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ABSTRACT

Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters
for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and
provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar
Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in
the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The
genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and
radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent
error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization
process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the
ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and
observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by
magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences
between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the
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behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

Key words. Magnetohydrodynamics (MHD) — Sun: activity — Sun: magnetic fields — Sun: photosphere

1. Introduction

Surface flux transport (SFT) is a crucial component of the
11-year sunspot cycle. SFT models have been developed and
used for decades (e.g., DeVore et al. 1984; Wang et al. 1989a;
van Ballegooijen et al. 1998; Schrijver & Title 2001; Baumann
et al. 2004; Jiang et al. 2010) with some success, though results
can be sensitive to the choice of parameters.

Surface flux transport models track the evolution of mag-
netic regions, which appear on the solar surface due to the rise
of buoyant flux tubes (Fan 2009). Generally they emerge as
bipolar magnetic regions (BMRs) with a leading polarity and
a trailing polarity with respect to the east-west direction. The
leading polarities during a single cycle are usually the same
across a hemisphere, with the reverse pattern occurring on the
opposite hemisphere, following Hale’s polarity law (Hale 1924).
Furthermore, the polarities reverse at the end of each cycle,
giving rise to a magnetic cycle with a period of approximately
22 years. At the start of a cycle, magnetic regions emerge
at latitudes of approximately +30°. As the cycle progresses,
emergence regions migrate equatorwards before reaching +5°
latitude at the end of the cycle. This emergence pattern was
noted by Sporer (1880), and can be observed in the well-known
‘butterfly diagram’.

Bipolar magnetic regions tend to emerge tilted at an angle

with respect to the east-west line (using the line connecting the
centres of the opposing polarities), with the leading polarity
emerging closer to the equator. This effect is due to the helical
convective motions in the convection zone and is more pro-
nounced at higher latitudes, according to Joy’s law (Howard
1991). In addition, the granular and supergranular convection
cells provide a means of diffusion whereby flux is transported to
the edge of the convection cells, spreading out across the solar
surface and resulting in the leading flux cancelling across the
equator with the corresponding opposite flux (Leighton 1964).
The remaining trailing flux is transported to the polar regions
via a combination of turbulent diffusion and a meridional flow
(Howard 1979). Meridional circulation is a relatively slow
transport mechanism, with speeds of ~10-20ms~! observed
via helioseismology by e.g., Braun & Fan (1998), Zhao &
Kosovichev (2004), Jackiewicz et al. (2015). However, he-
lioseismic recordings are near the limit of credibility (Komm
et al. 2013) and so the flow profile is not well constrained.
Flow speeds within this range have also been found by e.g.,
Komm et al. (1993) via the tracking of small magnetic features,
and by Topka et al. (1982) via the comparison of polar zone
filament distribution and polar magnetic field evolution. When
the remaining flux eventually reaches the pole it cancels with
the polar field from the previous cycle, culminating in polar field
reversal. The reversal typically occurs at cycle maximum. For a
historical review of surface flux transport, see Sheeley (2005).
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There is evidence to suggest that the strength of the polar
field at the end of the cycle is a good indicator of the strength of
the following cycle (e.g., Schatten et al. 1978; Mufioz-Jaramillo
et al. 2013). Moreover, the strength of a cycle is anti-correlated
with the duration of the cycle, according to the Waldmeier Effect
(Wolf & Brunner 1935). An explanation is offered by Cameron
& Schiissler (2016) whereby activity belts near the base of the
convection zone cancel across the equator with the opposing
polarity. Stronger cycles have wider belts and so cancellation
occurs earlier, resulting in a shorter cycle since all declining
phases are approximately the same.

There is an ever-present need to predict the amplitude and
length of future solar cycles since solar weather can have ad-
verse effects on satellites, astronauts and technological systems
on Earth. Given that disturbances such as coronal mass ejections
and solar flares are usually attributed to regions of strong
magnetic field, tracking and modelling magnetic regions on the
solar surface, i.e., surface flux transport, has been highlighted
as a key method for predicting and understanding solar cycle
variability (e.g., Upton & Hathaway 2014b; Hathaway &
Upton 2016), without using the more complicated calculations
involved in dynamo simulations (for a review of dynamo theory,
see Charbonneau 2014).

As mentioned above, the output of current SFT models is
highly dependent on the parameters used. Parametrizations
of the transport processes have been made, particularly for
diffusion and meridional flow, but the exact forms are still
debated, and are not necessarily in line with the limited ob-
servations available. Parameter studies of varying scope have
been undertaken (e.g., Schrijver et al. 2002; Durrant & Wilson
2003; Baumann et al. 2004; Yeates 2014), but without complete
parameter coverage. In this paper we aim to systematically find
optimal parameters to be used in SFT models which accurately
reproduce such features of the solar cycle as poleward flux
transport ‘surges’, polar field reversal time, and polar field
strength. The results can also be used to constrain the surface
components of dynamo simulations to produce the most accu-
rate cycle predictions to date. A similar study was performed by
Lemerle et al. (2015), who used the same genetic algorithm used
in this paper to find optimal parameters for a 2D SFT model for
Cycle 21 only, with the view of coupling it to a 2D flux transport
dynamo model (Lemerle & Charbonneau 2017). In contrast
we analyse two distinct models with different dimensionality,
namely 1D and 2D, and different data-assimilation techniques,
initially for Cycle 23. While Lemerle et al. (2015) used the
comprehensive BMR database compiled by Wang & Sheeley
(1989), we use the same BMR database as Yeates et al. (2007)
for the 1D model, and extract individual active regions from
synoptic magnetograms for the 2D model. We also apply the 2D
model to other cycles to search for cyclical variation.

In Sect. 2 we present the 1D model and the genetic algo-
rithm used to perform the optimization, including a prescribed
error structure dependent on latitude and magnetic field strength
to factor in observational uncertainty. We also discuss the results
of the optimization for Cycle 23. In Sect. 3 we present the
2D model which directly assimilates active regions into the
simulation, and run the optimization process on this model
for Cycle 23. In Sect. 4 we compare our optimal meridional
flow profiles from both models with observations. Finally, we
perform optimizations on the 2D model for Cycles 21, 22, and
24 in Sect. 5, before concluding in Sect. 6.
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2. One-dimensional model

Since we aim to optimize the parameters of global, axisymmetric
flows using the longitude-averaged butterfly diagram, we start by
considering a 1D SFT model. Using idealized BMRs as input,
this model has the advantage of allowing many realizations to be
run rapidly. In Sect. 3, we will compare the parameters selected
by the 1D model to a 2D model with more realistic assimilation
of active region data.

2.1. Numerical method

In the SFT model, the radial component of the magnetic field
after averaging in longitude, B(6,¢), evolves according to the
advection-diffusion equation (Leighton 1964):
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where R, is solar radius, 7 is diffusivity, representing the diffu-
sive effect of granular convective motions, 7 is an exponential
decay term added by Schrijver et al. (2002) to improve regular
polar field reversal, and S is a source term for newly emerging
magnetic regions. The profile v () describes poleward merid-
ional flow. The magnetic field is decomposed into spherical har-
monic form:
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and the resulting coupled ordinary differential equations for the
coeflicients ay (f) are solved using an adaptive Runge-Kutta
(4,5) time-stepping method (Dormand & Prince 1980). The
equations are solved on a grid of 180 cells equally spaced in
latitude.

In the 1D model, new magnetic regions are assumed to
take the form of idealized BMRs. Each BMR has a specified
day of emergence; longitude and latitude; size; magnetic
flux, including polarity; and tilt angle taken from an existing
observational dataset where these properties were determined
individually for each BMR from NSO synoptic magnetograms
(Yeates et al. 2007). Using these data, the 1644 recorded BMRs
from Cycle 23 (1% June 1996-3" August 2008) are averaged in
longitude and inserted into the model on the corresponding days
of emergence. The BMR data are freely available at the Solar
Dynamo Dataverse' (Yeates 2016).

Because the meridional flow is a relatively slow transport
mechanism, there is still a fair amount of uncertainty regarding
its properties. A flexible profile is chosen to factor observational
uncertainty into the optimization:

3

where increasing p produces a steeper gradient at low latitudes
and a peak closer to the equator (Fig. 1). The amplitude vy is
chosen to be the maximum of |v], so increasing vy increases the
height of the peak. Both vy and p are left as free parameters to
be optimized. Lemerle et al. (2015) used a similar, but more
sophisticated profile, which is discussed in Sect. 5.1. This

v(6) = —vg sin” 6 cos 6,

! https://dataverse.harvard.edu/dataverse/solardynamo
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Fig. 1. Three examples of the meridional flow profile in Equation 3 for
vo = 15ms™!, p = 2 (cyan), p = 5 (magenta) and p = 10 (black).

provides substantially more flexibility, but introduces extra
parameters into the optimization runs which could hinder con-
vergence to a global maximum. A combination of exponential
and sinusoidal functions adapted to helioseismic observations
(Gizon & Duvall 2004) was utilized by Schiissler & Baumann
(2006) for the meridional flow profile. Although this may
better represent the actual meridional circulation, it cannot be
accurately reproduced by the functional form in Equation 3. In
any case, the true functional form of the observed meridional
circulation is uncertain, particularly at high latitudes.

In order to define the initial conditions, we use the profile of
Svalgaard et al. (1978):
B(6,0) = By|cos 6| cos 6, 4)
where By is left as a parameter to be optimized. Figure 2 (red)
shows a crude fit of this expression to the observed profile from
1910 CR (blue). Whilst the observed profile is asymmetric across
the equator and reveals some activity present at the equator, the
prescribed profile represents a typical cycle minimum and en-
sures that the choice of initial profile is not hindering the opti-
mization process, but rather aiding it with some flexibility. With
this form of initial condition we can also be consistent across all
regimes. Optimization runs performed using the observed initial
condition show that the choice of initial condition in fact has a
negligible effect on the optimal butterfly diagram.

2.2. Ground-truth data

As ground-truth data for optimization of the model, we use
radial-component magnetogram data from US National Solar
Observatory, Kitt Peak, in the form of full-disk images. Prior
to 2007 CR, these came from the Kitt Peak Vacuum Telescope,
while from 2007 CR onwards we use Synoptic Optical Long-
term Investigations of the Sun (SOLIS) data. To minimize noise
in the polar regions of the map, we correct the butterfly diagram
by calculating a cubic spline interpolation at each latitude of
annual average measurements of high-latitude fields (poleward
of +75°) which were observed with a preferable solar rotation
axis tilt angle. A combination of real and interpolated data is

2 http://solis.nso.edu/0/vsm/vsm_maps.php
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Fig. 2. Comparison between initial magnetogram (blue) and the profile
given in Equation 4 (red) with By = 8 G.

used for the regions between +60°and +75° (see Petrie 2012).
The resulting butterfly diagram is interpolated onto a uniform
time grid at daily intervals. This is averaged over periods of 27
days, smoothed using a Gaussian filter to bring the unsigned flux
down to a comparable level to the simulation, and finally sam-
pled at the resolution of once per Carrington rotation. It should
be noted that recently the SOLIS magnetograms were uniformly
reprocessed and recalibrated. The butterfly diagram used here
was made after this reprocessing.

2.3. Optimization algorithm

To search for optimal parameter sets where the model matches
the observed butterfly diagram, we use the genetic algorithm
PIKATA 1.2. It was written by Charbonneau & Knapp (1995)
at the High Altitude Observatory (HAO) of the National Center
for Atmospheric Research (NCAR) and is publicly accessible?.

PIKAIA is an evolutionary algorithm originally written in
FORTRAN-77. It is particularly effective for multimodal opti-
mization problems, taking advantage of crossover and mutation
operators which can induce jumps in parameter space, allowing
for greater exploration and reducing the chances of getting
trapped at a local maximum which is not the global maximum.

The algorithm generates multiple random parameter sets,
each entry within a user-defined range, and performs a model
simulation for every parameter set, or ‘population member’. The
population are ranked by ‘fitness’ according to a user-defined
“fitness function” which, in the case of model optimization,
would usually be a comparison between a real reference case
map and a model-generated map.

The highly ranked population members have a greater chance of
being selected for the crossover or ‘breeding’ process whereby
sections of corresponding parameter strings from two members
are interchanged to produce ‘offspring’, with the aim being
that an individual will be produced with desirable features
of both ‘parents’ and become the fittest in the population. To
increase variability and hence the likelihood for population

3 http://www.hao.ucar.edu/modeling/pikaia/pikaia.php
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improvement, random mutation is included, though this is a
much slower process than crossover.

The crossover-mutation process is run over a user-defined
number of generations. Whilst PIKAIA is inherently stochastic
and so finding an ‘acceptable’ fit is never guaranteed, a large
enough choice for the evolution period should ensure that the
combined effect of the crossover and mutation operators has
enough time to discover sufficiently fit population members.

For a more detailed introduction to PIKAIA and genetic
algorithms in general, see Charbonneau (2002a) and Charbon-
neau (2002b).

In order to reduce the duration of computationally inten-
sive optimizations, Metcalfe & Charbonneau (2003) created
MPIKAIA, a freely accessible implementation of PIKAIA 1.2
in MPI*. Rather than using a single processor for all model
evaluations, a network of computers is used, and each of the
model evaluations from a single generation is sent to a separate
processor and computed simultaneously, achieving near-perfect
parallelization. The time taken to complete the optimization
therefore is entirely dependent on the number of generations.
For example, for the 1D optimization problem in this paper,
each model simulation takes approximately 90 seconds, so, with
46 processors, the runtime is brought down from 24 days to
about 12.5 hours for 46 population members evolved over 500
generations. These choices of population size and evolution
period should be large enough to obtain good fits to the data,
and will be used for the remainder of the paper unless specified.

2.4. Accounting for uncertainties in observations

The y? statistic is used as a measure of fit between the real and
simulated butterfly diagrams:
2
Bobs(eiv tj) - B(Hh tj; X)

1
2 _
X _n_ij O'(Gi,lj)

where n is the number of gridpoints and x is the vector of k free
parameters. Since improving best fit is a minimization process
and PIKATA is set up to maximize functions, the reciprocal of
the measure, X—z, is used as the necessary fitness function. The
variance o describes the error in both the measurements and the
models, and we assume the form:

; &)

(6)

model*

o’ (6i»tj) =07 (91" tj) + o,

The variance plays two roles in the optimization. Firstly, it gives
a meaningful value to the y~? statistic. This allows us to com-
pare the performance of different parameter combinations and
time periods. Secondly, it effectively weights distinct locations

(Gi, t_,-) differently in the optimization, since the observed errors
are assumed to have the form:
0.1 |Boh.v(9i,tj)| +€

sin 9,'

Tovs (01-17) = , (7)
where € is some small increment to ensure that the error is
non-zero even in regions of low B,,. This error structure
reflects the uncertainties and inconsistencies in photospheric
magnetic field observations (e.g., Riley et al. 2014). The factor

4 http://www.hao.ucar.edu/Public/about/Staff/travis/mpikaia/
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of sin@ allows for the fact that the errors are in the original
line-of-sight measurements, whereas B, is the inferred radial
field (Svalgaard et al. 1978). Overall, the effect of this error
structure reduces the weight of observations both near the
pole and in strong active regions. The resulting optimization
will favour accuracy in the mid-latitude ‘transport regions’. A
further improvement of the y~2 statistic would be to include
correlation between data points, but for simplicity here we
assume independence.

Since the model error structure is unknown, we compute ,\(‘2
with 0,000 = 0. This is sufficient for the purpose of comparing
different model runs against the same set of observational data,
with a higher value of y~2 indicating models that give a better
match. The simulations are not sufficiently detailed to achieve a
significant match at, say, the 99% level, which is evident from
visual inspection of the butterfly diagrams. To achieve such a
close match would be very challenging, since the large numbers
of degrees of freedom n — k ~16000-30000 mean that the
99% interval for the y = statistic is narrow, typically [0.98, 1.02].

In principle, we could estimate 0,4, by increasing it and
broadening the 99% interval until the value of y~2 falls within
this interval. This would give a meaningful estimate of the
‘model error’ in a particular run. But this would not change the
ordering of different model runs, or indeed the final optimal
parameters, so we have not included such analysis here.

2.5. Results
2.5.1. Optimal parameters

In addition to vy, p and By as mentioned above, i and 7 are also
included in the optimization, resulting in 5 parameters to be op-
timized initially. Maximum and minimum limits are prescribed
based on results from literature and observations (e.g., Schrijver
et al. 2002; Hathaway & Rightmire 2010; Yeates 2014; Lemerle
et al. 2015):

(i) 100km?s~! <5 < 1500km?s~!
(i) 5ms™! <vyp<30ms™!
(iii)) 0 < p <16
(iv) Oyr<7<32yr
(v) 0G< By <50G

It should be noted that these ranges are deliberately made wider
than results from literature to allow for a deeper exploration into
the parameter space and to provide a better understanding of the
SFT model. Table 1(a) shows the results of the optimization,
with the corresponding optimal butterfly diagram in the top
panel of Fig. 3, and the interpolated NSO data for Cycle 23
discussed in Sect. 2.2 in the bottom panel for direct qualitative
comparison.

The equatorward migration of active regions is well represented
by the BMR data, and large poleward surges are reproduced by
the model. While the southern polar field reversal is well approx-
imated by the model, the reversal in the northern hemisphere has
a delay of approximately 5 CR. Furthermore, there are multiple
weak poleward surges in the simulated butterfly diagram, most
noticeably around 2000-2020 CR, which do not appear in the
real butterfly diagram. This is likely to be a by-product of ap-
proximating regions as BMRs and overestimating the contribu-
tion of flux from smaller regions. This build-up of flux results
in a strong polar field that extends to lower latitudes, requiring a
short decay timescale as is found in the optimization.
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Table 1. Optimal parameter sets for each optimization regime. Entries in bold represent parameters that were fixed for the corresponding run.
Upper and lower bounds for acceptable parameter ranges are given in square brackets below each entry. The ranges for regime (a) are presented

visually in Fig. 4.

Regime x 2 n Vo T By TAF BPAR
(km?s~") (ms™) (yr) (&) (&)
Cycle 23
(a) 1D 0.89 351.6 14.0 3.24 24 16.5 1.00 n/a
[229.4,546.9] [11.3,22.5] [2.98,4.50] [1.9,3.5] [12.8,20.9]
(b) ID+TAF 1.09 373.5 11.0 2.44 3.7 11.7 0.55 n/a
[233.3,582.8] [8.2,16.5] [1.82,2.96] [2.9,6.1] [8.5,14.8] [0.41,0.61]
(c) 2D + BPAR 0.65 455.6 11.2 2.76 n/a 8.3 n/a 39.8
[371.6,651.0] [8.6,14.4] [1.64,4.71] [5.3,10.2] [31.7,49.4]
d2D+7 0.67 453.5 9.6 2.15 4.5 12.9 n/a 39.8
[299.5,807.7] [6.8,15.2] [1.50,3.95] [1.6,30.3] [6.5,18.4]
(e) 1D, fixed p  0.85 361.4 8.3 1.87 1.9 16.3 1.00 n/a
[220.1,642.8] [7.4,10.9] [1.5,2.3] [11.8,21.4]
(f) 2D, fixed p  0.64 482.1 11.5 1.87 n/a 9.7 n/a 39.8
[356.1,712.9] [8.8,15.2] [7.1,12.8]
Cycle 21
(g) 2D 0.87 455.7 9.2 2.33 n/a 6.6 n/a 39.8
[342.7,667.0] [6.6,12.0] [1.33,3.93] [4.5,9.4]
Cycle 22
(h) 2D 0.84 506.2 8.7 2.18 n/a 10.5 n/a 39.8
[365.1,760.9] [6.1,11.7] [0.98,3.60] [7.5,13.8]
Cycle 24
(1) 2D 0.99 454.6 8.2 2.05 n/a 4.2 n/a 39.8
[292.6,821.7] [5.4,12.5] [0.62,5.22] [2.6,5.4]

2.5.2. Parameter analysis

During an optimization run, every single population member
generated by PIKAIA can be recorded, and so a range of
‘acceptable’ values can be obtained for each parameter. These
can be found in square brackets below each optimal value
in Table 1. The upper and lower bounds are taken to be the
largest and smallest values for each parameter which produce
fits above 95% of the maximum y~2. Anything within these
limits is classed as ‘acceptable’, though it must be noted that
choosing to fix one parameter can alter the optimal solutions
and bounds for others. Figure 4 shows such bounds, denoted
by the left and right vertical purple lines on each plot, for all
parameter populations from the optimization run that produced
the optimal set in Table 1(a). The optimal values are highlighted
by the central vertical purple lines. Using the limits for vy and p,
acceptable meridional flow profiles were also found which are
represented by the purple shading in the bottom right panel. The
bold purple profile represents the optimum profile.

The diffusion parameter 7 has not yet been accurately measured,
though some indirect measurements by Mosher (1977) and
Komm et al. (1995) have found values within the range of
100-300km? s~!. Early simulations by Leighton (1964) used
values up to 1000 km?s~!, though studies by Baumann et al.
(2004), Wang et al. (1989b) and Wang & Sheeley (1991) de-

creased it to ~600km? s~!, before Wang et al. (2002b) reduced
it further to 500 km?s~!. Our optimal value of 351.6km?s™!,
however, is in better agreement with Yeates (2014), who found
that € [200,450]km?s~! produced a reasonable correlation
between the butterfly diagrams, and Lemerle et al. (2015) who
found an optimal value of 350km?s~! within an acceptable
range of 240-660 km? s~! for Cycle 21. Furthermore, Schrijver
(2001) and Thibault et al. (2014) found diffusion coefficients
of 300km?s™! and 416km?s~! respectively for random-walk-
based models, and Cameron et al. (2016) recently used a
diffusion of 250km?s~!. The acceptable range in Table 1(a) is
broad but can be attributed to multiple degrees of freedom in the
optimization. The range covers most values discussed above.

The large-scale meridional flow is poorly constrained by
observations, as discussed in Sect. 2.1. Nevertheless, our
optimal value of vy = 14ms™' is in accordance with both
the observations and simulations. Doppler measurements by
Ulrich (2010) estimated the maximum velocity to be between
14-16ms™! for Cycles 22 and 23. Hathaway & Rightmire
(2010) obtained an average maximum velocity of 10-12ms™!
for Cycle 23 via magnetic feature tracking, though crucially
they observed that the flow is slower (approximately 8 ms™")
at cycle maximum and faster (11.5-13ms~!) at minimum.
This time-dependence could be added to the model for greater
realism, though it is not immediately clear how it could be
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Fig. 3. Top: Butterfly diagram for the optimal parameter 5-set for the
1D model in Table 1(a). Bottom: Ground truth data for Cycle 23.

parametrized in the optimization. Furthermore, they note that
many SFT models use meridional flows which go to zero
poleward of +75° latitude which is not necessarily what is
observed, as well as other deviations from observations. Upton
& Hathaway (2014a) prescribed a profile with a maximum
velocity of 12ms~! and Baumann et al. (2004) used 11 ms~".
Yeates (2014) discovered that a range of 11-15ms™! improves
butterfly diagram correlation, and Wang et al. (1989b) and
Wang & Sheeley (1991) found that a range of 7-13ms~!' was
acceptable. Wang et al. (2002b) found that a maximum velocity
of 20-25ms~! accurately reproduced solar cycle features,
although they used a profile which differs significantly from
observations.

The theta component of the flexible meridional flow pro-
file in Equation 3 was also used by Mufioz-Jaramillo et al.
(2009). They obtained a value of p = 2 by taking an average
of helioseismic data weighted by density and fitting it to the
sinusoidal profile. In this case p = 2 does not quite fall into
the narrow acceptable range for p. The bottom right panel of
Fig. 4 shows that values within this range generally correspond
to a peak velocity at +30° before slowing down to Oms~' at
+75°. As discussed above, this is not necessarily in line with
observations. Taking every member of the population above
the 95%y,2, threshold, we find that the Pearson’s correlation
coefficient between the acceptable values for vy and p is
r = 0.86, indicating that increasing the maximum velocity of
the meridional profile generally requires an increase in p. A
faster velocity means that active regions are transported away
from the equator quicker. To counteract this, a larger value of p
narrows the band of latitudes at which the velocity is fast, and
additionally brings the maximum velocity closer to the equator.

Another interesting result is that of 2.4yr for the exponen-
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tial decay time 7. Schrijver et al. (2002) found that a decay time
of 5-10 yr was necessary to replicate regular polar field reversal,
and Yeates (2014) found that a decay time of 10 yr produced a
better fit between real and simulated butterfly diagrams. Lemerle
et al. (2015) found that exponential decay did not have a large
effect on the polar field reversal and decided to set 7 = 32yr,
effectively removing the decay term from the model. However,
our optimal value for 7 is close to the lower prescribed limit.
This could be because of the model trying to account for the
unusually weak polar field at the end of Cycle 23 while, for
example, Lemerle et al. (2015) performed the optimization for
Cycle 21.

Figure 5 highlights the need for the decay term in the 1D
model when modelling Cycle 23. The purple curve, which
represents the axial dipole moment obtained using the optimal
parameter set in Table 1(a), provides a better fit to the observed
axial dipole moment (blue) than the peach curve, which is
produced from the same parameter set but with the decay term
omitted. In this case the polar field becomes too strong and
is not weakened enough without the additional decay term.
Jiang et al. (2015) found that the decay term was not required
to obtain a close match between observed and simulated axial
dipole moments, when using active region data from Li &
Ulrich (2012). As well as using different active region data, a
reduction in tilt angles and a smaller value of n = 250km?s~!
were included to account for the lack of the decay term. If we
use similar parameters for the 1D model, a better axial dipole
moment fit is obtained at the expense of an accurate butterfly
diagram. Hence we stress that the optimal values in Table 1 are
with respect to the measure of choice in Equation 5, and other
choices of metric might give different results.

Of course, the choice of decay term is not independent of
the other parameters, and the Pearson’s correlation coefficient
between the acceptable values of vy and 7 is r = 0.81: an
increase in the flow speed corresponds to less trailing flux being
transported to the poles, so a fast decay to weaken the polar field
would not be required in the presence of a faster flow.

It should be noted that the decay term in Equation 1 is not
directly observed and was added by Schrijver et al. (2002) to
produce regular polar field reversals over multiple cycles. Wang
et al. (2002a) overcame this problem by increasing the merid-
ional flow speed for stronger cycles. Baumann et al. (2006) gave
a physical explanation of the decay term; namely, it is the effect
of radial (i.e., inward) diffusion of flux into the solar interior,
which cannot be accounted for directly in the SFT model. In
spherical harmonics, different modes decay at different rates,
whereas in the exponential decay used by Schrijver et al. (2002),
all modes decay at the same rate. Baumann et al. (2006) found
that the lowest-order mode decayed the slowest at a rate of 5 yr
(with a corresponding volume diffusion of = 100km?s~!),
in good agreement with the findings of Schrijver et al. (2002).
When we include this more sophisticated form of radial diffu-
sion in our model and perform the optimization, we find the
lowest-order mode to have an optimal decay time of 71 = 2.7 yr
(with a corresponding volume diffusion of 7 = 190km?s™!),
in good agreement with the decay time found in Table 1(a).
Because of this good agreement, we opt to continue to use the
original exponential decay parameter.

The optimal value for By is significantly higher than that
used to approximate the initial profile in Fig. 2. This might
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Fig. 5. Axial dipole moments calculated from observed data (blue), the
parameter set in Table 1(a) (purple), and the same parameter set but with
the decay term omitted (peach).

be attributed to the choice of functional form in Equation 4;
not enough flux is prescribed between +45° and +80°, so the
algorithm compensates for this by increasing the maximum flux
at £90°. Alternatively, a strong initial polar field is also required
to counteract the short decay time needed to reproduce the weak
polar field at the end of Cycle 23.

2.6. Tilt angles

Some studies (e.g., Yeates 2014; Jiang et al. 2011) found
that multiplying the tilt angle of each BMR by a scaling factor
reduces the polar field strength and improves polar field reversal,
since the reduced tilt inhibits equatorial cross-cancellation and
hence each magnetic region will contribute less to the axial
dipole. A multiplicative tilt angle factor (TAF) is included
here as an extra parameter to be optimized within the range
0 < TAF < 1.5. Table 1(b) shows the results for the 6 parameter
case, with the corresponding butterfly diagram in the top panel
of Fig. 6.

The optimal value of 0.55 for TAF is lower than that
found by Yeates (2014) (TAF ~ 0.8) and Jiang et al. (2011)
(TAF ~ 0.72). It predictably produces a weaker polar field than
in the case above where it wasn’t included. Given that the main
aim of the algorithm is to reduce differences between the real
and simulated butterfly diagram pixels, it is reasonable to expect
that the optimization algorithm will rely heavily on diffusion
and high amplitudes of meridional flow to achieve weak polar
fields, although it should be noted that this effect is reduced
by the weighting in o. Introducing the tilt angle factor as a
means of reducing the polar field allows for the decay time to
increase and the maximum meridional flow velocity to decrease,
suggesting a delicate balance between the parameters and the
roles they play in the model. While the polar field strength is
better approximated in this case, the active regions are much
weaker than in the 5-parameter case, and polar field reversal
occurs later in the simulation in both hemispheres. The fitness
value of y~2 1.09 is above the 99% interval given in Sect.
2.3, which seems to indicate that the model matches the obser-
vations better than a randomly chosen map from the observed
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Fig. 6. Top: Butterfly diagram for the optimal parameter 6-set for the
1D model with reduced tilt angles in Table 1(b). Bottom: Ground truth
data for Cycle 23.

distribution. This is plainly a limitation of the y~ statistic;
in particular, it likely indicates the presence of a significant
O model t€rm possessing a more complex structure over 6 and ¢. In
principle, it could be caused by too large a prescribed o, OF
by the relatively strong assumption of independence, or possibly
over-fitting of the model, although the latter is unlikely given the
small number of parameters in the model. It should be noted that
the scaling of tilt angles is not a physical phenomenon, rather
a method of reducing the flux in the model, though Cameron
et al. (2010) argued that scaling the tilt angle by a factor of 0.7
mimics the effect of inflows around active regions. Moreover
Dasi-Espuig et al. (2010) found an inverse correlation between
cycle strength and tilt angle, suggesting that tilt angle variation
plays a significant role in polar field variation.

3. Two-dimensional model

Yeates et al. (2015) developed a 2D model® which assimilates
specific shapes of magnetic regions into the simulation on the
day of emergence. The aim of the model is to better assimilate
strong, multipolar regions, which are not accurately portrayed
in a simpler bipolar form, as in the 1D model above, with the
hope of simulating a more realistic photospheric field. This se-
lection feature requires the model to be 2D. The model is fully
automated, providing consistent highlighting of strong magnetic
regions, and is designed to replace pre-existing regions rather
than superimposing new ones. The SFT equation for the radial

> https://github.com/antyeates1983/sft_data
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Fig. 7. Four snapshots of 1928 CR from simulations with active regions
selected by different values of the magnetic flux threshold BPAR and all
other parameters fixed. Here BPAR increases from left to right and top
to bottom.

component of the magnetic field in 2D, B (6, ¢, 1), is:

BB _ (9) (9B + n 1 6 sin (9B 1 azB
or Y% R2 | sin6 96 90 ) " sin? 6 082
1o |
_ 9 0B Lp
Rosmgag(" ©)sin0B) = 2B+ 50,0, ®

where w represents differential rotation and all other parameters
are identical to those in Equation 1. Note that differential rota-
tion averaged out and so played no role in the axisymmetric 1D
model. Rather than using a spectral method like the 1D model,
the evolution equations (for the vector potential) are solved in
the Carrington frame using a finite-difference method on a spa-
tial grid of 180 cells equally spaced in sine-latitude and 180 cells
equally spaced in longitude. Unlike meridional flow, differential
rotation is well constrained by observations, and in the model is
parametrized as (Snodgrass & Ulrich 1990):

w (0) = 0.521 — 2.396 cos? § — 1.787 cos* § deg day ™. 9)
The 2D model contains a parameter BPAR which determines
the threshold above which magnetic flux is assimilated into the
simulation, in the form of individual strong-flux regions. Yeates
et al. (2015) chose the threshold of BPAR = 15 G in order that
the difference between the observed unsigned flux and simu-
lated unsigned flux (due to the smoother magnetic field distribu-
tion) remained approximately constant. This parameter is sub-
sequently added to the optimization. If given enough freedom,
the algorithm would gradually reduce BPAR, allowing more and
more magnetic regions to be inserted until the original synop-
tic map is essentially copied in (analogous to BPAR ~ 0G). To
avoid this, the lower bound is set at 10 G with an upper bound
of 50 G. Figure 7 shows snapshots of 1928 CR from four simu-
lations with alternative values of BPAR between 10 G and 50 G,
and all other parameters fixed. As the threshold BPAR increases,
fewer active regions are assimilated into the simulation.

3.1. Five-parameter optimization

The synoptic magnetograms from NSO Kitt Peak are used to
identify strong regions for assimilation. For simplicity, Yeates
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et al. (2015) did not incorporate exponential decay into the
model as in Equation 1. We perform optimization runs for the
model both without decay and with the decay term included.
Initially we consider the former case. Aside from BPAR,
parameters are given the same upper and lower limits as in Sect.
2.5.1. Table 1(c) shows the results of the optimization. The
corresponding butterfly diagram is shown in the top panel of
Fig. 8.

The 2D model qualitatively improves the butterfly dia-
gram, with active regions predictably more accurate, leading to
the inclusion of more poleward surges in the simulation which
can be identified in the observed butterfly diagram (though the
gradient and strength of each surge is not always correct), and
a more realistic polar field. The optimal parameters in Table
1(c) are within the range of other results from simulations
and observations described in Sect. 2.5.2. A diffusivity of
n = 455.6km?s”! is a stronger diffusivity than in the 1D
model, but the inclusion of an exponential decay term is
expected to reduce this. An increased diffusivity is somewhat
supported by Virtanen et al. (2017, submitted), who used a
value of 7 = 400km? s~! in the same 2D model but for a single
simulation of multiple cycles. The range and optimal value for
vo is lower than for the original 1D case, indicating that there
can be inherent differences between models. Moreover, Virtanen
et al. (2017, submitted) found that a value of vy = 11ms™!
correctly reproduced shapes of poleward surges and polar fields,
in excellent agreement with our optimal value.

Figure 9 shows every generated value of BPAR against
x 2. The central vertical line indicates the optimum value
of 39.8G, with the left and right vertical lines denoting the
acceptable range for BPAR, as in Fig. 4. The value of 15G
used by Yeates et al. (2015) is outside of this range, and for the
remainder of the 2D optimizations, BPAR is fixed at the optimal
value of 39.8 G to attain consistency. This should ensure that
only newly emerging regions are inserted for each Carrington
rotation. However, the presence of the strong mid-latitudinal
region of positive flux in the northern hemisphere at 2000-
2020 CR could be attributed to the choice of large BPAR, since
smaller regions of negative flux which would otherwise cancel
out this positive flux are not being assimilated. The bottom left
panel of Fig. 7 closely represents the scenario when BPAR is
set at its optimal value. Virtanen et al. (2017, submitted) used
a threshold of BPAR = 50G, and this lies just outside of our
acceptable range. Comparing the bottom two panels of Fig. 7,
however, shows that the differences between our optimal value
and their chosen value are minor.

3.2. Incorporating exponential decay

As discussed above, the decay parameter T was originally added
to the SFT model to produce regular polar field reversals. The
2D model did not initially take account of this decay time, but
we incorporate it to assess whether the optimal value in Table
1(a) is reasonable.

As shown in Fig. 10, including the decay term improves
timing of polar field reversal by 5-10 CR, but is not enough
to replicate the observed reversal time. Poleward surges are
generally wider in the simulation, leading to the reduction of
some mid-latitude features, most notably the strong surge of
positive flux at 2000-2020CR in the northern hemisphere,
which is more visible in Fig. 8.

SIMULATION
6
50[ ] 4
R U/ ?.-'-I.I:'I A J 2
3 ol ""*'j-\ P | 0
E wh ‘ dE b
- 1) "‘H-...ij.ﬂ" il
1 E_‘i ‘K‘ o R -2
-50 1 4
-6
1920 1940 1960 1980 2000 2020 2040 2060
Carrington Rotation
INPUT MAGNETOGRAMS
6
4
2
[0}
E
= 0
5]
—
-2
-4
-6
1920 1940 1960 1980 2000 2020 2040 2060

Carrington Rotation
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for Cycle 23.
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Fig. 9. Each population member for the 5-parameter optimization of the
2D model with BPAR restricted to BPAR > 10 G. The horizontal green
line denotes 95% of the maximum y~2. The central vertical green line
is the optimum value for each parameter, with error bars given by the
neighbouring vertical green lines.

The optimization results are shown in Table 1(d). Surpris-
ingly, the addition of an extra decay term induces a minimal
decline in diffusion, and it is not enough to bring it down to
351.6km?s~! as found in the 1D case. Rather, By increases
to account for the stronger decay of the polar fields in this
regime. Most significantly, we obtain an optimal value of
7 = 4.5yr. This is higher than the optimum found in the 1D
model and in closer agreement with Schrijver et al. (2002),
although the acceptable range is considerably wider towards the
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Fig. 10. Top: Butterfly diagram for the optimal parameter 5-set for the
2D model with varying 7 in Table 1(d). Bottom: Ground truth data for
Cycle 23.

upper limit, indicating that a decay term may not be required
in the assimilative model. This is supported by the value of y~2
which does not increase significantly with the addition of the
decay term. Furthermore, Fig. 11 shows that the axial dipole
moments calculated using the optimal parameter sets for the
2D model, with and without the exponential decay term (brown
and green curves respectively), both produce good fits to the
observed profile (blue). This indicates that the method of new
flux assimilation in the 2D model is better able to account
for the weak polar field at the Cycle 23/24 minimum than the
idealized BMRs used in the 1D model, since it does not require
an additional decay term. Coupled to the short optimal decay
timescale are smaller optimal values for vy and p, suggesting
that the relationships and correlations discussed in Sect. 2.5 also
hold for the 2D case.

4. Comparison with meridional flow observations

Although observations of the meridional flow are not yet fully
reliable, we can use the data that are available to try to add a
further constraint to the optimization.

David Hathaway kindly provided us with measurements of
the meridional flow for Solar Cycle 23, calculated by tracking
features in images from the Solar and Heliospheric Observatory
(SOHO) Michelson Doppler Imager (MDI, Scherrer et al.
1995). The data were supplied as coefficients of the following
parametrization:

v(0) :(Co + Cicosf + C200s29 + C; cos® 0 + Cy cos* 6
+ Cs cos” ) sin 6. (10)

The meridional flow measurements for each Carrington rotation
are shown in Fig. 12 (blue curves). The observations tend to
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parameter set in Table 1(c) (green), and the parameter set in Table 1(d)
(brown).

follow either a fast or slow flow, highlighted by denser blue
areas, indicating the dependence on time and that the flow
transitions between the two extremes throughout the cycle.
Additionally, for a small number of Carrington rotations an
equatorward counterflow is observed at high latitudes, though it
should be noted that such a counterflow was not visible in HMI
data (Hathaway & Upton 2014). The choice of flexible profile
in Equation 3 does not allow for this phenomenon.

The optimal profile using the parameters from the 1D op-
timization in Table 1(a) is shown in purple in Fig. 12 for
comparison. Whilst the observed and optimal profiles are simi-
lar in shape, the optimal profile is too fast and reaches its peak at
a slightly lower latitude. Moreover, the observed profiles tend to
extend beyond +75° but the optimal profile chooses to go to zero
throughout the polar regions, giving a possible explanation as
to why many SFT models incorporate this feature. Furthermore,
the 1D optimal profile remains almost completely within the
bounds given by the observations, excluding at its peak in the
northern hemisphere for which asymmetry in the observations
can be held responsible.

The green and brown profiles in Fig. 12 represent the op-
tima for the 2D model excluding and including exponential
decay respectively. Both profiles are fully contained within the
observational limits, except for a small section of the brown
curve in the southern hemisphere which is due to a lower
than average maximum velocity. Of the three optimal profiles,
the 2D regime without decay matches the average observed
profile the closest, whilst the decay-enhanced flow is slightly
slower (though Hathaway & Rightmire (2010) observed speeds
of 8ms~! at cycle maximum). It does, however, continue to
latitudes poleward of +70°, almost emulating the observational
data. One limitation of tracking magnetic features to measure
the meridional flow is that it is not always easy to distinguish
between the effects of the meridional flow and the effects of
supergranular diffusion. For this reason, flows derived from
feature tracking tend to peak at higher latitudes (e.g., Dikpati
et al. 2010, Fig. 1), giving a possible explanation as to why the
observed curves in Fig. 12 tend to peak at higher latitudes than
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the modelled curves.

We use a non-linear least-squares fitting method to fit the
parametrized form of the meridional flow in Equation 3 to
the average observed coeflicients given by David Hathaway
to ensure it is actually possible to match the observed profile.
The average observed and fitted profiles, shown in Fig. 13 (blue
and red respectively), match closely for vg = 11.3ms™! and
p = 1.87, and slight asymmetry in the average observed profile
is confirmed. This value of p is close to that of Mufioz-Jaramillo
et al. (2009) and is within the acceptable ranges for p in the
above 2D regimes, but is outside the equivalent range in the
1D optimization run, whence we infer that the 1D model
requires the maximum velocity to be closer to the equator than
is observed.

Given that the parametrization is able to closely fit the observed
data, we could fix one of the velocity-related parameters, say
p, to the observed value and perform optimization runs for
the two models. We choose p because the model is generally
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Fig. 14. Top: Butterfly diagram for the optimal parameter 4-set for the
1D model with fixed p = 1.87 in Table 1(e). Bottom: Ground truth data
for Cycle 23.

less sensitive to the choice of vy, and p = 1.87 is outside the

acceptable range for the 1D model.

The optimization results with p fixed in the 1D model are
shown in Table 1(e). The value p = 1.87 corresponds to a max-
imum velocity at +£35°, meaning poleward transport is slower
at low latitudes. This results in more flux cancellation across
the equator and so more trailing flux is present in the transport
regions, as observed in the top panel of Fig. 14. This feature
appears to be a common occurrence in the standard SFT model
(cf. Figs. 3 and 6). The upshot of this numerically is that the
selected decay time of 1.9 yr is even shorter than in the original
1D case to counteract the large amounts of flux accumulating at
the poles. This couples with a slow velocity, made even slower
by the small value of p, adhering to the relationship found
in Sect. 2.5. The timing of polar field reversal, meanwhile,
is reproduced reasonably accurately. Except for a marginally
smaller value of y~2, fixing p does not significantly hinder
the quantitative performance of the 1D model, even though
p = 1.87 is not in the acceptable parameter range for regime (a).

With the higher-latitudinal velocity peak and the absence of 7 in
the 2D model, the resulting diffusion value given in Table 1(f)
is slightly larger than in previous regimes. Contrary to expecta-
tion, the optimal maximum velocity is higher than the previous
2D cases, but still with wide error bounds. Given that p = 1.87
lies within the acceptable range in regime (c), it is reasonable
to expect that optimal values and associated ranges would be in
line with results in Sect. 3 and hence observations and previous
studies. Consequently the optimal butterfly diagram (top panel
of Fig. 15) confirms this, offering only subtle changes to Fig. 8,
for example a polar field restricted to higher latitudes due to the
increase in diffusivity.
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2D model with fixed p = 1.87 in Table 1(f). Bottom: Ground truth data
for Cycle 23.

5. Other solar cycles

With its automated assimilation of active region data, the 2D
model can easily be adapted for other cycles, provided there is
sufficient data available. Evaluations of Cycles 21, 22 and 24
(up to the end of 2015) using NSO data have been carried out to
search for cycle-to-cycle variation.

5.1. Cycle 21

Table 1(g) shows the optimum parameters for Cycle 21 (1% May
1976-10" March 1986). Both 7 and vy are in agreement with
previous studies. Most notably, vo = 9.2 m s~! is slower than the
maximum speed of Cycle 23, supporting Upton & Hathaway
(2014a): a faster flow in Cycle 23 would have resulted in a
weaker polar field at cycle minimum since leading flux is taken
away from the equator quickly and so has less time to cancel
across the equator. This optimum value, however, is just outside
the range of 10-13.2ms™! as found by Komm et al. (1993)
using feature tracking during Cycle 21. Conversely, this range
overlaps with a large portion of the 95% confidence interval
obtained by the optimization population.

The interpolated NSO data is shown in the bottom panel
of Fig. 16 with the corresponding simulated butterfly diagram
in the top panel of Fig. 16. Aside from a negative-polarity
observational artefact in the northern hemisphere at 1680 CR,
many features of active regions are well reproduced. There are
three instances of large concentrations of opposite flux being
transported polewards in the northern hemisphere; the latter
of these is over-estimated by the simulation and this could be
attributed to the model incorrectly reading in the corresponding
emergence region. Polar field reversal for both poles is too late
in the model, particularly in the northern hemisphere where the
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difference is in the region of 10 CR.

Lemerle et al. (2015) performed a similar optimization
process for Cycle 21 using a 2D model and a BMR database
compiled by Wang & Sheeley (1989). Although they used a
different parametrization for the meridional flow and different
sources of flux, their optimal parameter ranges for 1 and vy
were in good agreement with those in Table 1(g). The diffusion
coefficient 7 = 455.7km? s™! lies within their acceptable range
of 240-660km?s~! and vy = 9.2ms™! falls between 8—18 ms™"
as calculated by PIKAIA in their study. They used the following
functional form to represent meridional flow:

v(0) = —vg erf? (vsin 6) erf (w cos 6) . (11)

The optimization returned values of vog = 12m s7h qg=T,v=2

and w = 8. This gave a profile similar to that of Wang et al.
(2002b), but with a less extreme steep gradient at the equator.
However, when normalized, the profile shape was comparable
to the observed profile formed from Doppler measurements ob-
tained by Ulrich (2010), and the observed profile lay well within
the error bars for the optimal solution, except for some return
flows at high latitudes, which were not incorporable in Equa-
tion 11, mirroring the limitation of our parametrization in Equa-
tion 3. Using a non-linear least-squares fitting method, we are
able to attempt to fit the functional form in Equation 3 to the
versatile meridional profile in Equation 11. The best fit corre-
sponds to values of vy = 13.6ms~! and p = 3.88. This value for
Vo is in agreement with observations and acceptable ranges for
other regimes, but is above the range for Cycle 21. Despite lying
within the acceptable range, p = 3.88 favours the high values
for p obtained from optimization runs as opposed to the lower
values extracted from observational data. This could suggest an
inherent flaw within the SFT model whereby the model performs
better when the maximum velocity is prescribed to be closer to
the equator.

5.2. Cycle 22

Table 1(h) shows the optimization results for Cycle 22 (10"
March 1986-1% June 1996). The fit is marginally worse than
for Cycle 21, but optimal values for r and vy remain within in
plausible ranges. The optimal diffusion in this case increases
to 506.2km?s~!, but is in better agreement with Wang et al.
(2002b). The optimal maximum velocity for Cycle 22 is even
smaller than that of Cycle 21, further supporting the fact that
a slower meridional flow results in a stronger polar field at
cycle minimum, and explaining the high optimal maximum
velocity for Cycle 23. van Ballegooijen et al. (1998) performed
SFT simulations for Cycle 22 with = 450km’s~' and
vo = 11 ms~! which produced polar field strength in agreement
with observations. Again, these values are in accordance with
ranges given in Table 1(h).

The ground truth data is shown in the bottom panel of
Fig. 17 and the simulated butterfly diagram is in the top panel of
Fig. 17. The model has recreated polarity reversal much more
successfully here, with only a slight delay in the north. Towards
the end of the cycle there is a large build-up of positive flux
and some weak, but visible, poleward surges in the northern
hemisphere that have appeared in the simulation but are not
observed in the real butterfly diagram.
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Fig. 16. Top: Butterfly diagram for the optimal parameter 4-set for the
2D model in Table 1(g). Bottom: Ground truth data for Cycle 21.
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Fig. 17. Top: Butterfly diagram for the optimal parameter 4-set for the
2D model in Table 1(h). Bottom: Ground truth data for Cycle 22.

5.3. Cycle 24 (so far...)

Table 1(i) shows the results for the first half of Cycle 24 (3¢
August 2008-1% Jan 2016). We obtain a much higher value
of x2 for Cycle 24 compared to previous cycles, but we
suspect that this is due to the relative ease of modelling only
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Fig. 18. Top: Butterfly diagram for the optimal parameter 4-set for the
2D model in Table 1(i). Bottom: Ground truth data for Cycle 24.

half a cycle as opposed to modelling long-term effects. The
diffusivity n = 454.6km?s™! is within viable ranges found in
literature, though the maximum velocity is close to the lower
prescribed bound. The initial polar field By = 4.2G is lower
than in previous cycles as the model needs to replicate the
weak polar field at the Cycle 23/24 minimum. Acceptable
ranges of parameters are generally broad, but performing the
optimization on the full cycle in the next few years should
tighten the upper and lower bounds. Indeed, when a similar
optimization process is performed on half of Cycle 23, the
acceptable ranges are found to be wider, though the shorter
time period has a negligible effect on the specific optimal values.

The interpolated Kitt Peak data is shown in the bottom
panel of Fig. 18 with the corresponding simulated butterfly
diagram in the top panel of Fig. 18. Although a large portion
of the cycle is yet to take place, there are still some notable
features, such as the prominent leading-polarity region between
2100CR and 2110 CR in the northern hemisphere. This region
was the primary subject of Yeates et al. (2015). Polar field
reversal is slightly late in the simulated butterfly diagram;
performing an optimization once the full cycle has completed
might remedy this, though a region of negative polarity in
the northern hemisphere at 2160 CR may not correctly be
reproduced, unless the data is corrected.

Including exponential decay in the model for Cycles 21, 22
and 24 produces optimal values of 7 = 10.2 € [3.1,32.0]yr,
T =76 € [3.1,32.0]yr and 7 = 15.1 € [2.5,32.0] yr respec-
tively. These are in better agreement with Schrijver et al. (2002)
and Lemerle et al. (2015), indicating that the low optimal value
for 7 may only be necessary in Cycle 23 in order to success-
fully reconstruct the unusually weak polar fields at Cycle 23/24
minimum.
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6. Conclusions

The aim of this paper was to use a genetic algorithm to find
optimal parameters to be used in surface flux transport simu-
lations, subsequently helping us understand the behaviour and
interplay of the many physical processes on the Sun. We began
by obtaining optimized parameter sets for a 1D SFT model
for Cycle 23, both with and without a multiplicative tilt angle
factor. From these simulations we obtained viable ranges for
parameters. We found that these ranges and optimal solutions
were in good agreement with results from previous studies
and from observations. We also looked at the interaction of
parameters, highlighting the positive correlations between the
meridional velocity parameters vy and p, and exponential decay
time 7.

We repeated the optimization process on a 2D assimilative
model and found that optimum parameters were mostly within
ranges of those from the 1D case, but distinct enough to suggest
that the differences between models could be important. We also
found an optimum value for the assimilation threshold, which
was significantly greater than used previously by Yeates et al.
(2015). Qualitatively, the 2D model produced a more accurate
butterfly diagram than the 1D model, particularly at the poles.
We also included an exponential decay term in the 2D model
which produced an optimal value of 4.5 yr, which lies outside
the acceptable range found in the 1D case and is in agreement
with the values obtained by other authors. Including decay
induced a decrease in the velocity parameters, but given that the
acceptable range extended to the upper limits of exploration, its
inclusion may not be necessary in the 2D model. There is the
possibility that we did not model decay realistically, which could
have led to a strong polar field. That the 2D model was able to
give an acceptable match to the observed butterfly diagram and
axial dipole moment without a decay term is evidence that it is
superior to the 1D model, which was unable to do so with the
corresponding optimal parameters. It suggests that the method
of flux assimilation in the 2D model is superior to the insertion
of idealized BMRs, as used both in the 1D model and in most
other SFT models.

We were then able to compare the optimal meridional pro-
files from different regimes with observations made from feature
tracking. The profiles from regimes (a), (c), and (d) were each
almost completely within the range of observed flows, but the
1D optimal profile was faster than the average observed flow,
while the 2D profile with decay included was too slow. The
2D profile without an extra decay term, however, best matched
the average observed profile. Fixing the observed profile in
both models resulted in varied success; the 2D model was
able to accommodate the observations comfortably, whilst the
1D model saw a reduction in most parameters and a butterfly
diagram containing an excess of flux in the transport regions.

Finally, the optimization process was repeated using the
2D model for Cycles 21, 22, and 24, producing plausible results
for Cycles 21 and 22; Cycle 24 may need more time to progress
to capture the long-term effects of the cycle in the optimal
parameters, particularly in narrowing some of the range of
viable solutions, although an optimization run performed over
the same period of time for Cycle 23 showed that the optimal
parameters themselves are barely affected; it was just the ranges
of acceptable values which widened due to fewer constraints.
In order to predict the axial dipole moment at the Cycle 24/25
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minimum and hence the amplitude and length of Cycle 25,
randomly generated magnetic regions with properties based on
empirical relations must be used to simulate the remainder of
the cycle (e.g., Upton & Hathaway 2014b; Cameron et al. 2016).
Analysis of multiple cycles highlighted significant differences
in meridional circulation speed, supporting the evidence for
slower meridional flows during stronger cycles, and initial
profile strength, supporting the proposed relationship between
cycle strength and polar field strength at the preceding cycle
minimum. Our multiple cycle analysis also highlighted cycle-
dependence of the decay term 7. At present, the best form and
magnitude of such a decay term remain to be determined by the
community. However, our results (and the others mentioned) do
suggest that it can help to improve the match with observations,
at least for Cycle 23. It is intriguing that it seems to be less
important for the preceding cycles. This could either be because
the decay is compensating for some other deficiency of the
model that has changed in Cycle 23, such as the inability to
reproduce the unusually weak polar field at the end of the cycle,
or the radial diffusion of flux did really change from one cycle
to the next, presumably due to some difference in the flows and
magnetic field in the convection zone. This is an interesting
subject for future study, but is beyond the scope of this paper
where we consider only the surface. All optimization runs were
performed with respect to a prescribed variance which was
proportional to both latitude and B, chosen to correspond
to uncertainty in observational data. It should be noted that
comparing fitness values is always with respect to the chosen
error structure in this paper. For other studies of modelling
Cycle 23 see, e.g., Schrijver & Liu (2008); Yeates et al. (2010);
Yeates & Mackay (2012); Jiang et al. (2013).

While the flexibility in the problem is beneficial in the re-
spect that it allows more freedom, it can also have drawbacks.
For example, the choice of fitness function is crucial to deciding
which regime or parameter choice is ‘best’ for each model,
but depends entirely on what the user regards as important.
Lemerle et al. (2015) used a combination of y? statistics which
measured the differences between real and simulated time-
latitude maps, axial dipoles and ‘transport regions’ (latitudes
+34°to +54°). These statistics were balanced equally in the final
fitness function. Weighting could have been applied in favour
of particular features, though it is not obvious how best to put
this into practice. Alternatively, weighting could be applied to
different sections of the map, i.e., active, transport and polar
regions, to force the algorithm to return parameters which
produce those specific regions more accurately. We chose a
comparison between the real and simulated time-latitude maps,
with an associated error structure, as we considered the gen-
eral reproduction of the whole map to be foremost in importance.

The adaptability of the 2D model provides a wide scope
of possible future directions. One such direction is testing
variability between different measuring instruments to ascertain
whether inconsistent literature results could simply be due
to the choice of observatory or satellite. This comes with the
issue of either deciding on or computing an appropriate value
for the assimilation threshold BPAR for different datasets.
Another future possibility that takes advantage of the model’s
assimilation technique is to optimize multiple cycles at the same
time. We have shown that there exists variation in parameters
between cycles, so a single optimal parameter set for more than
one cycle would be unrealistic. An alternative method would
be to treat each cycle separately, coupled only at each cycle
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minimum, where the final profile of the previous cycle becomes
the initial profile of the next.

Our methodology assumes a static meridional flow. The
inclusion of a time-varying meridional flow in the optimization
could significantly alter results, however parametrizing time-
dependence without introducing too many parameters is not a
trivial procedure. On the other hand, large-scale inflows towards
active regions were first observed by Gizon et al. (2001), and
Cameron & Schiissler (2012) proposed that these flows were
at least partially responsible for variation of meridional flow
over the solar cycle. Indeed, Martin-Belda & Cameron (2016)
found that the inflows increased the effect of flux cancellation
and also reduced the latitudinal separation of polarities, thereby
decreasing the axial dipole moment contribution of a bipolar
region. This process weakens the polar field in the same way
that a time-dependent meridional flow can, and although we
have not accounted for inflows in this study, it is an option
under consideration for future work. An alternative method
for reducing the polar field is using a flux-dependent diffusion
parameter whereby the presence of a strong magnetic field
quenches diffusion (e.g., Mufioz-Jaramillo et al. 2011).

In the near future we hope to use PIKAIA to optimize a
kinematic 3D dynamo model (Yeates & Muifioz-Jaramillo 2013)
using the results in this paper to constrain the surface evolution.
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