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Abstract

Known results show that the diameter d1 of the trace of planar Brownian motion
run for unit time satisfies 1.595 ≤ Ed1 ≤ 2.507. This note improves these bounds
to 1.601 ≤ Ed1 ≤ 2.355. Simulations suggest that Ed1 ≈ 1.99.
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Let (bt, t ∈ [0, 1]) be standard planar Brownian motion, and consider the set b[0, 1] =
{bt : t ∈ [0, 1]}. The Brownian convex hull H1 := hull b[0, 1] has been well-studied from
Lévy [5, §52.6, pp. 254–256] onwards; the expectations of the perimeter length `1 and
area a1 of H1 are given by the exact formulae E`1 =

√
8π (due to Letac and Tákacs [4,6])

and Ea1 = π/2 (due to El Bachir [1]).
Another characteristic is the diameter

d1 := diamH1 = diam b[0, 1] = sup
x,y∈b[0,1]

‖x− y‖,

for which, in contrast, no explicit formula is known. The exact formulae for E`1 and Ea1
rest on geometric integral formulae of Cauchy; since no such formula is available for d1, it
may not be possible to obtain an explicit formula for Ed1. However, one may get bounds.

By convexity, we have the almost-sure inequalities 2 ≤ `1/d1 ≤ π, the extrema being
the line segment and shapes of constant width (such as the disc). In other words,

`1
π
≤ d1 ≤

`1
2
.

The formula of Letac and Takács [4, 6] says that E`1 =
√

8π, so we get:

Proposition 1.
√

8/π ≤ Ed1 ≤
√

2π.
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Note that
√

8/π ≈ 1.5958 and
√

2π ≈ 2.5066. In this note we improve both of these
bounds.

For the lower bound, we note that b[0, 1] is compact and thus, as a corollary of Lemma
6 below, we have the formula

d1 = sup
0≤θ≤π

r(θ), (1)

where r is the parametrized range function given by

r(θ) = sup
0≤s≤1

(bs · eθ)− inf
0≤s≤1

(bs · eθ) ,

with eθ being the unit vector (cos θ, sin θ). Feller [2] established that

Er(θ) =
√

8/π and E(r(θ)2) = 4 log 2, (2)

and the density of r(θ) is given explicitly as

f(r) =
8√
2π

∞∑
k=1

(−1)k−1k2 exp{−k2r2/2}, (r ≥ 0). (3)

Combining (1) with (2) gives immediately Ed1 ≥ Er(0) =
√

8/π, which is just the
lower bound in Proposition 1. For a better result, a consequence of (1) is that d1 ≥
max{r(0), r(π/2)}. Observing that r(0) and r(π/2) are independent, we get:

Lemma 2. Ed1 ≥ Emax{X1, X2}, where X1 and X2 are independent copies of X := r(0).

It seems hard to explicitly compute Emax{X1, X2} in Lemma 2, because although
the density given at (3) is known explicitly, it is not very tractable. Instead we obtain a
lower bound. Since

max{x, y} =
1

2
(x+ y + |x− y|)

we get

Emax{X1, X2} = EX +
1

2
E|X1 −X2|. (4)

Thus with Lemma 2, the lower bound in Proposition 1 is improved given any non-trivial
lower bound for E|X1 −X2|. Using the fact that for any c ∈ R, if m is a median of X,
E|X − c| ≥ E|X −m|, we see that

E|X1 −X2| ≥ E|X −m|.

Again, the intractability of the density at (3) makes it hard to exploit this. Instead, we
provide the following as a crude lower bound on E|X1 −X2|.

Lemma 3. For any a, h > 0,

E|X1 −X2| ≥ 2hP(X ≤ a)P(X ≥ a+ h).

Proof. We have

E|X1 −X2| ≥ E [|X1 −X2|1{X1 ≤ a,X2 ≥ a+ h}]
+ E [|X1 −X2|1{X2 ≤ a,X1 ≥ a+ h}]

≥ hP(X1 ≤ a)P(X2 ≥ a+ h) + hP(X2 ≤ a)P(X1 ≥ a+ h)

= 2hP(X ≤ a)P(X ≥ a+ h),

which proves the statement.
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This lower bound yields the following result.

Proposition 4. For a, h > 0 define

g(a, h) := h

(
4

π
exp

{
− π2

2a2

}
− 4

3π
exp

{
−9π2

2a2

})(
1− 4

π
exp

{
− π2

8(a+ h)2

})
.

Then Ed1 ≥
√

8/π + g(1.492, 0.337) ≈ 1.6014.

Proof. Consider
Z := sup

0≤s≤1
|bs · e0|.

Then it is known (see [3]) that for x > 0,

4

π
exp

{
− π2

8x2

}
− 4

3π
exp

{
−9π2

8x2

}
≤ P(Z < x) ≤ 4

π
exp

{
− π2

8x2

}
. (5)

Moreover, we have
Z ≤ X ≤ 2Z.

Since X ≤ 2Z, we have

P(X ≤ a) ≥ P(Z ≤ a/2) ≥ 4

π
exp

{
− π2

2a2

}
− 4

3π
exp

{
−9π2

2a2

}
,

by the lower bound in (5). On the other hand,

P(X ≥ a+ h) ≥ P(Z ≥ a+ h) ≥ 1− 4

π
exp

{
− π2

8(a+ h)2

}
,

by the upper bound in (5). Combining these two bounds and applying Lemma 3 we get
E|X1 −X2| ≥ 2g(a, h). So from (4) and the fact that EX =

√
8/π by (2) we get Ed1 ≥√

8/π+g(a, h). Numerical evaluation using MAPLE suggests that (a, h) = (1.492, 0.337)
is close to optimal, and this choice gives the statement in the proposition.

We also improve the upper bound in Proposition 1.

Proposition 5. Ed1 ≤
√

8 log 2 ≈ 2.3548.

Proof. First, we claim that
d21 ≤ r(0)2 + r(π/2)2. (6)

It follows from (6) and (2) that

E(d21) ≤ E(X2
1 +X2

2 ) = 2E(X2) = 8 log 2.

The result now follows by Jensen’s inequality.
It remains to prove the claim (6). Note that the diameter is an increasing function,

that is, if A ⊆ B then diamA ≤ diamB. Note also, that by the definition of r(θ),
b[0, 1] ⊆ z + [0, r(0)] × [0, r(π/2)] =: Rz for some z ∈ R2. Since the diameter of the set
Rz is attained at the diagonal,

diamRz =
√
r(0)2 + r(π/2)2,

for all z ∈ R2, and we have diam b[0, 1] ≤ diamRz, the result follows.
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We make one further remark about second moments. In the proof of Proposition 5,
we saw that E(d21) ≤ 8 log 2 ≈ 5.5452. A bound in the other direction can be obtained
from the fact that d21 ≥ `21/π

2, and we have (see [7, §4.1]) that

E(`21) = 4π

∫ π/2

−π/2
dθ

∫ ∞
0

du cos θ
cosh(uθ)

sinh(uπ/2)
tanh

(
(2θ + π)u

4

)
≈ 26.1677,

which gives E(d21) ≥ 2.651.
Finally, for completeness, we state and prove the lemma which was used to obtain

equation (1).

Lemma 6. Let A ⊂ Rd be a nonempty compact set, and let rA(θ) = supx∈A(x · eθ) −
infx∈A(x · eθ). Then

diamA = sup
0≤θ≤π

rA(θ).

Proof. Since A is compact, for each θ there exist x, y ∈ A such that

rA(θ) = x · eθ − y · eθ
= (x− y) · eθ ≤ ‖x− y‖.

So sup0≤θ≤π rA(θ) ≤ supx,y∈A ‖x− y‖ = diamA.
It remains to show that sup0≤θ≤π rA(θ) ≥ diamA. This is clearly true if A consists of

a single point, so suppose that A contains at least two points. Suppose that the diameter
of A is achieved by x, y ∈ A and let z = y−x be such that ẑ := z/‖z‖ = eθ0 for θ0 ∈ [0, π].
Then

sup
0≤θ≤π

rA(θ) ≥ rA(θ0) ≥ y · eθ0 − x · eθ0

= z · ẑ = ‖z‖ = diamA,

as required.
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Toulouse III—Paul Sabatier, 1983.

[2] W. Feller, The asymptotic distribution of the range of sums of independent random
variables, Ann. Math. Statist. 22 (1951) 427–432.

[3] N.C. Jain and W.E. Pruitt, The other law of the iterated logarithm, Ann. Probab.
3 (1975) 1046–1049.

[4] G. Letac, Advanced problem 6230, Amer. Math. Monthly 85 (1978) 686.

4
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