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Optimization for Maximizing Sum Secrecy Rate in
MU-MISO SWIPT Systems

Mahmoud Alageli —, Aissa Ikhlef

Abstract—TIn this paper, we consider the sum secrecy rate maxi-
mization problem in multiuser multiple-input single-output (MU-
MISO) systems in the presence of multiple energy harvesters (EHs)
which also have potential to wire-tap the information users (IUs).
To facilitate delivering secure information to the IUs and increase
the total harvested energy by the EHs simultaneously, we optimize
the transmit beamforming vectors to direct the information signals
toward the IUs and artificial noise (AN) toward the EHs. We as-
sume that each EH relies on itself to decode the information signal
intended for an individual IU. Therefore, the corresponding prob-
lem is to maximize the worst-case sum secrecy rate under transmit
power and energy harvesting constraints. The problem is optimally
solved by transforming it into a convex iterative program using a
change of variables, semi-definite relaxation (SDR), and lineariza-
tion of quadratic terms. We prove that rank-one optimal solutions
for the IUs beamforming covariance matrices can be obtained from
the optimal relaxed unconstrained solution. Also, we provide three
suboptimal solutions based on null space projection and power
control of the beamforming vectors for the low and high harvested
energy constrained regions. A special case of cooperative EHs in
which the EHs can collaboratively cancel the signal of all IUs ex-
cept the one they intend to eavesdrop is also investigated, and the
optimal solution is derived in a comparable way as in noncoop-
erative EHs case. Our simulation results reveal an understanding
of how the tradeoff between the AN and information signal can
jointly improve both the sum secrecy rate and the total harvested
energy. We also show that, within the low total harvested energy
region, the suboptimal solution in which the AN is projected in the
null space of the IUs channels outperforms the suboptimal solution
which ignores AN alignment at the IUs, and vice versa over the
high total harvested energy region; and the suboptimal solution
that combines both of them achieves close to optimal performance.

Index Terms—Artificial noise, beamforming, energy harvesting,
multiuser multi-input single-output (MU-MISQO), physical-layer
security, sum secrecy rate, SWIPT.
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1. INTRODUCTION

ECENTLY, the technologies for extending the lifetime
R of energy constrained wireless networks such as wireless
sensor networks have acquired much interest. Wireless power
transfer (WPT) is a reliable method for powering remote wire-
less nodes. The concept of WPT was first introduced by Tesla
a century ago [1], since then, a large number of studies have
been conducted on WPT for short and medium distances which
are mainly based on inductive and magnetic resonance coupling
techniques [2]-[4]. However, having tightly coupled aligned de-
vices at short proximity seems to be unattainable in practice. One
of the latest promising technologies is that based on utilizing
the radio frequency (RF) transmission for simultaneous wireless
information and power transfer (SWIPT). A growing body of
research has recognised the importance of employing SWIPT
technology for multiuser multi-input single-output (MU-MISO)
systems [5]-[15] in which there are some users interested in in-
formation decoding (IUs) while others wish to perform energy
harvesting (EHs). Due to the nature of the broadcast channel
and the common practice that the EHs are assumed to be in
close proximity to the transmitting antennas compared to the
IUs, the implementation of SWIPT faces a security challenge in
canceling the crosstalk between IUs and EHs.

The earliest information protection approaches in
MISO/MIMO wireless network were typically information-
theoretic based such as cryptography techniques attained by
applying encryption at the upper protocol layer [16]. The
robustness of cryptography techniques relies on the computa-
tional hardness required to recover the encryption key, however,
such security techniques are not protected against the advances
in quantum computing [17]. Although some research works
have considered exploiting the reciprocity and randomness of
the channel between the transmitter and the IU for secrecy key
generation [18]-[21], extra resources are required to secure
a wireless channel to share the encryption key between the
transmitter at the base station (BS) and the IU, and this is quite
difficult in SWIPT with the presence of multiple IUs and EHs
which can potentially play the role of eavesdropper.

Latterly, physical layer security (PHY-security) has proven to
be a promising alternative to the information-theoretic security
techniques. It exploits the knowledge of the transmit channel to
provide a better signal quality at the IUs compared to that at
the EHs using signal beamforming and jamming techniques. In
transmit beamforming, the transmitted signal is precoded in or-
der to strengthen the information signal power at the IUs and to
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direct artificial noise (AN) toward the EHs. Previous works [7]—
[10] have considered the maximization of downlink secrecy rate
under certain harvested energy constraints, or as a by-product,
the minimization of transmit power under some secrecy rate
constraints. For example, the authors in [8] considered a sys-
tem comprising a single-antenna IU and multiple single-antenna
EHs which collude to cooperatively decode the information sig-
nal of the TU. The objective was to optimize the information
and the AN beamforming vectors to maximize the secrecy rate
subject to individual harvested energy constraints, or to mini-
mize the total transmit power subject to secrecy rate and energy
harvesting constraints. The work in [9] assumed that each TU
employs a power splitting approach to decode information and
harvest energy simultaneously and each user is cooperatively
wire-taped by the remaining IUs. The considered problem was
to minimize the total transmit power under constraints on indi-
vidual harvested energy and secrecy rate. In [10], the problem
was to maximize the minimum secrecy rate of an IU and EH pair
under constraints on minimum individual harvested energy by
the IUs and EHs. EHs are passive which means they can either
harvest energy or decode information at a time, whereas the IUs
employ power splitting for SWIPT. Cooperative jamming tech-
niques have also been considered for PHY-security [12]-[15].
In [12], the secrecy rate of the intended user was improved by
employing a cooperative jammer (CJ) which generates AN to-
ward a single eavesdropper to assist in degrading its information
signal quality and supply the EH and IU with wireless power.
The problem of maximizing the secrecy rate for the worst-case
channel uncertainties and under transmit power constraints and
EH constraints was decoupled into three problems and solved
alternately.

SWIPT has also been considered for the frequency selective
environment [22]-[25]. The authors in [22] used orthogonal fre-
quency division multiplexing access (OFDMA) to address the
maximization of the harvested energy of a single eavesdropper
while maintaining the minimum individual secrecy rate require-
ments of legitimate users by alternately optimizing subcarrier
allocation and power splitting ratio at the legitimate users.

In the earlier works [6], [8], the authors considered similar
system models to the multiple IUs model considered in this pa-
per, but for a single IU and multiple EHs in [6] and for a single TU
and colluding eavesdroppers in [8]. The objective function for
secrecy rate maximization in [6] was a difference between two
logarithms of linear fractional functions which correspond to the
IU’s information rate and the information rate at the worst EH.
The problem was solved by one-dimensional search through a
set of optimised IU’s signal-to-noise ratios (SNRs) which corre-
spond to a set of common upper bound constraints on the SNR
at the EHs. The linear fractional objective function was convex-
ified by semi-definite relaxation (SDR) and the Charnes-Cooper
transformation. The same methods were applied in [8] but for
colluding eavesdroppers and imperfect channel state informa-
tion (CSI). However, considering multiple IUs (for sum secrecy
rate maximization) will result in a non-linear fractional objec-
tive function which inevitably can not be optimally solved by
the method for a single IU used in [6] due to the non-linearity of

the fractional objective function, and this leads to a completely
different optimization challenge. Another issue of considering
multiple IUs compared to a single IU model in [6] is that the
dimensionality of the null space of the IUs channel matrix de-
creases as the number of IUs increases, i.e., the column size
of null(H) € CN*N=M decreases as M increases, where H
is the channel matrix of the IUs and M is the number of IUs.
Therefore, any further beamforming using null(H ) will lose the
gain of M coefficients.

In this work, an MISO SWIPT system comprising multiple
IUs and multiple EHs is considered. We employ transmit beam-
forming for the information signal and the AN to maximize the
worst-case sum secrecy rate of the IUs and the sum secrecy rate
for the case of cooperative EHs with a lower limit on the total
harvested energy by the EHs (the problem with individual har-
vested energy constraints has also been considered). To the best
of the authors’ knowledge, this problem has not been consid-
ered in the literature before. More precisely, we provide optimal
solutions based on a semidefinite programming (SDP) formu-
lation. Using dual multipliers which satisfy Slater’s condition
[26] and the Karush-Kuhn-Tucker (KKT) conditions of the SDP
problem, we derive a rank-one optimal solution which achieves
the same objective value as the optimal rank-unconstrained solu-
tion. In addition, we provide two different sub-optimal solutions
for the low and high harvested energy constraint regions based
on null space projection (NSP) of the beamforming vectors with
per beamforming vector power control. By employing both AN
beamforming vectors (optimized by different sub-optimal solu-
tions), we tackle the gain loss due to dimensionality reduction of
the null space of the IUs channel matrix and a close to optimal
performance is achieved.

The remainder of the paper is organized as follows. Section II
introduces the system model and Section III presents the origi-
nal formulation of the sum secrecy rate maximization problem
for the non-cooperative EHs case. In Section IV, we provide the
optimal solution for the non-cooperative EHs case. Sub-optimal
solutions for the non-cooperative EHs case are provided in
Section V. In Section VI, a special case of non-cooperative
EHs is presented and in Section VII we provide the complexity
analysis of the proposed solutions. Numerical results and eval-
uations are presented in Section VIII. Finally, conclusions are
given in Section IX.

Notation: Vectors are denoted by boldface lower case let-
ters and matrices by boldface upper case letters. Iy, 0,, %,
and 1;; denote an N x N identity matrix, an m X n zero ma-
trix and an M x 1 column vector with all entries one, respec-
tively. diag(z) denotes a diagonal matrix with the elements of
@ in the main diagonal. Re(Q) and Im(Q) denote the real
and imaginary parts of matrix @, respectively. S > O indi-
cates that S is a positive semi-definite matrix. R denotes the
set of real numbers. The operators ()7, (), Tr(-), log("),
log, (+), |-| and ||-|| » denote the transpose, conjugate transpose,
trace of a matrix, natural logarithm, logarithm to base 2, abso-
lute value of scalars and Frobenius norm of matrices, respec-
tively. [|[z1, ..., zar]||; = oL, || .C™*" denotes the set of all
complex m x n matrices.  ~ CN (0, X) denotes a circularly
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Fig. 1. An MU-MISO SWIPT system comprising multiple IUs and
multiple EHs.

symmetric complex Gaussian random vector € C*! with
zero mean and covariance matrix X. {a, } denotes a set of all
vectors indexed by n. [a],, dim(a) denote the ith entry and the
length of the vector a, respectively. = 0 means that [z], > 0,
i=1,...,dim(x). B = null (A), which means, AB = 0 and
BB" =1.

II. SYSTEM MODEL

Consider a flat fading single-cell MU-MISO downlink sys-
tem as shown in Fig. 1. The system comprises a base station
(BS) with N antennas, M < N single-antenna IUs, {IU;},
i =1,..., M, interested in information decoding and K single-
antenna EHs, {EH; }, k = 1, ..., K, wishing to perform energy
harvesting. The EHs are assumed to be located closer to the BS
compared to the IUs in order to harvest energy from the BS
transmitted RF signal. Let H = [hy, ..., hM]H € CM*N and
G =g,,....,9x])" € CE*N be the channel matrices between
the BS and IUs, EHs, respectively, with h; ~ CN (0,771y),
gr ~CN (0,47 Iy). The BS is assumed to have full knowl-
edge of H and G To facilitate secure information transmission,
the BS employs transmit beamforming to steer M information
signal beams toward the IUs along with L. < N AN beams di-
rected toward the EHs to degrade their received information
signal quality. Let = = [a:l,...,xM]T, W =|wy,..,wy| €
CN*M and Q = [qy,...,q; ] € CV*L denote the information
symbol vector intended for the IUs with £ {me } = Ipg, the
information beamforming matrix and the AN beamforming ma-

trix, respectively. The signal received at IU;, i = 1, ..., M, is
M
yr, :hZ-Hwixz Zh Wi Tm +Zh qlz;-i-n[, (1)
m=1 =1
m#i

where ny; ~ CN (0,07) is the noise at IU; and z is the AN
symbol. The signal received at EHy, is

M
—gk w;r; + Z gA Wiy T +ng q,z +ng,, 2)

m=1 =1
m#i

where ng, ~ CN (0 ( ) is the noise at EH,.

In this paper, unless otherwise stated, we assume that each
EH relies on itself to decode the information signal intended
for the IU;, i.e., there is no cooperation between the EHs
to decode the information signal. According to (1) and (2),
with the assumption that the EHs are decoding the informa-
tion signal without an attempt to harvest energy, the signal-
to-interference-plus-noise ratio (SINR) at IU;, SINR;,, and the
SINR at EH, intending to wire-tap the IU;’s signal, SINR};A_ ,are
obtained as

2

’hsz|
SINR;, = _ — 3)
mfl |h wm| +Zl 1|h q]’ +J]
H,,. |2
SINR, = l9i “’Z‘ L@
Zl 1 ‘gk QZ‘ +Z ’gk wm} +UE

The achievable secrecy rate for IU; when wire-tapped by EHy,

(R; ) is given by

R; . = max (log, (1 4+ SINR;,) — log, (1 + SINR}, ) ,0) .
(&)

In our system, all EHs can harvest energy from the informa-
tion and AN signals (we assume that the harvested energy from
the noise is negligible). Assuming unit time slot duration and
all EHs have the same energy harvesting efficiency 0 < ¢ < 1,
the total energy harvested by all EHs is

M
E:CTr(G’(Q—FZWi)), (6)
i=1

whereW—ww ,Q = leq,ql,andG Ga.

III. PROBLEM FORMULATION

Our focus is on optimizing the downlink beamforming matri-
ces for both information and AN signals to maximize the sum
secrecy rate of the IUs under given constraints on the minimum
total harvested energy received by the EHs and total BS’s trans-
mit power P;. The design aims to maximize the worst-case sum
secrecy rate, given by

M M
R= kainRi*k = 10g2 (H (1 + SINRL ))

i=1

M
—log, (H max (1 + SINR;, )) ) 7

i=1

Therefore, by expressing the quadratic terms (vector and
matrix norms) in terms of linear functions of positive semid-
ifinite matrix variables WL, Q and deterministic matrices
H,; =h; hl , G =g, gk and G, the SDP optimization prob-
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lem can be formulated as

maximize
{Wi }VQ
ﬁ M Ty (HW) +Tr (H Q) +o?
log, ~ —
i=1 errz[ lTr(H Wm) +Tr (H Q) +U%

m#i

M Zﬁ{:l Tr (Gka) + Tr (GkQ> + O’%;
log, mex —— -
i=1 Zm—lTr (Gka) + Tr (GkQ> +0'%7
m#i
M
subjectto  Tr (Q) + Tr <Z WZ> < P, (8a)
i=1
(Tr ( <Q+Z >>>E (8b)
W, Q =0, Vi, (8c)

where E is the constraint on the total harvested energy by
all EHs. It can be seen that the problem has a complicated
non-convex objective function which includes logarithms of
the product of fractional quadratic functions. The beamform-
ing matrices {W;} should aim to solve a contradicting balance
between the following: increasing the information signal power
at the [Us, cancelling inter-user interference, reducing the infor-
mation signal power at the EHs and assisting the EHs to harvest
energy. On the other hand, the AN beamforming matrix, Q.
should be optimized to jam the EHs and provide them with a
source to harvest energy along with reducing the AN power at
the IUs. Since the power budget at the BS is limited, the power
allocation between Tr(Zf‘ il W) and Tr(Q) should be held in
the optimal balance. In the following, we provide optimal and
suboptimal solutions for the design problems.

IV. OPTIMAL SOLUTION
A. Problem Feasibility and Reformulation

In this section, we solve optimization problem (8) optimally
through reformulating the objective function and the non-convex
constraints by using a change of variables, linearisation and
semidefinite relaxation of quadratic terms. First, let us examine
the feasibility of problem (8) through solving the constraints (8a)
and (8b). The upper bound of total harvested energy (the largest
total energy that could be harvested) is obtained sharply when
the BS transmits with its full power, P, along with aligning the
direction of (Q + S-M | W) such that

M
<Q+ZVI@> = Poo", )

i=1

where o is the eigenvector which corresponds to the largest
eigenvalue of the matrix é, Ag [27]. This is the case in which
problem (8) is reduced to an energy harvesting maximization
problem with information beamforming vectors set to zero, i.e.,
Zl | W, = 0, and the BS transmits AN precoded with a single
beamforming vector q; = +/P, 0. According to this, we can
write constraint (8b) as

(10)

M
(Pig > (Tr (G (Q + ZW)) > E.

With the existence of P, in the left-hand side of (10), the satis-
faction of (11) will definitely result in satisfying the constraint
(8a), therefore, the feasibility of problem (8) is guaranteed under
the following condition

(Prg > E. an

Now, let us reformulate the objective function which com-
prises a product of fractional terms. For this goal, we build upon
the change of variable idea proposed in [28]. Let us substitute the
numerators and denominators of the fractions in the objective
function in (8) by exponential variables as follows

M

i _ i iA 27 3

¢ mZ:l Tr (HW) FTr (H Q) Yol Vi, (12a)
e = %:1 Tr (HiVV,,,L> T+ Tr (HiQ) +o?, Vi, (12b)
et = i Tr (GkW,,,,) Ty (GkQ) Yok, Yk (12¢)

m=1

eliv = i Tr (G W ) +Tr (GhQ) + b, Vi, V.

m=1
m#i

(12d)

By using properties of the exponential and the logarith-
mic functions, we can write the objective function in (8) as
Zf\il(ul — s; — maxy (vg — t; 1)) whilst constraining w;, s;,
v, and ¢; ;, by the expressions at the right hand sides of (12a),
(12b), (12c) and (12d), respectively. Therefore, by defining real-

valued slack variables u = [uy,...,ur |7, 8= [s1,...,50]7,
_ T
v =[v,...,0]",
ty1 t K
T=| z
tar tar Kk
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and the set of optimization variables {{W, },Q, s, T, u,v} =
S, m =1,..., M, the SDP reformulation of problem (8) is

M
maximize E u; — S; — ax (vp —t;
s ( v k*l,.m,K( k 7’]‘))

i=1 -

subject to
M R R
ST (HW) T (HZ-Q) Yor>eh, Wi, (13a)
m=1
M
ST (H,;Wm) FTr (HiQ) Yor<et, Vi, (13b)

m=1

m#i

M

. N
Z::l Tr (Gka) +Tr (GkQ) ol <e',Vk  (13¢)
i Tr (kam) +Tr <G,{7Q) 4ok > ik Vi, (13d)

m=1

m#i

(8a), (8b), (8c). (13e)

The objective function in (13) consists of a sum of affine
functions (3, u; — ;) minus a sum of maxima of affine
functions (Zl‘il m}flx(vk — t;.1)) which is convex. Therefore,

the affine part minus the convex part will result in a con-
cave objective function. To deal with the non-convex con-
straints (13b) and (13c), we linearize the exponential terms
e’ and e”" using the first order Taylor approximation, such
that e* = e (s; — 5, + 1) and e’ = €% (v, — v + 1), Vi,
where & = [5,...,5,/]7 and o) = [T)i”,...,@g)]T are the
points around which the linearizations are made. Also, we drop
the rank-one constraint on {W,,,,} such that rank(W,,L) <N,
m =1, ..., M. Therefore, problem (13) can be recast as

M

maximize g u; —s; — max (v —t;
s ( v k:l,m,K( k ”c))

i=1

subject to

M
; T (HiW., ) +Tr (HiQ) + of

m#i

<e (s; —5 +1), Vi, (14a)
M . .

S T (GiW, ) +Tr (G Q) + oy

> () +(60)

<e%™ (v — v + 1), Vk, (14b)

(13a), (13d), (8a), (8b), (8c). (14¢c)

Problem (14) can be solved iteratively by Algorithm 1 using
the CVX optimization software [29].

Remark 1: To guarantee sufficient harvested energy for all
EHs, problem (14) can be recast by replacing the total harvested

Algorithm 1: Algorithm for solving problem (14).

 Initialize 5} and @], j = 1.

: Repeat

: Solve problem (14) and calculate {W7 }[J
: Increment j = 5 + 1.

: Update the initial values 5! = sl/~1l and gl = vli-1,
: Until Convergence.

: Calculate W and @Q from {VAVq} and Q

~N N B W N =

energy constraint (8b) with individual energy harvesting con-
straints as

M
maximize E u; — 8; — max
S k=1,... K

o1 Jeens

subject to

M
CTr <Gk, <Q+ZW>> > FE, Vk, (152

i=1

(14a), (14b), (13a), (13d), (8a), (8¢c) (15b)

where E is the minimum harvested energy per individual EH.

B. Optimal Rank-one Solution to the SDR Reformulation

In the solutions {W:,i} and {W:,Z}, m = 1,..., M, obtained
by solving problems (14) and (15), respectively, there is no guar-
antee that rank(W,*,f) = 1,75 =1, 2, Vm, such that it can take
the form VAV,*,Z = w,! wf,-{H.Therefore, if rank(W;;) = 1, then
the optimal beamforming vectors are calculated using eigen-
value decomposition. Otherwise, if rank(W,’) > 1, building
upon the framework in [6], [7], an optimal rank-one solution
can be calculated by using the following theorem.

Theorem 1: Having the optimal solutions
{{W:rj }7 Q*] ’ s% 1T*j ) u*i 71’*/ } =S~ 5 ] = 1,2, for SDR
problems (14) and (15), respectively, with rank(W;j) > 1,
{m} C{1,..,M} and {m} # ¢. Then, there exist optimal
solutions {{W.'},Q", 5, T" ,u v} =S, j=1,2,
for the SDR problems (14) and (15), respectively, that satisfy a
rank-one constraint, rank(ﬁ/;: ) = 1 and can achieve the same
objective value achieved by S*7, 7 = 1,2, respectively.

Proof: See the Appendix. |

V. SUBOPTIMAL SOLUTIONS

In this subsection, we derive suboptimal solutions to problem
(8) with lower complexity. The solution is based on designing the
directions of w; s to nullify the information signal interference
whilst maximizing the information signal for each information
user. In addition, two different beamforming vectors for the AN
are considered, g, and g,. The vector q, is designed to nullify
the AN at the [Us while g, ignores AN alignment at the IUs. The
direction design is followed by per beamformer power control.
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Let =[hy,...hi_ 1,hb+1,hM] with a singular
value decomposmon (SVD) H,; =U,;%;[V,; V]2, where
V; € CNX(IN=M+1) " contains the last N — M + 1 right-
singular vectors with Vf{ Vi;=1Iy_py+1. The vectors
constituting V; are the basis for the right null space of H;,
ie, H;V, = =007-1)x(N—m+1)- Therefore, to nullify the
information signal interference at the IU;, we should design the
1U;’s beamformer as

w; = /piw; = \/p; VWi, (16)
where p; is the power assigned to w; and w; € C(N-M+1)xI

is an arbitrary unit norm complex vector. To maximize the
signal at the IU;, w; is aligned to the direction of the equivalent
i
Vi

Using a similar concept, we design the direction of the AN
beamforming vector, q;. Let H = UX[V V]! be the singular
value decomposition of H, with V' € CNV*(N=M) containing
the last N — M right-singular vectors. Therefore, it can be guar-
anteed that there is no AN leakage to the IUs, i.e., Hq; = 0,/ 1,
by designing g, as

channel KV, ie., w; =

ql = \/p7L1QI = \/pn] Vqla (17)
where p,, is the AN power of g, and g, € CV-M)x1 is an

arbitrary complex unit norm vector. The total power harvested
by the EHs from the AN is p,, |GV q,||%. Let v be the unit
norm eigenvector corresponding to the largest eigenvalue value
of the matrix V' GH GV, then, to maximize the total harvested
energy, the optimal value of @, is ¢; = v. The other AN beam-
forming vector, g,, aims to maximize the total harvested energy
without paying attention to the noise it imposes on the IUs.
Therefore

q; = \/pnzt_127 (18)

where p,,, is the AN power of g,, @, is the unit norm eigenvec-
tor corresponding to the largest eigenvalue value of the matrix
G"G.

Now, we establish three sub-optimal solutions based on three
different sets of AN beamforming vectors; the first sub-optimal
solution, sub(1), uses the AN beamforming vector Q = {q, },
the second sub-optimal solution, sub(2), uses the AN beam-
forming vector Q, = {g,}, while the third sub-optimal solu-
tion, sub(3), uses two AN beamforming vectors Q3 = {q;, @, }.
Based on the designed directions of {w;}, we write the se-
crecy rate for IU;, when wire-tapped by EH;, and using the Q;,
7 =1,2,3, set of AN beamforming vectors, as

sub(j) i |h’7Hﬁ)7}2 + Dn, }h{{62|2 + 0—%
Rm = log, 72 B -
Pn, |h q2| + o7
Zl 1 Pi ’.qk wz’ + anl ‘gk QZ| + UE
mkaxlogz )

777 i

Zm 1 Pm ‘gk wm‘ + Z]Ipm |gk ql‘ +UE
le
J (19)

where I}, I, and I3 are index sets containing the indices of
the vectors in Q, Q, and Qj3, respectively. Now, we define

three different problems P(j), j = 1,2, 3, corresponding to the
use of the three different sets of AN beamforming vectors Q,
Q> and Q3. The power vector P = [py,...,par] and py,,, Pnss
are optimized to maximize the worst-case sum secrecy rate
(R*PU) = le mlanu};

lem P(j) (change of variables and Taylor approximation are
exploited to formulate the problem)

>) by solving the following prob-

M
PG maime 3 (106~ 5 )
P:pnl;pnz )
subject to
pi |R i |* + po, | @] + 0} > €, Vi, (20a)
po R @+ 02 <€ (3 — 5 +1), Vi, (20b)
sz gl @i+ w9l @] +o
lel;
e (o — O + 1), VE, (20¢c)

M
Z Pm ’g]?'wm ‘2 + an/ |ng(11 }2 + J%‘ > el 7V7€i7k"

m=1 lel;
m#i
(20d)
M
> pu +> pi <P, (20e)
lel; i=1
Zn IGw; I3+ pu, IGq |17 > E, (20f)
i=1 lel;
where @ = [dy, ..., i)', 8 = [81, ..., Su]", © = [0y, .., 0 ]"
and
11 t i
T = :
tar etk

are slack variables. Problem (20) is solved iteratively, after each
iteration, 8 = [5,...,5)/]7 and © = [0y, ..., 0x]", the Taylor
initial value in (20b) and (20c), are updated by the optimized
value of § and ©. The iterations continue until convergence in a
similar manner to that in Algorithm 1.

Remark 2: To guarantee sufficient harvested energy for all
EHs, problem (20) can be recast by replacing the total harvested
energy constraint (20f) with individual energy harvesting con-

straints as

M
P (j) : maximize Z (m -8 — max (o — tAi‘,k:))

,8,9,T, P
P.py,.pn,
subject to

M
S lgffwily + > pa gl al, > B, vk Qla)
i=1 lel;

(20a), (20b), (20c), (20d), (20e). (21b)

Problem (21) can be solved iteratively in a similar manner as
in (20).
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VI. SPECIAL CASE OF COOPERATIVE EHS

In this section, we consider a special case when all EHs
cooperate to decode the IU;’s signal, therefore, they have the
ability to cancel the information signal interference. The sum
secrecy rate in this case is given by

ﬁ S T (HW ) + T (HiQ) + o
log, N
i=1 Zgz[#ITr (H Wm) —|—TI‘< ZQ) +0'%

Tr (GQ) + KU%
X . (22)
Tr <CA¥VAV1) + Tr (éQ) + Ko?,

Defining real-valued slack variables © and ¢ = [7'51, . ifM]
and the set of optimization variables {u, s, 9, f, {W,,L} Q} =

S,m =1, ..., M, the SDP reformulation of the sum secrecy rate
max1mlzat10n problem is
M
maximize Z (ui -8 +v— fl-)
S i-1
subject to

Tr (GQ) + Ko > e, (23a)
Tr (GWQ + Tr (GQ) + KU%E < e;‘ (i'i - EL + 1) , Vi,
(23b)

(13a), (14a), (13e). (23¢)

~ Problem (23) is solved iteratively, after each iteration, t=
[t1,...,tar]7 and 3 (see constraint (14a)) are updated by the
optimized value of £ and s. The iterations continue until con-
vergence in a similar manner to that in Algorithm 1.

By following comparable steps as in the proof of Theorem I,
given the optimal rank unconstrained solution of problem (23),
S = {{Wm} Q" s, i ur v } we can calculate an opti-
mal solution S = {{Wm} Q7 5, t°, w*, U} that satisfies the
rank-one constraints, rank(W— )=1me{m: rank(Wm) >
1} and achieves the same objective value as S* does, as follows:

—Tm Ym € {m}

m, iy, *

A
N w

T _ .y m

Wm, = bm,ﬁlm Wm. i, Pma, — { ~ )
2 mo vm ¢ {m}

(24)

s 400, Yme{m}, STr(Hp7n) <Tr (G 7m

s+ 0% Ym e {m}, ST (Hy 7)) > Tr ( GY T
Sr VYm ¢ {m}

(25)

ot
I

v+ Z(Sm , Yme{m}, > Tr (Hp7Tn) <Tr (GZT,”)

m m m

v 4 Z(Sm , Ym e {m}, ZTr(Hme) > Tr (GZT,”>
i, vm ¢ {m}

(26)
> T 27)
me{m}
m € {1,y — 71, }, (28)
N —73,, V —7
_ _ = - H
Tm = Z am.ndjm.ndjm,n Z m, nlwm n1 m,ny’
! i,
(29)
o) = —s% +log (Tr (H 7)) +€°7), (30)
- Tr(H,T
(2) gk m m
0,y = —0* + log ZTr (Ho ) ;Tr (G‘rm) ,
(31)
71, =rank (Y,*n) , T, =rank (D;) , (32)
[’J)m,la (a3} {bm.fo'g,,, ] = ‘ilm = null (D:n) ’ (33)
[\ilm [‘Dwul; ceey a)m,f‘zm Tl ]] = null (Y:L) 3 (34)
]\/[ . A~
=D, -> 8 H, D,=p-hG, (35)
i=1

and 37, B35, {3}, {¥7}, are the optimal multipliers asso-
ciated with the constraints (8a), (8b), (13a) and the positive
semidefinitness constraints of {Wm} in (8c), respectively;
Gm nS > 0and l_)m,n] s > 0 are positive scaling constants.

By using the beamforming vectors w; s, g, and g, in (16)-
(18), and defining new slack variables v and £ = [{y, ..., fM]T,
three different suboptimal solutions for sum secrecy rate max-
imization can be obtained by formulating problems having a
similar structure to problem (20) as follows:

M

> (=8 +0—1)

i=1

P(j):  maximize

@,8,0,8,P.p, | by
subject to

) — 2
pi |Gwill7 + > pu, |G |17 + Ko <

lel;
> pu Gl + Kofy > e, (36b)
L€l
(20a), (20b), (20e), (20f). (36¢)
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_ Problem (36) is solved iteratively, after each iteration, t=
[f1, .-, ta]7 and & (see constraint (20b)) are updated by the
optimized value of # and 3, respectively. The iterations continue
until convergence in a similar manner to that in Algorithm 1.

VII. COMPLEXITY ANALYSIS

The complexity of our solutions (the optimal and the sub op-
timal) relate to the type of the optimization problems, the size
of input data, number of the required iterations and the methods
used to solve them. The most generic problems, (14) for the
optimal solution and P(3) in (20) for the suboptimal solution
are convex and solved by CVX software. The solvers used by
CVX software (such as SDPT3 and SeDuMi) employ a sym-
metric primal-dual interior-point algorithm which cannot handle
the exponential function in the constraints (13a), (13d), (20a)
and (20d). Therefore, CVX uses the successive approximation
method in which the exponential functions are approximated
in a polynomial form, and then the resulting problem is solved
iteratively until convergence [29]-[31]. The per-iteration prob-
lem for the formulation in (14) is equivalent to an SDP problem,
while, the per-iteration problem for P(3) in (20) is equivalent
to a linear program (LP). For similar convergence tolerance, we
compare the complexity of both problems, (14) and P(3) in
(20) by comparing the complexity of the per-iteration problems.
For that purpose, we use the basic complexity analysis steps in
chapter 6 in [32].

A. Complexity of Suboptimal Solution

To follow the steps of the complexity analysis given in chap-
ter 6 in [32], we need to transform the per-iteration problem for
P(3) in (20) (in which all exponential functions are approxi-
mated by first order polynomials) into an equivalent standard
LP form. First, we transform the max operator expression in the
objective function (Zf\il maxy—1,.. x (0 — fi,k)) by introduc-
ing a new vector slack variable m € R™ <! such that the max
operator expression will be 1}1 7r, where 1,; is a M x 1 vector
with all entries one, with KM constraints (per scalar value)
[w]; > O — [te]i, Vi, Vk, where t; € RM>*! s the kth column
of T'. Now we can transform the per-iteration problem in its
standard LP form as follows:

(Pyp) : maximize ¢’z
X

subject to
Apz = di, (37a)
Apz = d, (37b)
Ay z =< ds, (37¢c)
Ay = dy, VE, (37d)
alsyx < B, (37e)
alg® > E, (37f)
Agyx = 0, VE, (372)
Agz = 0 (37h)

where

T = [pl,...,pM,pnl,pm,ﬂ 8 o7 At 7T e=
[01xM+2,1{17 1{1,01x<\1+1)1<711\1] A(l)—h( h) 7aTl‘,]
Ap) = a0 a0,)]s Ap) = a6, a5,)) A =
[ 221“)7"'70‘(7;1,\ )} a;s) = [1£I+2701><(3+K)AI+K]T? A(7L.) =
[al3, ) - @) @) = Onaar2ei—1, =1, 00k kg (k-
DM +i-1s 17 01 (K -kt )M -1 1701xsz]T, Ay =[Irr42, O
+2><7(3+K)M+K]T7 d\]; = *U%freﬂ"(l — 1), [da)i=—07

+e¥ (1= 5), [da]r = —of + e (1= 0p), [dy]i = —0F +
eir (1 —t;1), and — 4, &;, Vi, 0, Vk and £; 1., Vi Vk are
the initial values of first order approximation,

Il w, |, j=i
_ 2 .
lagy], = hla|.  j=M+2 (38)
/ —eli, j=M+2+i
0, otherwise
nfa,|”,  j=M+2
lapy]; =1 —¢¥,  j=2M+2+i, (39)
0, otherwise
gl aw;)>,  j=1,..,M
H — 2 .
o], =9 | kegl PRV (40)
0, otherwise
wal HthJjHjF, =l M .
@l =9 1Gg|;, i=M+1,M+2, (41)
0, otherwise
gl aw;|>,  j=1,ni—lit+1,., M
l9f'a; [, j=M+1,M+2

—elin, j=3M+K+2+MGi—1)+k
0, otherwise
(42)

With the standard LP formulation in (37), the complexity of
attaining an optimized objective value within an accuracy e,
Comp(Pyp, €), is calculated in terms of the following parame-
ters:

ng=dim x=(4+K)M+K+2, the dimension of real
design variables; ms = (3 +2K)M + K + 4, the total number
of per-scalar value constraints; and Data(Pyyp) = [ns, ms,
e, vec(A))", vec(Ap))T, vec(Ap)T, vec(Aw,))”, ...,
vee(Awy)T, aT> a<TG), vec(A))T, ..., vec(Az, )T,
vec(A)”, dl, d;, di, d417 s de,Pt, E]", input data
vector for Rub where dim Data(Pyy) = (3ns+2n, K+ K+
2)M + (ns + 1)K + 4n, + 4.

The per-iteration complexity in terms of the number of real
operations, Comp( Py, €), is calculated as [32]

[T

n

Comp (Psubv 6) = %

(ns + ms‘)

< In (dim Data (Pyp) + ||Data (

€

2
Psub)Hl te ) ) (43)

The result in (43) assumes that the input data matrices and
vectors are unstructured. However, the solver can utilize this



ALAGELI et al.: OPTIMIZATION FOR MAXIMIZING SUM SECRECY RATE IN MU-MISO SWIPT SYSTEMS 545

matrix structure to reduce the number of operations required for
getting the solution.

B. Complexity of Optimal Solution

As in the previous subsection, the first step in analyzing the
complexity of the per-iteration problem of (14) is to transform
it into a standard SDP form with all constraints expressed in
terms of linear matrix inequalities (LMIs). For this purpose, we
use the idea of the Schur complement to describe the quadratic
constraint in terms of semidefinitness of the bock matrix. For
example, the constraint (14a) is transformed into an LMI con-
straint as described below

—or+ e (s, — 5 +1)

M
hf{ _Q_ ZW"L +

Iy| h;
m=1 ||h’LH2
<0, Vi, (442)
_[D" i _
on= [ 5] -
A M W g2 —cti (.s;17§,¢+1)1- - h
Q+ Z;x;zl m + W N i
hl
=0 Vi (44b)

We get (44a) from (14a) based on properties of the trace oper-
ator and matrix multiplication, and the independence between
{ Wm} and Q. The non-singularity of D; is guaranteed by the
non-zero identity. The block matrix in (44b) is positive semidef-
inite if and only if both the lower-right sub-matrix (scalar), 0,
and the Schur complement of the upper-left sub-matrix D, in
Cy,0- hfl D,L»_lhi, are positive semidefinite. Since the posi-
tive semidefinitness of the scalar 0 is always true, therefore the
constraints (44b) and (14a) are equivalent. The remaining con-
straints, (14b), (13a), (13d), (8a) and (8b) are transformed in the
same way (after first order linearization of the exponential vari-
ables). As in the previous subsection, the max operator expres-
sion in the objective function (Zf\il maxy—1.. g (v —tig))is
recastas 12, 7t , where 7 € R *! is a vector slack variable, with
KM constraints (per scalar value) [7]; > v, — [t;]i, Vi, VE,
where t; € RM*! ig the kth column of T'.

Using the fact that the diagonal matrix is positive semidef-
inite if and only if each of its entries are > 0, the K M con-
straints [7]; > v — [tx]i, Vi, VE, can be transformed to LMI
constraints as'

(7 4+t —uvp)" Iy =0 Vk. (45)

I'The vector inequality > 0 is equivalent to the LMI diag(a) > 0.

The per-iteration problem for (14) is thereby written in its
standard SDP form as follows:

T

(Pop) : maximize ¢ &
subject to
C]; ) Czk ) C3; ) C4,_k. i 07 \V/Za Vkv (468')
Cs, Cs = 0, (46b)
c;, = 0, VEk, (46¢)
Wi, Q = 0.Yi, (46d)
where
R ~ T
T = {uTasTvaatTw“at£7AT:| y
. T
C = [13\}7_1§I7OIX(1\1+1)K71?\1{] 5
C,, =
2 Wi NG NIk,
I g 0
Cs =
i 2 / S —o2+ei (u; —u; -1
(*Qf (Z%:lwm) +WIN) h/
I i 0]
C4f,./<
- —1
-~ M x O’}'}_‘—*ef’v"k(tf k*ﬂ k+1)
Q- L Wa |- P i
m=1 k
m#i i
L gy 0
. P 1
oo [(@s (W) - 50) 1
14 0
Co =
A o _ -1
(<c(@+ (W) +51v) 1| o
14 0] )
N _
0 ,E=0

cy, = (ﬁ' +t, — Uk)T I,.

The standard SDP problem in (46) is represented in a
complex-valued domain. Translating the complex-valued do-
main SDP (CSDP) programme to a real-valued domain SDP
programme was introduced in [33] using linear complex-to-real
mapping. In our case, we translate the CSDP programme, Py,
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to the real-valued domain using the following mapping

. Re(Q) fIm(Q) _ [Rel(gy)
T (a) re(Q) K AR

TW. — R6<W7‘) _Im(wi>
Z Im(Wi) Re (Wi)

)

i)

Vi, TIN :lzN,TO:Ole in C5 and CG. (47)

Considering the standard SDP formulation (46) in the real-
valued domain, we use the method in chapter 6 in [32] to
calculate the complexity of attaining an optimized objective
value within accuracy e, Comp( Py, €), in terms of the following
parameters

n, =dim & + (M + 1)N?=(K +3)M + K +2(M + 1)
N2, the dimension of real design variables; m, = KM + 2K
+ 2M + 4, the total number of LMI constraints which includes:
(KM + K + M +3) LMI constraints each of size (2N +
2) x (2N +2), K LMI constraints each of size M x M and
(M + 1) LMI constraints each of size N x N; Data(FPyy) =
[0, Mo, ¢, 4vec(C)T, 4 vec(Cy,)T, ..., 4vec(Cy, )7,
4 vec(C3,)T, ..., 4vec(Cs,, )T, 4vec(Cy, )Y, ..., 4 vec(C
4k )T7 4 VeC(CS)Ta 4 VeC(CG>T]T‘ ’

The per-iteration complexity in terms of number of real op-
erations, Comp( Py, €), is calculated as [32]

Comp (Pop, €) =

V(KM + K + M +3)(2N +2) + KM + (M + 1)N?
no [mg + no (KM + K + M +3)(2N +2)° + KM+
(M +1)N?) + (KM + K + M +3)(2N +2)* + KM+
<dim Data (Pyy) + ||Data (Pop) ||, + 62)

€

(M + 1)N*] In
(43)

The solver can benefit from the structure of the LMI matrices in
the real-valued domain to reduce the number of real operations.
It can be seen that Py, has an O(K 7 M3 [In(K>M) + In(1)])
asymptotic> complexity which is lower than that of the Popt,
O(K>M 3 N®[In(N>M) + In(L))).

It should be mentioned that, for the suboptimal solution,
there is a pre-optimization processing for calculating {w;}
and {q,,q,}, the pre-optimization has an O(M?N) asymp-
totic complexity due to the SVD of M matrices of size
(M — 1) x N. Comparably, for the optimal solution, there is
a post-optimization processing for a rank reduction process of
<M Wl*] s. This post-processing is upper bounded by an
O(M N?) asymptotic complexity.

VIII. EVALUATIONS

In this section, we assess the performance of our proposed
schemes. The simulation parameters of our MISO SWIPT

2Thecomplt:xityasKJ\/LN—)o<3,e—>0+ and K < N,M < N

system includes: number of transmit antennas N, number of
single-antenna [Us M, number of single-antenna IUs K, path-
loss (variance of the magnitude of channel coefficient) between
the transmit antenna, and the receive antenna at the IU and EH,
4% and 72, respectively, total transmit power budget available
at the BS, P,, and energy harvesting efficiency (.

Parameter selection was made based on some practical mod-
els and implementation requirements as follows:

1) We set the restrictions N > M and N > K. Having N >
M allows null space generation for the channel matrix
between the BS and the IUs, H, i.e., dim null(H) = N x
(N — M) does exist. Consequently, we can project the
AN in the null space of H. N > K allows the EHs to
collude and cancel the interference from non-intended IUs
[34]. The selected values are N = 8, M = 2 and K = 3.

2) We assume that all IUs are at equal distances from the
BS and likewise for the EHs. This assumption is to avoid
the selection based on average path-loss which remains
static for a long time and focus on the optimization of the
beamforming matrices depending upon small-scale fading
coefficients.

3) For selecting the values of 77 and 2 we rely on the
general urban channel model PL4g = 10 log;, * + b
[35]. With path-loss coefficient o = 2, fixed-loss com-
ponent b= 10dB which depends on the operating
frequency, height of transmit antennas and different
macro-environment type. The common assumption is that
the EHs are located closer to the BS compared to the IUs
in order to harvest energy. We assume that the IUs are
located at 1000 m apart from the BS and this corresponds
to 70dB path-loss and 77 = 1077, while the EHs are lo-
cated at 10 m from the BS and this corresponds to 30dB
path-loss and 72 = 1073.

4) Apart from the design of the energy harvesting circuit, the
energy harvesting efficiency mainly varies in accordance
with the range of incident RF power. With total transmit
power P, = 1W and 30 dB average path-loss, the incident
RF power at the EHs is about 0 dBm which yields an
energy harvesting efficiency of at least 50% [36]. Also,
the parameter values P, = 1 W and { = 0.5 give a decent
feasibility region through which system performance can
be demonstrated.

We show the system performances in terms of the achiev-
able worst-case sum secrecy rates (R, R(1) Rsub(2) Rsub(3))
against the total harvested energy constraint £ and individual
harvested energy constraint E. We call the area under the plot
(R-E curve) the R-E region and it shows the trade-off between
E or E and the sum secrecy rate. The larger the R-E region the
better the performance.

Fig. 2 shows the R-E regions for the non-cooperative EHs
case. With regards to the optimal solution, it can be seen that
the worst-case sum secrecy rate decreases as the required to-
tal harvested energy increases. The trade-off region lies ap-
proximately over the total harvested energy constraint interval
(1.5,7.3] mW. This means the power allocated to the AN is zero
when F < 1.5 mW, in other words, the energy harvested from
the information signal is enough to satisfy this total harvested
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0 0.5 1 1.5 2 2.5 3 3.5 4
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Fig. 2. E-R regions for the non-cooperative EHs case with total harvested
energy constraint.

energy constraint. At the point corresponding to, £ = 7.3 mW,
the power allocated to the information signal approaches zero
and the problem is being reduced to the energy harvesting maxi-
mization problem. On the other hand, the sub-optimal solutions
(achieved via LP optimization) have a lower complexity than
the optimal solution (achieved via SDP optimization). The sub-
optimal solutions’ performances lie under the optimal solution.
In the sub-optimal solution achieved by the AN beamforming
vector q;, Sub(1), there is a gap in the total harvested energy
between the optimal and the sub-optimal solution, A g, at zero
sum secrecy rate. This gap which is equal to 38% of the optimal
total harvested energy (% x 100) is due to the nulling of the
AN at the IUs. In other words, in the optimal solution, the AN is
matched to all N transmit channels, while in the sub-optimal so-
lution, some degree of freedom of the AN beamforming vector
is traded for nullifying the AN at the IUs, therefore, the AN is
matched equivalently to only N — M (the column dimension of
GV) channels. This issue of dimensionality reduction appears
when serving multiple IUs. The solution Sub(1) performs bet-
ter over the low total harvested energy constraint region, where
the gap between the optimal and the sub-optimal sum secrecy
rates, Ap, at zero harvested energy constraint is equal to 13%
of the optimal sum secrecy rate (% x 100). Conversely, in the
sub-optimal solution Sub(2), all N channel coefficients of g,
are matched to the dominant eigenvector of G G, therefore,
the maximum energy is harvested at zero secrecy rate, and the
gap in the total harvested energy between the optimal and the
sub-optimal solutions totally vanishes. In the sub-optimal solu-
tion Sub(3), better performance is achieved by exploiting both
AN beamforming vectors q; and g,, the achievable sum secrecy
rate of the sub-optimal solution Sub(3) exploits the advantage
of the good performance of Sub(1) and Sub(2) over different
regions of E. It can be seen that R*"°3) traces the envelope of
Rsub(l) and Rsub(Z), i.e., Rsub(3) _ maX(Rsub(l)’Rsub(Z)).

8 : : : : : : :
) ——Optimal solution
at —Sub(1) |
---Sub(2)
6l -%-Sub(3)

Total harvested energy constraint (mW)
SN

0 . . . . . . * A
0 0.5 1 1.5 2 2.5 3 3.5 4
Sum secrecy rate (b/s/Hz)
Fig. 3. E-R regions for cooperative EHs case with total harvested energy

constraint.

—0—Optimal solution
-#-Sub(3)

Individual harvested energy constraint (mW)

O L L L L L A
0 0.5 1 1.5 2 2.5 3 3.5 4
Worst-case sum secrecy rate (b/s/Hz)

!

Fig.4. E-Rregions for the non-cooperative EHs case with individual harvested
energy constraints.

Fig. 3 shows the E-R region when the EHs cooperate to wire-
tap an individual IUs. The same observations in Fig. 2 for the
non-cooperative EHs are valid for the cooperative EHs case.

Fig. 4 shows the E-R regions for the non-cooperative EHs
case but with individual harvested energy constraints for the op-
timal and Sub(3) (achieved by solving P(3) in (21)) solutions.
The achievable worst-case sum secrecy rate with respect to E
follows a similar trend to that with respect to E given in Fig. 2.
By comparing the results in Fig. 4 and Fig. 2, we notice that
the achievable worst-case sum secrecy rates corresponding to
E=0and E =0 are equal since both problems (14) and (15)
are equivalent to a worst-case sum secrecy rate maximization
problems with no harvested energy constraints. The Sub(3) so-
lution achieves zero worst-case sum secrecy rates at a value of
E = 1.5mW which is lower than the value of the optimal so-
lution, E = 2.2mW. This is because in the Sub(3) solution the
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Fig. 5. Sum secrecy rate versus variance of IU channels with given harvested
energy constraint &£ = 2mW.

AN beamforming vectors, g; and g,, are designed to maximize
the total harvested energy while the problem is constrained with
the individual harvested energy of the EHs.

For the given system parameters and the considered cases,
cooperative and non-cooperative EHs represent the worse-case
and the best-case assumptions, respectively. The cooperative
EHs are equivalent to a single receiver with K receive antenna.
Now, with the restriction X < N, the best scenario for the EHs
is to employ successive interference cancellation which is ca-
pable of cancelling the interference from non-intended IUs and
achieves the best possible information rate [34]. Therefore, the
achievable sum secrecy rate can be considered as a lower bound
on the optimal solution® performance. In the other case, non-
cooperative EHs, the assumption is that each EH relies on itself
to decode the intended IU signal. In addition, in our objective in
(8), we optimize the worst-case sum secrecy rate, i.e., the case
when the IU; are being eavesdropped by the strongest EH, (see
the max operator term in (8)). Therefore, the achievable sum
secrecy rate can be considered as an upper bound on the optimal
solution performance.

Fig. 5 shows the effect of the placement of the IUs and the
non-cooperative EHs on the achievable average sum secrecy rate
for system parameters N =8, K =3, M =2, E=2mW,
Pt =1W and ¢ = 0.5. For that purpose, the statistical average
of the channel power gains (channel variance) from the BS to
all EHs are kept constant at 7,25 = 1073, therefore, the problem
feasibility will not be affected, while channel variance from
the BS to all IUs is varied over the range [—90 dB, —50 dB]
which corresponds to channel variance range from 77 = 10~°
to 77 = 107>, As expected, the average sum secrecy rate tends
to decrease as the IUs signal attenuation increases.

Fig. 6 compares the average worst-case sum secrecy rate
achieved by different optimization schemes against different
number of transmit antennas at the BS with K =3, M = 2,
E=3mW, P, =1W and ¢ = 0.5. The value of E is chosen
such that the three solutions, the optimal, Sub(1) and Sub(2) get

3This is the lower bound on the optimal solution performance since the
suboptimal solution performances still lie under this lower bound.
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Fig. 6.
antennas.

Achievable average sum secrecy rate for different numbers of transmit

a reasonable feasibility rate. Note that to calculate the average
sum secrecy rate, only the feasible solution cases are considered.
As expected at lower value of harvested energy constraint (£ =
3 mW), the suboptimal solution Sub(1) outperforms Sub(2).
The priority in AN precoding in Sub(1) is to nullify the AN at
the IUs and this is appropriate at low harvested energy constraint
region. It can be seen that the gap between the average sum
secrecy rate achieved by Sub(1) and Sub(2) increases with the
number antennas. This is because, in Sub(1), as the number of
transmit antennas increases, the percentage of channels used to
match the AN signal toward the EHs increases with preserving
the cancellation of the AN at the IUs. For example, at N = 10,
equivalently, 80% (1952 x 100) of the transmit antennas are
used for AN alignment, whereas at N = 25, 92% (% x 100)
of the transmit antennas are used for AN alignment.

The feasibility of the optimal solution to problem (14) is
mainly dependent on the parameters in the feasibility condition
(11). In addition, the choice of the initial values of the slack
variable vectors s and v can affect the feasibility of the first
iteration. If the initial values of s and v are chosen far from
the optimal values s* and v*, then there is a strong possibility
that the first iteration ends up infeasible or the solution takes a
large number of iterations to converge. In Fig. 7, we examine the
feasibility rate of the optimal solution in average percentage for
arange of harvested energy constraint using the same simulation
parameters in Fig. 2. A simple and good approximation for the
initial values s and v are calculated as follows:

M
U = log (Pt_]wpn ZTr (Gk@mﬂ)ﬁ{) .
i=1
P\ - .
o > T (Grgaf!) + ok | . Vi, (49)
=1
Si = log <]; [nla,|" + 0?) | Vi, (50)

where P, is the total AN power. The values obtained by the
above equations are based on the third suboptimal solution
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Sub(3), but with equal power allocation among the informa-
tion beamforming vectors and the AN beamforming vectors.
The initial values that yield a feasible first iteration (if it exists)
is obtained via one-dimensional search across 0 < P, < P,.
The optimal solution feasibility rate in percentage is calculated
using three different Monté-Carlo simulations. In the first two
simulations, we inspect the actual optimization problem feasi-
bility by solving problem (14) using CVX software. The initial
values s and v are calculated by using (49) and (50) with a
search through P, = 0,0.2,0.4,0.6 W for the first simulation
(square-marked curve), and for the second simulation results
(star-marked curve), the initial values are calculated by (49)
and (50) but only with P, = 0. These two results are compared
with problem feasibility rate obtained by the satisfaction of the
condition in (11) (solid line curve). As we can see, searching
through four different initial values of s and v yields a feasibil-
ity rate close to that obtained by feasibility condition (11), while
when each of 5 and v are assigned one value, the feasibility rate
drops significantly. This gives an insight into the sharpness of
the feasibility condition (11).

Fig. 8 shows the achievable worst-case sum secrecy rate
across the iterations of our iterative algorithms for both op-
timal solution and the sub-optimal solution, Sub(3). The re-
sults are obtained in the trade-off region of both solutions
with a common total harvested energy constraint £ = 5.5 mW
and common initial values, s and v, which are calculated by
using (50) and (49) with P, = 0.2,0.5 W. With a tolerance
of 0.001 b/s/H z, the optimal solution converges at the 10th
and the 7th iterations with the initial values generated with
P, =0.2 W and P, = 0.5 W, respectively. On the other hand,
the sub-optimal solution converges at the 5th and the 4th iter-
ations with the initial values generated with P, = 0.2 W and
P, = 0.5 W, respectively. The suboptimal solution shows a
faster convergence speed than the optimal solution at different
initial values. This is expected since the initial values are calcu-
lated by the beamforming vectors employed by the suboptimal
solution.
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Fig. 8. Convergence of the achievable sum secrecy rate for the optimal and

Sub(3) solutions, with non-cooperative EHs.

IX. CONCLUSION

In this paper, we considered secure downlink transmission in
SWIPT MU-MISO systems comprising multiple IUs and multi-
ple EHs which have the potential to wire-tap the IU’s signal. We
proposed joint optimization of the information and AN beam-
forming vectors for worst-case sum secrecy rate maximization
with a constraint on the total harvested energy by the EHs. The
problem was formulated as an iterative SDP program. Using
dual variable multipliers, we derived a rank-one solution for
the transmit covariance matrices of the IUs which achieved the
same optimal sum secrecy rate attained by a rank-unconstrained
SDP program solution. Three different sub-optimal solutions
were also provided. The first solution was based on IUs in-
terference alignment and the projection of the AN in the null
space of IUs channel vectors followed by transmission along
the dominant eigenvector of the equivalent EHs channel, while
the second solution ignored the AN alignment at the IUs. The
third sub-optimal solution exploited the AN beamforming vec-
tors of both the first and the second sub-optimal solutions. The
performances of the sub-optimal solutions lied under the opti-
mal solution, however, as a result of AN null space projection,
the first sub-optimal solution outperformed the second solution
in the low energy harvesting constraint region and vice versa
for the high energy harvesting constraint region. The sum se-
crecy rate achieved by the third sub-optimal solution traced the
maximum of the first or the second sub-optimal solution. Future
work will aim at optimizing transmit beamforming matrices for
multi-antenna [Us and EHs, and also considering the work for
the massive MU-MISO case.

APPENDIX
PROOF OF THEOREM [

Proof: For the SDR problems (14), the optimal rank-one
solution S*! is obtained via two steps. In the first step, we
find the structure of the optimal rank-unconstrained informa-

*1

tion beamforming matrices {Wm }. Then, in the second step,
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we use the structure of {VAV*I} to calculate new optimal so-
lution {{Wm} Q" s T u ,v*1} = S*1 that satisfies a
rank-one constraint, rank(W . ) = 1, and achieves the same ob-
jective value achieved by {{W,,,i}, Q*l , ST w v* ) =
S*1. The optimal rank-one solution of (15), g*z, can be ob-
tained by following the same steps, therefore, and due to space
limitation, we provide the proof for (14) only.

Since the objective function and the constraints of (13) are
differentiable, i. e., they have an open domain, then there is a
solution set that can strictly satisfy the constraints (13a)-(13e).
Therefore, Slater’s condition holds, and zero gap between pri-
mal and dual solutions is guaranteed if the KKT conditions are
satisfied [26]. The Lagrangian of problem (13) can be written as

M

L(S,L)= Z (wi — si — vy + tik)) +
i=1
M

K K
E —age" + ay e’ — E Qg elir | 4+ E as, eVt
k=1 k=1

i=1

+ i Tr (A,,,, Wm> T (BQ) +d

(51
where
M
A, = —al+Ca2G+Za3H Z%’ Gy,
i=1 k=1
M
+ Z (—&4 H + ZO&@ ka) + Y,,,, (52)
=1 k=
z;ém !
A K A
B=—oa + (G — ZO@L_Gk
k=1
M K R
+ Z <a3;Hi — Qy, H, + ZO%'V" Gk> + YQ,
i=1 k=1
(53)

M
d=o P — OQE + Z <(OZ3

i=1

K
2 2
a47,)0—[ +og E s, 4
k=1

(54)

K
2 E
_UE ajk7
k=1

and {041, oo, {043/. }7 {a4, }, {ask }, {0467’_,C }} =L >0 are the
Lagrange multipliers associated with the constraints (8a),
(8b), (13a), (13b), (13c) and (13d), respectively. The set
{Y,,},Y g = 0 are the Lagrange multipliers associated with
the semidefiniteness constraints in (8c), respectively, and k(i) =
argmax( vp — t; ). Notice that, the Lagrange dual function

G(L, {Y },Y () is the supremum of £ over S. In order for G

to exist, G has to be bounded from above, accordingly

A"HB =0, {O‘4z } ) {a5k } ) {aﬁz.k | k 7é k(l)} =0,

and {a3},{as, . } >0. (55)
Therefore, the Lagrangian function will be
M
g=o1P,—aFE + Z (oz3i O’% + a@k(y)aé)
i=1
M |
+ log| —— | —2]|. (56)

The primal problem (13) can be solved by solving the dual
problem (57) which achieves the same objective value

Minimize §G
]Lv{Ym }~YQ

subject to

ap, Q2 Z 07 {0431 } ’ {aék(i) } > 07 {Y"L} 7YQ t 0. (57)

We prove that the KKT conditions for the relaxed primal
variable {VAVm} are satisfied as follows:

1) Primal and Dual Feasibility: Based on the feasibility con-
dition in (11) and the non-negativeness of dual variables, both
primal and dual problems are feasible.

2) Complementary Slackness: Since Slater’s condition holds,
then

f(s™)
:Q(]L*', (Yo}, Y*Ql) zsgpﬁ(S,]L*‘, (Yo}, Y3>

= sup
S

F(S)+aihy + b hy + Z <a§j hs, + o} hy, +

K

Za he, . +Tr (Y*' )) Zag'h@
k=1

T (v;Q)|

(a) * * * * *
Zf(S*1)+allhl+a21h|+Z a3r_‘h'+a4'h'

K
Za*l he! —|—Tr(Y*‘ l)) Za%h?i—!—
E—1

k=1
Tr (Y&‘Q*])

(0)
> f(87), (58)

where f is the primal objective function, {L.*', {Y 1}, Y7) }
is the optimal solution of (57) and hy, hz, {hs, }, {ha },
{hs,} and {he, ,} are the left-hand side of the inequality
constraints (8a), (8b) and (13a)-(13d) (after rewriting them as
> 0 inequalities), respectively. The inequality (a) follows since
the supremum of the Lagrangian is greater than or equal to
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the value of the Lagrangian at any feasible set of {S,L*'}
which includes {S*',IL*'} [26]. The inequality (b) follows
from the non-negativeness of the elements in o'h}", a5'h3',
gtk At b o st b et g 1 4T (Y W),
and Tr(Y*Q‘Q ). Therefore, the inequalities (a) and (b) hold
only when each term in o]'h}’, *‘h;‘, {a3'h3'}, {a j‘h*‘},
{o3 hE' Y, {og! hg! b ATH(Y W)}, and Tr(Y Q™) is
equal to zero. Hence the compllmentary slackness is proved.
3) Stationarity:The stationary point of £ should satisfy

M

oL
2wy

m=1 m

M
=0, therefore Z A =0.

m
m=1

Since we have A*! < 0, Vm, then, based on stationarity, (52)

m —

and (55), we have

M
Y =Dy — Y o H; Vm, (59)
i=1
M
. *
D) =a, — (o, G- Z g (60)
i;ém
To satisfy the complementary slackness condition,
W,' should lie in the null space of Y, . De-
fine rank(Ym) =7, ,rank(D,)) =7y ,null(Y,)) = Q,, €

CNX(N=ri, andnull(D;;) =
CN*(N=rz,)

‘I’m = [1/)777,,17 ceey ’lvbm.N—sz ] €
. Let v, ,, be the nth column of ¥,,. Then we
have

m, rLYm’lpm n— Ymn ( ZO&3 i) wm,n =
M
" s H = hf
- ,l;bm.,n Z Qg i 1/)777,,71, - Z Q3 | 1/}”1 R0 | :
i=1

(61)

Since Y} »= 0, H; = 0 and {oz3,'} > 0, hence

M
( o) H) v, =0.
i=1

Accordingly, the column vectors in ¥,,, are in the null space
of Ym , therefore, W, is a sub-matrix of €2, and the inequality
rank(W®,,) < rank(€2,,) is always true.

The N x N positive semidefinite matrix Y
following:

(62)

satisfies the

rank (€2,,) = N —rank (Y) . (63)

Since {a3' } > 0,and { H;} > 0 are statistically independent
rank-one matrices, then Zg 1 a;; H; is a positive semidefinite
matrix of a rank < M (most likely equal to M). Therefore,
by applying the result of Lemma A.I in [6] to (59), we have,
rank(Y,) > rank(D),') — M. Substituting this inequality in

(63) results in

rank (9,,) < N —rank (D,)) + M

< rank (¥,,) + M. (64)

Therefore,

rank (¥,,,) < rank (2,,) <rank (¥,,) + M.  (65)

Now, let us consider the case, rank(2,,) = rank(¥,, ), i.e.,
Q, =9, and W, = a2, ,¥h . an, > 0. This solu-
tion can not be optimal since it leads to a negative secrecy rate at
the 1U,,, along with inter-user interference, moreover, the noise
imposed by W,,: on the EHs can be attained by the AN beam-
formers g; s which are statistically independent, and therefore,
W;i = 0 will definitely perform better. As a result, the case
rank(€2,, ) = rank(¥,,) does not exist and there are always

between 1 and M unit norm vector(s) (W, 1, ..., Wiy vy, 1y, ]
which satisfy Q,, = [V, [wp, 1, . w,,, o T ]]- Then, we
can write the optimal solution for W,,L € {Wm} as

N—ray, Tom ~Tim

H H
E Am n wmm '(,b,mm + E bm i Wm n, Wy NORI (66)

n=1 ni=1

where b, ,,1s > 0 are positive scaling constants.
In the following, we can construct a non-unique optimal solu-

ot 8 |
tion S*! that satisfies rank(W ) = 1 and can achieve the same

objective value achieved by W

. as follows

- VV: —Tm Ym € {m}
W, Vmé{m}’

(67)
Sp=
srL 55,2)7 Vm e {m}, Tr(H,7p,) <Tr (Gk(m)Tm)
s+ 5,(3)7 Ym e {m}, Tr(H,,7,)>Tr (Gk(m)Tm)
shl Ym ¢ {m},
(63)
*1 _
m,k(m)

! k( +5 ,Vmoe {m}, Tr (Hp7m) < Tr (Grpn)Tm)
! K(m —|—5m , Vme {m},Tr (Hypmm) = Tr (Grn)Tm)
t;’:,k(m) vm ¢ {m}7

(69)
and
Q"' =Q"+ Y T, (70)
me{m}
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where
N € {1,..,m2,, — 71, }, (71)
™ N—rp
Tm = Z arn,n¢7rz,,71,¢g,n + Z bm.nl‘-‘-’m,n]wgmla
n=1 nj=1
ni#En L,
(72)
6,(,2> = —sil +log (Tr (H,, 7)) +en ) , (73)

02 = 3] ) + 108 (Tr (Gri 7o) + € ) L (74)
By substituting S*! into the constraints and the objective

function of problem (13), it can be verified that S*1 satisfies all
the constraints (13a)-(13e) and achieves the same sum secrecy

rate as S*' does. This concludes the proof. |
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