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Abstract

Known results show that the diameter d; of the trace of planar Brownian motion
run for unit time satisfies 1.595 < Ed; < 2.507. This note improves these bounds
to 1.601 < Ed; < 2.355. Simulations suggest that Ed; ~ 1.99.
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Let (b, t € [0,1]) be standard planar Brownian motion, and consider the set b[0, 1] =
{b; : t € [0,1]}. The Brownian convex hull #; := hull b0, 1] has been well-studied from
Lévy [5, §52.6, pp. 254-256] onwards; the expectations of the perimeter length ¢; and
area a; of H; are given by the exact formulae Ef; = /87 (due to Letac and Tékacs [4,6])
and Ea; = 7/2 (due to El Bachir [1]).

Another characteristic is the diameter

dy = diam H; = diamb[0,1] = sup ||z —y]l,
z,y€b[0,1]

for which, in contrast, no explicit formula is known. The exact formulae for E¢; and Ea,
rest on geometric integral formulae of Cauchy; since no such formula is available for dy, it
may not be possible to obtain an explicit formula for Ed;. However, one may get bounds.

By convexity, we have the almost-sure inequalities 2 < ¢;/d; < 7, the extrema being
the line segment and shapes of constant width (such as the disc). In other words,

The formula of Letac and Takdcs [4,6] says that E¢; = /8, so we get:
Proposition 1. /8/m <Ed; < v/27.
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Note that 1/8/7 ~ 1.5958 and /27 ~ 2.5066. In this note we improve both of these
bounds.
For the lower bound, we note that b[0, 1] is compact and thus, as a corollary of Lemma

6 below, we have the formula
dy = sup r(0), (1)

0<6<m

where r is the parametrized range function given by

r(0) = Sup (bs - eq) = inf (b, -ep),

with ey being the unit vector (cos,sin@). Feller [2] established that
Er(f) = /8/7 and E(r(0)?) = 4log2, (2)

and the density of r(0) is given explicitly as
8 _
fr) = Nor D (=D exp{=k*r*/2}, (r > 0). (3)
k=1

Combining (1) with (2) gives immediately Ed; > Er(0) = /8/m, which is just the
lower bound in Proposition 1. For a better result, a consequence of (1) is that d; >
max{r(0),r(7/2)}. Observing that r(0) and r(7/2) are independent, we get:

Lemma 2. Ed; > Emax{ Xy, X5}, where X; and X5 are independent copies of X := r(0).

It seems hard to explicitly compute Emax{X;, X5} in Lemma 2, because although
the density given at (3) is known explicitly, it is not very tractable. Instead we obtain a
lower bound. Since

1
max{z,y} = 5 (@ +y+ |z —yl)
we get

1
EmaX{Xl,Xg} :EX—|—§E|X1 —X2| (4)

Thus with Lemma 2, the lower bound in Proposition 1 is improved given any non-trivial
lower bound for E|X; — X3|. Using the fact that for any ¢ € R, if m is a median of X,
E|X — ¢| > E|X — m|, we see that

E[X: — X5| > E[X —m].

Again, the intractability of the density at (3) makes it hard to exploit this. Instead, we
provide the following as a crude lower bound on E|X; — X5|.

Lemma 3. For any a,h > 0,
E|X; — X3 > 2hP(X <a)P(X >a+ h).
Proof. We have

E|X: — Xo| > E[|X1 — Xo|1{X1 < a, X2 > a + h}]
FE[IX) — Xo|1{Xs < a, X1 > a+ h}]
>hP(X, < a)P(Xy > a+h)+hP(Xy < a)P(Xy > a+h)
= 2hP(X < a)P(X > a+h),

which proves the statement. O



This lower bound yields the following result.

Proposition 4. For a,h > 0 define

e e [ )

Then Edy > /8/m + ¢(1.492,0.337) ~ 1.6014.

Proof. Consider

Z := sup |bs - eg.
0<s<1

Then it is known (see [3]) that for > 0,

4 2 4 97 4 2
Moreover, we have

7 <X <2Z.
Since X < 27, we have

4 2 4 972
P(X <a)>P(Z <a/2) > ;GXP{—ﬁ} - geXp{—ﬁ},

by the lower bound in (5). On the other hand,

2

4 T
P(X > h)y >P(Z > hy>1— — -
(X>a+h)>P(Z>ath) > ﬂ_eXp{ S(HW},

by the upper bound in (5). Combining these two bounds and applying Lemma 3 we get
E|X; — X3| > 2g(a,h). So from (4) and the fact that EX = /8/7 by (2) we get Ed; >
/8/m+g(a, h). Numerical evaluation using MAPLE suggests that (a,h) = (1.492,0.337)
is close to optimal, and this choice gives the statement in the proposition. O

We also improve the upper bound in Proposition 1.
Proposition 5. Ed; < /8log?2 ~ 2.3548.

Proof. First, we claim that
di <r(0)*+ r(r/2)% (6)

It follows from (6) and (2) that
E(d?) < B(X? + X2) = 2E(X?) = 8log 2.

The result now follows by Jensen’s inequality.

It remains to prove the claim (6). Note that the diameter is an increasing function,
that is, if A C B then diam A < diam B. Note also, that by the definition of r(0),
b[0,1] C z + [0,7(0)] x [0,7(7/2)] =: R, for some z € R?. Since the diameter of the set
R, is attained at the diagonal,

diam R, = \/7(0)2 + r(7/2)2,

for all z € R?, and we have diam b[0, 1] < diam R,, the result follows. O

3



We make one further remark about second moments. In the proof of Proposition 5,
we saw that E(d?) < 8log2 ~ 5.5452. A bound in the other direction can be obtained
from the fact that d3 > ¢2/72, and we have (see [7, §4.1]) that

E(¢2) —47r/ d9/ du cos ———— cosh(uf) tanh (20—1——7r)u ~ 26.1677,
)2 81nh(u7r/2) 4

which gives E(d?) > 2.651.
Finally, for completeness, we state and prove the lemma which was used to obtain
equation (1).

Lemma 6. Let A C R? be a nonempty compact set, and let r4(0) = sup,c4(z - €g) —
inf,ca(z-eg). Then
diam A = sup rs(0).

0<6<n
Proof. Since A is compact, for each # there exist x,y € A such that
ra(f) =x-eg—y- ey

= (& —y)-ep < |z -yl

S0 SUP<ger 74(0) < D, ea ll7 — y]| = diam 4.

It remains to show that supy<g<, r4(f) > diam A. This is clearly true if A consists of
a single point, so suppose that A contains at least two points. Suppose that the diameter
of A is achieved by z,y € A and let z = y—x be such that Z := z/||z|| = ey, for by € [0, 7].
Then

sup r4(0) > ra(fo) >y - eg — - ey,
0<0<n
=z-2=|z| =diam A,

as required. 0

Acknowledgements

The authors are grateful to Andrew Wade for his suggestions on this note. The first
author is supported by an EPSRC studentship.

References

[1] M. El Bachir, L’enveloppe convexe du mouvement brownien, Ph.D. thesis, Université
Toulouse ITI—Paul Sabatier, 1983.

[2] W. Feller, The asymptotic distribution of the range of sums of independent random
variables, Ann. Math. Statist. 22 (1951) 427-432.

[3] N.C. Jain and W.E. Pruitt, The other law of the iterated logarithm, Ann. Probab.
3 (1975) 1046-1049.

[4] G. Letac, Advanced problem 6230, Amer. Math. Monthly 85 (1978) 686.

4



[5] P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris,
1948.

[6] L. Takacs, Expected perimeter length, Amer. Math. Monthly 87 (1980) 142.

[7] A.R. Wade and C. Xu, Convex hulls of random walks and their scaling limits,
Stochastic Process. Appl. 125 (2015) 4300-4320.



