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ABSTRACT

Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters
for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and
provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar
Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in
the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The
genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and
radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent
error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization
process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the
ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and
observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by
magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences
between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the
behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
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1. Introduction

Surface flux transport (SFT) is a crucial component of the
11-year sunspot cycle. SFT models have been developed
and used for decades (e.g., DeVore et al. 1984; Wang et al.
1989a; van Ballegooijen et al. 1998; Schrijver & Title 2001;
Baumann et al. 2004; Jiang et al. 2010) with some success,
though results can be sensitive to the choice of parameters.

Surface flux transport models track the evolution of mag-
netic regions, which appear on the solar surface due to the rise of
buoyant flux tubes (Fan 2009). Generally they emerge as bipo-
lar magnetic regions (BMRs) with a leading polarity and a trail-
ing polarity with respect to the east-west direction. The lead-
ing polarities during a single cycle are usually the same across
a hemisphere, with the reverse pattern occurring on the opposite
hemisphere, following Hale’s polarity law (Hale 1924). Further-
more, the polarities reverse at the end of each cycle, giving rise
to a magnetic cycle with a period of approximately 22 years. At
the start of a cycle, magnetic regions emerge at latitudes of ap-
proximately ±30◦. As the cycle progresses, emergence regions
migrate equatorwards before reaching ±5◦ latitude at the end of
the cycle. This emergence pattern was noted by Spörer (1880),
and can be observed in the well-known “butterfly diagram”.

Bipolar magnetic regions tend to emerge tilted at an an-
gle with respect to the east-west line (using the line connect-
ing the centres of the opposing polarities), with the leading po-
larity emerging closer to the equator. This effect is due to the

helical convective motions in the convection zone and is more
pronounced at higher latitudes, according to Joy’s law (Howard
1991). In addition, the granular and supergranular convection
cells provide a means of diffusion whereby flux is transported
to the edge of the convection cells, spreading out across the so-
lar surface and resulting in the leading flux cancelling across the
equator with the corresponding opposite flux (Leighton 1964).
The remaining trailing flux is transported to the polar regions
via a combination of turbulent diffusion and a meridional flow
(Howard 1979). Meridional circulation is a relatively slow trans-
port mechanism, with speeds of ∼10–20 m s−1 observed via he-
lioseismology by e.g., Braun & Fan (1998), Zhao & Kosovichev
(2004), Jackiewicz et al. (2015). However, helioseismic record-
ings are near the limit of credibility (Komm et al. 2013) and so
the flow profile is not well constrained. Flow speeds within this
range have also been found by e.g., Komm et al. (1993) via the
tracking of small magnetic features, and by Topka et al. (1982)
via the comparison of polar zone filament distribution and po-
lar magnetic field evolution. When the remaining flux eventually
reaches the pole it cancels with the polar field from the previous
cycle, culminating in polar field reversal. The reversal typically
occurs at cycle maximum. For a historical review of surface flux
transport, see Sheeley (2005).

There is evidence to suggest that the strength of the po-
lar field at the end of the cycle is a good indicator of the
strength of the following cycle (e.g., Schatten et al. 1978;
Muñoz-Jaramillo et al. 2013). Moreover, the strength of a cycle

Article published by EDP Sciences A76, page 1 of 15

https://doi.org/10.1051/0004-6361/201730689
http://www.aanda.org
http://www.edpsciences.org


A&A 607, A76 (2017)

is anti-correlated with the duration of the cycle, according to
the Waldmeier effect (Wolf & Brunner 1935). An explanation is
offered by Cameron & Schüssler (2016) whereby activity belts
near the base of the convection zone cancel across the equator
with the opposing polarity. Stronger cycles have wider belts and
so cancellation occurs earlier, resulting in a shorter cycle since
all declining phases are approximately the same.

There is an ever-present need to predict the amplitude and
length of future solar cycles since solar weather can have ad-
verse effects on satellites, astronauts and technological systems
on Earth. Given that disturbances such as coronal mass ejec-
tions and solar flares are usually attributed to regions of strong
magnetic field, tracking and modelling magnetic regions on the
solar surface, i.e., surface flux transport, has been highlighted
as a key method for predicting and understanding solar cycle
variability (e.g., Upton & Hathaway 2014b; Hathaway & Upton
2016), without using the more complicated calculations involved
in dynamo simulations (for a review of dynamo theory, see
Charbonneau 2014).

As mentioned above, the output of current SFT models is
highly dependent on the parameters used. Parametrizations of
the transport processes have been made, particularly for dif-
fusion and meridional flow, but the exact forms are still de-
bated, and are not necessarily in line with the limited observa-
tions available. Parameter studies of varying scope have been
undertaken (e.g., Schrijver et al. 2002; Durrant & Wilson 2003;
Baumann et al. 2004; Yeates 2014), but without complete pa-
rameter coverage. In this paper we aim to systematically find
optimal parameters to be used in SFT models which accurately
reproduce such features of the solar cycle as poleward flux trans-
port “surges”, polar field reversal time, and polar field strength.
The results can also be used to constrain the surface components
of dynamo simulations to produce the most accurate cycle pre-
dictions to date. A similar study was performed by Lemerle et al.
(2015), who used the same genetic algorithm used in this pa-
per to find optimal parameters for a 2D SFT model for Cy-
cle 21 only, with the view of coupling it to a 2D flux trans-
port dynamo model (Lemerle & Charbonneau 2017). In contrast
we analyse two distinct models with different dimensionality,
namely 1D and 2D, and different data-assimilation techniques,
initially for Cycle 23. While Lemerle et al. (2015) used the com-
prehensive BMR database compiled by Wang & Sheeley (1989),
we use the same BMR database as Yeates et al. (2007) for the 1D
model, and extract individual active regions from synoptic mag-
netograms for the 2D model. We also apply the 2D model to
other cycles to search for cyclical variation.

In Sect. 2, we present the 1D model and the genetic algo-
rithm used to perform the optimization, including a prescribed
error structure dependent on latitude and magnetic field strength
to factor in observational uncertainty. We also discuss the re-
sults of the optimization for Cycle 23. In Sect. 3, we present
the 2D model which directly assimilates active regions into the
simulation, and run the optimization process on this model for
Cycle 23. In Sect. 4, we compare our optimal meridional flow
profiles from both models with observations. Finally, we per-
form optimizations on the 2D model for Cycles 21, 22, and 24
in Sect. 5, before concluding in Sect. 6.

2. One-dimensional model

Since we aim to optimize the parameters of global, axisymmetric
flows using the longitude-averaged butterfly diagram, we start by
considering a 1D SFT model. Using idealized BMRs as input,
this model has the advantage of allowing many realizations to be

run rapidly. In Sect. 3, we will compare the parameters selected
by the 1D model to a 2D model with more realistic assimilation
of active region data.

2.1. Numerical method

In the SFT model, the radial component of the magnetic field
after averaging in longitude, B (θ, t), evolves according to the
advection–diffusion equation (Leighton 1964):

∂B
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η
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� sin θ

∂

∂θ

(
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∂θ

)
−
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−
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τ

B + S (θ, t), (1)

where R� is solar radius, η is diffusivity, representing the diffu-
sive effect of granular convective motions, τ is an exponential
decay term added by Schrijver et al. (2002) to improve regular
polar field reversal, and S is a source term for newly emerging
magnetic regions. The profile v (θ) describes poleward merid-
ional flow. The magnetic field is decomposed into spherical har-
monic form:

B (θ, t) =

∞∑
l=1

al0 (t) Y0
l (θ) , (2)

and the resulting coupled ordinary differential equations for
the coefficients al0 (t) are solved using an adaptive Runge-
Kutta (4, 5) time-stepping method (Dormand & Prince 1980).
The equations are solved on a grid of 180 cells equally spaced in
latitude.

In the 1D model, new magnetic regions are assumed to take
the form of idealized BMRs. Each BMR has a specified day of
emergence; longitude and latitude; size; magnetic flux, includ-
ing polarity; and tilt angle taken from an existing observational
dataset where these properties were determined individually
for each BMR from NSO synoptic magnetograms (Yeates et al.
2007). Using these data, the 1644 recorded BMRs from Cycle 23
(1st June 1996–3rd August 2008) are averaged in longitude and
inserted into the model on the corresponding days of emergence.
The BMR data are freely available at the Solar Dynamo Data-
verse1 (Yeates 2016).

Because the meridional flow is a relatively slow transport
mechanism, there is still a fair amount of uncertainty regarding
its properties. A flexible profile is chosen to factor observational
uncertainty into the optimization:

v (θ) = −v0 sinp θ cos θ, (3)

where increasing p produces a steeper gradient at low latitudes
and a peak closer to the equator (Fig. 1). The amplitude v0 is
chosen to be the maximum of |v|, so increasing v0 increases
the height of the peak. Both v0 and p are left as free parame-
ters to be optimized. Lemerle et al. (2015) used a similar, but
more sophisticated profile, which is discussed in Sect. 5.1. This
provides substantially more flexibility, but introduces extra pa-
rameters into the optimization runs which could hinder con-
vergence to a global maximum. A combination of exponential
and sinusoidal functions adapted to helioseismic observations
(Gizon & Duvall 2004) was utilized by Schüssler & Baumann
(2006) for the meridional flow profile. Although this may bet-
ter represent the actual meridional circulation, it cannot be accu-
rately reproduced by the functional form in Eq. (3). In any case,

A76, page 2 of 15



T. Whitbread et al.: Parameter optimization for surface flux transport models

−90 −60 −30 0 30 60 90
−20

−15

−10

−5

0

5

10

15

20

Latitude

V
e

lo
c
it
y
 (

m
s−

1
)

Fig. 1. Three examples of the meridional flow profile in Eq. (3) for
v0 = 15 m s−1, p = 2 (cyan), p = 5 (magenta) and p = 10 (black).

the true functional form of the observed meridional circulation
is uncertain, particularly at high latitudes.

In order to define the initial conditions, we use the profile of
Svalgaard et al. (1978):

B (θ, 0) = B0 |cos θ|7 cos θ, (4)

where B0 is left as a parameter to be optimized. Figure 2 (red)
shows a crude fit of this expression to the observed profile from
1910 CR (blue). Whilst the observed profile is asymmetric across
the equator and reveals some activity present at the equator, the
prescribed profile represents a typical cycle minimum and en-
sures that the choice of initial profile is not hindering the opti-
mization process, but rather aiding it with some flexibility. With
this form of initial condition we can also be consistent across all
regimes. Optimization runs performed using the observed initial
condition show that the choice of initial condition in fact has a
negligible effect on the optimal butterfly diagram.

2.2. Ground-truth data

As ground-truth data for optimization of the model, we use
radial-component magnetogram data from US National Solar
Observatory, Kitt Peak, in the form of full-disk images. Prior
to 2007 CR, these came from the Kitt Peak Vacuum Telescope,
while from 2007 CR onwards we use Synoptic Optical Long-
term Investigations of the Sun (SOLIS) data2. To minimize noise
in the polar regions of the map, we correct the butterfly diagram
by calculating a cubic spline interpolation at each latitude of an-
nual average measurements of high-latitude fields (poleward of
±75◦) which were observed with a preferable solar rotation axis
tilt angle. A combination of real and interpolated data is used
for the regions between ±60◦ and ±75◦ (see Petrie 2012). The
resulting butterfly diagram is interpolated onto a uniform time
grid at daily intervals. This is averaged over periods of 27 days,
smoothed using a Gaussian filter to bring the unsigned flux down
to a comparable level to the simulation, and finally sampled at
the resolution of once per Carrington rotation. It should be noted
that recently the SOLIS magnetograms were uniformly repro-
cessed and recalibrated. The butterfly diagram used here was
made after this reprocessing.

1 https://dataverse.harvard.edu/dataverse/solardynamo
2 http://solis.nso.edu/0/vsm/vsm_maps.php
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Fig. 2. Comparison between initial magnetogram (blue) and the profile
given in Eq. (4) (red) with B0 = 8 G.

2.3. Optimization algorithm

To search for optimal parameter sets where the model matches
the observed butterfly diagram, we use the genetic algorithm
PIKAIA 1.2. It was written by Charbonneau & Knapp (1995)
at the High Altitude Observatory (HAO) of the National Center
for Atmospheric Research (NCAR) and is publicly accessible3.
PIKAIA is an evolutionary algorithm originally written in

FORTRAN-77. It is particularly effective for multimodal opti-
mization problems, taking advantage of crossover and mutation
operators which can induce jumps in parameter space, allow-
ing for greater exploration and reducing the chances of getting
trapped at a local maximum which is not the global maximum.

The algorithm generates multiple random parameter sets,
each entry within a user-defined range, and performs a model
simulation for every parameter set, or “population member”. The
population are ranked by “fitness” according to a user-defined
“fitness function” which, in the case of model optimization,
would usually be a comparison between a real reference case
map and a model-generated map.

The highly ranked population members have a greater
chance of being selected for the crossover or “breeding” process
whereby sections of corresponding parameter strings from two
members are interchanged to produce “offspring”, with the aim
being that an individual will be produced with desirable features
of both “parents” and become the fittest in the population. To
increase variability and hence the likelihood for population im-
provement, random mutation is included, though this is a much
slower process than crossover.

The crossover-mutation process is run over a user-defined
number of generations. Whilst PIKAIA is inherently stochastic
and so finding an “acceptable” fit is never guaranteed, a large
enough choice for the evolution period should ensure that the
combined effect of the crossover and mutation operators has
enough time to discover sufficiently fit population members.

For a more detailed introduction to PIKAIA and genetic al-
gorithms in general, see Charbonneau (2002a,b).

In order to reduce the duration of computationally in-
tensive optimizations, Metcalfe & Charbonneau (2003) created
MPIKAIA , a freely accessible implementation of PIKAIA 1.2 in

3 http://www.hao.ucar.edu/modeling/pikaia/pikaia.php
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MPI4. Rather than using a single processor for all model evalu-
ations, a network of computers is used, and each of the model
evaluations from a single generation is sent to a separate proces-
sor and computed simultaneously, achieving near-perfect paral-
lelization. The time taken to complete the optimization therefore
is entirely dependent on the number of generations. For exam-
ple, for the 1D optimization problem in this paper, each model
simulation takes approximately 90 s, so, with 46 processors, the
runtime is brought down from 24 days to about 12.5 h for 46 pop-
ulation members evolved over 500 generations. These choices of
population size and evolution period should be large enough to
obtain good fits to the data, and will be used for the remainder
of the paper unless specified.

2.4. Accounting for uncertainties in observations

The χ2 statistic is used as a measure of fit between the real and
simulated butterfly diagrams:

χ2 =
1

n − k

∑
i, j

(
Bobs

(
θi, t j

)
− B

(
θi, t j; x

)
σ(θi, t j)

)2

, (5)

where n is the number of gridpoints and x is the vector of k free
parameters. Since improving best fit is a minimization process
and PIKAIA is set up to maximize functions, the reciprocal of
the measure, χ−2, is used as the necessary fitness function. The
variance σ2 describes the error in both the measurements and the
models, and we assume the form:

σ2(θi, t j) = σ2
obs(θi, t j) + σ2

model. (6)

The variance plays two roles in the optimization. Firstly, it gives
a meaningful value to the χ−2 statistic. This allows us to com-
pare the performance of different parameter combinations and
time periods. Secondly, it effectively weights distinct locations
(θi, t j) differently in the optimization, since the observed errors
are assumed to have the form:

σobs(θi, t j) =
0.1

∣∣∣Bobs
(
θi, t j

)∣∣∣ + ε

sin θi
, (7)

where ε is some small increment to ensure that the error is
non-zero even in regions of low Bobs. This error structure re-
flects the uncertainties and inconsistencies in photospheric mag-
netic field observations (e.g., Riley et al. 2014). The factor of
sin θ allows for the fact that the errors are in the original line-
of-sight measurements, whereas Bobs is the inferred radial field
(Svalgaard et al. 1978). Overall, the effect of this error struc-
ture reduces the weight of observations both near the pole and
in strong active regions. The resulting optimization will favour
accuracy in the mid-latitude “transport regions”. A further im-
provement of the χ−2 statistic would be to include correla-
tion between data points, but for simplicity here we assume
independence.

Since the model error structure is unknown, we compute χ−2

with σmodel = 0. This is sufficient for the purpose of comparing
different model runs against the same set of observational data,
with a higher value of χ−2 indicating models that give a better
match. The simulations are not sufficiently detailed to achieve a
significant match at, say, the 99% level, which is evident from
visual inspection of the butterfly diagrams. To achieve such a
close match would be very challenging, since the large numbers

4 http://www.hao.ucar.edu/Public/about/Staff/travis/
mpikaia/

of degrees of freedom n − k ∼ 16 000–30 000 mean that the 99%
interval for the χ−2 statistic is narrow, typically [0.98, 1.02].

In principle, we could estimate σmodel by increasing it and
broadening the 99% interval until the value of χ−2 falls within
this interval. This would give a meaningful estimate of the
“model error” in a particular run. But this would not change the
ordering of different model runs, or indeed the final optimal pa-
rameters, so we have not included such analysis here.

2.5. Results

2.5.1. Optimal parameters

In addition to v0, p and B0 as mentioned above, η and τ are
also included in the optimization, resulting in 5 parameters
to be optimized initially. Maximum and minimum limits are
prescribed based on results from literature and observations
(e.g., Schrijver et al. 2002; Hathaway & Rightmire 2010; Yeates
2014; Lemerle et al. 2015):

1. 100 km2 s−1 ≤ η ≤ 1500 km2 s−1;
2. 5 m s−1 ≤ v0 ≤ 30 m s−1;
3. 0 ≤ p ≤ 16;
4. 0 yr ≤ τ ≤ 32 yr;
5. 0 G ≤ B0 ≤ 50 G.

It should be noted that these ranges are deliberately made wider
than results from literature to allow for a deeper exploration into
the parameter space and to provide a better understanding of the
SFT model. Table 1a shows the results of the optimization, with
the corresponding optimal butterfly diagram in the top panel of
Fig. 3, and the interpolated NSO data for Cycle 23 discussed in
Sect. 2.2 in the bottom panel for direct qualitative comparison.

The equatorward migration of active regions is well repre-
sented by the BMR data, and large poleward surges are repro-
duced by the model. While the southern polar field reversal is
well approximated by the model, the reversal in the northern
hemisphere has a delay of approximately 5 CR. Furthermore,
there are multiple weak poleward surges in the simulated butter-
fly diagram, most noticeably around 2000–2020 CR, which do
not appear in the real butterfly diagram. This is likely to be a by-
product of approximating regions as BMRs and overestimating
the contribution of flux from smaller regions. This build-up of
flux results in a strong polar field that extends to lower latitudes,
requiring a short decay timescale as is found in the optimization.

2.5.2. Parameter analysis

During an optimization run, every single population member
generated by PIKAIA can be recorded, and so a range of
“acceptable” values can be obtained for each parameter. These
can be found in square brackets below each optimal value in
Table 1. The upper and lower bounds are taken to be the largest
and smallest values for each parameter which produce fits above
95% of the maximum χ−2. Anything within these limits is
classed as “acceptable”, though it must be noted that choosing
to fix one parameter can alter the optimal solutions and bounds
for others. Figure 4 shows such bounds, denoted by the left
and right vertical purple lines on each plot, for all parameter
populations from the optimization run that produced the optimal
set in Table 1a. The optimal values are highlighted by the central
vertical purple lines. Using the limits for v0 and p, acceptable
meridional flow profiles were also found which are represented
by the purple shading in the bottom right panel. The bold purple
profile represents the optimum profile.

A76, page 4 of 15

http://www.hao.ucar.edu/Public/about/Staff/travis/mpikaia/
http://www.hao.ucar.edu/Public/about/Staff/travis/mpikaia/


T. Whitbread et al.: Parameter optimization for surface flux transport models

Table 1. Optimal parameter sets for each optimization regime.

Regime χ−2 η v0 p τ B0 TAF BPAR
(km2 s−1) (m s−1) (yr) (G) (G)

Cycle 23
(a) 1D 0.89 351.6 14.0 3.24 2.4 16.5 1.00 n/a

[229.4, 546.9] [11.3, 22.5] [2.98, 4.50] [1.9, 3.5] [12.8, 20.9]
(b) 1D + TAF 1.09 373.5 11.0 2.44 3.7 11.7 0.55 n/a

[233.3, 582.8] [8.2, 16.5] [1.82, 2.96] [2.9, 6.1] [8.5, 14.8] [0.41, 0.61]
(c) 2D + BPAR 0.65 455.6 11.2 2.76 n/a 8.3 n/a 39.8

[371.6, 651.0] [8.6, 14.4] [1.64, 4.71] [5.3, 10.2] [31.7, 49.4]
(d) 2D + τ 0.67 453.5 9.6 2.15 4.5 12.9 n/a 39.8

[299.5, 807.7] [6.8, 15.2] [1.50, 3.95] [1.6, 30.3] [6.5, 18.4]
(e) 1D, fixed p 0.85 361.4 8.3 1.87 1.9 16.3 1.00 n/a

[220.1, 642.8] [7.4, 10.9] [1.5, 2.3] [11.8, 21.4]
(f) 2D, fixed p 0.64 482.1 11.5 1.87 n/a 9.7 n/a 39.8

[356.1, 712.9] [8.8, 15.2] [7.1, 12.8]
Cycle 21

(g) 2D 0.87 455.7 9.2 2.33 n/a 6.6 n/a 39.8
[342.7, 667.0] [6.6, 12.0] [1.33, 3.93] [4.5, 9.4]

Cycle 22
(h) 2D 0.84 506.2 8.7 2.18 n/a 10.5 n/a 39.8

[365.1, 760.9] [6.1, 11.7] [0.98, 3.60] [7.5, 13.8]
Cycle 24

(i) 2D 0.99 454.6 8.2 2.05 n/a 4.2 n/a 39.8
[292.6, 821.7] [5.4, 12.5] [0.62, 5.22] [2.6, 5.4]

Notes. Entries in bold represent parameters that were fixed for the corresponding run. Upper and lower bounds for acceptable parameter ranges
are given in square brackets below each entry. The ranges for regime (a) are presented visually in Fig. 4.
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Fig. 3. Top: butterfly diagram for the optimal parameter 5-set for the 1D
model in Table 1a. Bottom: ground truth data for Cycle 23.

The diffusion parameter η has not yet been accurately
measured, though some indirect measurements by Mosher
(1977) and Komm et al. (1995) have found values within
the range of 100–300 km2 s−1. Early simulations by Leighton
(1964) used values up to 1000 km2 s−1, though studies

by Baumann et al. (2004), Wang et al. (1989b) and Wang &
Sheeley (1991) decreased it to ∼ 600 km2 s−1, before Wang et al.
(2002b) reduced it further to 500 km2 s−1. Our optimal value
of 351.6 km2 s−1, however, is in better agreement with Yeates
(2014), who found that η ∈ [200, 450] km2 s−1 produced
a reasonable correlation between the butterfly diagrams, and
Lemerle et al. (2015) who found an optimal value of 350 km2 s−1

within an acceptable range of 240–660 km2 s−1 for Cycle 21.
Furthermore, Schrijver (2001) and Thibault et al. (2014) found
diffusion coefficients of 300 km2 s−1 and 416 km2 s−1 respec-
tively for random-walk-based models, and Cameron et al. (2016)
recently used a diffusion of 250 km2 s−1. The acceptable range
in Table 1a is broad but can be attributed to multiple degrees of
freedom in the optimization. The range covers most values dis-
cussed above.

The large-scale meridional flow is poorly constrained by ob-
servations, as discussed in Sect. 2.1. Nevertheless, our optimal
value of v0 = 14 m s−1 is in accordance with both the observa-
tions and simulations. Doppler measurements by Ulrich (2010)
estimated the maximum velocity to be between 14–16 m s−1 for
Cycles 22 and 23. Hathaway & Rightmire (2010) obtained an
average maximum velocity of 10–12 m s−1 for Cycle 23 via mag-
netic feature tracking, though crucially they observed that the
flow is slower (approximately 8 m s−1) at cycle maximum and
faster (11.5–13 m s−1) at minimum. This time-dependence could
be added to the model for greater realism, though it is not imme-
diately clear how it could be parametrized in the optimization.
Furthermore, they note that many SFT models use meridional
flows which go to zero poleward of ±75◦ latitude which is not
necessarily what is observed, as well as other deviations from ob-
servations. Upton & Hathaway (2014a) prescribed a profile with
a maximum velocity of 12 m s−1 and Baumann et al. (2004) used
11 m s−1. Yeates (2014) discovered that a range of 11–15 m s−1
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improves butterfly diagram correlation, and Wang et al. (1989b)
and Wang & Sheeley (1991) found that a range of 7–13 m s−1

was acceptable. Wang et al. (2002b) found that a maximum ve-
locity of 20–25 m s−1 accurately reproduced solar cycle features,
although they used a profile which differs significantly from
observations.

The theta component of the flexible meridional flow profile
in Eq. (3) was also used by Muñoz-Jaramillo et al. (2009). They
obtained a value of p = 2 by taking an average of helioseismic
data weighted by density and fitting it to the sinusoidal profile.
In this case p = 2 does not quite fall into the narrow acceptable
range for p. The bottom right panel of Fig. 4 shows that values
within this range generally correspond to a peak velocity at ±30◦
before slowing down to 0 m s−1 at ±75◦. As discussed above,
this is not necessarily in line with observations. Taking every
member of the population above the 95%χ−2

max threshold, we find
that the Pearson’s correlation coefficient between the acceptable
values for v0 and p is r = 0.86, indicating that increasing the
maximum velocity of the meridional profile generally requires
an increase in p. A faster velocity means that active regions are
transported away from the equator quicker. To counteract this,
a larger value of p narrows the band of latitudes at which the
velocity is fast, and additionally brings the maximum velocity
closer to the equator.

Another interesting result is that of 2.4 yr for the exponen-
tial decay time τ. Schrijver et al. (2002) found that a decay time
of 5–10 yr was necessary to replicate regular polar field rever-
sal, and Yeates (2014) found that a decay time of 10 yr pro-
duced a better fit between real and simulated butterfly diagrams.
Lemerle et al. (2015) found that exponential decay did not have
a large effect on the polar field reversal and decided to set
τ = 32 yr, effectively removing the decay term from the model.
However, our optimal value for τ is close to the lower prescribed

limit. This could be because of the model trying to account for
the unusually weak polar field at the end of Cycle 23 while, for
example, Lemerle et al. (2015) performed the optimization for
Cycle 21.

Figure 5 highlights the need for the decay term in the 1D
model when modelling Cycle 23. The purple curve, which rep-
resents the axial dipole moment obtained using the optimal pa-
rameter set in Table 1a, provides a better fit to the observed axial
dipole moment (blue) than the peach curve, which is produced
from the same parameter set but with the decay term omitted. In
this case the polar field becomes too strong and is not weakened
enough without the additional decay term. Jiang et al. (2015)
found that the decay term was not required to obtain a close
match between observed and simulated axial dipole moments,
when using active region data from Li & Ulrich (2012). As well
as using different active region data, a reduction in tilt angles
and a smaller value of η = 250 km2 s−1 were included to account
for the lack of the decay term. If we use similar parameters for
the 1D model, a better axial dipole moment fit is obtained at the
expense of an accurate butterfly diagram. Hence we stress that
the optimal values in Table 1 are with respect to the measure of
choice in Eq. (5), and other choices of metric might give different
results.

Of course, the choice of decay term is not independent of
the other parameters, and the Pearson’s correlation coefficient
between the acceptable values of v0 and τ is r = 0.81: an in-
crease in the flow speed corresponds to less trailing flux being
transported to the poles, so a fast decay to weaken the polar field
would not be required in the presence of a faster flow.

It should be noted that the decay term in Eq. (1) is not
directly observed and was added by Schrijver et al. (2002)
to produce regular polar field reversals over multiple cycles.
Wang et al. (2002a) overcame this problem by increasing the
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Fig. 5. Axial dipole moments calculated from observed data (blue), the
parameter set in Table 1a (purple), and the same parameter set but with
the decay term omitted (peach).

meridional flow speed for stronger cycles. Baumann et al. (2006)
gave a physical explanation of the decay term; namely, it is the
effect of radial (i.e., inward) diffusion of flux into the solar inte-
rior, which cannot be accounted for directly in the SFT model.
In spherical harmonics, different modes decay at different rates,
whereas in the exponential decay used by Schrijver et al. (2002),
all modes decay at the same rate. Baumann et al. (2006) found
that the lowest-order mode decayed the slowest at a rate of 5 yr
(with a corresponding volume diffusion of η = 100 km2 s−1),
in good agreement with the findings of Schrijver et al. (2002).
When we include this more sophisticated form of radial diffusion
in our model and perform the optimization, we find the lowest-
order mode to have an optimal decay time of τ1 = 2.7 yr (with
a corresponding volume diffusion of η = 190 km2 s−1), in good
agreement with the decay time found in Table 1a. Because of
this good agreement, we opt to continue to use the original ex-
ponential decay parameter.

The optimal value for B0 is significantly higher than that
used to approximate the initial profile in Fig. 2. This might be
attributed to the choice of functional form in Eq. (4); not enough
flux is prescribed between ±45◦ and ±80◦, so the algorithm com-
pensates for this by increasing the maximum flux at ±90◦. Alter-
natively, a strong initial polar field is also required to counteract
the short decay time needed to reproduce the weak polar field at
the end of Cycle 23.

2.6. Tilt angles

Some studies (e.g., Yeates 2014; Jiang et al. 2011) found that
multiplying the tilt angle of each BMR by a scaling factor re-
duces the polar field strength and improves polar field rever-
sal, since the reduced tilt inhibits equatorial cross-cancellation
and hence each magnetic region will contribute less to the ax-
ial dipole. A multiplicative tilt angle factor (TAF) is included
here as an extra parameter to be optimized within the range
0 ≤ TAF ≤ 1.5. Table 1b shows the results for the 6 parameter
case, with the corresponding butterfly diagram in the top panel
of Fig. 6.
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Fig. 6. Top: butterfly diagram for the optimal parameter 6-set for the 1D
model with reduced tilt angles in Table 1b. Bottom: ground truth data
for Cycle 23.

The optimal value of 0.55 for TAF is lower than that found by
Yeates (2014) (TAF ∼ 0.8) and Jiang et al. (2011) (TAF ∼ 0.72).
It predictably produces a weaker polar field than in the case
above where it was not included. Given that the main aim of the
algorithm is to reduce differences between the real and simulated
butterfly diagram pixels, it is reasonable to expect that the opti-
mization algorithm will rely heavily on diffusion and high ampli-
tudes of meridional flow to achieve weak polar fields, although
it should be noted that this effect is reduced by the weighting in
σ. Introducing the tilt angle factor as a means of reducing the
polar field allows for the decay time to increase and the max-
imum meridional flow velocity to decrease, suggesting a deli-
cate balance between the parameters and the roles they play in
the model. While the polar field strength is better approximated
in this case, the active regions are much weaker than in the 5-
parameter case, and polar field reversal occurs later in the sim-
ulation in both hemispheres. The fitness value of χ−2 = 1.09 is
above the 99% interval given in Sect. 2.3, which seems to indi-
cate that the model matches the observations better than a ran-
domly chosen map from the observed distribution. This is plainly
a limitation of the χ−2 statistic; in particular, it likely indicates
the presence of a significant σmodel term possessing a more com-
plex structure over θ and t. In principle, it could be caused by too
large a prescribed σobs, or by the relatively strong assumption
of independence, or possibly over-fitting of the model, although
the latter is unlikely given the small number of parameters in the
model. It should be noted that the scaling of tilt angles is not a
physical phenomenon, rather a method of reducing the flux in the
model, though Cameron et al. (2010) argued that scaling the tilt
angle by a factor of 0.7 mimics the effect of inflows around active
regions. Moreover, Dasi-Espuig et al. (2010) found an inverse
correlation between cycle strength and tilt angle, suggesting that
tilt angle variation plays a significant role in polar field variation.
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3. Two-dimensional model

Yeates et al. (2015) developed a 2D model5 which assimilates
specific shapes of magnetic regions into the simulation on the
day of emergence. The aim of the model is to better assimilate
strong, multipolar regions, which are not accurately portrayed
in a simpler bipolar form, as in the 1D model above, with the
hope of simulating a more realistic photospheric field. This se-
lection feature requires the model to be 2D. The model is fully
automated, providing consistent highlighting of strong magnetic
regions, and is designed to replace pre-existing regions rather
than superimposing new ones. The SFT equation for the radial
component of the magnetic field in 2D, B (θ, φ, t), is:

∂B
∂t

= − ω (θ)
∂B
∂φ

+
η

R2
�

[
1

sin θ
∂

∂θ

(
sin θ

∂B
∂θ

)
+

1
sin2 θ

∂2B
∂φ2

]
−

1
R� sin θ

∂

∂θ
(v (θ) sin θ B) −

1
τ

B + S (θ, φ, t), (8)

where ω represents differential rotation and all other parame-
ters are identical to those in Eq. (1). Note that differential rota-
tion averaged out and so played no role in the axisymmetric 1D
model. Rather than using a spectral method like the 1D model,
the evolution equations (for the vector potential) are solved in
the Carrington frame using a finite-difference method on a spa-
tial grid of 180 cells equally spaced in sine-latitude and 180 cells
equally spaced in longitude. Unlike meridional flow, differential
rotation is well constrained by observations, and in the model is
parametrized as (Snodgrass & Ulrich 1990):

ω (θ) = 0.521 − 2.396 cos2 θ − 1.787 cos4 θ deg day−1. (9)

The 2D model contains a parameter BPAR which determines
the threshold above which magnetic flux is assimilated into
the simulation, in the form of individual strong-flux regions.
Yeates et al. (2015) chose the threshold of BPAR = 15 G in order
that the difference between the observed unsigned flux and simu-
lated unsigned flux (due to the smoother magnetic field distribu-
tion) remained approximately constant. This parameter is sub-
sequently added to the optimization. If given enough freedom,
the algorithm would gradually reduce BPAR, allowing more and
more magnetic regions to be inserted until the original synop-
tic map is essentially copied in (analogous to BPAR ∼ 0 G). To
avoid this, the lower bound is set at 10 G with an upper bound
of 50 G. Figure 7 shows snapshots of 1928 CR from four simu-
lations with alternative values of BPAR between 10 G and 50 G,
and all other parameters fixed. As the threshold BPAR increases,
fewer active regions are assimilated into the simulation.

3.1. Five-parameter optimization

The synoptic magnetograms from NSO Kitt Peak are used
to identify strong regions for assimilation. For simplicity,
Yeates et al. (2015) did not incorporate exponential decay into
the model as in Eq. (1). We perform optimization runs for the
model both without decay and with the decay term included. Ini-
tially we consider the former case. Aside from BPAR, parame-
ters are given the same upper and lower limits as in Sect. 2.5.1.
Table 1c shows the results of the optimization. The correspond-
ing butterfly diagram is shown in the top panel of Fig. 8.

The 2D model qualitatively improves the butterfly diagram,
with active regions predictably more accurate, leading to the in-
clusion of more poleward surges in the simulation which can be

5 https://github.com/antyeates1983/sft_data
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Fig. 7. Four snapshots of 1928 CR from simulations with active regions
selected by different values of the magnetic flux threshold BPAR and all
other parameters fixed. Here BPAR increases from left to right and top
to bottom.
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Fig. 8. Top: butterfly diagram for the optimal parameter 5-set for the 2D
model with varying BPAR in Table 1c. Bottom: ground truth data for
Cycle 23.

identified in the observed butterfly diagram (though the gradient
and strength of each surge is not always correct), and a more re-
alistic polar field. The optimal parameters in Table 1c are within
the range of other results from simulations and observations de-
scribed in Sect. 2.5.2. A diffusivity of η = 455.6 km2 s−1 is a
stronger diffusivity than in the 1D model, but the inclusion of an
exponential decay term is expected to reduce this. An increased
diffusivity is somewhat supported by Virtanen et al. (2017), who
used a value of η = 400 km2 s−1 in the same 2D model but for
a single simulation of multiple cycles. The range and optimal
value for v0 is lower than for the original 1D case, indicating
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that there can be inherent differences between models. More-
over, Virtanen et al. (2017) found that a value of v0 = 11 m s−1

correctly reproduced shapes of poleward surges and polar fields,
in excellent agreement with our optimal value.

Figure 9 shows every generated value of BPAR against χ−2.
The central vertical line indicates the optimum value of 39.8 G,
with the left and right vertical lines denoting the acceptable range
for BPAR, as in Fig. 4. The value of 15 G used by Yeates et al.
(2015) is outside of this range, and for the remainder of the 2D
optimizations, BPAR is fixed at the optimal value of 39.8 G to
attain consistency. This should ensure that only newly emerging
regions are inserted for each Carrington rotation. However, the
presence of the strong mid-latitudinal region of positive flux in
the northern hemisphere at 2000–2020 CR could be attributed to
the choice of large BPAR, since smaller regions of negative flux
which would otherwise cancel out this positive flux are not being
assimilated. The bottom left panel of Fig. 7 closely represents the
scenario when BPAR is set at its optimal value. Virtanen et al.
(2017) used a threshold of BPAR = 50 G, and this lies just out-
side of our acceptable range. Comparing the bottom two panels
of Fig. 7, however, shows that the differences between our opti-
mal value and their chosen value are minor.

3.2. Incorporating exponential decay

As discussed above, the decay parameter τ was originally added
to the SFT model to produce regular polar field reversals. The
2D model did not initially take account of this decay time, but
we incorporate it to assess whether the optimal value in Table 1a
is reasonable.

As shown in Fig. 10, including the decay term improves tim-
ing of polar field reversal by 5–10 CR, but is not enough to repli-
cate the observed reversal time. Poleward surges are generally
wider in the simulation, leading to the reduction of some mid-
latitude features, most notably the strong surge of positive flux
at 2000–2020 CR in the northern hemisphere, which is more vis-
ible in Fig. 8.
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Fig. 10. Top: butterfly diagram for the optimal parameter 5-set for the
2D model with varying τ in Table 1d. Bottom: ground truth data for
Cycle 23.

The optimization results are shown in Table 1d. Surprisingly,
the addition of an extra decay term induces a minimal decline in
diffusion, and it is not enough to bring it down to 351.6 km2 s−1

as found in the 1D case. Rather, B0 increases to account for the
stronger decay of the polar fields in this regime. Most signifi-
cantly, we obtain an optimal value of τ = 4.5 yr. This is higher
than the optimum found in the 1D model and in closer agree-
ment with Schrijver et al. (2002), although the acceptable range
is considerably wider towards the upper limit, indicating that a
decay term may not be required in the assimilative model. This
is supported by the value of χ−2 which does not increase signifi-
cantly with the addition of the decay term. Furthermore, Fig. 11
shows that the axial dipole moments calculated using the optimal
parameter sets for the 2D model, with and without the exponen-
tial decay term (brown and green curves respectively), both pro-
duce good fits to the observed profile (blue). This indicates that
the method of new flux assimilation in the 2D model is better
able to account for the weak polar field at the Cycle 23/24 min-
imum than the idealized BMRs used in the 1D model, since it
does not require an additional decay term. Coupled to the short
optimal decay timescale are smaller optimal values for v0 and
p, suggesting that the relationships and correlations discussed in
Sect. 2.5 also hold for the 2D case.

4. Comparison with meridional flow observations

Although observations of the meridional flow are not yet fully
reliable, we can use the data that are available to try to add a
further constraint to the optimization.

David Hathaway kindly provided us with measurements
of the meridional flow for Solar Cycle 23, calculated by
tracking features in images from the Solar and Helio-
spheric Observatory (SOHO), Michelson Doppler Imager
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Fig. 11. Axial dipole moments calculated from observed data (blue),
the parameter set in Table 1c (green), and the parameter set in Table 1d
(brown).

(MDI; Scherrer et al. 1995). The data were supplied as coeffi-
cients of the following parametrization:

v (θ) =
(
C0 + C1 cos θ + C2 cos2 θ + C3 cos3 θ + C4 cos4 θ

+ C5 cos5 θ
)

sin θ. (10)

The meridional flow measurements for each Carrington rota-
tion are shown in Fig. 12 (blue curves). The observations tend
to follow either a fast or slow flow, highlighted by denser blue
areas, indicating the dependence on time and that the flow tran-
sitions between the two extremes throughout the cycle. Addi-
tionally, for a small number of Carrington rotations an equator-
ward counterflow is observed at high latitudes, though it should
be noted that such a counterflow was not visible in HMI data
(Hathaway & Upton 2014). The choice of flexible profile in
Eq. (3) does not allow for this phenomenon.

The optimal profile using the parameters from the 1D op-
timization in Table 1a is shown in purple in Fig. 12 for com-
parison. Whilst the observed and optimal profiles are similar in
shape, the optimal profile is too fast and reaches its peak at a
slightly lower latitude. Moreover, the observed profiles tend to
extend beyond ±75◦ but the optimal profile chooses to go to zero
throughout the polar regions, giving a possible explanation as to
why many SFT models incorporate this feature. Furthermore, the
1D optimal profile remains almost completely within the bounds
given by the observations, excluding at its peak in the northern
hemisphere for which asymmetry in the observations can be held
responsible.

The green and brown profiles in Fig. 12 represent the optima
for the 2D model excluding and including exponential decay re-
spectively. Both profiles are fully contained within the observa-
tional limits, except for a small section of the brown curve in
the southern hemisphere which is due to a lower than average
maximum velocity. Of the three optimal profiles, the 2D regime
without decay matches the average observed profile the clos-
est, whilst the decay-enhanced flow is slightly slower (though
Hathaway & Rightmire 2010, observed speeds of 8 m s−1 at cy-
cle maximum). It does, however, continue to latitudes poleward
of ±70◦, almost emulating the observational data. One limitation
of tracking magnetic features to measure the meridional flow is
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Fig. 13. Comparison of average observed (blue) and fitted (red) merid-
ional flow profiles.

that it is not always easy to distinguish between the effects of the
meridional flow and the effects of supergranular diffusion. For
this reason, flows derived from feature tracking tend to peak at
higher latitudes (e.g., Dikpati et al. 2010, Fig. 1), giving a possi-
ble explanation as to why the observed curves in Fig. 12 tend to
peak at higher latitudes than the modelled curves.

We use a non-linear least-squares fitting method to fit the
parametrized form of the meridional flow in Eq. (3) to the aver-
age observed coefficients given by David Hathaway to ensure it
is actually possible to match the observed profile. The average
observed and fitted profiles, shown in Fig. 13 (blue and red re-
spectively), match closely for v0 = 11.3 m s−1 and p = 1.87,
and slight asymmetry in the average observed profile is con-
firmed. This value of p is close to that of Muñoz-Jaramillo et al.
(2009) and is within the acceptable ranges for p in the above
2D regimes, but is outside the equivalent range in the 1D opti-
mization run, whence we infer that the 1D model requires the
maximum velocity to be closer to the equator than is observed.
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Fig. 14. Top: butterfly diagram for the optimal parameter 4-set for the
1D model with fixed p = 1.87 in Table 1e. Bottom: ground truth data
for Cycle 23.

Given that the parametrization is able to closely fit the ob-
served data, we could fix one of the velocity-related parameters,
say p, to the observed value and perform optimization runs for
the two models. We choose p because the model is generally
less sensitive to the choice of v0, and p = 1.87 is outside the
acceptable range for the 1D model.

The optimization results with p fixed in the 1D model are
shown in Table 1e. The value p = 1.87 corresponds to a maxi-
mum velocity at ±35◦, meaning poleward transport is slower at
low latitudes. This results in more flux cancellation across the
equator and so more trailing flux is present in the transport re-
gions, as observed in the top panel of Fig. 14. This feature ap-
pears to be a common occurrence in the standard SFT model
(cf. Figs. 3 and 6). The upshot of this numerically is that the se-
lected decay time of 1.9 yr is even shorter than in the original
1D case to counteract the large amounts of flux accumulating at
the poles. This couples with a slow velocity, made even slower
by the small value of p, adhering to the relationship found in
Sect. 2.5. The timing of polar field reversal, meanwhile, is re-
produced reasonably accurately. Except for a marginally smaller
value of χ−2, fixing p does not significantly hinder the quantita-
tive performance of the 1D model, even though p = 1.87 is not
in the acceptable parameter range for regime (a).

With the higher-latitudinal velocity peak and the absence of
τ in the 2D model, the resulting diffusion value given in Table 1f
is slightly larger than in previous regimes. Contrary to expecta-
tion, the optimal maximum velocity is higher than the previous
2D cases, but still with wide error bounds. Given that p = 1.87
lies within the acceptable range in regime (c), it is reasonable
to expect that optimal values and associated ranges would be in
line with results in Sect. 3 and hence observations and previous
studies. Consequently the optimal butterfly diagram (top panel
of Fig. 15) confirms this, offering only subtle changes to Fig. 8,
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Fig. 15. Top: butterfly diagram for the optimal parameter 3-set for the
2D model with fixed p = 1.87 in Table 1f. Bottom: ground truth data for
Cycle 23.

for example a polar field restricted to higher latitudes due to the
increase in diffusivity.

5. Other solar cycles

With its automated assimilation of active region data, the 2D
model can easily be adapted for other cycles, provided there is
sufficient data available. Evaluations of Cycles 21, 22 and 24
(up to the end of 2015) using NSO data have been carried out to
search for cycle-to-cycle variation.

5.1. Cycle 21

Table 1g shows the optimum parameters for Cycle 21 (1st May
1976−10th March 1986). Both η and v0 are in agreement with
previous studies. Most notably, v0 = 9.2 m s−1 is slower than
the maximum speed of Cycle 23, supporting Upton & Hathaway
(2014a): a faster flow in Cycle 23 would have resulted in a
weaker polar field at cycle minimum since leading flux is taken
away from the equator quickly and so has less time to cancel
across the equator. This optimum value, however, is just outside
the range of 10–13.2 m s−1 as found by Komm et al. (1993) using
feature tracking during Cycle 21. Conversely, this range overlaps
with a large portion of the 95% confidence interval obtained by
the optimization population.

The interpolated NSO data is shown in the bottom panel of
Fig. 16 with the corresponding simulated butterfly diagram in
the top panel of Fig. 16. Aside from a negative-polarity obser-
vational artefact in the northern hemisphere at 1680 CR, many
features of active regions are well reproduced. There are three
instances of large concentrations of opposite flux being trans-
ported polewards in the northern hemisphere; the latter of these
is over-estimated by the simulation and this could be attributed
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Fig. 16. Top: butterfly diagram for the optimal parameter 4-set for the
2D model in Table 1g. Bottom: ground truth data for Cycle 21.

to the model incorrectly reading in the corresponding emergence
region. Polar field reversal for both poles is too late in the model,
particularly in the northern hemisphere where the difference is in
the region of 10 CR.

Lemerle et al. (2015) performed a similar optimization pro-
cess for Cycle 21 using a 2D model and a BMR database com-
piled by Wang & Sheeley (1989). Although they used a differ-
ent parametrization for the meridional flow and different sources
of flux, their optimal parameter ranges for η and v0 were in
good agreement with those in Table 1g. The diffusion coeffi-
cient η = 455.7 km2 s−1 lies within their acceptable range of
240–660 km2 s−1 and v0 = 9.2 m s−1 falls between 8–18 m s−1

as calculated by PIKAIA in their study. They used the following
functional form to represent meridional flow:

v (θ) = −v0 erfq (v sin θ) erf (w cos θ) . (11)

The optimization returned values of v0 = 12 m s−1, q = 7, v = 2
and w = 8. This gave a profile similar to that of Wang et al.
(2002b), but with a less extreme steep gradient at the equator.
However, when normalized, the profile shape was comparable
to the observed profile formed from Doppler measurements ob-
tained by Ulrich (2010), and the observed profile lay well within
the error bars for the optimal solution, except for some return
flows at high latitudes, which were not incorporable in Eq. (11),
mirroring the limitation of our parametrization in Eq. (3). Us-
ing a non-linear least-squares fitting method, we are able to at-
tempt to fit the functional form in Eq. (3) to the versatile merid-
ional profile in Eq. (11). The best fit corresponds to values of
v0 = 13.6 m s−1 and p = 3.88. This value for v0 is in agreement
with observations and acceptable ranges for other regimes, but is
above the range for Cycle 21. Despite lying within the acceptable
range, p = 3.88 favours the high values for p obtained from opti-
mization runs as opposed to the lower values extracted from ob-
servational data. This could suggest an inherent flaw within the
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Fig. 17. Top: butterfly diagram for the optimal parameter 4-set for the
2D model in Table 1h. Bottom: ground truth data for Cycle 22.

SFT model whereby the model performs better when the maxi-
mum velocity is prescribed to be closer to the equator.

5.2. Cycle 22

Table 1h shows the optimization results for Cycle 22 (10th
March 1986–1st June 1996). The fit is marginally worse than
for Cycle 21, but optimal values for η and v0 remain within in
plausible ranges. The optimal diffusion in this case increases
to 506.2 km2 s−1, but is in better agreement with Wang et al.
(2002b). The optimal maximum velocity for Cycle 22 is even
smaller than that of Cycle 21, further supporting the fact that a
slower meridional flow results in a stronger polar field at cycle
minimum, and explaining the high optimal maximum velocity
for Cycle 23. van Ballegooijen et al. (1998) performed SFT sim-
ulations for Cycle 22 with η = 450 km2 s−1 and v0 = 11 m s−1

which produced polar field strength in agreement with observa-
tions. Again, these values are in accordance with ranges given in
Table 1h.

The ground truth data is shown in the bottom panel of Fig. 17
and the simulated butterfly diagram is in the top panel of Fig. 17.
The model has recreated polarity reversal much more success-
fully here, with only a slight delay in the north. Towards the end
of the cycle there is a large build-up of positive flux and some
weak, but visible, poleward surges in the northern hemisphere
that have appeared in the simulation but are not observed in the
real butterfly diagram.

5.3. Cycle 24 (so far...)

Table 1i shows the results for the first half of Cycle 24 (3rd
August 2008–1st January 2016). We obtain a much higher value
of χ−2 for Cycle 24 compared to previous cycles, but we suspect
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Fig. 18. Top: butterfly diagram for the optimal parameter 4-set for the
2D model in Table 1i. Bottom: ground truth data for Cycle 24.

that this is due to the relative ease of modelling only half a
cycle as opposed to modelling long-term effects. The diffusiv-
ity η = 454.6 km2 s−1 is within viable ranges found in literature,
though the maximum velocity is close to the lower prescribed
bound. The initial polar field B0 = 4.2 G is lower than in previous
cycles as the model needs to replicate the weak polar field at the
Cycle 23/24 minimum. Acceptable ranges of parameters are gen-
erally broad, but performing the optimization on the full cycle in
the next few years should tighten the upper and lower bounds. In-
deed, when a similar optimization process is performed on half
of Cycle 23, the acceptable ranges are found to be wider, though
the shorter time period has a negligible effect on the specific op-
timal values.

The interpolated Kitt Peak data is shown in the bottom panel
of Fig. 18 with the corresponding simulated butterfly diagram
in the top panel of Fig. 18. Although a large portion of the cy-
cle is yet to take place, there are still some notable features,
such as the prominent leading-polarity region between 2100 CR
and 2110 CR in the northern hemisphere. This region was the
primary subject of Yeates et al. (2015). Polar field reversal is
slightly late in the simulated butterfly diagram; performing an
optimization once the full cycle has completed might remedy
this, though a region of negative polarity in the northern hemi-
sphere at 2160 CR may not correctly be reproduced, unless the
data is corrected.

Including exponential decay in the model for Cycles 21, 22
and 24 produces optimal values of τ = 10.2 ∈ [3.1, 32.0] yr,
τ = 7.6 ∈ [3.1, 32.0] yr and τ = 15.1 ∈ [2.5, 32.0] yr respec-
tively. These are in better agreement with Schrijver et al. (2002)
and Lemerle et al. (2015), indicating that the low optimal value
for τ may only be necessary in Cycle 23 in order to success-
fully reconstruct the unusually weak polar fields at Cycle 23/24
minimum.

6. Conclusions

The aim of this paper was to use a genetic algorithm to find
optimal parameters to be used in surface flux transport simu-
lations, subsequently helping us understand the behaviour and
interplay of the many physical processes on the Sun. We began
by obtaining optimized parameter sets for a 1D SFT model for
Cycle 23, both with and without a multiplicative tilt angle factor.
From these simulations we obtained viable ranges for parame-
ters. We found that these ranges and optimal solutions were in
good agreement with results from previous studies and from ob-
servations. We also looked at the interaction of parameters, high-
lighting the positive correlations between the meridional velocity
parameters v0 and p, and exponential decay time τ.

We repeated the optimization process on a 2D assimilative
model and found that optimum parameters were mostly within
ranges of those from the 1D case, but distinct enough to suggest
that the differences between models could be important. We also
found an optimum value for the assimilation threshold, which
was significantly greater than used previously by Yeates et al.
(2015). Qualitatively, the 2D model produced a more accurate
butterfly diagram than the 1D model, particularly at the poles.
We also included an exponential decay term in the 2D model
which produced an optimal value of 4.5 yr, which lies outside
the acceptable range found in the 1D case and is in agreement
with the values obtained by other authors. Including decay in-
duced a decrease in the velocity parameters, but given that the
acceptable range extended to the upper limits of exploration, its
inclusion may not be necessary in the 2D model. There is the
possibility that we did not model decay realistically, which could
have led to a strong polar field. That the 2D model was able to
give an acceptable match to the observed butterfly diagram and
axial dipole moment without a decay term is evidence that it is
superior to the 1D model, which was unable to do so with the
corresponding optimal parameters. It suggests that the method
of flux assimilation in the 2D model is superior to the insertion
of idealized BMRs, as used both in the 1D model and in most
other SFT models.

We were then able to compare the optimal meridional pro-
files from different regimes with observations made from feature
tracking. The profiles from regimes (a), (c), and (d) were each al-
most completely within the range of observed flows, but the 1D
optimal profile was faster than the average observed flow, while
the 2D profile with decay included was too slow. The 2D profile
without an extra decay term, however, best matched the average
observed profile. Fixing the observed profile in both models re-
sulted in varied success; the 2D model was able to accommodate
the observations comfortably, whilst the 1D model saw a reduc-
tion in most parameters and a butterfly diagram containing an
excess of flux in the transport regions.

Finally, the optimization process was repeated using the 2D
model for Cycles 21, 22, and 24, producing plausible results for
Cycles 21 and 22; Cycle 24 may need more time to progress
to capture the long-term effects of the cycle in the optimal pa-
rameters, particularly in narrowing some of the range of viable
solutions, although an optimization run performed over the same
period of time for Cycle 23 showed that the optimal parameters
themselves are barely affected; it was just the ranges of accept-
able values which widened due to fewer constraints. In order to
predict the axial dipole moment at the Cycle 24/25 minimum
and hence the amplitude and length of Cycle 25, randomly gen-
erated magnetic regions with properties based on empirical rela-
tions must be used to simulate the remainder of the cycle (e.g.,
Upton & Hathaway 2014b; Cameron et al. 2016). Analysis of
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multiple cycles highlighted significant differences in meridional
circulation speed, supporting the evidence for slower meridional
flows during stronger cycles, and initial profile strength, support-
ing the proposed relationship between cycle strength and polar
field strength at the preceding cycle minimum. Our multiple cy-
cle analysis also highlighted cycle-dependence of the decay term
τ. At present, the best form and magnitude of such a decay term
remain to be determined by the community. However, our results
(and the others mentioned) do suggest that it can help to improve
the match with observations, at least for Cycle 23. It is intrigu-
ing that it seems to be less important for the preceding cycles.
This could either be because the decay is compensating for some
other deficiency of the model that has changed in Cycle 23, such
as the inability to reproduce the unusually weak polar field at the
end of the cycle, or the radial diffusion of flux did really change
from one cycle to the next, presumably due to some difference
in the flows and magnetic field in the convection zone. This is
an interesting subject for future study, but is beyond the scope
of this paper where we consider only the surface. All optimiza-
tion runs were performed with respect to a prescribed variance
which was proportional to both latitude and Bobs, chosen to cor-
respond to uncertainty in observational data. It should be noted
that comparing fitness values is always with respect to the cho-
sen error structure in this paper. For other studies of modelling
Cycle 23 see, e.g., Schrijver & Liu (2008), Yeates et al. (2010),
Yeates & Mackay (2012), Jiang et al. (2013).

While the flexibility in the problem is beneficial in the re-
spect that it allows more freedom, it can also have drawbacks.
For example, the choice of fitness function is crucial to de-
ciding which regime or parameter choice is “best” for each
model, but depends entirely on what the user regards as im-
portant. Lemerle et al. (2015) used a combination of χ2 statis-
tics which measured the differences between real and simulated
time-latitude maps, axial dipoles and “transport regions” (lati-
tudes ±34◦ to ±54◦). These statistics were balanced equally in
the final fitness function. Weighting could have been applied in
favour of particular features, though it is not obvious how best
to put this into practice. Alternatively, weighting could be ap-
plied to different sections of the map, i.e., active, transport and
polar regions, to force the algorithm to return parameters which
produce those specific regions more accurately. We chose a com-
parison between the real and simulated time-latitude maps, with
an associated error structure, as we considered the general repro-
duction of the whole map to be foremost in importance.

The adaptability of the 2D model provides a wide scope of
possible future directions. One such direction is testing variabil-
ity between different measuring instruments to ascertain whether
inconsistent literature results could simply be due to the choice
of observatory or satellite. This comes with the issue of either de-
ciding on or computing an appropriate value for the assimilation
threshold BPAR for different datasets. Another future possibility
that takes advantage of the model’s assimilation technique is to
optimize multiple cycles at the same time. We have shown that
there exists variation in parameters between cycles, so a single
optimal parameter set for more than one cycle would be unre-
alistic. An alternative method would be to treat each cycle sep-
arately, coupled only at each cycle minimum, where the final
profile of the previous cycle becomes the initial profile of the
next.

Our methodology assumes a static meridional flow. The in-
clusion of a time-varying meridional flow in the optimization
could significantly alter results, however parametrizing time-
dependence without introducing too many parameters is not a
trivial procedure. On the other hand, large-scale inflows towards

active regions were first observed by Gizon et al. (2001), and
Cameron & Schüssler (2012) proposed that these flows were at
least partially responsible for variation of meridional flow over
the solar cycle. Indeed, Martin-Belda & Cameron (2016) found
that the inflows increased the effect of flux cancellation and also
reduced the latitudinal separation of polarities, thereby decreas-
ing the axial dipole moment contribution of a bipolar region.
This process weakens the polar field in the same way that a
time-dependent meridional flow can, and although we have not
accounted for inflows in this study, it is an option under consider-
ation for future work. An alternative method for reducing the po-
lar field is using a flux-dependent diffusion parameter whereby
the presence of a strong magnetic field quenches diffusion (e.g.,
Muñoz-Jaramillo et al. 2011).

In the near future we hope to use PIKAIA to optimize a kine-
matic 3D dynamo model (Yeates & Muñoz-Jaramillo 2013) us-
ing the results in this paper to constrain the surface evolution.
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