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Abstract—In this paper, we consider the sum secrecy rate maxi-
mization problem in multiuser multiple-input single-output (MU-
MISO) systems in the presence of multiple energy harvesters
(EHs) which also have potential to wire-tap the information users
(IUs). To facilitate delivering secure information to the IUs and
increase the total harvested energy by the EHs simultaneously,
we optimise the transmit beamforming vectors to direct the
information signals toward the IUs and artificial noise (AN)
toward the EHs. We assume that each EH relies on itself
to decode the information signal intended for an individual
IU. Therefore, the corresponding problem is to maximize the
worst-case sum secrecy rate under transmit power and energy
harvesting constraints. The problem is optimally solved by
transforming it into a convex iterative program using a change
of variables, semi-definite relaxation (SDR) and linearization of
quadratic terms. We prove that rank-one optimal solutions for
the IUs beamforming covariance matrices can be obtained from
the optimal relaxed unconstrained solution. Also, we provide
three sub-optimal solutions based on null space projection and
power control of the beamforming vectors for the low and
high harvested energy constrained regions. A special case of
cooperative EHs in which the EHs can collaboratively cancel
the signal of all IUs except the one they intend to eavesdrop
is also investigated, and the optimal solution is derived in a
comparable way as in non-cooperative EHs case. Our simulation
results reveal an understanding of how the trade-off between the
AN and information signal can jointly improve both the sum
secrecy rate and the total harvested energy. We also show that,
within the low total harvested energy region, the sub-optimal
solution in which the AN is projected in the null space of the IUs
channels outperforms the sub-optimal solution which ignores AN
alignment at the IUs, and vice versa over the high total harvested
energy region; and that the suboptimal solution that combines
both of them achieves close to optimal performance.

Index Terms—SWIPT, multiuser multi-input single-output
(MU-MISO), physical-layer security, sum secrecy rate, energy
harvesting, beamforming, artificial noise

I. INTRODUCTION

Recently, the technologies for extending the lifetime of

energy constrained wireless networks such as wireless sensor

networks have acquired much interest. Wireless power transfer

(WPT) is a reliable method for powering remote wireless

nodes. The concept of WPT was first introduced by Tesla a

century ago [1], since then, a large number of studies have

been conducted on WPT for short and medium distances

which are mainly based on inductive and magnetic resonance
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coupling techniques [2]–[4]. However, having tightly coupled

aligned devices at short proximity seems to be unattainable

in practice. One of the latest promising technologies is that

based on utilizing the radio frequency (RF) transmission for si-

multaneous wireless information and power transfer (SWIPT).

A growing body of research has recognised the importance

of employing SWIPT technology for multiuser multi-input

single-output (MU-MISO) systems [5]–[15] in which there

are some users interested in information decoding (IUs) while

others wish to perform energy harvesting (EHs). Due to the

nature of the broadcast channel and the common practice

that the EHs are assumed to be in close proximity to the

transmitting antennas compared to the IUs, the implementation

of SWIPT faces a security challenge in canceling the crosstalk

between IUs and EHs.

The earliest information protection approaches in

MISO/MIMO wireless network were typically information-

theoretic based such as cryptography techniques attained

by applying encryption at the upper protocol layer [16].

The robustness of cryptography techniques relies on the

computational hardness required to recover the encryption

key, however, such security techniques are not protected

against the advances in quantum computing [17]. Although

some research works have considered exploiting the

reciprocity and randomness of the channel between the

transmitter and the IU for secrecy key generation [18]–[21],

extra resources are required to secure a wireless channel

to share the encryption key between the transmitter at the

base station (BS) and the IU, and this is quite difficult in

SWIPT with the presence of multiple IUs and EHs which

can potentially play the role of eavesdropper.

Latterly, physical layer security (PHY-security) has proven

to be a promising alternative to the information-theoretic

security techniques. It exploits the knowledge of the transmit

channel to provide a better signal quality at the IUs compared

to that at the EHs using signal beamforming and jamming

techniques. In transmit beamforming, the transmitted signal is

precoded in order to strengthen the information signal power

at the IUs and to direct artificial noise (AN) toward the

EHs. Previous works [7]–[10] have considered the maximiza-

tion of downlink secrecy rate under certain harvested energy

constraints, or as a by-product, the minimization of transmit

power under some secrecy rate constraints. For example,

the authors in [8] considered a system comprising a single-

antenna IU and multiple single-antenna EHs which collude

to cooperatively decode the information signal of the IU.

The objective was to optimize the information and the AN

beamforming vectors to maximize the secrecy rate subject
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to individual harvested energy constraints, or to minimize

the total transmit power subject to secrecy rate and energy

harvesting constraints. The work in [9] assumed that each IU

employs a power splitting approach to decode information and

harvest energy simultaneously and each user is cooperatively

wire-taped by the remaining IUs. The considered problem

was to minimize the total transmit power under constraints

on individual harvested energy and secrecy rate. In [10], the

problem was to maximize the minimum secrecy rate of an

IU and EH pair under constraints on minimum individual

harvested energy by the IUs and EHs. EHs are passive which

means they can either harvest energy or decode information

at a time, whereas the IUs employ power splitting for SWIPT.

Cooperative jamming techniques have also been considered

for PHY-security [12]–[15]. In [12], the secrecy rate of the

intended user was improved by employing a cooperative jam-

mer (CJ) which generates AN toward a single eavesdropper to

assist in degrading its information signal quality and supply the

EH and IU with wireless power. The problem of maximizing

the secrecy rate for the worst-case channel uncertainties and

under transmit power constraints and EH constraints was

decoupled into three problems and solved alternately.

SWIPT has also been considered for the frequency selective

environment [22]–[25]. The authors in [22] used orthogonal

frequency division multiplexing access (OFDMA) to address

the maximization of the harvested energy of a single eaves-

dropper while maintaining the minimum individual secrecy

rate requirements of legitimate users by alternately optimizing

subcarrier allocation and power splitting ratio at the legitimate

users.

In the earlier works [6], [8], the authors considered similar

system models to the multiple IUs model considered in this

paper, but for a single IU and multiple EHs in [6] and for a

single IU and colluding eavesdroppers in [8]. The objective

function for secrecy rate maximization in [6] was a difference

between two logarithms of linear fractional functions which

correspond to the IU’s information rate and the information

rate at the worst EH. The problem was solved by one-

dimentional search through a set of optimised IU’s signal-

to-noise ratios (SNRs) which correspond to a set of common

upper bound constraints on the SNR at the EHs. The linear

fractional objective function was convexified by semi-definite

relaxation (SDR) and the Charnes-Cooper transformation. The

same methods were applied in [8] but for colluding eavesdrop-

pers and imperfect channel state information (CSI). However,

considering multiple IUs (for sum secrecy rate maximization)

will result in a non-linear fractional objective function which

inevitably can not be optimally solved by the method for

a single IU used in [6] due to the non-linearity of the

fractional objective function, and this leads to a completely

different optimization challenge. Another issue of considering

multiple IUs compared to a single IU model in [6] is that

the dimensionality of the null space of the IUs channel matrix

decreases as the number of IUs increases, i.e., the column size

of null(H) ∈ CN×N−M decreases as M increases, where H

is the channel matrix of the IUs and M is the number of IUs.

Therefore, any further beamforming using null(H) will lose

the gain of M coefficients.

In this work, an MISO SWIPT system comprising multiple

IUs and multiple EHs is considered. We employ transmit

beamforming for the information signal and the AN to max-

imize the worst-case sum secrecy rate of the IUs and the

sum secrecy rate for the case of cooperative EHs with a

lower limit on the total harvested energy by the EHs (the

problem with individual harvested energy constraints has also

been considered). To the best of the authors’ knowledge, this

problem has not been considered in the literature before. More

precisely, we provide optimal solutions based on a semidefi-

nite programming (SDP) formulation. Using dual multipliers

which satisfy Slater’s condition [26] and the Karush-Kuhn-

Tucker (KKT) conditions of the SDP problem, we derive a

rank-one optimal solution which achieves the same objective

value as the optimal rank-unconstrained solution. In addition,

we provide two different sub-optimal solutions for the low

and high harvested energy constraint regions based on null

space projection (NSP) of the beamforming vectors with

per beamforming vector power control. By employing both

AN beamforming vectors (optimized by different sub-optimal

solutions), we tackle the gain loss due to dimensionality

reduction of the null space of the IUs channel matrix and

a close to optimal performance is achieved.

The remainder of the paper is organized as follows. Section

II introduces the system model and Section III presents the

original formulation of the sum secrecy rate maximization

problem for the non-cooperative EHs case. In Section IV, we

provide the optimal solution for the non-cooperative EHs case.

Sub-optimal solutions for the non-cooperative EHs case are

provided in Section V. In Section VI, a special case of non-

cooperative EHs is presented and in Section VII we provide

the complexity analysis of the proposed solutions. Numerical

results and evaluations are presented in Section VIII. Finally,

conclusions are given in Section IX.

Notation: Vectors are denoted by boldface lower case letters

and matrices by boldface upper case letters. IN , 0m×n and

1M denote an N ×N identity matrix, an m× n zero matrix

and an M×1 column vector with all entries one, respectively.

diag(x) denotes a diagonal matrix with the elements of x in

the main diagonal. Re (Q) and Im (Q) denote the real and

imaginary parts of matrix Q, respectively. S � 0 indicates

that S is a positive semi-definite matrix. R denotes the set of

real numbers. The operators (·)T , (·)H , Tr (·), log (·), log2 (·),
|·| and ‖·‖F denote the transpose, conjugate transpose, trace

of a matrix, natural logarithm, logarithm to base 2, absolute

value of scalars and Frobenius norm of matrices, respectively.

‖[x1, ..., xM ]‖1 =
∑M

i=1 |xi| .Cm×n denotes the set of all

complex m×n matrices. x ∼ CN (0,Σ) denotes a circularly

symmetric complex Gaussian random vector x ∈ CN×1 with

zero mean and covariance matrix Σ. {an} denotes a set of

all vectors indexed by n. [a]i, dim(a) denote the ith entry

and the length of the vector a, respectively. x � 0 means

that [x]i ≥ 0, i = 1, ..., dim (x). B = null (A), which means,

AB = 0 and BBH = I .

II. SYSTEM MODEL

Consider a flat fading single-cell MU-MISO downlink sys-

tem as shown in Fig. 1. The system comprises a base station
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Fig. 1. An MU-MISO SWIPT system comprising multiple

IUs and multiple EHs.

(BS) with N antennas, M < N single-antenna IUs, {IUi},

i = 1, ...,M , interested in information decoding and K single-

antenna EHs, {EHk}, k = 1, ...,K, wishing to perform energy

harvesting. The EHs are assumed to be located closer to the

BS compared to the IUs in order to harvest energy from the BS

transmitted RF signal. Let H = [h1, ...,hM ]
H ∈ CM×N and

G = [g1, ..., gK ]
H ∈ CK×N be the channel matrices between

the BS and IUs, EHs, respectively, with hi ∼ CN
(
0, γ2

IIN
)
,

gk ∼ CN
(
0, γ2

EIN
)
. The BS is assumed to have full

knowledge of H and G. To facilitate secure information

transmission, the BS employs transmit beamforming to steer

M information signal beams toward the IUs along with

L ≤ N AN beams directed toward the EHs to degrade their

received information signal quality. Let x = [x1, ..., xM ]
T

,

W = [w1, ...,wM ] ∈ CN×M and Q = [q1, ..., qL] ∈ CN×L

denote the information symbol vector intended for the IUs with

E
{
xxH

}
= IM , the information beamforming matrix and

the AN beamforming matrix, respectively. The signal received

at IUi, i = 1, ...,M , is

yIi = h
H
i wixi +

M∑

m=1
m 6=i

hH
i wmxm +

L∑

l=1

hH
i qlzl + nIi , (1)

where nIi ∼ CN
(
0, σ2

I

)
is the noise at IUi and zl is the AN

symbol. The signal received at EHk is

yEk
= gHk wixi +

M∑

m=1
m 6=i

gHk wmxm +

L∑

l=1

gHk qlzl + nEk
, (2)

where nEk
∼ CN

(
0, σ2

E

)
is the noise at EHk.

In this paper, unless otherwise stated, we assume that each

EH relies on itself to decode the information signal intended

for the IUi, i.e., there is no cooperation between the EHs to

decode the information signal. According to (1) and (2), with

the assumption that the EHs are decoding the information

signal without an attempt to harvest energy, the signal-to-

interference-plus-noise ratio (SINR) at IUi, SINRIi , and the

SINR at EH
k

intending to wire-tap the IUi’s signal, SINRi
Ek

,

are obtained as

SINRIi =

∣∣∣hH
i wi

∣∣∣
2

∑M
m=1
m 6=i

∣∣∣hH
i wm

∣∣∣
2

+
∑L

l=1

∣∣∣hH
i ql

∣∣∣
2

+ σ2
I

, (3)

SINRi
Ek

=

∣∣gHk wi

∣∣2
∑L

l=1

∣∣gHk ql
∣∣2 +∑M

m=1
m 6=i

∣∣gHk wm

∣∣2 + σ2
E

. (4)

The achievable secrecy rate for IUi when wire-tapped by EHk

(Ri,k) is given by

Ri,k = max
(
log2 (1 + SINRIi)− log2

(
1 + SINRi

Ek

)
, 0
)
.
(5)

In our system, all EHs can harvest energy from the informa-

tion and AN signals (we assume that the harvested energy from

the noise is negligible). Assuming unit time slot duration and

all EHs have the same energy harvesting efficiency 0 ≤ ζ ≤ 1,

the total energy harvested by all EHs is

E = ζTr

(
Ĝ

(
Q̂+

M∑

i=1

Ŵ i

))
, (6)

where Ŵ i = wiw
H
i , Q̂ =

∑L

l=1 qlq
H
l , and Ĝ = GHG.

III. PROBLEM FORMULATION

Our focus is on optimizing the downlink beamforming

matrices for both information and AN signals to maximize

the sum secrecy rate of the IUs under given constraints on

the minimum total harvested energy received by the EHs and

total BS’s transmit power Pt. The design aims to maximize

the worst-case sum secrecy rate, given by

R =

M∑

i=1

min
k

Ri,k =log2

(
M∏

i=1

(1 + SINRIi)

)

− log2

(
M∏

i=1

max
k

(
1 + SINRi

Ek

)
)
. (7)

Therefore, by expressing the quadratic terms (vector and

matrix norms) in terms of linear functions of positive semid-

ifinite matrix variables Ŵ i, Q̂, and deterministic matrices

Hi = hih
H
i , Gk = gkg

H
k and Ĝ, the SDP optimization

problem can be formulated as

maximize
{Ŵ i},Q̂

log2




M∏

i=1

∑M

m=1 Tr
(
HiŴm

)
+ Tr

(
HiQ̂

)
+ σ2

I

∑M
m=1
m 6=i

Tr
(
HiŴm

)
+ Tr

(
HiQ̂

)
+ σ2

I


−

log2




M∏

i=1

max
k

∑M

m=1 Tr
(
GkŴm

)
+ Tr

(
GkQ̂

)
+ σ2

E

∑M
m=1
m 6=i

Tr
(
GkŴm

)
+ Tr

(
GkQ̂

)
+ σ2

E




subject to Tr
(
Q̂
)
+ Tr

(
M∑

i=1

Ŵ i

)
≤ Pt, (8a)
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ζ Tr

(
Ĝ

(
Q̂+

M∑

i=1

Ŵ i

))
≥ Ē, (8b)

Ŵ i, Q̂ � 0, ∀i, (8c)

where Ē is the constraint on the total harvested energy by all

EHs. It can be seen that the problem has a complicated non-

convex objective function which includes logarithms of the

product of fractional quadratic functions. The beamforming

matrices
{
Ŵ i

}
should aim to solve a contradicting bal-

ance between the following: increasing the information signal

power at the IUs, cancelling inter-user interference, reducing

the information signal power at the EHs and assisting the EHs

to harvest energy. On the other hand, the AN beamforming

matrix, Q̂, should be optimized to jam the EHs and provide

them with a source to harvest energy along with reducing

the AN power at the IUs. Since the power budget at the

BS is limited, the power allocation between Tr
(∑M

i=1 Ŵ i

)

and Tr
(
Q̂
)

should be held in the optimal balance. In the

following, we provide optimal and suboptimal solutions for

the design problems.

IV. OPTIMAL SOLUTION

A. Problem Feasibility and Reformulation

In this section, we solve optimization problem (8) optimally

through reformulating the objective function and the non-

convex constraints by using a change of variables, linearisation

and semidefinite relaxation of quadratic terms. First, let us

examine the feasibility of problem (8) through solving the

constraints (8a) and (8b). The upper bound of total harvested

energy (the largest total energy that could be harvested) is

obtained sharply when the BS transmits with its full power, Pt,

along with aligning the direction of
(
Q̂+

∑M

i=1 Ŵ i

)
such

that (
Q̂+

M∑

i=1

Ŵ i

)
= Pt̺̺

H , (9)

where ̺ is the eigenvector which corresponds to the largest

eigenvalue of the matrix Ĝ, λg [27]. This is the case in which

problem (8) is reduced to an energy harvesting maximization

problem with information beamforming vectors set to zero,

i.e.,
∑M

i=1 Ŵ i = 0, and the BS transmits AN precoded with

a single beamforming vector q1 =
√
Pt̺. According to this,

we can write constraint (8b) as

ζPtλg ≥ ζTr

(
Ĝ

(
Q̂+

M∑

i=1

Ŵ i

))
≥ Ē. (10)

With the existence of Pt in the left-hand side of (10), the

satisfaction of (11) will definitely result in satisfying the

constraint (8a), therefore, the feasibility of problem (8) is

guaranteed under the following condition

ζPtλg ≥ Ē. (11)

Now, let us reformulate the objective function which com-

prises a product of fractional terms. For this goal, we build

upon the change of variable idea proposed in [28]. Let us

substitute the numerators and denominators of the fractions

in the objective function in (8) by exponential variables as

follows

eui =

M∑

m=1

Tr
(
HiŴm

)
+ Tr

(
HiQ̂

)
+ σ2

I , ∀i, (12a)

esi =

M∑

m=1
m 6=i

Tr
(
HiŴm

)
+ Tr

(
HiQ̂

)
+ σ2

I , ∀i, (12b)

evk =

M∑

m=1

Tr
(
GkŴm

)
+ Tr

(
GkQ̂

)
+ σ2

E , ∀k, (12c)

eti,k =
M∑

m=1
m 6=i

Tr
(
GkŴm

)
+ Tr

(
GkQ̂

)
+ σ2

E , ∀i, ∀k.

(12d)

By using properties of the exponential and the logarithmic

functions, we can write the objective function in (8) as∑M

i=1 (ui − si −maxk (vk − ti,k)) whilst constraining ui, si,
vk and ti,k by the expressions at the right hand sides of

(12a), (12b), (12c) and (12d), respectively. Therefore, by

defining real-valued slack variables u = [u1, ..., uM ]T , s =

[s1, ..., sM ]T , v = [v1, ..., vK ]T , T =

[
t1,1 ... t1,K

...
. . .

...
tM,1 ... tM,K

]
and the

set of optimization variables
{{
Ŵm

}
, Q̂, s,T ,u,v

}
= S,

m = 1, ...,M , the SDP reformulation of problem (8) is

maximize
S

M∑

i=1

(
ui − si − max

k=1,...,K
(vk − ti,k)

)

subject to

M∑

m=1

Tr
(
HiŴm

)
+ Tr

(
HiQ̂

)
+ σ2

I ≥ eui , ∀i, (13a)

M∑

m=1
m 6=i

Tr
(
HiŴm

)
+ Tr

(
HiQ̂

)
+ σ2

I ≤ esi , ∀i, (13b)

M∑

m=1

Tr
(
GkŴm

)
+ Tr

(
GkQ̂

)
+ σ2

E ≤ evk , ∀k, (13c)

M∑

m=1
m 6=i

Tr
(
GkŴm

)
+ Tr

(
GkQ̂

)
+ σ2

E ≥ eti,k , ∀ti,k, (13d)

(8a), (8b), (8c). (13e)

The objective function in (13) consists of a sum of affine

functions
(∑M

i=1 ui − si

)
minus a sum of maxima of affine

functions

(∑M

i=1 max
k

(vk − ti,k)

)
which is convex. There-

fore, the affine part minus the convex part will result in

a concave objective function. To deal with the non-convex

constraints (13b) and (13c), we linearize the exponential terms

esi and evk using the first order Taylor approximation, such

that esi = es̄i (si − s̄i + 1) and evk = ev̄k (vk − v̄k + 1),

∀i, where s̄ = [s̄1, ..., s̄M ]T and v̄(1) = [v̄
(1)
1 , ..., v̄

(1)
K ]T
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are the points around which the linearizations are made.

Also, we drop the rank-one constraint on
{
Ŵm

}
such that

rank
(
Ŵm

)
≤ N , m = 1, ...,M . Therefore, problem (13)

can be recast as

maximize
S

M∑

i=1

(
ui − si − max

k=1,...,K
(vk − ti,k)

)

subject to

M∑

m=1
m 6=i

Tr
(
HiŴm

)
+ Tr

(
HiQ̂

)
+ σ2

I

≤ es̄i (si − s̄i + 1) , ∀i, (14a)

M∑

i=1

Tr
(
GkŴ i

)
+ Tr

(
GkQ̂

)
+ σ2

E

≤ ev̄k (vk − v̄k + 1) , ∀k, (14b)

(13a), (13d), (8a), (8b), (8c). (14c)

Problem (14) can be solved iteratively by Algorithm 1 using

the CVX optimization software [29].

Algorithm 1 Algorithm for solving problem (14)

1: Initialize s̄[j] and v̄[j], j = 1.
2: Repeat

3: Solve problem (14) and calculate
{

Ŵ i

}[j]
, Q̂

[j]
, s[j], v[j].

4: Increment j = j + 1.
5: Update the initial values s̄[j] = s[j−1] and v̄[j] = v[j−1].
6: Until Convergence.

7: Calculate W and Q from
{

Ŵ i

}

and Q̂.

Remark 1: To guarantee sufficient harvested energy for all

EHs, problem (14) can be recast by replacing the total har-

vested energy constraint (8b) with individual energy harvesting

constraints as

maximize
S

M∑

i=1

(
ui − si − max

k=1,...,K
(vk − ti,k)

)

subject to

ζ Tr

(
Gk

(
Q̂+

M∑

i=1

Ŵ i

))
≥ Ê, ∀k, (15a)

(14a), (14b), (13a), (13d), (8a), (8c). (15b)

where Ê is the minimum harvested energy per individual EH.

B. Optimal Rank-one Solution to the SDR Reformulation

In the solutions
{
Ŵ

⋆1

m

}
and

{
Ŵ

⋆2

m

}
, m = 1, ...,M ,

obtained by solving problems (14) and (15), respectively, there

is no guarantee that rank
(
Ŵ

⋆j

m

)
= 1, j = 1, 2, ∀m,

such that it can take the form Ŵ
⋆j

m = w
⋆j
mw

⋆jH
m . Therefore,

if rank
(
Ŵ

⋆j

m

)
= 1, then the optimal beamforming vectors

are calculated using eigenvalue decomposition. Otherwise, if

rank
(
Ŵ

⋆j

m

)
> 1, building upon the framework in [6], [7],

an optimal rank-one solution can be calculated by using the

following theorem.

Theorem 1: Having the optimal solutions{{
Ŵ

⋆j

m

}
, Q̂

⋆j

, s⋆j ,T ⋆j ,u⋆j ,v⋆j

}
= S⋆j , j = 1, 2, for SDR

problems (14) and (15), respectively, with rank
(
Ŵ

⋆j

m̄

)
> 1,

{m̄} ⊂ {1, ...,M} and {m̄} 6= φ. Then, there exist

optimal solutions
{{
W̃

⋆j

m

}
, Q̃

⋆j

, s̃⋆j , T̃
⋆j

,u⋆j ,v⋆j

}
= S̃⋆j ,

j = 1, 2, for the SDR problems (14) and (15), respectively,

that satisfy a rank-one constraint, rank
(
W̃

⋆j

m̄

)
= 1 and can

achieve the same objective value achieved by S⋆j , j = 1, 2,

respectively.

Proof: See the Appendix.

V. SUBOPTIMAL SOLUTIONS

In this subsection, we derive suboptimal solutions to prob-

lem (8) with lower complexity. The solution is based on

designing the directions of wis to nullify the information sig-

nal interference whilst maximizing the information signal for

each information user. In addition, two different beamforming

vectors for the AN are considered, q1 and q2. The vector q1
is designed to nullify the AN at the IUs while q2 ignores AN

alignment at the IUs. The direction design is followed by per

beamformer power control.

Let H̃i = [h1, ...,hi−1,hi+1,hM ]
H

with a singular value

decomposition (SVD) H̃i = U iΣi

[
V iV̄ i

]H
, where V̄ i ∈

CN×(N−M+1) contains the last N − M + 1 right-singular

vectors with V̄
H

i V̄ i = IN−M+1. The vectors constituting

V̄ i are the basis for the right null space of H̃i, i.e., H̃iV̄ i =
0(M−1)×(N−M+1). Therefore, to nullify the information signal

interference at the IUi, we should design the IUi’s beamformer

as

wi =
√
piw̄i =

√
piV̄ iŵi, (16)

where pi is the power assigned to wi and ŵi ∈ C(N−M+1)×1

is an arbitrary unit norm complex vector. To maximize the

signal at the IUi, ŵi is aligned to the direction of the

equivalent channel hH
i V̄ i, i.e., ŵi =

V̄
H
i hi

|V̄ H
i hi| .

Using a similar concept, we design the direction of the

AN beamforming vector, q1. Let H = UΣ
[
V V̄

]H
be the

singular value decomposition of H , with V̄ ∈ CN×(N−M)

containing the last N − M right-singular vectors. Therefore,

it can be guaranteed that there is no AN leakage to the IUs,

i.e., Hq1 = 0M×1, by designing q1 as

q1 =
√
pn1
q̄1 =

√
pn1

V̄ q̂1, (17)

where pn1
is the AN power of q1 and q̂1 ∈ C(N−M)×1

is an arbitrary complex unit norm vector. The total power

harvested by the EHs from the AN is pn1

∥∥GV̄ q̂1
∥∥2
F

. Let

ν be the unit norm eigenvector corresponding to the largest

eigenvalue value of the matrix V̄
H
GHGV̄ , then, to maximize

the total harvested energy, the optimal value of q̂1 is q̂1 = ν.

The other AN beamforming vector, q2, aims to maximize the

total harvested energy without paying attention to the noise it

imposes on the IUs. Therefore

q2 =
√
pn2
q̄2, (18)
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where pn2
is the AN power of q2, q̄2 is the unit norm

eigenvector corresponding to the largest eigenvalue value of

the matrix GHG.

Now, we establish three sub-optimal solutions based on

three different sets of AN beamforming vectors; the first sub-

optimal solution, sub(1), uses the AN beamforming vector

Q1 = {q̄1}, the second sub-optimal solution, sub(2), uses

the AN beamforming vector Q2 = {q̄2}, while the third sub-

optimal solution, sub(3), uses two AN beamforming vectors

Q3 = {q̄1, q̄2}. Based on the designed directions of {wi}, we

write the secrecy rate for IUi, when wire-tapped by EHk and

using the Qj , j = 1, 2, 3, set of AN beamforming vectors, as

R
sub(j)
i,k = log2



pi

∣∣∣hH
i w̄i

∣∣∣
2

+ pn2

∣∣∣hH
i q̄2

∣∣∣
2

+ σ2
I

pn2

∣∣∣hH
i q̄2

∣∣∣
2

+ σ2
I


−

max
k

log2




∑M

i=1 pi
∣∣gHk w̄i

∣∣2 + ∑
l∈Ij

pnl

∣∣gHk q̄l
∣∣2 + σ2

E

∑M
m=1
m 6=i

pm
∣∣gHk w̄m

∣∣2 + ∑
l∈Ij

pnl

∣∣gHk q̄l
∣∣2 + σ2

E


 ,

(19)

where I1, I2 and I3 are index sets containing the indices of

the vectors in Q1, Q2 and Q3, respectively. Now, we define

three different problems P (j), j = 1, 2, 3, corresponding to

the use of the three different sets of AN beamforming vectors

Q1, Q2 and Q3. The power vector P = [p1, ..., pM ] and pn1
,

pn2
, are optimized to maximize the worst-case sum secrecy

rate

(
Rsub(j) =

∑M

i=1 min
k
R

sub(j)
i,k

)
by solving the following

problem P (j) (change of variables and Taylor approximation

are exploited to formulate the problem)

P (j) : maximize
û,ŝ,v̂,T̂ ,

P ,pn1
,pn2

M∑

i=1

(
ûi − ŝi −max

k

(
v̂k − t̂i,k

))

subject to

pi

∣∣∣hH
i w̄i

∣∣∣
2

+ pn2

∣∣∣hH
i q̄2

∣∣∣
2

+ σ2
I ≥ eûi , ∀i, (20a)

pn2

∣∣∣hH
i q̄2

∣∣∣
2

+ σ2
I ≤ e

¯̂si
(
ŝi − ¯̂si + 1

)
, ∀i, (20b)

M∑

i=1

pi
∣∣gHk w̄i

∣∣2 +
∑

l∈Ij

pnl

∣∣gHk q̄l
∣∣2 + σ2

E ≤

e
¯̂vk
(
v̂k − ¯̂vk + 1

)
, ∀k, (20c)

M∑

m=1
m 6=i

pm
∣∣gHk w̄m

∣∣2 +
∑

l∈Ij

pnl

∣∣gHk q̄l
∣∣2 + σ2

E ≥ et̂i,k , ∀t̂i,k,

(20d)

∑

l∈Ij

pnl
+

M∑

i=1

pi ≤ Pt, (20e)

M∑

i=1

pi ‖Gw̄i‖2F +
∑

l∈Ij

pnl
‖Gq̄l‖2F ≥ Ē, (20f)

where û = [û1, ..., ûM ]T , ŝ = [ŝ1, ..., ŝM ]T , v̂ =

[v̂1, ..., v̂K ]T and T̂ =




t̂1,1 ... t̂1,K

...
. . .

...
t̂M,1 ... t̂M,K


 are slack variables.

Problem (20) is solved iteratively, after each iteration, ¯̂s =
[¯̂s1, ..., ¯̂sM ]T and ¯̂v = [¯̂v1, ..., ¯̂vK ]T , the Taylor initial value

in (20b) and (20c), are updated by the optimized value of ŝ

and v̂. The iterations continue until convergence in a similar

manner to that in Algorithm 1.

Remark 2: To guarantee sufficient harvested energy for

all EHs, problem (20) can be recast by replacing the total

harvested energy constraint (20f) with individual energy har-

vesting constraints as

P̄ (j) : maximize
û,ŝ,v̂,T̂ ,

P ,pn1
,pn2

M∑

i=1

(
ûi − ŝi −max

k

(
v̂k − t̂i,k

))

subject to

M∑

i=1

pi
∣∣gHk w̄i

∣∣2
F
+
∑

l∈Ij

pnl

∣∣gHk q̄l
∣∣2
F
≥ Ê, ∀k (21a)

(20a), (20b), (20c), (20d), (20e). (21b)

Problem (21) can be solved iteratively in a similar manner as

in (20).

VI. SPECIAL CASE OF COOPERATIVE EHS

In this section, we consider a special case when all EHs

cooperate to decode the IUi’s signal, therefore, they have the

ability to cancel the information signal interference. The sum

secrecy rate in this case is given by

log2




M∏

i=1

∑M

m=1 Tr
(
HiŴm

)
+ Tr

(
HiQ̂

)
+ σ2

I

∑M
m=1
m 6=i

Tr
(
HiŴm

)
+ Tr

(
HiQ̂

)
+ σ2

I

×
Tr
(
ĜQ̂

)
+Kσ2

E

Tr
(
ĜŴ i

)
+ Tr

(
ĜQ̂

)
+Kσ2

E


 . (22)

Defining real-valued slack variables v̈ and

ẗ =
[
ẗ1, ..., ẗM

]T
and the set of optimization variables{

u, s, v̈, ẗ,
{
Ŵm

}
, Q̂
}

= S̈, m = 1, ...,M , the SDP

reformulation of the sum secrecy rate maximization problem

is

maximize
S̈

M∑

i=1

(
ui − si + v̈ − ẗi

)

subject to

Tr
(
ĜQ̂

)
+Kσ2

E ≥ ev̈, (23a)

Tr
(
ĜŴ i

)
+ Tr

(
ĜQ̂

)
+Kσ2

E ≤ e
¯̈ti
(
ẗi − ¯̈ti + 1

)
, ∀i,
(23b)

(13a), (14a), (13e). (23c)

Problem (23) is solved iteratively, after each iteration,
¯̈t = [¯̈t1, ...,

¯̈tM ]T and s̄ (see constraint (14a)) are updated by
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the optimized value of ẗ and s. The iterations continue until

convergence in a similar manner to that in Algorithm 1.

By following comparable steps as in the proof of Theorem

I, given the optimal rank-unconstrained solution of problem

(23), S̈⋆ =
{{
Ŵ

⋆

m

}
, Q̂

⋆
, s⋆, ẗ

⋆
,u⋆, v̈⋆

}
, we can calcu-

late an optimal solution S̃ =
{{
W̃m

}
, Q̃, s̃, ẗ

⋆
, u⋆, ṽ

}

that satisfies the rank-one constraints, rank
(
W̃ m̄

)
= 1,

m̄ ∈
{
m : rank

(
Ŵ

⋆

m

)
> 1
}

and achieves the same objective

value as S̈⋆ does, as follows

W̃m = b̄m,n̄1m
ω̄m,n̄m

ω̄H
m,n̄m

=

{
Ŵ

⋆

m − τ̄m ∀m ∈ {m̄}
Ŵ

⋆

m, ∀m /∈ {m̄}
,

(24)

s̃m =



s⋆m + δ̄
(1)
m , ∀m ∈ {m̄} , ∑

m̄

Tr (Hm̄τ̄ m̄) ≤ Tr

(
Ĝ
∑
m̄

τ̄m

)

s⋆m + δ̄
(2)
m , ∀m ∈ {m̄} , ∑

m̄

Tr (Hm̄τ̄ m̄) ≥ Tr

(
Ĝ
∑
m̄

τ̄m

)

s⋆m, ∀m /∈ {m̄}
(25)

ṽ =



v̈⋆ +
∑
m̄

δ̄
(1)
m , ∀m ∈ {m̄} ,∑

m̄

Tr (Hm̄τ̄ m̄) ≤ Tr

(
Ĝ
∑
m̄

τ̄m

)

v̈⋆ +
∑
m̄

δ̄
(2)
m , ∀m ∈ {m̄} ,∑

m̄

Tr (Hm̄τ̄ m̄) ≥ Tr

(
Ĝ
∑
m̄

τ̄m

)

v̈⋆, ∀m /∈ {m̄}
(26)

Q̃ = Q̂
⋆
+

∑

m∈{m̄}

τ̄m, (27)

where

n̄m ∈ {1, ..., r̄2m − r̄1m} , (28)

τ̄m =

N−r̄2m∑

n=1

ām,nψ̄m,nψ̄
H

m,n +

N−r̄m∑

n1=1
n1 6=n̄1m

b̄m,n1
ω̄m,n1

ω̄H
m,n1

,

(29)

δ̄(1)m = −s⋆m + log
(

Tr (Hmτ̄m) + es
⋆
m

)
, (30)

δ̄(2)m = −v̈⋆ + log


 Tr (Hmτ̄m)∑

m̄

Tr (Hmτ̄m)

∑

m̄

Tr
(
Ĝτm

)
+ ev̈

⋆


 ,

(31)

r̄1m = rank
(
Ÿ

⋆

m

)
, r̄2m = rank

(
D̈

⋆

m

)
, (32)

[
ψ̄m,1, ..., ψ̄m,N−r̄2m

]
= Ψ̄m = null

(
D̈

⋆

m

)
, (33)

[
Ψ̄m

[
ω̄m,1, ..., ω̄m,r̄2m−r̄1m

]]
= null

(
Ÿ

⋆

m

)
, (34)

Ÿ
⋆

m = D̈
⋆

m −
M∑

i=1

β⋆
3iHi, D̈

⋆

m = β⋆
1 − ζβ⋆

2Ĝ, (35)

and β⋆
1 , β⋆

2 ,
{
β⋆
3i

}
,
{
Ÿ

⋆

m

}
, are the optimal multipliers

associated with the constraints (8a), (8b), (13a) and the positive

semidefinitness constraints of
{
Ŵm

}
in (8c), respectively;

ām,ns > 0 and b̄m,n1
s > 0 are positive scaling constants.

By using the beamforming vectors wis, q1 and q2 in (16)-

(18), and defining new slack variables v̌ and ť =
[
ť1, ..., ťM

]T
,

three different suboptimal solutions for sum secrecy rate

maximization can be obtained by formulating problems having

a similar structure to problem (20) as follows

P̂ (j) : maximize
û,ŝ,v̌,ť,P ,pn1

,pn2

M∑

i=1

(
ûi − ŝi + v̌ − ťi

)

subject to

pi ‖Gw̄i‖2F +
∑

l∈Ij

pnl
‖Gq̄l‖2F +Kσ2

E ≤

eťi
(
ťi − ¯̌ti + 1

)
, ∀i, (36a)

∑

l∈Ij

pnl
‖Gq̄l‖2F +Kσ2

E ≥ ev̌, (36b)

(20a), (20b), (20e), (20f). (36c)

Problem (36) is solved iteratively, after each iteration,

¯̌t =
[
¯̌t1, ...,

¯̌tM

]T
and ¯̂s (see constraint (20b)) are updated by

the optimized value of ť and ŝ, respectively. The iterations

continue until convergence in a similar manner to that in

Algorithm 1.

VII. COMPLEXITY ANALYSIS

The complexity of our solutions (the optimal and the sub

optimal) relate to the type of the optimization problems, the

size of input data, number of the required iterations and the

methods used to solve them. The most generic problems, (14)

for the optimal solution and P (3) in (20) for the suboptimal

solution are convex and solved by CVX software. The solvers

used by CVX software (such as SDPT3 and SeDuMi) employ

a symmetric primal-dual interior-point algorithm which can-

not handle the exponential function in the constraints (13a),

(13d), (20a) and (20d). Therefore, CVX uses the successive

approximation method in which the exponential functions are

approximated in a polynomial form, and then the resulting

problem is solved iteratively until convergence [29]–[31]. The

per-iteration problem for the formulation in (14) is equivalent

to an SDP problem, while, the per-iteration problem for P (3)
in (20) is equivalent to a linear program (LP). For similar

convergence tolerance, we compare the complexity of both

problems, (14) and P (3) in (20) by comparing the complexity

of the per-iteration problems. For that purpose, we use the

basic complexity analysis steps in chapter 6 in [32].

A. Complexity of Suboptimal Solution

To follow the steps of the complexity analysis given in chap-

ter 6 in [32], we need to transform the per-iteration problem for

P (3) in (20) (in which all exponential functions are approxi-

mated by first order polynomials) into an equivalent standard

LP form. First, we transform the max operator expression
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in the objective function
(∑M

i=1 maxk=1,...,K

(
v̂k − t̂i,k

))
by

introducing a new vector slack variable π ∈ RM×1 such that

the max operator expression will be 1
T
Mπ, where 1M is a

M × 1 vector with all entries one, with KM constraints (per

scalar value) [π]i ≥ v̂k − [tk]i , ∀i, ∀k, where tk ∈ RM×1 is

the kth column of T̂ . Now we can transform the per-iteration

problem in its standard LP form as follows

(Psub) : maximize
x

cTx

subject to

A(1) x � d1, (37a)

A(2) x � d2, (37b)

A(3) x � d3, (37c)

A(4k) x � d4k , ∀k, (37d)

aT
(5) x ≤ Pt, (37e)

aT
(6) x ≥ Ē, (37f)

A(7k) x � 0, ∀k, (37g)

A(8) x � 0. (37h)

where

x =
[
p1, ..., pM , pn1

, pn2
, ûT , ŝT , v̂T , tT1 , ..., t

T
K ,πT

]T
, c =

[
01×M+2,1

T
M ,−1

T
M ,01×(M+1)K ,1T

M

]T
, A(1) =[

aT
(11)

, ...,aT
(1M )

]
, A(2) =

[
aT
(21)

, ...,aT
(2M )

]
, A(3) =[

aT
(31)

, ...,aT
(3K)

]
, A(4k) =

[
aT
(4k1)

, ...,aT
(4kM )

]
, a(5) =

[
1
T
M+2,01×(3+K)M+K

]T
, A(7k) =

[
aT
(7k1)

, ...,aT
(7kM )

]T
,

a(7ki) =
[
01×3M+2+k−1,−1,01×K−k+(k−1)M+i−1, 1,

01×(K−k+1)M−1, 1,01×M−i

]T
, A(8) = [IM+2,

0M+2×(3+K)M+K

]T
, [d1]i = −σ2

I + e
¯̂ui
(
1− ¯̂ui

)
,

[d2]i = −σ2
I + e

¯̂si
(
1− ¯̂si

)
, [d3]k = −σ2

E + e
¯̂vk
(
1− ¯̂vk

)
,

[d4k ]i = −σ2
E + e

¯̂ti,k
(
1− ¯̂ti,k

)
, and — ¯̂ui, ¯̂si, ∀i,

¯̂vk, ∀k and ¯̂ti,k, ∀i ∀k are the initial values of first order

approximation,

[
a(1i)

]
j
=





∣∣∣hH
i w̄i

∣∣∣
2

, j = i
∣∣∣hH

i q̄2

∣∣∣
2

, j = M + 2

−e
¯̂ui , j = M + 2 + i

0, otherwise

, (38)

[
a(2i)

]
j
=





∣∣∣hH
i q̄2

∣∣∣
2

, j = M + 2

−e
¯̂si , j = 2M + 2 + i

0, otherwise

, (39)

[
a(3k)

]
j
=





∣∣gHk w̄j

∣∣2 , j = 1, ...,M∣∣gHk q̄j
∣∣2 , j = M + 1,M + 2

−e
¯̂vk , j = 3M + 2 + k

0, otherwise

, (40)

[
a(6)

]
j
=





‖Gw̄j‖2F , j = 1, ...,M∥∥Gq̄j
∥∥2
F
, j = M + 1,M + 2

0, otherwise

, (41)

[
a(4ki)

]
j
=





∣∣gHk w̄j

∣∣2 , j = 1, ..., i− 1, i+ 1, ...,M∣∣gHk q̄j
∣∣2 , j = M + 1,M + 2

−e
¯̂ti,k , j = 3M +K + 2 +M(i− 1) + k

0, otherwise

.

(42)

With the standard LP formulation in (37), the complexity

of attaining an optimized objective value within an accuracy

ǫ, Comp (Psub, ǫ), is calculated in terms of the following

parameters:

ns = dim x = (4 + K)M + K + 2, the dimension

of real design variables; ms = (3 + 2K)M + K + 4,

the total number of per-scalar value constraints;

and Data (Psub) =
[
ns, ms, c

T , vec
(
A(1)

)T
,

vec
(
A(2)

)T
, vec

(
A(3)

)T
, vec

(
A(41)

)T
, ..., vec

(
A(4K)

)T
,

aT
(5), a

T
(6), vec

(
A(71)

)T
, ..., vec

(
A(7K)

)T
, vec

(
A(8)

)T
,

dT1 , d
T
2 , d

T
3 , d

T
41 , ..., d

T
4K , Pt, Ē

]T
, input data vector for

Psub where dim Data (Psub) = (3ns + 2nsK + K + 2)M +
(ns + 1)K + 4ns + 4.

The per-iteration complexity in terms of the number of real

operations, Comp (Psub, ǫ), is calculated as [32]

Comp (Psub, ǫ) = (ns +ms)
3
2 n2

s

× ln

(
dim Data (Psub) + ‖Data (Psub)‖1 + ǫ2

ǫ

)
. (43)

The result in (43) assumes that the input data matrices and

vectors are unstructured. However, the solver can utilize this

matrix structure to reduce the number of operations required

for getting the solution.

B. Complexity of Optimal Solution

As in the previous subsection, the first step in analyzing the

complexity of the per-iteration problem of (14) is to transform

it into a standard SDP form with all constraints expressed in

terms of linear matrix inequalities (LMIs). For this purpose,

we use the idea of the Schur complement to describe the

quadratic constraint in terms of semidefinitness of the bock

matrix. For example, the constraint (14a) is transformed into

an LMI constraint as described below

hH
i


−Q̂−




M∑

m=1
m 6=i

Ŵm


+

−σ2
I + es̄i (si − s̄i + 1)

‖hi‖2
IN


hi

≤ 0, ∀i, (44a)~w�

C1i =

[
D−1

i hi

hH
i 0

]
=



(
Q̂+

(∑M
m=1
m 6=i

Ŵm

)
+

σ2
I−es̄i (si−s̄i+1)

‖hi‖
2 IN

)−1

hi

hH
i 0




� 0 ∀i. (44b)

We get (44a) from (14a) based on properties of the trace oper-

ator and matrix multiplication, and the independence between{
Ŵm

}
and Q̂. The non-singularity of Di is guaranteed by
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the non-zero identity. The block matrix in (44b) is positive

semidefinite if and only if both the lower-right sub-matrix

(scalar), 0, and the Schur complement of the upper-left sub-

matrix D−1
i in C1i , 0−hH

i D
−1
i hi, are positive semidefinite.

Since the positive semidefinitness of the scalar 0 is always

true, therefore the constraints (44b) and (14a) are equivalent.

The remaining constraints, (14b), (13a), (13d), (8a) and (8b)

are transformed in the same way (after first order linearization

of the exponential variables). As in the previous subsec-

tion, the max operator expression in the objective function(∑M

i=1 maxk=1,...,K (vk − ti,k)
)

is recast as 1
T
M π̂ , where

π̂ ∈ RM×1 is a vector slack variable, with KM constraints

(per scalar value) [π̂]i ≥ vk−[tk]i , ∀i, ∀k, where tk ∈ RM×1

is the kth column of T .

Using the fact that the diagonal matrix is positive semidef-

inite if and only if each of its entries are ≥ 0, the KM
constraints [π̂]i ≥ vk − [tk]i , ∀i, ∀k, can be transformed

to LMI constraints as1

(π̂ + tk − vk)
T
IM � 0 ∀k. (45)

The per-iteration problem for (14) is thereby written in its

standard SDP form as follows

(Popt) : maximize
x

ĉ
T
x̂

subject to

C1i , C2k , C3i , C4i,k � 0, ∀i, ∀k, (46a)

C5, C6 � 0, (46b)

c7k � 0, ∀k, (46c)

Ŵ i, Q̂ � 0. ∀i, (46d)

where

x̂ =
[
uT , sT ,vT , t̂

T

1 , ..., t̂
T

K , π̂T
]T

,

ĉ =
[
1
T
M ,−1

T
M ,01×(M+1)K ,1T

M

]T
,

C2k =


(
Q̂+

(
M∑

m=1
Ŵ i

)
+

σ2
E−ev̄k (vk−v̄k+1)

‖gk‖
2 IN

)−1

gk

gHk 0


 ,

C3i =[(
−Q̂−

(∑M

m=1 Ŵm

)
+

−σ2
I+eūi (ui−ūi+1)

‖hi‖
2 IN

)−1

hi

hH
i 0

]
,

C4i,k =




−Q̂−


 M∑

m=1
m 6=i

Ŵm


− σ2

E−e
t̄i,k (ti,k−t̄i,k+1)

‖gk‖
2 IN




−1

gk

gHk 0




C5 =

[(
Q̂+

(∑M

i=1 Ŵ i

)
− Pt

N
IN

)−1

1N

1
H
N 0

]
,

C6 =

1The vector inequality x � 0 is equivalent to the LMI diag(x) � 0.





[(
−ζ
(
Q̂+

(∑M

i=1 Ŵ i

))
+ Ē

N
IN

)−1

1N

1
H
N 0

]
, Ē 6= 0

0 , Ē = 0

,

c7k = (π̂ + tk − vk)
T
IM .

The standard SDP problem in (46) is represented in a

complex-valued domain. Translating the complex-valued do-

main SDP (CSDP) programme to a real-valued domain SDP

programme was introduced in [33] using linear complex-to-

real mapping. In our case, we translate the CSDP programme,

Popt, to the real-valued domain using the following mapping

T Q̂ =


Re

(
Q̂
)

−Im
(
Q̂
)

Im
(
Q̂
)

Re
(
Q̂
)

 , T gk =

[
Re (gk)
Im (gk)

]
, ∀k,

T Ŵ i =


Re

(
Ŵ i

)
−Im

(
Ŵ i

)

Im
(
Ŵ i

)
Re
(
Ŵ i

)

 , T hi =

[
Re (hi)
Im (hi)

]
,

∀i, T 1N = 12N , T 0 = 02×1 in C5 and C6. (47)

Considering the standard SDP formulation (46) in the real-

valued domain, we use the method in chapter 6 in [32] to

calculate the complexity of attaining an optimized objective

value within accuracy ǫ, Comp (Popt, ǫ), in terms of the fol-

lowing parameters

no = dim x̂+(M+1)N2 = (K+3)M+K+2(M+1)N2,

the dimension of real design variables; mo =
KM+2K+2M+4, the total number of LMI constraints which

includes: (KM +K +M + 3) LMI constraints each of size

(2N+2)× (2N+2), K LMI constraints each of size M×M
and (M+1) LMI constraints each of size N×N ; Data (Popt) =[
no, mo, ĉ

T , 4 vec (C1)
T
, 4 vec (C21)

T
, ...,

4 vec (C2K )
T
, 4 vec (C31)

T
, ..., 4 vec (C3M )

T
,

4 vec
(
C41,1

)T
, ..., 4 vec

(
C4M,K

)T
, 4 vec (C5)

T
,

4 vec (C6)
T
]T

.

The per-iteration complexity in terms of number of real

operations, Comp (Popt, ǫ), is calculated as [32]

Comp (Popt, ǫ) =√
(KM +K +M + 3)(2N + 2) +KM + (M + 1)N2

no

[
n2
o + no

(
(KM +K +M + 3)(2N + 2)2 +KM2+

(M + 1)N2
)
+ (KM +K +M + 3)(2N + 2)3 +KM3+

(M + 1)N3
]
ln

(
dim Data (Popt) + ‖Data (Popt)‖1 + ǫ2

ǫ

)
.

(48)

The solver can benefit from the structure of the LMI

matrices in the real-valued domain to reduce the

number of real operations. It can be seen that Psub

has an O
(
K

7
2M

7
2

[
ln(K2M) + ln( 1

ǫ
)
])

asymptotic1

complexity which is lower than that of the Popt,

O
(
K2M

3
2N8

[
ln(N2M) + ln( 1

ǫ
)
])

.

It should be mentioned that, for the suboptimal solution,

there is a pre-optimization processing for calculating {w̄i}

1The complexity as K,M,N → ∞, ǫ → 0+ and K ≤ N , M < N
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and {q̄1, q̄2}, the pre-optimization has an O
(
M3N

)
asymp-

totic complexity due to the SVD of M matrices of size

(M − 1) × N . Comparably, for the optimal solution, there

is a post-optimization processing for a rank reduction process

of ≤ M Ŵ
⋆1

i s. This post-processing is upper bounded by an

O
(
MN3

)
asymptotic complexity.

VIII. EVALUATIONS

In this section, we assess the performance of our proposed

schemes. The simulation parameters of our MISO SWIPT

system includes: number of transmit antennas N , number of

single-antenna IUs M , number of single-antenna IUs K, path-

loss (variance of the magnitude of channel coefficient) between

the transmit antenna, and the receive antenna at the IU and EH,

γ2
I and γ2

E , respectively, total transmit power budget available

at the BS, Pt, and energy harvesting efficiency ζ.

Parameter selection was made based on some practical

models and implementation requirements as follows:

• We set the restrictions N > M and N ≥ K. Having N >
M allows null space generation for the channel matrix

between the BS and the IUs, H , i.e., dim null(H) =
N × (N −M) does exist. Consequently, we can project

the AN in the null space of H . N ≥ K allows the EHs

to collude and cancel the interference from non-intended

IUs [34]. The selected values are N = 8, M = 2 and

K = 3.

• We assume that all IUs are at equal distances from the

BS and likewise for the EHs. This assumption is to avoid

the selection based on average path-loss which remains

static for a long time and focus on the optimization of the

beamforming matrices depending upon small-scale fading

coefficients.

• For selecting the values of γ2
I and γ2

E we rely on the

general urban channel model PLdB = 10 log10 rα + b
[35]. With path-loss coefficient α = 2, fixed-loss com-

ponent b = 10 dB which depends on the operating fre-

quency, height of transmit antennas and different macro-

environment type. The common assumption is that the

EHs are located closer to the BS compared to the IUs

in order to harvest energy. We assume that the IUs are

located at 1000 m apart from the BS and this corresponds

to 70dB path-loss and γ2
I = 10−7, while the EHs are

located at 10 m from the BS and this corresponds to

30dB path-loss and γ2
E = 10−3.

• Apart from the design of the energy harvesting circuit, the

energy harvesting efficiency mainly varies in accordance

with the range of incident RF power. With total transmit

power Pt = 1W and 30 dB average path-loss, the

incident RF power at the EHs is about 0 dBm which

yields an energy harvesting efficiency of at least 50%
[36]. Also, the parameter values Pt = 1 W and ζ = 0.5
give a decent feasibility region through which system

performance can be demonstrated.

We show the system performances in terms of the achiev-

able worst-case sum secrecy rates
(
R,Rsub(1), Rsub(2), Rsub(3)

)

against the total harvested energy constraint Ē and individual

harvested energy constraint Ê. We call the area under the plot

(R-E curve) the R-E region and it shows the trade-off between

Ē or Ê and the sum secrecy rate. The larger the R-E region

the better the performance.

Fig. 2 shows the R-E regions for the non-cooperative

EHs case. With regards to the optimal solution, it can be

seen that the worst-case sum secrecy rate decreases as the

required total harvested energy increases. The trade-off region

lies approximately over the total harvested energy constraint

interval (1.5, 7.3] mW. This means the power allocated to the

AN is zero when Ē ≤ 1.5 mW , in other words, the energy

harvested from the information signal is enough to satisfy this

total harvested energy constraint. At the point corresponding

to, Ē = 7.3 mW , the power allocated to the information

signal approaches zero and the problem is being reduced to the

energy harvesting maximization problem. On the other hand,

the sub-optimal solutions (achieved via LP optimization) have

a lower complexity than the optimal solution (achieved via

SDP optimization). The sub-optimal solutions’ performances

lie under the optimal solution. In the sub-optimal solution

achieved by the AN beamforming vector q1, Sub(1), there is a

gap in the total harvested energy between the optimal and the

sub-optimal solution, ∆E , at zero sum secrecy rate. This gap

which is equal to 38% of the optimal total harvested energy

(∆E

7.4 × 100) is due to the nulling of the AN at the IUs. In

other words, in the optimal solution, the AN is matched to all

N transmit channels, while in the sub-optimal solution, some

degree of freedom of the AN beamforming vector is traded

for nullifying the AN at the IUs, therefore, the AN is matched

equivalently to only N −M (the column dimension of GV̄ )

channels. This issue of dimensionality reduction appears when

serving multiple IUs. The solution Sub(1) performs better over

the low total harvested energy constraint region, where the gap

between the optimal and the sub-optimal sum secrecy rates,

∆R, at zero harvested energy constraint is equal to 13% of the

optimal sum secrecy rate ( ∆R

3.85 ×100). Conversely, in the sub-

optimal solution Sub(2), all N channel coefficients of q2 are

matched to the dominant eigenvector of GHG, therefore, the

maximum energy is harvested at zero secrecy rate, and the gap

in the total harvested energy between the optimal and the sub-

optimal solutions totally vanishes. In the sub-optimal solution

Sub(3), better performance is achieved by exploiting both AN

beamforming vectors q1 and q2, the achievable sum secrecy

rate of the sub-optimal solution Sub(3) exploits the advantage

of the good performance of Sub(1) and Sub(2) over different

regions of Ē. It can be seen that Rsub(3) traces the envelope

of Rsub(1) and Rsub(2), i.e., Rsub(3) = max
(
Rsub(1), Rsub(2)

)
.

Fig. 3 shows the E-R region when the EHs cooperate to

wire-tap an individual IUs. The same observations in Fig. 2

for the non-cooperative EHs are valid for the cooperative EHs

case.

Fig. 4 shows the E-R regions for the non-cooperative EHs

case but with individual harvested energy constraints for

the optimal and Sub(3) (achieved by solving P̄ (3) in (21))

solutions. The achievable worst-case sum secrecy rate with

respect to Ê follows a similar trend to that with respect to

Ē given in Fig. 2. By comparing the results in Fig. 4 and

Fig. 2, we notice that the achievable worst-case sum secrecy

rates corresponding to Ê = 0 and Ē = 0 are equal since both
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problems (14) and (15) are equivalent to a worst-case sum

secrecy rate maximization problems with no harvested energy

constraints. The Sub(3) solution achieves zero worst-case sum

secrecy rates at a value of Ê = 1.5 mW which is lower

than the value of the optimal solution, Ê = 2.2 mW . This is

because in the Sub(3) solution the AN beamforming vectors,

q1 and q2, are designed to maximize the total harvested energy

while the problem is constrained with the individual harvested

energy of the EHs.

For the given system parameters and the considered cases,

cooperative and non-cooperative EHs represent the worse-case

and the best-case assumptions, respectively. The cooperative

EHs are equivalent to a single receiver with K receive antenna.

Now, with the restriction K ≤ N , the best scenario for the

EHs is to employ successive interference cancellation which is

capable of cancelling the interference from non-intended IUs

and achieves the best possible information rate [34]. Therefore,

the achievable sum secrecy rate can be considered as a lower

bound on the optimal solution1 performance. In the other case,

non-cooperative EHs, the assumption is that each EH relies

on itself to decode the intended IU signal. In addition, in our

objective in (8), we optimize the worst-case sum secrecy rate,

i.e., the case when the IUi are being eavesdropped by the

strongest EHk (see the max operator term in (8)). Therefore,

the achievable sum secrecy rate can be considered as an upper

bound on the optimal solution performance.
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Fig. 2. E-R regions for the non-cooperative EHs case with

total harvested energy constraint.

Fig. 5 shows the effect of the placement of the IUs and the

non-cooperative EHs on the achievable average sum secrecy

rate for system parameters N = 8, K = 3, M = 2,

Ē = 2 mW , Pt = 1 W and ζ = 0.5. For that purpose, the

statistical average of the channel power gains (channel vari-

ance) from the BS to all EHs are kept constant at γ2
E = 10−3,

therefore, the problem feasibility will not be affected, while

channel variance from the BS to all IUs is varied over the range

1This is the lower bound on the optimal solution performance since the
suboptimal solution performances still lie under this lower bound.
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Fig. 3. E-R regions for cooperative EHs case with total

harvested energy constraint.
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Fig. 4. E-R regions for the non-cooperative EHs case with

individual harvested energy constraints.

[−90dB,−50dB] which corresponds to channel variance range

from γ2
I = 10−9 to γ2

I = 10−5. As expected, the average sum

secrecy rate tends to decrease as the IUs signal attenuation

increases.

Fig. 6 compares the average worst-case sum secrecy rate

achieved by different optimization schemes against different

number of transmit antennas at the BS with K = 3, M = 2,

Ē = 3 mW , Pt = 1 W and ζ = 0.5. The value of Ē is

chosen such that the three solutions, the optimal, Sub(1) and

Sub(2) get a reasonable feasibility rate. Note that to calculate

the average sum secrecy rate, only the feasible solution cases

are considered. As expected at lower value of harvested energy

constraint (Ē = 3 mW ), the suboptimal solution Sub(1)

outperforms Sub(2). The priority in AN precoding in Sub(1)

is to nullify the AN at the IUs and this is appropriate at low

harvested energy constraint region. It can be seen that the gap
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Fig. 5. Sum secrecy rate versus variance of IU channels with

given harvested energy constraint Ē = 2mW .
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Fig. 6. Achievable average sum secrecy rate for different

numbers of transmit antennas.

between the average sum secrecy rate achieved by Sub(1) and

Sub(2) increases with the number antennas. This is because,

in Sub(1), as the number of transmit antennas increases, the

percentage of channels used to match the AN signal toward the

EHs increases with preserving the cancellation of the AN at the

IUs. For example, at N = 10, equivalently, 80%
(
10−2
10 × 100

)

of the transmit antennas are used for AN alignment, whereas

at N = 25, 92%
(
25−2
25 × 100

)
of the transmit antennas are

used for AN alignment.

The feasibility of the optimal solution to problem (14) is

mainly dependent on the parameters in the feasibility condition

(11). In addition, the choice of the initial values of the slack

variable vectors s̄ and v̄ can affect the feasibility of the

first iteration. If the initial values of s̄ and v̄ are chosen far

from the optimal values s⋆ and v⋆, then there is a strong

possibility that the first iteration ends up infeasible or the

solution takes a large number of iterations to converge. In Fig.

7, we examine the feasibility rate of the optimal solution in

average percentage for a range of harvested energy constraint

using the same simulation parameters in Fig. 2. A simple

and good approximation for the initial values s̄ and v̄ are
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Fig. 7. Optimal solution feasibility rate in percentage.

calculated as follows

v̄k =log

(
Pt − Pn

M

M∑

i=1

Tr
(
Gkw̄mw̄

H
m

)
+

Pn

2

2∑

l=1

Tr
(
Gkq̄lq̄

H
l

)
+ σ2

E

)
, ∀i, (49)

s̄i = log

(
Pn

2

∣∣∣hH
i q̄2

∣∣∣
2

+ σ2
I

)
, ∀i, (50)

where Pn is the total AN power. The values obtained by the

above equations are based on the third suboptimal solution

Sub(3), but with equal power allocation among the informa-

tion beamforming vectors and the AN beamforming vectors.

The initial values that yield a feasible first iteration (if it exists)

is obtained via one-dimensional search across 0 ≤ Pn ≤ Pt.

The optimal solution feasibility rate in percentage is calculated

using three different Monté-Carlo simulations. In the first

two simulations, we inspect the actual optimization problem

feasibility by solving problem (14) using CVX software.

The initial values s̄ and v̄ are calculated by using (49) and

(50) with a search through Pn = 0, 0.2, 0.4, 0.6 W for the

first simulation (square-marked curve), and for the second

simulation results (star-marked curve), the initial values are

calculated by (49) and (50) but only with Pn = 0. These two

results are compared with problem feasibility rate obtained

by the satisfaction of the condition in (11) (solid line curve).

As we can see, searching through four different initial values

of s̄ and v̄ yields a feasibility rate close to that obtained by

feasibility condition (11), while when each of s̄ and v̄ are

assigned one value, the feasibility rate drops significantly. This

gives an insight into the sharpness of the feasibility condition

(11).

Fig. 8 shows the achievable worst-case sum secrecy rate

across the iterations of our iterative algorithms for both optimal

solution and the sub-optimal solution, Sub(3). The results

are obtained in the trade-off region of both solutions with

a common total harvested energy constraint Ē = 5.5 mW
and common initial values, s̄ and v̄, which are calculated by
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Fig. 8. Convergence of the achievable sum secrecy rate for

the optimal and Sub(3) solutions, with non-cooperative EHs.

using (50) and (49) with Pn = 0.2, 0.5 W . With a tolerance

of 0.001 b/s/Hz, the optimal solution converges at the 10th

and the 7th iterations with the initial values generated with

Pn = 0.2 W and Pn = 0.5 W , respectively. On the other

hand, the sub-optimal solution converges at the 5th and the 4th

iterations with the initial values generated with Pn = 0.2 W
and Pn = 0.5 W , respectively. The suboptimal solution

shows a faster convergence speed than the optimal solution

at different initial values. This is expected since the initial

values are calculated by the beamforming vectors employed

by the suboptimal solution.

IX. CONCLUSIONS

In this paper, we considered secure downlink transmission

in SWIPT MU-MISO systems comprising multiple IUs and

multiple EHs which have the potential to wire-tap the IU’s

signal. We proposed joint optimization of the information

and AN beamforming vectors for worst-case sum secrecy rate

maximization with a constraint on the total harvested energy

by the EHs. The problem was formulated as an iterative

SDP program. Using dual variable multipliers, we derived

a rank-one solution for the transmit covariance matrices of

the IUs which achieved the same optimal sum secrecy rate

attained by a rank-unconstrained SDP program solution. Three

different sub-optimal solutions were also provided. The first

solution was based on IUs interference alignment and the

projection of the AN in the null space of IUs channel vectors

followed by transmission along the dominant eigenvector of

the equivalent EHs channel, while the second solution ignored

the AN alignment at the IUs. The third sub-optimal solution

exploited the AN beamforming vectors of both the first and the

second sub-optimal solutions. The performances of the sub-

optimal solutions lied under the optimal solution, however,

as a result of AN null space projection, the first sub-optimal

solution outperformed the second solution in the low energy

harvesting constraint region and vice versa for the high energy

harvesting constraint region. The sum secrecy rate achieved by

the third sub-optimal solution traced the maximum of the first

or the second sub-optimal solution. Future work will aim at

optimizing transmit beamforming matrices for multi-antenna

IUs and EHs, and also considering the work for the massive

MU-MISO case.

APPENDIX

PROOF OF THEOREM I

Proof: For the SDR problems (14), the optimal rank-

one solution S̃⋆1 is obtained via two steps. In the first

step, we find the structure of the optimal rank-unconstrained

information beamforming matrices
{
Ŵ

⋆1

m

}
. Then, in the

second step, we use the structure of
{
Ŵ

⋆1

m

}
to calculate

new optimal solution
{{
W̃

⋆1

m

}
, Q̃

⋆1

, s̃⋆1 , T̃
⋆1

,u⋆1 ,v⋆1

}
=

S̃⋆1 that satisfies a rank-one constraint, rank
(
W̃

⋆1

m̄

)
=

1, and achieves the same objective value achieved by{{
Ŵ

⋆1

m

}
, Q̂

⋆1
, s⋆1 ,T ⋆1 ,u⋆1 ,v⋆1

}
= S⋆1 . The optimal

rank-one solution of (15), S̃⋆2 , can be obtained by following

the same steps, therefore, and due to space limitation, we

provide the proof for (14) only.

Since the objective function and the constraints of (13) are

differentiable, i. e., they have an open domain, then there is a

solution set that can strictly satisfy the constraints (13a)-(13e).

Therefore, Slater’s condition holds, and zero gap between

primal and dual solutions is guaranteed if the KKT conditions

are satisfied [26]. The Lagrangian of problem (13) can be

written as

L (S,L) =
M∑

i=1

(
ui − si − vk(i) + ti,k(i)

)
+

M∑

i=1

(
−α3ie

ui + α4ie
si −

K∑

k=1

α6i,ke
ti,k

)
+

K∑

k=1

α5ke
vk

+
M∑

m=1

Tr
(
AmŴm

)
+ Tr

(
BQ̂

)
+ d, (51)

where

Am = −α1 + ζα2Ĝ+
M∑

i=1

α3iHi −
K∑

k=1

α5kĜk

+

M∑

i=1
i6=m

(
−α4iHi +

K∑

k=1

α6i,kĜk

)
+ Y m, (52)

B = −α1 + ζα2Ĝ−
K∑

k=1

α5kĜk

+
M∑

i=1

(
α3iHi − α4iHi +

K∑

k=1

α6i,kĜk

)
+ Y Q,

(53)
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d =α1Pt − α2Ē +
M∑

i=1

(
(α3i − α4i)σ

2
I + σ2

E

K∑

k=1

α6i,k

)

− σ2
E

K∑

k=1

α5k , (54)

and
{
α1, α2, {α3i} , {α4i} , {α5k} ,

{
α6i,k

}}
= L ≥ 0 are

the Lagrange multipliers associated with the constraints (8a),

(8b), (13a), (13b), (13c) and (13d), respectively. The set

{Y m} ,Y Q � 0 are the Lagrange multipliers associated

with the semidefiniteness constraints in (8c), respectively, and

k(i) = argmax
k

(vk − ti,k). Notice that, the Lagrange dual

function G (L, {Y m} ,Y Q) is the supremum of L over S.

In order for G to exist, G has to be bounded from above,

accordingly

Am,B � 0, {α4i} , {α5k} ,
{
α6i,k | k 6= k(i)

}
= 0,

and {α3i} ,
{
α6i,k(i)

}
> 0. (55)

Therefore, the Lagrangian function will be

G =α1Pt − α2Ē +

M∑

i=1

(
α3iσ

2
I + α6i,k(i)

σ2
E

)

+

M∑

i=1

(
log

(
1

α3iα6i,k(i)

)
− 2

)
. (56)

The primal problem (13) can be solved by solving the dual

problem (57) which achieves the same objective value

Minimize
L,{Y m},Y Q

G

subject to

α1, α2 ≥ 0, {α3i} ,
{
α6k(i)

}
> 0, {Y m} ,Y Q � 0. (57)

We prove that the KKT conditions for the relaxed primal

variable
{
Ŵm

}
are satisfied as follows:

1) Primal and Dual Feasibility: Based on the feasibility

condition in (11) and the non-negativeness of dual variables,

both primal and dual problems are feasible.

2) Complementary Slackness: Since Slater’s condition

holds, then

f (S⋆1)

= G
(
L⋆1 , {Y ⋆1

m} , Y ⋆1

Q

)
= sup

S

L
(
S,L⋆1 , {Y ⋆1

m} , Y ⋆1

Q

)

= sup
S

[
f (S) + α⋆1

1 h1 + α⋆1
2 h2 +

M∑

i=1

(
α⋆1
3i
h3i + α⋆1

4i
h4i+

K∑

k=1

α⋆1
6i,k

h6i,k + Tr
(
Y ⋆1

i Ŵ i

))
+

K∑

k=1

α⋆1
5k
h5k+

Tr
(
Y ⋆1

Q Q̂
)]

(a)

≥ f (S⋆1) + α⋆1
1 h⋆1

1 + α⋆1
2 h⋆1

2 +
M∑

i=1

(
α⋆1
3i
h⋆1
3i

+ α⋆1
4i
h⋆1
4i
+

K∑

k=1

α⋆1
6i,k

h⋆1
6i,k

+ Tr
(
Y ⋆1

i Ŵ
⋆1

i

))
+

K∑

k=1

α⋆1
5k
h⋆1
5k
+

Tr
(
Y ⋆1

Q Q̂
⋆1
)

(b)

≥ f (S⋆1) , (58)

where f is the primal objective function,
{
L⋆1 , {Y ⋆1

m} ,Y ⋆1

Q

}

is the optimal solution of (57) and h1, h2, {h3i}, {h4i},

{h5k} and
{
h6i,k

}
are the left-hand side of the inequal-

ity constraints (8a), (8b) and (13a)-(13d) (after rewriting

them as ≥ 0 inequalities), respectively. The inequality (a)

follows since the supremum of the Lagrangian is greater

than or equal to the value of the Lagrangian at any fea-

sible set of {S,L⋆1} which includes {S⋆1 ,L⋆1} [26]. The

inequality (b) follows from the non-negativeness of the ele-

ments in α⋆1
1 h⋆1

1 , α⋆1
2 h⋆1

2 ,
{
α⋆1
3i
h⋆1
3i

}
,
{
α⋆1
4i
h⋆1
4i

}
,
{
α⋆1
5k
h⋆1
5k

}
,{

α⋆1
6i,k

h⋆1
6i,k

}
,
{

Tr
(
Y ⋆1

i Ŵ
⋆1

i

)}
, and Tr

(
Y ⋆1

Q Q̂
⋆1
)

. There-

fore, the inequalities (a) and (b) hold only when each

term in α⋆1
1 h⋆1

1 , α⋆1
2 h⋆1

2 ,
{
α⋆1
3i
h⋆1
3i

}
,
{
α⋆1
4i
h⋆1
4i

}
,
{
α⋆1
5k
h⋆1
5k

}
,{

α⋆1
6i,k

h⋆1
6i,k

}
,
{

Tr
(
Y ⋆1

i Ŵ
⋆1

i

)}
, and Tr

(
Y ⋆1

Q Q̂
⋆1
)

is equal

to zero. Hence, the complimentary slackness is proved.

3) Stationarity: The stationary point of L should satisfy

M∑

m=1

∂L
∂Ŵ

⋆1

m

= 0, therefore

M∑

m=1

A⋆1
m = 0.

Since we have A⋆1
m � 0, ∀m, then, based on stationarity,

(52) and (55), we have

Y ⋆1
m =D⋆1

m −
M∑

i=1

α⋆1
3i
Hi, ∀m, (59)

D
⋆1

m = α
⋆1

1 − ζα
⋆1

2 Ĝ−
M∑

i=1
i6=m

α⋆1
6i,k(i)

Ĝk(i). (60)

To satisfy the complementary slackness condition, W
⋆1

m

should lie in the null space of Y
⋆1

m . Define rank
(
Y

⋆1

m

)
= r1m ,

rank
(
D

⋆1

m

)
= r2m , null

(
Y

⋆1

m

)
= Ωm ∈ CN×(N−r1m )

and null
(
D

⋆1

m

)
= Ψm =

[
ψm,1, ...,ψm,N−r2m

]
∈

CN×(N−r2m ). Let ψm,n be the nth column of Ψm. Then we

have

ψH
m,nY

⋆1

mψm,n = ψH
m,n

(
D

⋆1

m −
M∑

i=1

α
⋆1

3iHi

)
ψm,n =

−ψH
m,n

(
M∑

i=1

α
⋆1

3iHi

)
ψm,n = −

M∑

i=1

α
⋆1

3i

∣∣∣hH
i ψm,n

∣∣∣
2

.

(61)

Since Y
⋆1

m � 0, Hi � 0 and
{
α

⋆1

3i

}
> 0, hence

(
M∑

i=1

α
⋆1

3iHi

)
Ψm = 0. (62)
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Accordingly, the column vectors in Ψm are in the null

space of Y
⋆1

m , therefore, Ψm is a sub-matrix of Ωm and the

inequality rank (Ψm) ≤ rank (Ωm) is always true.

The N × N positive semidefinite matrix Y
⋆1

m satisfies the

following

rank (Ωm) = N − rank
(
Y

⋆1

m

)
. (63)

Since
{
α

⋆1

3i

}
> 0, and {Hi} � 0 are statistically inde-

pendent rank-one matrices, then
∑M

i=1 α
⋆1

3iHi is a positive

semidefinite matrix of a rank ≤ M (most likely equal to M ).

Therefore, by applying the result of Lemma A.1 in [6] to (59),

we have, rank
(
Y

⋆1

m

)
≥ rank

(
D

⋆1

m

)
− M . Substituting this

inequality in (63) results in

rank (Ωm) ≤ N − rank
(
D

⋆1

m

)
+M

≤ rank (Ψm) +M. (64)

Therefore,

rank (Ψm) ≤ rank (Ωm) ≤ rank (Ψm) +M. (65)

Now, let us consider the case, rank (Ωm) = rank (Ψm),
i.e., Ωm = Ψm and W

⋆1

m = am,nψm,nψ
H
m,n, am,n > 0.

This solution can not be optimal since it leads to a negative

secrecy rate at the IUm along with inter-user interference,

moreover, the noise imposed by W
⋆1

m on the EHs can be

attained by the AN beamformers qls which are statistically

independent, and therefore, W
⋆1

m = 0 will definitely per-

form better. As a result, the case rank (Ωm) = rank (Ψm)
does not exist and there are always between 1 and M
unit norm vector(s)

[
ωm,1, ...,ωm,r2m−r1m

]
which satisfy

Ωm =
[
Ψm

[
ωm,1, ...,ωm,r2m−r1m

]]
. Then, we can write

the optimal solution for Ŵ
⋆1

m ∈
{
Ŵ

⋆1

m̄

}
as

N−r2m∑

n=1

am,nψm,nψ
H
m,n +

r2m−r1m∑

n1=1

bm,n1
ωm,n1

ωH
m,n1

, (66)

where bm,n1s > 0 are positive scaling constants.

In the following, we can construct a non-unique optimal

solution S̃⋆1 that satisfies rank
(
W̃

⋆1

m

)
= 1 and can achieve

the same objective value achieved by Ŵ
⋆1

m as follows

W̃
⋆1

m = bm,n̄1m
ωm,n̄m

ωH
m,n̄m

=

{
Ŵ

⋆1

m − τm ∀m ∈ {m̄}
Ŵ

⋆1

m , ∀m /∈ {m̄}
,

(67)

s̃⋆1
m =



s⋆1
m + δ

(1)
m , ∀m ∈ {m̄} , Tr (Hmτm) ≤ Tr

(
Gk(m)τm

)

s⋆1
m + δ

(2)
m , ∀m ∈ {m̄} , Tr (Hmτm) ≥ Tr

(
Gk(m)τm

)

s⋆1
m , ∀m /∈ {m̄} ,

(68)

t̃⋆1

m,k(m) =





t⋆1

m,k(m) + δ
(1)
m , ∀m ∈ {m̄} ,Tr (Hmτm) ≤ Tr

(
Gk(m)τm

)

t⋆1

m,k(m) + δ
(2)
m , ∀m ∈ {m̄} ,Tr (Hmτm) ≥ Tr

(
Gk(m)τm

)

t⋆1

m,k(m), ∀m /∈ {m̄} ,
(69)

and

Q̃
⋆1

= Q̂
⋆1

+
∑

m∈{m̄}

τm, (70)

where

n̄m ∈ {1, ..., r2m − r1m} , (71)

τm =

N−r2m∑

n=1

am,nψm,nψ
H
m,n +

N−rm∑

n1=1
n1 6=n̄1m

bm,n1
ωm,n1

ωH
m,n1

,

(72)

δ(1)m = −s⋆1
m + log

(
Tr (Hmτm) + es

⋆
m

)
, (73)

δ(2)m = −t⋆1

m,k(m) + log
(

Tr
(
Gk(m)τm

)
+ et

⋆
m,k(m)

)
. (74)

By substituting S̃⋆1 into the constraints and the objective

function of problem (13), it can be verified that S̃⋆1 satisfies all

the constraints (13a)-(13e) and achieves the same sum secrecy

rate as S⋆1 does. This concludes the proof.
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