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Length of excitable knots
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In this paper, we present extensive numerical simulations of an excitable medium to study the long-term
dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-
Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory
approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot
that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing
the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique
attractor within a given knot topology.
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There is a range of chemical, physical, and biological
excitable media that supports spiral wave vortices. Exam-
ples include the Belousov-Zhabotinsky redox reaction, the
chemotaxis of slime mould, and action potentials in cardiac
tissue [1]. Spiral waves in the latter system are of particular
importance as they are believed to play a vital role in certain
cardiac arrhythmias [2]. The simplest mathematical model of
cardiac tissue as an excitable medium is the FitzHugh-Nagumo
equation [3–5], which is a nonlinear partial differential
equation of reaction-diffusion type for the electric potential
together with a slow recovery variable. In a three-dimensional
medium spiral wave vortices become extended vortex strings
(sometimes known as scroll waves) that can either end on the
boundary of the medium or form closed loops. Mathematically,
such a closed loop is a knot, which includes the trivial case of
the unknot as a vortex ring.

Over 30 years ago it was conjectured [6] that nontrivial
knots in a FitzHugh-Nagumo medium might preserve their
topology and be remarkably immune to the reconnection
events that untie knotted vortex strings in a generic way in
most systems [7]. To date, the only evidence [8] over long time
scales for this conjecture has been restricted to the simplest
nontrivial knot, the trefoil knot, and some very recent results
on the untangling of unknots [9]. Here we provide evidence
for this conjecture by presenting solutions for all torus knots
up to crossing number 11. We find that the knot topology is
preserved and the evolution yields a stable minimal length
for each knot. The combination of positive string tension and
short-range repulsion between vortex cores leads to the naive
expectation that the length of these excitable knots is related
to the rope length of ideal knots [10], a concept introduced
to explain the properties of knotted DNA. We investigate this
possible connection to ideal knots and find that these two
lengths follow similar trends. Differences in conformation and
the crucial role of the medium boundary in stabilizing the
length of the knot are highlighted. This latter phenomenon is
relevant for extending the results beyond torus knots. Finally,
we also demonstrate that there is not a unique attractor within
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a given knot topology, by applying Moffatt’s test [11] to the
trefoil knot.

The FitzHugh-Nagumo medium is described by the nonlin-
ear reaction-diffusion partial differential equations

∂u

∂t
= 1

ε

(
u − 1

3
u3 − v

)
+ ∇2u,

∂v

∂t
= ε(u + β − γ v),

(1)

where u(r,t) represents the electric potential and v(r,t) is
the recovery variable, both being real-valued physical fields
defined throughout the three-dimensional medium with spatial
coordinate r and time t . The remaining variables are constant
parameters that we set equal to ε = 0.3, β = 0.7, and γ = 0.5
from now on, to avoid complications due to spiral wave
meander [12]. In two-dimensional space this system, with
the parameter values given above, has rotating spiral wave
vortex solutions [1], with a period T = 11.2 and u and v

wavefronts in the form of an involute spiral with a wavelength
λ = 21.3. Characteristic time and length scales for the sys-
tem are provided by the parameters T and λ, respectively.
The center of the vortex is the point at which |∇u × ∇v|
is maximal, and this quantity is localized in the vortex
core [13].

To provide initial conditions for a vortex string of an
arbitrary knot, given by any nonintersecting closed curve
K , we apply the method introduced in [9] and adapted
from [14]. This involves computing the initial fields u(r,0)
and v(r,0) from a scalar potential for a vector field defined
by a Biot-Savart integral along the curve K . For most of our
investigation we will restrict the discussion to the case where
K is a torus knot. By definition, torus knots can be restricted
to lie on the surface of a torus and are classified by a pair of
coprime integers p > q > 1, with the associated torus knot
denoted by T (p,q). A suitable explicit parametrization for the
curve K can be taken to be

r =
⎛
⎝ [R1 + R2 cos(pφ)] cos(qφ)

[R1 + R2 sin(pφ)] sin(qφ)
−R2 sin(pφ)

⎞
⎠, (2)

where φ ∈ [0,2π ) and R1 > R2 are the major and minor radii
of the torus (R1 −

√
x2 + y2)2 + z2 = R2

2. To ensure that the
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initial conditions generate a vortex string with segments no
closer than about half a spiral wavelength (to avoid initial
reconnection), we generally found that R1 = 20 and R2 = 10
were sufficient, although R1 = 40 was used for some larger
values of p. The above explicit parametrization shows that
p and q are the number of times that the knot winds around
the poloidal and toroidal directions of the torus, respectively.
The knots T (p,q) and T (q,p) are topologically equivalent, as
the former may be smoothly deformed into the latter, hence
the restriction p > q in the topological classification of torus
knots. The (minimal) crossing number of the T (p,q) torus
knot is p(q − 1), and for all crossing numbers from 3 to 11
there is a unique torus knot except for crossing numbers 4 and
6, where torus knots do not exist.

The FitzHugh-Nagumo equations (1) are solved in a spatial
region that is a cuboid of height 64 and length and width
equal to 128 (increased to 192 for the longest knots) so
that the cuboid spans at least a few spiral wavelengths
in each direction. No-flux (Neumann) boundary conditions
are imposed at all boundaries of the medium and standard
numerical methods are employed: fourth-order Runge-Kutta
time evolution with a time step 0.1 and a 27-point stencil
finite-difference approximation for the Laplacian with a lattice
spacing 0.5. The vortex string is visualized by plotting an
isosurface where |∇u × ∇v| takes the value 0.1. This surface
is a hollow tube and the vortex string is defined to be the curve
that is the centerline of this tube. To calculate the length of
a knot we first identify the lattice point where |∇u × ∇v| is
maximal and then compute a sequence of neighboring lattice
points by employing a path-following algorithm that selects the
neighbor with the greatest value of |∇u × ∇v| and terminates
once it returns to the original starting point. A discrete Fourier
transform is then performed on this sequence to obtain a finite
Fourier series representation of a smooth curve, with a length
that is easily computed from the Fourier coefficients. We used
a Fourier series representation with 50 terms and verified that
the computed length is insensitive to any reasonable variation
in the number of terms around this value.

Figure 1(a) displays the evolution of the length of the knot
as a function of time using the initial conditions described
above (with appropriate values of p and q) for all torus
knots up to crossing number 10. In each case, we find that
the knot topology is preserved (there are no reconnections)
and the length has stabilized to an approximately constant
value after a time of 3000, which is a few hundred spiral
periods. The knots at this final time are also displayed, to scale
and in order of increasing length, by plotting the isosurface
given by |∇u × ∇v| = 0.1. The knot T (11,2), with crossing
number 11, has also been computed, but for clarity this is not
shown in Fig. 1(a), as the evolution takes slightly longer to
reach an equilibrium length. The evolution of this example is
available as the movie t112.mpg in the Supplemental Material,
together with the example T (5,3) as the movie t53.mpg [15].
The Supplemental Material makes clear the dynamical nature
of these knots and highlights the small oscillation in knot
length around an equilibrium value as the vortex string slowly
rotates and breaths with a period much greater than the spiral
period. These results reveal that the amplitude of the oscillation
in the length decreases as p increases but increases as q

increases.

FIG. 1. (a) Evolution of the length of some torus knots. (b) Ratio
of length to diameter (circles) as a function of crossing number and
the rope length of ideal knots (squares).

It has been shown that FitzHugh-Nagumo flow is able to
untangle unknots with a complex initial conformation [9], but
the physical mechanism that underpins this process remains
elusive. Although the untangling dynamics is highly nontrivial,
a phenomenological understanding, applicable in the regime
of slight curvature and twist, can be obtained by combining
positive filament tension [16,17] with a short-range repulsion
between vortex strings. If this simplified description has merit
then it leads to the expectation that the length of an excitable
knot should bear a resemblance to the rope length of an ideal
knot. Consider a perfectly flexible tube with a cross section
that is a rigid disk of unit diameter. The centerline of the tube is
an ideal knot if the tube has minimal length within a given knot
topology and this length is the rope length of the knot [10].
Extensive data on the computed rope lengths of knots can be
found in [18]. As rope length is defined as the ratio of length
to diameter, then to fix a normalization we need to define
the diameter of our excitable knots. Here we choose to fix
units by matching to the rope length of the simplest knot, the
trefoil knot T (3,2), also denoted by 31 in Alexander-Briggs
notation where a knot is labeled by its crossing number with
a subscript that denotes its position in the Rolfsen knot table.
This yields a diameter of 11.8, which is around half a spiral
wavelength.

In Fig. 1(b) the circles show the ratio of length to diameter
for all excitable torus knots with crossing number up to 11 and
for comparison the squares show rope length of the same ideal
knots. This plot reveals that the rope length gives a reasonable

012218-2



LENGTH OF EXCITABLE KNOTS PHYSICAL REVIEW E 96, 012218 (2017)

FIG. 2. Lengths and snapshots (to scale) of the evolution of the
topologically equivalent initial knots T (3,2) (lower red curve) and
T (2,3) (upper red curve). This shows that FitzHugh-Nagumo flow
fails Moffatt’s test, as T (2,3) fails to transmute into T (3,2).

first estimate of the length of an excitable knot, despite its
simplicity. Some features of ideal knots are reproduced by
excitable knots, for example, the surprising fact that the ideal
knot 819 [the torus knot T (4,3)] has a rope length that is less
than that of any knot with crossing number 7 is replicated by
excitable knots. Note that we have included the figure-eight
knot 41, the only knot with crossing number 4, in the data in
Fig. 1, even though this is not a torus knot. We will discuss
this example in more detail later.

Although the lengths of excitable knots are in reasonable
agreement with the predictions from ideal knots, their confor-
mations are quite different. This naturally leads to the question
of whether FitzHugh-Nagumo flow has a unique attractor
within a given knot topology. In the context of numerical
algorithms to find ideal knots, Moffatt [11] proposed the astute
test to start with the T (2,3) conformation of the trefoil knot to
see if it transmutes into the T (3,2) form. In Fig. 2 we present
the results of applying Moffatt’s test to FitzHugh-Nagumo
flow. The initial configuration and the resulting solution at
time 3000 are shown to scale for both cases, together with
plots of the evolution of the length as a function of time. These
results show that in each case the length stabilizes around a
constant value and an equilibrium conformation is attained,
but as the two are different the flow fails Moffatt’s test and we
have demonstrated that there is not a unique attractor within a
given knot topology. Note that the conformation of the slightly
longer form of 31 is quite symmetric and is very different from
the initial condition.

As there is not a unique attractor, we cannot rule out the
possibility that the ideal knot is also an attractor, which could
have been obtained with more favorable initial conditions. An
obvious choice for an alternative initial condition is to take
an ideal knot, suitably scaled so that initially all segments
are sufficiently far apart. The initial conditions for ideal
knots were obtained using the data available at [19] for the
associated curves K . Figure 3(a) is the initial condition for the
figure-eight knot 41 in ideal form and Figs. 3(b) and 3(c) are
two views of the final configuration after FitzHugh-Nagumo
flow for a time of 3000, which yields a rather symmetric but
nonideal conformation. This same solution is also obtained
from other initial conditions, including the more standard

FIG. 3. (a) Initial condition for the figure-eight knot 41, obtained
by scaling the ideal knot. (b) and (c) Two views of the final
configuration.

figure-eight form with the minimal number of four crossings,
demonstrating that the final state is robust with respect to the
initial condition.

The example of the ideal knot 51 [the torus knot T (5,2)] is
presented in Fig. 4, where the blue curve displays the evolution
of length with time and insets show the initial condition
(on the left) and snapshots to scale at increasing times. For
comparison, the length of the toroidal form of the same knot
is also presented (red curve) together with initial and final
snapshots. We find that the evolution of the initially ideal
form again preserves topology (there are no reconnections)
and the length initially decreases to a reasonably low value.
However, the length does not stabilize and begins to increase,
with the knot taking an ever more complicated conformation
until it eventually breaks in a collision with the boundary of the
medium at time 1980. Similar three-dimensional instabilities
have been investigated in detail [20] for the case of a
single initially straight vortex string in a similar excitable
medium, where it has been shown that twist can induce
instability.

The reason that the toroidal forms of the torus knots have
a stabilized length is that they drift along the axis of the
torus until they reach the boundary of the medium, where

FIG. 4. Lengths and snapshots (to scale) of the evolution of the
knot T (5,2) with an initial toroidal conformation (red curve) and a
scaled ideal conformation (blue curve). Although both knots initially
shrink, only the toroidal conformation nestles against the medium
boundary (lower snapshot at time 2000) and attains an equilibrium
length. The initially ideal conformation displays an instability and
even though the topology is preserved, this knot breaks at the medium
boundary (final upper snapshot at time 1980) before an equilibrium
length could be realized.
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their compact form allows them to nestle snugly against the
no-flux boundary. In the case of a circular vortex ring in an
excitable medium it has been observed both numerically [21]
and experimentally [22] that close proximity to the medium
boundary can suppress instabilities. Furthermore, the same
small-amplitude breathing mode that we observe in the long-
time evolution of the knot length is also found for a boundary
stabilized ring [22], providing clear evidence of the crucial
role of the medium boundary. Moreover, we have performed
simulations of initially toroidal forms in cuboids with a much
greater height and found that an instability in the length can
emerge over a time scale of the order of a few hundred spiral
periods, if the knot is not able to drift all the way to the medium
boundary over this time scale.

In previous simulations [8] of the trefoil knot in the
FitzHugh-Nagumo medium, periodic boundary conditions
were employed in the direction of the initial drift with no-flux
boundary conditions in the other directions. In that case it
was found that an instability of the length develops over a time
scale of a few hundred spiral periods but over much longer time
scale, of the order of thousands of spiral periods, the length
recovers to the same value found in the present study. We are
now in a position to explain this finding, in that the increasing
length is accompanied by a dramatic (but topology preserving)
change in conformation that changes the drift direction so that
the knot eventually makes it to one of the no-flux boundaries,
where the instability is suppressed and the knot recovers its
minimal length. So far, we have found that for knots with
crossing number 5 or more, the twist required for such crossing

numbers means that an instability develops unless the initial
condition is sufficiently close to the compact toroidal form
and close to the no-flux medium boundary. It is not known
whether knots with these initial instabilities might eventually
recover their length, like the earlier trefoil example, since all
simulations conducted so far end in the knot breaking at the
medium boundary. It is difficult to resolve this issue because of
the catch-22 situation that a larger simulation region is required
to avoid the knot breaking at the boundary, but a boundary
that is further from the knot cannot suppress the instability.
These difficulties have so far prevented the computation of
any stabilized forms of knots with six crossings, where there
are no torus knots.

In summary, we have computed a range of knots in
the FitzHugh-Nagumo excitable medium and compared their
properties to ideal knots. We find that knot topology is
preserved by the flow, thereby providing a field theory
approach to knots that complements both traditional material
models of knots and more abstract mathematical concepts.
As knots play an increasingly important role in a variety of
contexts, for example, in the study of DNA [23], a different
approach to knots, as solutions of nonlinear partial differential
equations, may find applications in a variety of areas.
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