems.
However, in many situations the best preconditioners require additional structure
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COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER C77

beyond a purely algebraic (matrix and vector-level) problem description. Many of
the preconditioners for block systems based on block factorizations require discretiza-
tions of differential operators not contained in the original problem. These include
the pressure-convection-diffusion (PCD) approximation for Navier–Stokes [25, 16] and
preconditioners for models of phase separation [19, 24]. An alternate approach to de-
rive preconditioners for block systems is to use arguments from functional analysis to
arrive at block-diagonal preconditioners. While these are often representable as the
inverse of an assembled operator, in some cases a mesh and parameter independent
preconditioner that arises from such an analysis requires the action of the sum of
inverses. An example is the preconditioner suggested in [32, Example 4.2] for the
time-dependent Stokes problem.

While a high-level PDE engine makes it possible to obtain these new operators
at low user cost, additional care is required to develop a clean, extensible interface.
For example, the PCD preconditioner has been implemented using Sundance and
Playa [23], although the resulting code tightly fused the description of the problem
with a highly specialized specification of the preconditioner. Similarly, in the FEniCS
project, cbc.block [31] allows the model developer to write complex block precondi-
tioners as a composition of high-level “symbolic” linear algebra operations; Trilinos
provides similar functionality through Teko [12]. However, in these codes one must
specify up front how to perform the block decomposition. Switching to a different pre-
conditioner requires changing the model code, and there is no high-level manipulation
of variational problems within the blocks. Ideally, one would like a mechanism to im-
plement the specialized preconditioner as a separate component, leaving the original
application code essentially unchanged.

Extensibility of fundamental types such as solvers, preconditioners, and matrices
has long been a main concern of the PETSc project. For example, the action of a finite
difference stencil applied to a vector can be wrapped behind a matrix “shell” inter-
face and used interchangeably with explicit sparse matrices for many purposes. Users
can similarly provide custom types of Krylov methods or preconditioners. Thanks
to petsc4py [13], such extensions can be implemented in Python as well as C. More-
over, PETSc provides powerful tools to switch between (compositions of) existing and
custom tools either in the application source code or through command-line options.

In this work, we enable the rapid development of high-performance precondition-
ers as PETSc extensions using Firedrake and petsc4py. To facilitate this, we have
developed a custom matrix type that embeds the complete Firedrake problem de-
scription (UFL variational forms, function spaces, meshes, etc.) in a Python context
accessible to PETSc. As a happy byproduct, this enables low-memory, matrix-free
evaluation of matrix-vector products. This also allows us to produce PETSc precon-
ditioners in petsc4py that act on this new matrix type, accessing the PDE-level in-
formation as needed. For example, a PCD preconditioner can access the meshes and
function spaces to create bilinear forms for, and hence assemble, the needed mass,
stiffness, and convection-diffusion operators on the pressure space along with PETSc
KSP (linear solver) contexts for the inverses. Moreover, once such preconditioners are
available in a globally importable module, it is now possible to use them instead of
existing algebraic preconditioners by a straightforward runtime modification of solver
configuration options. So, we use our PDE language not only to generate problems
to feed to the solver, but also to extend that solver’s capabilities.

Our discussion and implementation will focus on Firedrake as the top-level PDE
library and PETSc as the solver library. Firedrake already relies heavily on PETSc
through petsc4py and has a nearly pure Python implementation. Provided one is
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C78 ROBERT C. KIRBY AND LAWRENCE MITCHELL

content with the Python interface, it should not be terribly difficult to adapt these
techniques for use in FEniCS. Regarding solver libraries, the idiom and usage of
Trilinos and PETSc (if not their actual capabilities) differ considerably, so we make
no speculation as to the difficulties associated with adapting our techniques in that
direction.

In the rest of the paper, we set up certain model problems in section 2. After
this, in section 3 we survey certain algorithms that go beyond the current mode of
algebraically preconditioning assembled matrices. These include matrix-free methods,
Schwarz-type preconditioners, and preconditioners that require auxiliary differential
operators. It turns out that a proper implementation of the first of these matrix-free
methods provides a very clean way to communicate PDE-level problem information
between PETSc matrices and custom preconditioners, and we describe the implemen-
tation of this and relevant modifications to Firedrake in section 4. Finally, we give
examples demonstrating the efficacy of our approach to the model problems of interest
in section 5.

2. Some model applications.

2.1. The Poisson equation. It is helpful to fix some target applications and
describe things we would like to expedite within our top-level code.

A usual starting point is to consider a second-order scalar elliptic equation. Let
Ω ⊂ Rd, where d = 1, 2, 3, be a domain with boundary Γ. We let κ : Ω→ R+ be some
positive-valued coefficient. On the interior of Ω, we seek a function u satisfying

(1) −∇ · (κ∇u) = f

subject to the boundary conditions u = uΓD
on ΓD and ∇u · n = g on ΓN .

After the usual technique of multiplying by a test function and integrating by
parts, we reach the weak form of seeking u ∈ VΓ ⊂ V such that

(2) (κ∇u,∇v) = (f, v)−
〈
g,
∂v

∂n

〉
for all v ∈ V0 ⊂ V , where V is the finite element space and V0 is the subspace with
vanishing trace on ΓD. Here (·, ·) denotes the standard L2 inner product over Ω, and
〈·, ·〉 that over Γ.

The finite element method leads to a linear system:

(3) Au = f,

where A is symmetric and positive-definite (positive semidefinite if ΓD = ∅), and
the vector f includes both the forcing term and contributions from the boundary
conditions.

2.2. The Navier–Stokes equations. Moving beyond the simple Poisson op-
erator, the incompressible Navier–Stokes equations provide additional challenges,

− 1

Re
∆u + u · ∇u +∇p = 0,(4a)

∇ · u = 0,(4b)

together with suitable boundary conditions.
Among the diverse possible methods, we shall focus here on inf-sup stable mixed

finite element spaces such as Taylor–Hood [9]. This is merely for simplicity of explica-
tion and does not represent a limitation of our approach or implementation. Taking
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COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER C79

VΓ to be a subset of the discrete velocity space satisfying any strongly imposed bound-
ary conditions and W the pressure space, we have the weak form of seeking u, p in
VΓ ×W such that

1

Re
(∇u,∇v) + (u · ∇u,v)− (p,∇ · v) = 0,(5a)

(∇ · u, w) = 0(5b)

for all v, w ∈ V0 × W , where V0 is the velocity subspace with vanishing Dirichlet
boundary conditions.

Relative to the Poisson equation, we now have several additional challenges. The
nonlinearity may be addressed by Newton linearization, and UFL provides automatic
differentiation to produce the Jacobian. We also have multiple finite element spaces,
one of which is vector-valued. Further, for each nonlinear iteration, the required linear
system is larger and more complicated, a block-structured saddle point system of the
form

(6)

[
F −Bt

B 0

] [
u
p

]
=

[
f1

f2

]
.

Black-box algebraic preconditioners tend to perform poorly here, and we discuss some
more effective alternatives in section 3.

2.3. Rayleigh–Bénard convection. Many applications rely on coupling other
processes to the Navier–Stokes equations. For example, Rayleigh–Bénard convec-
tion [11] includes thermal variation in the fluid, although we take the Boussinesq
approximation that temperature variations affect the momentum balance only as a
buoyant force. We have, after nondimensionalization,

−∆u + u · ∇u +∇p = −Ra

Pr
Tgẑ,(7a)

∇ · u = 0,(7b)

−Pr∆T + u · ∇T = 0,(7c)

where Ra is the Rayleigh number, Pr is the Prandtl number, g is the acceleration due
to gravity, and ẑ the upward-pointing unit vector. The problem is usually posed on
rectangular domains, with no-slip boundary conditions on the fluid velocity. The tem-
perature boundary conditions typically involve imposing a unit temperature difference
in one direction with insulating boundary conditions in the others.

After discretization and Newton linearization, one obtains a block 3× 3 system

(8)

 F −Bt M1

B 0 0
M2 0 K

u
p
T

 =

f1

f2

f3

 .
Here, the F and B matrices are as obtained in the Navier–Stokes equations (with
Re = 1). The M1 and M2 terms arise from the temperature/velocity coupling, and
K is the convection-diffusion operator for temperature.
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C80 ROBERT C. KIRBY AND LAWRENCE MITCHELL

Alternately, letting

N =

[
F −Bt

B 0

]
,(9a)

M̃1 =

[
M1

0

]
,(9b)

M̃2 =
[
M2 0

]
,(9c)

we can write the stiffness matrix as block 2× 2 matrix

(10)

[
N M̃1

M̃2 K

]
.

Formulating the matrix in this way allows us to consider composing some (possibly
custom) solver technique for Navier–Stokes, with other approaches to handle the
temperature equation and coupling.

3. Solution techniques. Via UFL, Firedrake has a succinct, high-level descrip-
tion of these equations and can readily linearize and assemble discrete operators.
When efficient techniques for the discrete system exist within PETSc, obtaining the
solution is as simple as providing the proper options. When direct methods are ap-
plicable, simple options like -ksp type preonly -pc type lu suffice—possibly aug-
mented with the selection of a package to perform the factorization, like MUMPS [2]
or UMFPACK [14]. Similarly, when iterative methods with black-box precondition-
ers such as incomplete factorization or algebraic multigrid fit the bill, options such
as -ksp type cg -pc type hypre work. PETSc also provides many block precon-
ditioner mechanisms via FieldSplit, allowing users to specify PETSc solvers for
inverting the relevant blocks [10]. Firedrake automatically enables this by specifying
index sets for each function space, passing the information to PETSc when it initial-
izes the solver. A key feature of PETSc is that these choices can be made at runtime
via options without modifying the user code that specifies which PDE to solve.

As we stated in the introduction, however, many techniques for preconditioning
require information beyond what can be learned by an inspection of matrix entries
and user-specified options. It is our goal now to survey some of these techniques in
more detail, after which we describe our implementation of custom PETSc precon-
ditioners to utilize application-specific problem descriptions in a clean, efficient, and
user-friendly way.

3.1. Matrix-free methods. Switching from a low-order method to a higher-
order one simply requires changing a parameter in the top-level Firedrake application
code. However, such a small change can profoundly affect the overall performance
footprint. Assembly of stiffness matrices becomes more expensive, both in terms of
time and space, as the order increases. An alternative that does not have the same
constraints is to use a matrix-free implementation of the matrix-vector product. This
is sufficient for Krylov methods, although not for algebraic preconditioners requiring
matrix entries.

Rather than producing a sparse matrix A, one provides a function that, given
a vector x, computes the product Ax. Abstractly, consider a bilinear form a on a
discrete space V with basis {ψi}Ni=1. The N ×N stiffness matrix Aij = a(ψj , ψi) can
be applied to a vector x as follows. Any vector x is isomorphic to some function u ∈ V
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COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER C81

via the identification x↔ u =
∑N

j=1 xjψj . Then, via linearity,

(Ax)i =

N∑
j=1

Aijxj =

N∑
j=1

a(ψi, ψj)xj

= a

(
ψi,

N∑
j=1

xjψj

)
= a(ψi, u).

(11)

Just like matrices or load vectors, this can be computed by assembling elementwise
contributions in the standard way, considering u to be just some given member of V .

In the presence of strongly enforced boundary conditions, the bilinear form acts
on a subspace V0 ⊂ V . When a matrix is explicitly assembled, one typically edits
(or removes) rows and columns to incorporate the boundary conditions. Care must
be taken in enforcing the boundary conditions to ensure that the matrix-free action
agrees with multiplication by the matrix that would have been assembled.

Typically, such an approach has a much lower startup cost than an explicit sparse
matrix since no assembly is required. Forgoing an assembled matrix also saves con-
siderably on memory usage. Moreover, the arithmetic intensity (ai) of matrix-free
operator application is almost always higher than that of an assembled matrix (sparse
matrix multiplication has ai ≈ 1/6 flop / byte [20]). Matrix-free methods are, there-
fore, an increasingly good match to modern memory bandwidth-starved hardware,
where the balanced arithmetic intensity is ai ≈ 10. The algorithmic complexity is
either the same (O(p2d) for degree p elements in d dimensions) or better (O(pd+1)) if
a structured basis can be exploited through sum factorization. On simplex elements,
the latter optimization is not currently available through the form compiler in Fire-
drake. Thus we will expect our matrix-free operator applications to have the same
algorithmic scaling as assembled matrices (though with different constant factors).
If we can exploit the vector units in modern processors effectively, we can expect
that matrix-free applications will be at least competitive with, and often faster than,
assembled matrices (for example, [33] demonstrates significant benefits, relative to
assembled matrices, for Q2 operator application on hexahedra).

3.2. Preconditioning high-order discretizations: Additive Schwarz.
Matrix-free methods preclude algebraic preconditioners such as incomplete factoriza-
tion or algebraic multigrid. Depending on the available smoothers, if a mesh hierarchy
is available, geometric multigrid is a possibility [7, 8]. Here, we discuss a family of
additive Schwarz methods. Originally proposed by Pavarino in [37, 38], these methods
fall within the broad family of subspace correction methods [44].

These two-level methods decompose the finite element space into a low-order space
on the original mesh and the high-order space restricted to local pieces of the mesh,
such as patches of cells around each vertex. Any member of the original finite element
space can be written as a combination of items from this collection of subspaces,
although the decomposition in this case is certainly not orthogonal. One obtains a
preconditioner for the original finite element operator by additively combining the
(possibly approximate) inverses of the restrictions of the original operator to these
spaces. Schöberl [42] showed for the symmetric coercive case that the preconditioned
system has eigenvalue bounds independent of both mesh size and polynomial degree
and gave computational examples from elasticity confirming the theory. Although not
covered by Schöberl’s analysis, these methods have also been applied with success to
the Navier–Stokes equations [39].
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C82 ROBERT C. KIRBY AND LAWRENCE MITCHELL

This approach is generic in that it can be attempted for any problem. Given a
bilinear form over a function space of degree k, one can programmatically build the
lowest-order instance of the function space and set up the vertex patches for the mesh.
Then, one can easily modify the bilinear form to operate on the new subspaces and
perform the subspace correction. We have developed such a generic implementation,
parametrized over the UFL problem description.

One drawback of this method is the relatively high memory cost of storing the
patchwise Cholesky or LU factors, especially at high order and in 3D. One may further
decompose the local patch spaces through “spider vertices” to reduce the memory
required and still retain a powerful method [42]. Such refinements are possible within
our software framework, although to date we have not pursued them.

3.3. Block preconditioners and Schur complement approximations.
Having motivated matrix-free methods and preconditioners for higher-order discretiza-
tions in the simple case of the Poisson operator, we now return to the Navier–Stokes
equations introduced earlier. In particular, we are interested in preconditioners for
the Jacobian stiffness matrix (6).

Block factorization of the system matrix provides a starting point for many pow-
erful preconditioners [6, 16, 18]. Consider the block LDU factorization of the system
matrix in (6) as

(12)

[
F −Bt

B 0

]
=

[
I 0

BF−1 I

] [
F 0
0 S

] [
I −F−1Bt

0 I

]
,

where I is the identity matrix of the proper size and S = BF−1Bt is the Schur
complement. The inverse of this matrix is then given by

(13)

[
F −Bt

B 0

]−1

=

[
I F−1Bt

0 I

] [
F−1 0

0 S−1

] [
I 0

−BF−1 I

]
.

Since this is the exact inverse, applying it during a preconditioning phase leads to
Krylov convergence in a single iteration if all blocks are inverted exactly. Note that
inverting the Schur complement matrix S requires either assembling it as a dense
matrix or else using a Krylov method where the matrix action is computed implicitly
via two matrix-vector products and an inner solve to produce F−1.

Two kinds of approximations lead to more practical methods. For one, it is
possible to neglect either or both of the triangular factors. This gives a structurally
simpler preconditioner, but at the cost (assuming exact inversion of S) of a slight
increase in the iteration count. For example, it is common to use only the lower
triangular part of the matrix, giving a preconditioning matrix of the form

(14) P =

[
F 0
B S

]
,

which has the inverse

(15) P−1 =

[
F−1 0

0 S−1

] [
I 0

−BF−1 I

]
.

Using P as a left preconditioner, P−1A is readily seen to give a unit upper trian-
gular matrix, and it is known that GMRES will converge in two (very expensive)
iterations since the resulting preconditioned matrix system has a quadratic minimal
polynomial [36].
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COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER C83

Given the cost of inverting S, it is also desirable to devise a suitable approx-
imation. A simple approach is to use a pressure mass matrix, which gives mesh-
independent but rather large eigenvalue bounds [17]. More sophisticated approxima-
tions are well-documented in the literature [16]. For our purposes, we will consider one
in particular, the pressure-convection-diffusion (hence PCD) preconditioner [15, 25].
It is based on the approximation

(16) S−1 =
(
BF−1Bt

)−1 ≈ K−1
p FpM

−1
p ≡ X−1,

where Kp is the Laplace operator acting on the pressure space, Mp is the mass matrix,
and Fp is a discretization of the convection-diffusion operator

(17) Lp ≡ − 1

Re
∆p+ u0 · ∇p,

with u0 the velocity at the current Newton iterate. Although this requires solving
linear systems, the mass and stiffness matrices are far cheaper to invert than F .

While one could use this approximation to precondition a Krylov solver for S,
it is far more typical to replace S−1 with X−1. For example, using the triangular
preconditioner (14) gives the further approximation in a block preconditioner:

(18) P̃−1 =

[
F−1 0

0 X−1

] [
I 0

−BF−1 I

]
=

[
F−1 0

0 K−1
p FpM

−1
p

] [
I 0

−BF−1 I

]
.

Although bypassing the solution of the Schur complement system increases the outer
iteration count, it typically results in a much more efficient overall method. We note
that strong statements about the exact convergence in the presence of approximate
inverses are rather delicate, and refer the reader to [6, sections 9.2 and 10] for an
overview of convergence results for such problems. Also, note that only the action
of the off-diagonal blocks is required for the preconditioner so that a matrix-free
treatment is appropriate.

Preconditioning strategies for the Navier–Stokes equations can quickly find their
way into problems coupling other processes to fluids. We return now to the Bénard
convection stiffness matrix (10), where N is itself the Navier–Stokes stiffness matrix
in (6). Block preconditioners based on this formulation, replacing N−1 with a very
inexact solve via PCD-preconditioned GMRES, proved more effective than techniques
based on 3×3 preconditioners [22]. Here, we present a lower-triangular block precon-
ditioner rather than the upper-triangular one in [22] with similar practical results.

A block Gauss–Seidel preconditioner for (10) can be taken as

(19) P =

[
N 0

M̃2 K

]
,

the inverse of which requires evaluation of N−1 and K−1:

(20) P−1 =

[
N−1 0

0 I

] [
I 0

−M̃2 I

] [
I 0
0 K−1

]
.

Replacing these inverses with approximations/preconditioners Ñ−1 and K̃−1 gives

(21) P̃−1 =

[
Ñ−1 0

0 I

] [
I 0

−M̃2 I

] [
I 0

0 K̃−1

]
.
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C84 ROBERT C. KIRBY AND LAWRENCE MITCHELL

At this point, replacing Ñ−1 with the block preconditioner (18) recovers a block
lower-triangular 3× 3 preconditioner:
(22)

P̃−1 =

F−1 0 0
0 K−1

p FpM
−1
p 0

0 0 I

 I 0 0
−BF−1 I 0

0 0 I

 I 0 0
0 I 0
−M2 0 I

I 0 0
0 I 0

0 0 K̃−1

 .
4. Implementation. The core object in our implementation is an appropriately

designed “implicit” matrix that provides matrix-vector actions and also makes PDE-
level discretization information available to custom preconditioners within PETSc.
Here, we describe this class, how it interacts with both Firedrake and PETSc, and
how it provides the requisite functionality. Then, we demonstrate how it cleanly
provides the proper information for custom preconditioners.

4.1. Implicit matrices. First, we note that Firedrake deals with matrices at
two different levels. A Firedrake-level Matrix instance maintains symbolic information
(the bilinear form, boundary conditions). It in turn contains a PETSc Mat (typically
in some sparse format), which is used when creating solvers.

Our implicit matrices mimic this structure, adding an ImplicitMatrix sibling
class to the existing Matrix, lifting shared features into a common MatrixBase class.
Where the ImplicitMatrix differs is that its PETSc Mat now has type python (rather
than a normal sparse format such as aij). To provide the appropriate matrix-vector
actions, the ImplicitMatrix instance provides an ImplicitMatrixContext instance
to the PETSc Mat.1 This context object contains the PDE-level information—the
bilinear form and boundary conditions—necessary to implement matrix-vector prod-
ucts. Moreover, this context object enables building custom preconditioners since it
is available from within the “low-level” PETSc Mat.

UFL’s adjoint function, which reverses the test and trial function in a bilinear
form, also makes it straightforward to provide the action of the matrix transpose,
needed in some Krylov methods [41, section 7.1]. The implicit matrix constructor
simply stashes the action of the original bilinear form and its adjoint, and the multipli-
cation and transposed multiplication are nearly identical using Firedrake’s assemble
method with boundary conditions appropriately enforced.

We enable FieldSplit preconditioners on implicit matrices by means of over-
loading submatrix extraction. The PETSc interface to submatrix extraction does not
presuppose any particular block structure. Instead, the function receives integer index
sets corresponding to rows and columns to be extracted into the submatrix. Since
the PDE-level description operates at the level of fields, we only support extraction
of submatrices that correspond to some subset of the fields that the matrix contains.
Our method determines whether a provided index set is a concatenation of a subset
of the index sets defining the different fields and returns the list of integer labels of
the fields in the subset. While this implementation compares index sets by value
and therefore increases in expense as the number of per-process degrees of freedom
increases, it must only be carried out once per solve (be it linear or nonlinear), since
the index set structure does not change. We have not found it to be a measureable
fraction of the solution time in our implementation.

Splitting implicit matrices offers an efficient alternative to splitting assembled
sparse matrices. Currently, splitting a standard assembled matrix into blocks requires

1Owing to cross-language issues and lack of proper inheritance mechanisms in C, this is the
standard way of implementing new types from Python in PETSc.
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COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER C85

the allocation and copying of the subblocks. While PETSc also includes a “nested”
matrix type (essentially an array of pointers to matrices), collecting multiple fields
into a single block (e.g., the pressure and velocity in Bénard convection) requires that
the user code state up front the order in which nesting occurs. This would mean
that editing/recompilation of the code is necessary to switch between preconditioning
approaches that use different variable splittings, contrary to our goal of efficient high-
level solver configuration and customization.

The typical user interface in Firedrake involves interacting with PETSc via a
VariationalSolver, which takes charge of configuring and calling the PETSc linear
and nonlinear solvers. It allocates matrices and sets the relevant callback functions
for Jacobian and residual evaluation to be used inside SNES (PETSc’s nonlinear solver
object). Switching between implicit and standard sparse matrices is now facilitated
through additional PETSc database options, so that the type of Jacobian matrix
is set with -mat type and the, possibly different, preconditioner matrix type with
-pmat type. This latter option facilitates using assembled matrices for the matrix-
vector product, while still providing PDE-level information to the solver. In this way,
enabling matrix-free methods simply requires an options change in Firedrake and no
other user modification.

4.2. Preconditioners. It is helpful to briefly review certain aspects of the
PETSc formalism for preconditioners. One can think of (left) preconditioning as
converting a linear system

(23) b−Ax = 0

into an equivalent system

(24) P̂ (b−Ax) = 0,

where P̂ (·) applies an approximation of the inverse of the preconditioning matrix P
to the residual.2

Then, given a current iterate xi, we have the residual

(25) ri = b−Axi.

PETSc preconditioners are specified to act on residuals, so that P̂ (ri) then gives an
approximation to the error ei = x− xi. This enables sparse direct methods to act as
preconditioners, converting the residual into the exact (up to roundoff error) residual,
and direct solvers nonetheless conform to the KSP interface (e.g., -ksp type preonly

-pc type lu).
PETSc preconditioners are built in terms of both the system matrix A and a possi-

bly different “preconditioning matrix” Ap (for example, preconditioning a convection-

diffusion operator with the Laplace operator). So then, P̂ = P̂ (A,Ap) is a method for
constructing an (approximation to) the inverse of A. Preconditioner implementations
must provide PETSc with an apply method that computes y ← P̂ x. Creation of the
data (for example, an incomplete factorization) necessary to apply the preconditioner
is carried out in a setUp method.

Firedrake now provides Python-level scaffolding to expedite the implementation
of preconditioners that act on implicit matrices. Instead of manipulating matrix
entries like ILU or algebraic multigrid, these preconditioners use the UFL problem

2We use this notation since it possible that P̂ is not a linear operator.
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C86 ROBERT C. KIRBY AND LAWRENCE MITCHELL

description from the Python context contained in the incoming matrix P to do what
is needed. Hence, these preconditioners can be parametrized not over particular
matrices, but over bilinear forms. To demonstrate the generality of our approach, we
have implemented several such examples.

4.2.1. Assembled preconditioners. While one can readily define block pre-
conditioners using implicit matrices, the best methods for inverting the diagonal
blocks may in fact be algebraic. This illustrates a critical use case of our simplest
preconditioner acting on implicit matrices. We have defined a generic preconditioner
AssembledPC whose setUp method simply forces the assembly of an underlying bilin-
ear form and then sets up a subpreconditioner (typically an algebraic one) acting on
the sparse matrix. Then, the apply method simply forwards to that of the subpre-
conditioner. For example, to use an implicit matrix-vector product with incomplete
factorization on an assembled matrix for the preconditioner, one might use options
like the following:� �

-mat_type matfree
-pc_type python
-pc_python_type firedrake.AssembledPC
-assembled_pc_type ilu� �

As mentioned, FieldSplit preconditioners provide a critical use case, enabling
one to leave the overall matrix implicit and assemble only those blocks that are re-
quired. In particular, the off-diagonal blocks never require assembly, and this can
result in significant memory savings.

4.2.2. Schur complement approximations. Our next example, Schur com-
plement approximations, is more specialized but very relevant to the problems in fluid
mechanics expressed above. PETSc provides two pathways to define preconditioners
for the Schur complement, such as (16). Within the source code, one may pass to the
function PCFieldSplitSetSchurPre a matrix which will be used by a preconditioner
to construct an approximation to the Schur complement. Alternatively, PETSc can
automatically construct some approximations that may be obtained by algebraic ma-
nipulations of the original operator (such as the SIMPLE or LSC approximations [16]).
While the latter may be configured using only runtime options, the former requires
that the user pick apart the solver and call PCFieldSplitSetSchurPre on the appro-
priate PC object. Enabling this preconditioning option or incorporating it into larger
coupled systems requires modification of the model source code.

Since our implicit matrices and their subblocks contain the UFL problem spec-
ification, a preconditioner acting on the Schur complementment block has complete
freedom to utilize the UFL bilinear form to set up auxiliary operators. We have
implemented two Schur complement approximations suitable for incompressible flow,
an inverse mass matrix and the PCD preconditioner, both of which follow a similar
pattern. The setUp function extracts the pressure function space from the UFL bilin-
ear form and defines and assembles bilinear forms for the auxiliary operators. It also
defines user-configurable KSP contexts as needed (e.g., for the Kp and Mp operators in
(16)). The PCD preconditioner also requires a subsequent update phase in which the
Fp matrix is updated as the Jacobian evolves. The apply method simply performs
the correct combination of matrix-vector products and linear solves.

The high-level Python syntax of petsc4py and Firedrake combine to allow a very
concise implementation in these cases. In the case of PCD, we specify the initial and
subsequent setup methods plus application method in less than 150 lines of code,
including Python doc strings and hooks into the PETSc viewer system.
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COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER C87

User data. The PCD preconditioner requires a very slight modification of the ap-
plication code. In particular, UFL does not expose named parameters. That is, one
may not ask the variational problem what the Reynolds number is. Also, it is not ob-
vious to the preconditioner which piece of the current Newton state corresponds to the
velocity, which is needed in constructing Fp. To address such difficulties, Firedrake’s
VariationalSolver classes can take an arbitrary Python dictionary of user data,
which is available inside the implicit matrix and hence to the preconditioners. This
facility requires documentation, but fits with the general PETSc idiom of allowing all
callbacks to user code to provide a generic “application context.”

4.2.3. Additive Schwarz. Our additive Schwarz implementation requires both
more involved UFL manipulation and low-level implementation details. We have
implemented it as a Python preconditioner that defers to a PETSc PCCOMPOSITE to
perform the composition, but extracts and manipulates the symbolic description of
the problem to create two Python preconditioners, one for the P1 subproblem and
one for the local, high-degree, patch problems.

The P1 preconditioner requires us to construct the P1 discretization of the given
operator, plus restriction and prolongation operators between the global Pk and P1

spaces. UFL provides a utility to make the first of these straightforward—we just
replace the test and trial functions in the original expression graph with test and
trial functions taken from the P1 space on the same mesh. The second is a bit
more involved. We rely on the fact that the P1 basis functions on a cell are naturally
embedded in the Pk space, and hence their interpolant in Pk is exact. Using FIAT [26]
to construct this interpolant on a single cell, we then generate a cell kernel that is
called for every coarse element in the mesh to produce the prolongation operator as
a sparse matrix. Optionally, this can also occur in a matrix-free fashion.

Setting up and solving the patch problems presents more complications. During
a startup phase, we must query the mesh to discover and store the cells in each vertex
patch. At this time, we also construct the sets of global degrees of freedom involved
in each patch, setting up indirections between patch-level and processor-level degrees
of freedom.

Our implementation, like the rest of Firedrake, leverages PETSc’s DMPlex repre-
sentation of computational meshes [27] to iterate over and query the mesh to construct
this information. Due to the repeated low-level instructions required to do this, we
have implemented this in C as a normal PETSc preconditioner. Our implementation
requires that the high-level “problem aware” preconditioner in Python initialize the
patch preconditioner with the problem-specific data. This includes the function space
description, identification of any Dirichlet nodes in the space, along with a callback
to construct the patch operator. This callback is effectively the low-level code created
when calling assemble on a UFL form. As is usual with PETSc objects, all aspects
of the subsolves are configurable at runtime. Application of the patch inverses can
either store and reuse matrices and factorizations (at the cost of high memory usage)
or build, invert, and discard matrices patch-by-patch. This has much lower mem-
ory usage, but is computationally more expensive without access to either fast patch
inverses or fast patch assembly routines.

5. Examples and results. We now present some examples and weak scaling
results using Firedrake and the new preconditioning framework wehave developed.
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C88 ROBERT C. KIRBY AND LAWRENCE MITCHELL

All results in this study were conducted on ARCHER, a Cray XC30 hosted at the
University of Edinburgh. Each compute node contains two 2.7 GHz, 12-core E5-
2697v2 (Ivy Bridge) processors, for a total of 24 cores per node, with a guaranteed-
not-to-exceed-floating-point performance of 518.4 Gflop/s. The spec sheet memory
bandwidth is 119.4 GB/s per node, and we measured a STREAM triad [35] bandwidth
of 74.1 GB/s when using 24 pinned MPI processes.3 All experiments were performed
with 24 MPI ranks per node (i.e., fully populated) with processes pinned to cores. For
all experiments, we use regular simplicial meshes4 of the unit d-cube with piecewise
linear coordinate fields.

5.1. Operator application. Without access to fast, sum-factored algorithms,
forming element tensors has complexity O(p3d) for Jacobian matrices, and O(p2d)
for residual evaluation. Similarly, matrix-vector products for assembled sparse ma-
trices require O(p2d) work, as do matrix-free applications (although the constants
can be very different). Since Firedrake does not currently implement sum-factored
algorithms on simplices, we expect our matrix-free implementation to have the same
time complexity as assembled sparse matrix-vector application. An advantage is that
we have constant memory usage per degree of freedom (modulo surface-to-volume
effects).

Figure 1 shows performance of our implementation for a Poisson operator dis-
cretized with piecewise polynomial Lagrange basis functions. We see that we broadly
observe the expected algorithmic behavior (barring in three dimensions, as explained
in the figure). Assembled matrix-vector multiplication is faster than matrix-free ap-
plication, although not by much for the two-dimensional case, at the cost of higher
memory consumption per degree of freedom and the need to first assemble the matrix
(costing approximately 10 matrix-free actions).
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(a) Degrees of freedom (dof) per second pro-
cessed for matrix assembly and matrix-vector
products. The performance of matrix-free op-
erator action and assembly at degree 5 in 3D
becomes noticeably worse because the data for
tabulated basis functions spills from the fastest
cache.
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(b) Bytes of memory per degree of freedom. For
the matrix-free case, memory usage is not quite
constant, since Firedrake stores the ghosted rep-
resentation, and so a surface-to-volume term ap-
pears in the memory per dof (more noticeable in
three dimensions).

Fig. 1. Performance of matrix-vector products for a Poisson operator discretized on simplices
in two and three dimensions (48 MPI processes).

3The compiler did not generate nontemporal stores for this code.
4These meshes are nonetheless treated as unstructured by Firedrake.
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Fig. 2. Performance of matrix-vector products for the Rayleigh–Bénard equation discretized on
simplices in two and three dimensions (48 MPI processes).

The same story emerges for more complex problems, and we show one example,
the operator for Rayleigh–Bénard convection discretised using Pk+1-Pk-Pk elements,
in Figure 2. In two dimensions, the matrix-free action is faster than assembled op-
erator application, and in three dimensions the cost is less than a factor 1.5 greater
(even at lowest order). Given the high cost of matrix assembly, any iterative method
that requires fewer than 10 matrix-vector products will be better off matrix-free, even
before memory savings are considered.
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(a) Performance of assembly and matrix-vector
products for the Poisson operator. The assem-
bled matrix achieves performance close to ma-
chine peak, while matrix-free products (and ma-
trix assembly) are a ways away.
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nest matrix has higher arithmetic intensity than
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the diagonal velocity block. As with the Poisson
operator, assembled matrices achieve almost ma-
chine peak, whereas the matrix-free operator has
room for improvement.

Fig. 3. Roofline plots for the experiments of Figures 1 and 2.
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C90 ROBERT C. KIRBY AND LAWRENCE MITCHELL

To determine whether these timings are good in absolute terms, we use a roofline
model [43]. The arithmetic intensity for assembled matrix-vector products is calcu-
lated following [20]. For matrix assembly and matrix-free operator application, we
count effective flops in the element kernel by traversing the intermediate represen-
tation of the generated code; the required data movement assumes a perfect cache
model for any fields (each degree of freedom is only loaded for main memory once)
and includes the cost of moving the indirection maps. As evidenced in Figure 3, there
is almost no extra performance available for the application of assembled operators:
the matrix-vector product achieves close to the machine peak in all cases. In contrast,
the matrix-free actions, with significantly higher arithmetic intensity, are quite a dis-
tance from machine peak: this suggests a direction for future optimization efforts in
Firedrake.

5.2. Runtime solver composition.

5.2.1. Poisson. We now consider solving the Poisson problem (2) in three di-
mensions. We choose as domain a regularly meshed unit cube, Ω = [0, 1]d, and apply
homogenous Dirichlet conditions on ∂Ω, along with a constant forcing term. For
low degree discretizations, “black-box” algebraic multigrid methods are robust and
provide high performance. Their performance, however, degrades with increasing ap-
proximation degree. Here we show how we can plug in the additive Schwarz approach
described in subsection 3.2 to provide a preconditioner with mesh and degree inde-
pendent iteration counts, although we do not achieve time to solution independent of
these parameters. This increase in time to solution with increasing problem size is
due to a nonscalable coarse grid solve: We use algebraic multigrid V cycles.

The main cost of this preconditioner is the application of the (dense) patch in-
verses, so the cost of our implementation is therefore quite high. We also comment
that if patch operators are not stored between iterations, the overall memory footprint
of the method is quite small. Developing fast algorithms to build and invert these
patch operators is the subject of ongoing work.

In Table 1 we compare the algorithmic and runtime performance of hypre’s
boomerAMG algebraic multigrid solver applied directly to a P4 discretization with
the additive Schwarz approach. The only changes to the application file were in the
specification of the runtime solver options. The provided solver options are shown
in Appendix B.1 for the hypre preconditioner and Appendix B.2 for the Schwarz
approach.

5.2.2. FieldSplit examples. Merely being able to solve the Poisson equation
is a relatively uninteresting proposition. The power in our (and PETSc’s) approach
is the ease of composition, at runtime, of scalable building blocks to provide pre-
conditioners for complex problems. To demonstrate this, we consider solving the
Rayleigh–Bénard equations for stationary convection (7).

A block preconditioner for this problem was developed in [22], but its perfor-
mance was only studied in two-dimensional systems, and the implementation of the
preconditioner was tightly coupled with the problem. The components of this precon-
ditioner are as follows: an inexact inverse of the Navier–Stokes equations, for which the
block preconditioners discussed in [18] provide mesh-independent iteration counts, and
an inexact inverse of the scalar (temperature) convection diffusion operator.For the
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Table 1
Krylov iterations and time to solution for P4 Poisson problem using hypre and the Schwarz

preconditioner described in subsection 3.2 as the problem is weakly scaled. The required number of
Krylov iterations grows slowly for the hypre preconditioner, but is constant for Schwarz. However,
the overall time to solution is still lower with hypre.

DoFs (×106) MPI processes Krylov its Time to solution (s)
hypre Schwarz hypre Schwarz

2.571 24 19 19 5.62 9.48
5.545 48 20 19 6.45 10.6
10.22 96 20 19 6.17 10.3
20.35 192 21 18 6.53 10.7
43.99 384 22 19 7.53 11.9
81.18 768 22 19 7.52 11.7
161.9 1536 23 19 8.98 13
350.4 3072 24 19 8.56 14
647.2 6144 26 19 9.32 13.9
1291 12288 28 19 10.2 17.3
2797 24576 29 19 13 22.5

Navier–Stokes block we approximate the Schur complement with the PCD approach
(which requires information about the discretization inside the preconditioner). The
building blocks are an approximate inverse for the velocity convection-diffusion opera-
tor, and approximate inverses for pressure mass and stiffness matrices. For moderate
velocities, the velocity convection-diffusion operator can be treated with algebraic
multigrid. Similarly, the pressure mass matrix can be inverted well with only a few
iterations of a splitting-based method (e.g., point Jacobi), while multigrid is again
good for the stiffness matrix. Finally, the temperature convection-diffusion operator
can again be treated with algebraic multigrid.

Using the notation of (18) and (22), we need approximate inverses Ñ−1 and

K̃−1, where Ñ−1 itself needs approximate inverses F̃−1, K−1
p , and M−1

p . We can
make different choices for all of these inverses, the matrix format (including matrix-
free) for the operators, and convergence tolerance for all approximate inverses. These
options (and others) can all be configured at runtime, while maintaining a single code
base for the specification of the underlying PDE model, merely by modifying solver
options.

Explicitly assembling the Jacobian and inverting with a direct solver requires a
relatively short options list: Appendix B.3. Conversely, to implement the precon-
ditioner of (22), with algebraic multigrid for all approximate inverses (except the
pressure mass matrix), and the operator applied matrix-free, we need significantly
more options. These are shown in full in Appendix B.4.

5.2.3. Algorithmic and parallel scalability. Firedrake and PETSc are de-
signed such that the user of the library need not worry too much about distributed
memory parallelization provided they respect the collective semantics of operations.
Since our implementation of solvers and preconditioners operates at the level of public
APIs, we need only be careful that we use the correct communicators when construct-
ing auxiliary objects. Parallelization, therefore, comes “for free.” In this section, we
show that our approach scales to large problem sizes, with scalability limited only by
the performance of the building block components of the solver.

We consider the algorithmic performance of the Rayleigh–Bénard problem (7)
in a regularly meshed unit cube, Ω = [0, 1]3. We choose the following as boundary
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C92 ROBERT C. KIRBY AND LAWRENCE MITCHELL

Fig. 4. Solution to the Rayleigh–Bénard problem of (7) with boundary conditions as specified
in (26), and with g pointing up. Shown are streamlines of the velocity field colored by the magnitude
of the velocity, and isosurfaces of the pressure.

conditions:

u = 0 on ∂Ω,(26a)

∇p · n = 0 on ∂Ω,(26b)

T = 1 on the plane x = 0,(26c)

T = 0 on the plane x = 1,(26d)

∇T · n = 0 otherwise,(26e)

and take Ra = 200 and Pr = 6.18. The constant pressure nullspace is projected out
in the linear solver. The solution to this problem is shown in Figure 4.

We perform a weak scaling experiment (increasing both the number of degrees
of freedom and computational resource) to study any mesh dependence in our solver.
For the full set of solver options, see Appendix B.4. Newton iterations reduce the
residual by 108 in three iterations, with only a weak increase in the number of Krylov
iterations, as seen in Table 2.The scalability does not look as good as these results
would suggest, with only 20% parallel efficiency for this weakly scaled problem on
6144 cores. Looking at the inner solves indicates the problem; although the outer
Krylov solve performs well, our approximate inner preconditioners are not fully mesh
independent. Table 3 shows the total number of iterations for both the Navier–Stokes
solve and the temperature solve as part of the application of the outer preconditioner.
In addition to iteration counts increasing, the time to compute a single iteration also
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Table 2
Newton iteration counts, total Krylov iterations, and time to solution for Rayleigh–Bénard

convection as the problem is weakly scaled. The required number of linear iterations grows slowly as
the mesh is refined; however, the time to solution grows much faster.

DoFs (×106) MPI processes Newton its Krylov its Time to solution (s)
0.7405 24 3 16 31.7
1.488 48 3 16 36.3
2.973 96 3 17 43.9
5.769 192 3 17 47.3
11.66 384 3 17 56
23.39 768 3 17 64.9
45.54 1536 3 18 85.2
92.28 3072 3 18 120
185.6 6144 3 19 167

Table 3
Total iterations for Navier–Stokes and temperature solves (with average iterations per outer

linear solve in brackets) for the nonlinear solution of the Rayleigh–Bénard problem. We see weak
mesh dependence in the per-solve iteration counts. When multiplied up by the slight mesh dependence
in the outer solve, this results in noticeable inefficiency.

DoFs (×106) Navier-Stokes iterations Temperature iterations
0.7405 329 (20.6) 107 (6.7)
1.488 338 (21.1) 110 (6.9)
2.973 365 (21.5) 132 (7.8)
5.769 358 (21.1) 133 (7.8)
11.66 373 (21.9) 137 (8.1)
23.39 378 (22.2) 139 (8.2)
45.54 403 (22.4) 151 (8.4)
92.28 420 (23.3) 154 (8.6)
185.6 463 (24.4) 174 (9.2)

increases. This is observable more clearly in the previous results for the Poisson
operator (Table 1). This is due to suboptimal scalability of the algebraic multigrid
that is used for all the building blocks in these solves. Our results for the Poisson
equation using hypre’s boomerAMG appear similar to previously reported results on
weak scalability from the hypre team [3], and so we do not expect to gain much
improvement here without changing the solver. This can, however, be done without
modification to the existing solver: as soon as a better option is available, we can just
drop it in.

6. Conclusions and future outlook. We have presented our approach to ex-
tending Firedrake and the existing solver interface to support matrix-free operators
and the necessary preconditioning infrastructure. Our approach is extensible and
composable with existing algebraic solvers supported through PETSc. In particular,
it removes much of the friction in developing block preconditioners requiring auxiliary
operators. The performance of such preconditioners for complex problems still relies
on having good approximate inverses for the blocks, but our composable approach
can seamlessly take advantage of any such advances.

Appendix A. Code availability. For reproducibility, we cite archives of the
exact software versions that were used to produce the results in this paper. The
experimentation and job submission framework (along with the plotting scripts and
raw results) is available as [46]. The Additive Schwarz preconditioner from subsec-
tion 3.2 is [53]. For all components of the Firedrake project, we used recent versions:
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COFFEE [45], FIAT [47], FInAT [48], Firedrake [49], PETSc [50], petsc4py [51],
PyOP2 [52], TSFC [54], and UFL [55].

Appendix B. Full solver parameters.

B.1. Poisson: hypre. We use hypre’s boomerAMG algebraic multigrid im-
plementation, and select more aggressive coarsening strategies to obtain a lower-
complexity coarse grid operator than the default.� �

-ksp_type cg -ksp_rtol 1e-8 -mat_type aij
-pc_type hypre -pc_hypre_type boomeramg
-pc_hypre_boomeramg_P_max 4
-pc_hypre_boomeramg_no_CF
-pc_hypre_boomeramg_agg_nl 1
-pc_hypre_boomeramg_agg_num_paths 2
-pc_hypre_boomeramg_coarsen_type HMIS
-pc_hypre_boomeramg_interp_type ext+i� �
B.2. Poisson: Schwarz. We use exact inverses for the patch problems, and

PETSc’s GAMG algebraic multigrid for the P1 inverse. The telescoping precondi-
tioner [34] for the low-order P1 operator is used to reduce the number of active MPI
processes, since it has many fewer degrees of freedom than the P4 operator.� �

-ksp_type cg -ksp_rtol 1e-8 -mat_type matfree
-pc_type python -pc_python_type ssc.SSC
-ssc_pc_composite_type additive
-ssc_sub_0_pc_patch_save_operators True
-ssc_sub_0_pc_patch_sub_mat_type seqaij
-ssc_sub_0_sub_ksp_type preonly
-ssc_sub_0_sub_pc_type lu
-ssc_sub_1_lo_pc_type telescope
-ssc_sub_1_lo_pc_telescope_reduction_factor 6
-ssc_sub_1_lo_telescope_ksp_max_it 4
-ssc_sub_1_lo_telescope_ksp_type richardson
-ssc_sub_1_lo_telescope_pc_type gamg� �
B.3. Rayleigh–Bénard: direct. To invert the full linearized Jacobian with a

direct solver (here we use MUMPS [2]), we use the following options:� �
-mat_type aij
-ksp_type preonly
-pc_type lu
-pc_factor_mat_solver_package mumps� �
B.4. Rayleigh–Bénard: iterative. To configure the nonlinear iteration, and

then also split the Navier–Stokes block from the temperature block, we use the fol-
lowing:� �

-snes_type newtonls -snes_rtol 1e-8 -snes_linesearch_type basic
-ksp_type fgmres -ksp_gmres_modifiedgramschmidt
-mat_type matfree
-pc_type fieldsplit
-pc_fieldsplit_type multiplicative
-pc_fieldsplit_0_fields 0,1
-pc_fieldsplit_1_fields 2� �

Now we configure the temperature solve to use GMRES and algebraic multigrd.� �
-prefix_push fieldsplit_1_
-ksp_type gmres
-ksp_rtol 1e-4,
-pc_type python
-pc_python_type firedrake.AssembledPC
-assembled_mat_type aij
-assembled_pc_type telescope
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-assembled_pc_telescope_reduction_factor 6
-assembled_telescope_pc_type hypre
-assembled_telescope_pc_hypre_boomeramg_P_max 4
-assembled_telescope_pc_hypre_boomeramg_agg_nl 1
-assembled_telescope_pc_hypre_boomeramg_agg_num_paths 2
-assembled_telescope_pc_hypre_boomeramg_coarsen_type HMIS
-assembled_telescope_pc_hypre_boomeramg_interp_type ext+i
-assembled_telescope_pc_hypre_boomeramg_no_CF True
-prefix_pop� �

Finally, we configure the Navier–Stokes solve to use GMRES with a lower Schur
complement factorization as a preconditioner, and the pressure-convection-diffusion
approximation for the Schur complement.� �

-prefix_push fieldsplit_0_
-ksp_type gmres
-ksp_gmres_modifiedgramschmidt
-ksp_rtol 1e-2
-pc_type fieldsplit
-pc_fieldsplit_type schur
-pc_fieldsplit_schur_fact_type lower

-prefix_push fieldsplit_0_
-ksp_type preonly
-pc_type python
-pc_python_type firedrake.AssembledPC
-assembled_mat_type aij
-assembled_pc_type hypre
-assembled_pc_hypre_boomeramg_P_max 4
-assembled_pc_hypre_boomeramg_agg_nl 1
-assembled_pc_hypre_boomeramg_agg_num_paths 2
-assembled_pc_hypre_boomeramg_coarsen_type HMIS
-assembled_pc_hypre_boomeramg_interp_type ext+i
-assembled_pc_hypre_boomeramg_no_CF
-prefix_pop

-prefix_push fieldsplit_1_
-ksp_type preonly
-pc_type python
-pc_python_type firedrake.PCDPC
-pcd_Fp_mat_type matfree
-pcd_Kp_ksp_type preonly
-pcd_Kp_mat_type aij
-pcd_Kp_pc_type telescope
-pcd_Kp_pc_telescope_reduction_factor 6
-pcd_Kp_telescope_pc_type ksp
-pcd_Kp_telescope_ksp_ksp_max_it 3
-pcd_Kp_telescope_ksp_ksp_type richardson
-pcd_Kp_telescope_ksp_pc_type hypre
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_P_max 4
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_agg_nl 1
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_agg_num_paths 2
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_coarsen_type HMIS
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_interp_type ext+i
-pcd_Kp_telescope_ksp_pc_hypre_boomeramg_no_CF

-pcd_Mp_mat_type aij
-pcd_Mp_ksp_type richardson
-pcd_Mp_pc_type sor
-pcd_Mp_ksp_max_it 2
-prefix_pop
-prefix_pop� �
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pp. 163–202, https://doi.org/10.1007/978-1-4612-1986-6 8.

[6] M. Benzi, G. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137, https://doi.org/10.1017/S0962492904000212.

[7] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31
(1977), pp. 333–390, https://doi.org/10.1090/S0025-5718-1977-0431719-X.

[8] A. Brandt and O. Livne, Multigrid Techniques, Classics Appl. Math. 67, SIAM, Philadelphia,
2011, https://doi.org/10.1137/1.9781611970753.

[9] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd
ed., Texts Appl. Math. 15, Springer, New York, 2008.

[10] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. F. Smith, Composable linear
solvers for multiphysics, in Proceedings of the 11th International Symposium on Parallel
and Distributed Computing, ISPDC ’12, IEEE Computer Society, Washington, DC, 2012,
pp. 55–62, https://doi.org/10.1109/ISPDC.2012.16.

[11] G. F. Carey and T. J. Oden, Finite Elements: Fluid Mechanics Vol., VI, Prentice-Hall,
Englewood Cliffs, NJ, 1986.

[12] E. C. Cyr, J. N. Shadid, and R. S. Tuminaro, Teko: A block preconditioning capability
with concrete example applications in Navier–Stokes and MHD, SIAM J. Sci. Comput., 38
(2016), pp. S307–S331, https://doi.org/10.1137/15M1017946.

[13] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, Parallel distributed computing us-
ing Python, Adv. Water Resour., 34 (2011), pp. 1124–1139, https://doi.org/10.1016/j.
advwatres.2011.04.013.

[14] T. A. Davis, Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal method,
ACM Trans. Math. Softw., 30 (2004), pp. 196–199, https://doi.org/10.1145/992200.992206.

[15] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block precondi-
tioners based on approximate commutators, SIAM J. Sci. Comput., 27 (2006), pp. 1651–
1668, https://doi.org/10.1137/040608817.

[16] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, A taxonomy and
comparison of parallel block multi-level preconditioners for the incompressible NavierStokes
equations, J. Comput. Phys., 227 (2008), pp. 1790–1808, https://doi.org/10.1016/j.jcp.
2007.09.026.

[17] H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier–
Stokes equations, SIAM J. Sci. Comput., 17 (1996), pp. 33–46, https://doi.org/10.1137/
0917004.

[18] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers, 2nd
ed., Oxford University Press, Oxford, 2014.

[19] P. E. Farrell and J. W. Pearson, A preconditioner for the Ohta-Kawasaki equation, 2016,
https://arxiv.org/abs/1603.04570.

[20] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, Towards realistic performance
bounds for implicit CFD codes, in Parallel CFD 1999, D. Keyes, A. Ecer, J. Periaux,
and N. Satofuka, eds., North–Holland, Amsterdam, 2000, pp. 241–248, https://doi.org/10.
1016/B978-044482851-4.50030-X.

[21] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley,
An overview of the Trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423,
https://doi.org/10.1145/1089014.1089021.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

08
/0

2/
18

 to
 1

29
.2

34
.3

9.
19

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 

https://doi.org/10.1016/S0045-7825(99)00242-X
https://doi.org/10.1007/978-3-642-24025-6_18
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1090/S0025-5718-1977-0431719-X
https://doi.org/10.1137/1.9781611970753
https://doi.org/10.1109/ISPDC.2012.16
https://doi.org/10.1137/15M1017946
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1145/992200.992206
https://doi.org/10.1137/040608817
https://doi.org/10.1016/j.jcp.2007.09.026
https://doi.org/10.1016/j.jcp.2007.09.026
https://doi.org/10.1137/0917004
https://doi.org/10.1137/0917004
https://arxiv.org/abs/1603.04570
https://doi.org/10.1016/B978-044482851-4.50030-X
https://doi.org/10.1016/B978-044482851-4.50030-X
https://doi.org/10.1145/1089014.1089021


COMPOSITION ACROSS THE PDE/LINEAR ALGEBRA BARRIER C97

[22] V. E. Howle and R. C. Kirby, Block preconditioners for finite element discretization of
incompressible flow with thermal convection, Numer. Linear Algebra Appl., 19 (2012),
pp. 427–440, https://doi.org/10.1002/nla.1814.

[23] V. E. Howle, R. C. Kirby, K. Long, B. Brennan, and K. Kennedy, Playa: high-
performance programmable linear algebra, Scientific Programming, 20 (2012), pp. 257–273,
https://doi.org/10.1155/2012/606215.

[24] B. Jessic, D. Kay, M. Stoll, and A. J. Wathen, Fast solvers for Cahn–Hilliard inpainting,
SIAM J. Imaging Sci., 7 (2014), pp. 67–97, https://doi.org/10.1137/130921842.

[25] D. Kay, D. Loghin, and A. Wathen, A preconditioner for the steady-state Navier–Stokes
equations, SIAM J. Sci. Comput., 24 (2002), pp. 237–256, https://doi.org/10.1137/
S106482759935808X.

[26] R. C. Kirby, Algorithm 839: FIAT, a new paradigm for computing finite element basis func-
tions, ACM Trans. Math. Softw., 30 (2004), pp. 502–516, https://doi.org/10.1145/1039813.
1039820.

[27] M. G. Knepley and D. A. Karpeev, Mesh Algorithms for PDE with Sieve I: Mesh Dis-
tribution, Scientific Programming, 17 (2009), pp. 215–230, https://doi.org/10.1155/2009/
948613.

[28] A. Logg, K.-A. Mardal, and G. N. Wells, eds., Automated Solution of Differential Equa-
tions by the Finite Element Method: The FEniCS Book, Lect. Notes Comput. Sci. Eng.
84, Springer-Verlag, Berlin, Heidelberg, 2012, https://doi.org/10.1007/978-3-642-23099-8.

[29] K. Long, R. C. Kirby, and B. van Bloemen Waanders, Unified embedded parallel finite
element computations via software-based Fréchet differentiation, SIAM J. Sci. Comput.,
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