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1 Introduction

The AdS/CFT correspondence provides us with powerful tools to investigate the behaviour

of strongly coupled conformal field theories that have been deformed by operators that

explicitly break spatial translations. Indeed, by solving suitable gravitational equations

we can study how such systems evolve under the renormalisation group as well as study

their properties at finite temperature. One motivation for these investigations is that

they provide a framework for studying strongly coupled systems with novel thermoelectric

transport properties, which could connect with real systems seen in Nature.

Generically, the construction of the relevant RG flows requires solving a system of

partial differential equations since the bulk fields will depend on both the spatial directions

of the field theory as well as a holographic radial direction. An interesting exception is

provided by the Q-lattice constructions [1]. These constructions require the existence of a

global symmetry in the bulk which is then used to develop an ansatz for the bulk fields in

which the dependence on the spatial directions is solved exactly. This leads to a system of

ordinary differential equations for a set of functions that just depend on the holographic

radial coordinate. It is of particular interest to look for Q-lattice constructions in a top-

down context.

In type IIB supergravity there is a rich class of examples associated with the family

of AdS5 ×X5 vacuum solutions, where X5 is an Einstein space [2]. The solutions can be

constructed using a D = 5 theory of gravity which is obtained as a consistent Kaluza-Klein

reduction of type IIB supergravity on X5. The D = 5 theory couples the metric to a
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complex scalar field τ , which incorporates the axion and dilaton of type IIB supergravity,

and there is a natural global SL(2) symmetry acting on τ .

For each of the three conjugacy classes of SL(2) there is an associated Q-lattice con-

struction of type IIB supergravity which is spatially anisotropic, breaking translations in

one of the three spatial directions. The hyperbolic conjugacy class corresponds to a linear

dilaton solution in which the dilaton depends linearly on the preferred spatial direction [3]

and the axion is trivial. The parabolic conjugacy class corresponds to a linear axion solu-

tion, with non-trivial dilaton, [4–6] which flows to a lifshitz-like fixed point1 in the IR.

Finally, there is a Q-lattice construction of type IIB supergravity associated with the

elliptic conjugacy class which, unlike the other two classes, breaks translations in a periodic

way [2]. The elliptic solution flows from AdS5 in the UV to the same AdS5 solution in

the IR. While the central charge of the CFT has the same value in the UV and the

IR, there is a renormalisation of relative length scales. We will refer to such flows as

‘boomerang RG flows’ and we note that they have also been seen in other constructions with

broken translations [9, 10]. Furthermore, for sufficiently large deformations, the boomerang

RG flow has an intermediate scaling regime that is dominated by the Lifshitz-like fixed

point of [4] that appears in the parabolic class. Such flows can therefore be viewed as an

interesting framework for resolving the singularity of the Lifshitz-like fixed point, differing

from other singularity resolving flows [11–16].

Motivated by these type IIB constructions, in this paper we will construct examples

of Q-lattices of D = 11 supergravity which are associated with the AdS4 × S7 vacuum

solution. While we find some similarities with the type IIB solutions we also find many

new features. The new constructions will be made in the N = 2 STU gauged supergravity

theory in four dimensions [17]. Recall that this theory arises from a consistent truncation

of N = 8 gauged supergravity and hence any solution can be uplifted on the seven sphere,

or a quotient thereof, to obtain a solution of D = 11 supergravity [17–19]. As such our

solutions are directly relevant to ABJM theory [20].

The new D = 4 solutions involve two complex scalar fields each of which parametrises

SL(2, R)/SO(2). The Lagrangian has a potential term which breaks the SL(2, R) symmetry

down to SO(2) and we use the latter for our Q-lattice construction. When expanded about

the AdS4 vacuum these scalar fields are dual to relevant operators in the dual CFT; this

can be contrasted with the type IIB axion-dilaton which is massless and dual to a marginal

complex operator (for any choice of X5). Within the ABJM theory the scalar fields are dual

to certain scalar and fermion bilinear operators and the RG flows are thus being driven by

spatially modulated mass deformations.

An additional difference with the type IIB flows is that having two complex scalars

allows us to break translation invariance in both spatial directions. Furthermore, this is

achieved with a bulk metric that preserves spatial isotropy in the field theory directions.

We will construct a one parameter family of solutions, parametrised by the dimensionless

ratio Γ/k, where Γ governs the strength of the deformation of the relevant operators in the

UV and k is the wave number of the periodic spatial modulation.

1For the special case when X5 = S5, associated with N = 4 super Yang-Mills theory, this fixed point is

unstable [4] and there is a more elaborate phase diagram which has been partially explored in [7, 8].
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z = 1

z = 5/2

k = 0AdS4

Figure 1. Schematic picture of the family of boomerang RG flows, parametrised by Γ/k which fixes

the strength of the relevant UV deformation. They all flow from the AdS4 vacuum in the UV to

the same AdS4 vacuum in the IR. For sufficiently large Γ/k the solutions exhibit two intermediate

scaling regimes in the bulk geometry. Both regions are of hyperscaling violation form given in (3.2):

the first is Lorentz invariant with z = 1, θ = −2 while the second has z = 5/2, θ = 1. Neither of

the two intermediate scaling regimes are associated with exact solutions of D = 11 supergravity.

The blue ‘k = 0’ line is associated with a Lorentz invariant RG flow from AdS4 in the UV to

approximate hyperscaling behaviour with z = 1, θ = −2 in the far IR.

Similar to the type IIB solutions, the new RG solutions are again boomerang flows,

flowing from the AdS4 vacuum solution in the UV down to the same AdS4 solution in the

IR with renormalised relative length scales. In addition, for large enough values of Γ/k we

find that on the way to IR the RG flow exhibits intermediate scaling behaviour, similar

to the D = 5 flows in the elliptic class. Interestingly, however, in contrast to the D = 5

flows there are now two distinct intermediate scaling regimes and both exhibit hyperscaling

violation [21–23]. The first regime is Lorentz invariant with dynamical exponent z = 1 and

hyperscaling violation exponent θ = −2, while the second has z = 5/2 and hyperscaling

violation exponent θ = 1. A schematic picture of the RG flows is presented in figure 1.

This first intermediate scaling regime is directly related to the fact that we are de-

forming by a relevant operator. Indeed, the dimensionless deformation parameter, Γ/k,

necessarily involves k and hence one can anticipate that the Γ/k → ∞ behaviour should

approach that of RG flows with k = 0 and Γ 6= 0. This simple observation indicates that

Poincaré invariant intermediate scaling will be a more general phenomena in systems with

deformations of relevant operators that break translations. Note that it did not occur in

the type IIB flows [2] because the deformations by the axion and dilaton are associated

with marginal operators. The existence of the second intermediate scaling regime is less

obvious, a priori, and furthermore it is an interesting fact that this regime appears for the

same values of Γ/k for which the first intermediate scaling appears.

Another difference with the D = 5 flows, is that neither of the intermediate scaling

behaviours are governed by fixed point solutions of the D = 4 gauged supergravity theory.

Indeed the fact that there is hyperscaling violation means that there is a scalar field that

– 3 –



J
H
E
P
0
7
(
2
0
1
7
)
1
2
8

is still running and hence they cannot be fixed point solutions. In fact, there are no

exact hyperscaling violation solutions to the equations of motion which are determining

the scaling behaviour. To elucidate the first regime, we construct a Poincaré invariant RG

flow with Γ 6= 0 and k = 0, which flows from AdS4 in the UV and approaches a hyperscaling

violation behaviour in the far IR, without the far IR behaviour being itself a solution to

the equations of motion. It is the far IR scaling behaviour of this RG flow, which we call

the ‘k = 0 flow’, that governs the first intermediate scaling of the RG flows with broken

translation invariance shown in figure 1.

To understand the second scaling regime, we show that there is a hyperscaling violation

solution with broken translation invariance and z = 5/2, θ = 1 of an auxiliary theory of

gravity, which has equations of motion that agree with the STU theory for large values

of the modulus of the complex scalar fields. It is this solution which governs the second

intermediate scaling of our RG flows shown in figure 1.

We are unaware of other RG flows in holography which exhibit such novel intermediate

scaling behaviour and anticipate that these, or closely related flows, will have interesting

applications. It is worth highlighting that using an auxiliary theory of gravity to govern

intermediate scaling is rather simple and natural from the gravity side, but it is less so

from the field theory point of view. Roughly speaking, it is associated with moving to the

boundary in the space of coupling constants.

We have organised the paper as follows. In section 2 we introduce the D = 4 theory

of gravity that we will study, as well as the ansatz for the new RG flow solutions. In

section 3 we pause to discuss both the k = 0 RG flow and also the scaling solution of

an auxiliary theory of gravity, each of which governs an intermediate scaling behaviour of

the boomerang RG flows. The main results for the RG flows with intermediate scaling

are presented in section 4. In this section we also discuss how the intermediate scaling

manifests itself in the behaviour of thermodynamic quantities at finite temperature, as

well as in the behaviour of spectral functions of certain operators in the dual CFT at zero

temperature. Using a matched asymptotics argument,2 which provides sufficient conditions

for the appearance of intermediate scaling behaviour, we will expose an interesting type

of universality whereby scalar operators with different scaling dimensions, ∆, in the dual

CFT, up to some maximum value set by the details of the flow, can have spectral functions

with the same intermediate scaling behaviour for a certain range of frequency. We conclude

with some final comments in section 5. In appendix A we discuss the D = 4 STU theory

and also present an ansatz that can be used to construct charged anisotropic Q-lattice

solutions.

2 The set-up

Our starting point is the N = 2 truncation of maximal N = 8 SO(8) gauged supergravity

in four dimensions, whose bosonic field content consist of the metric, four U(1) gauge-fields

2Matching arguments were also discussed in the context of intermediate scaling of the optical conductivity

in [16].
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and three neutral complex scalar fields Φi which we write as

Φi = Xi + iYi = λie
iσi . (2.1)

The Lagrangian is given in appendix A. The Xi are components of the 35 scalars and the

Yi are components of the 35 pseudoscalars transforming in the 35v and 35c of the SO(8)

global symmetry of the N = 8 theory, respectively [24]. Using the formula given in [17–19],

any solution of the N = 2 theory can be explicitly uplifted on a seven sphere to obtain an

exact solution of D = 11 supergravity.

In the bulk of this paper we will be interested in solutions with vanishing gauge-fields

and we will also truncate λ1 = σ1 = 0, which we can do consistently. Thus, we consider

the Lagrangian

L = R− 1

2

3∑
i=2

[
(∂λi)

2 + sinh2 λi(∂σi)
2
]

+ 2(1 + coshλ2 + coshλ3) . (2.2)

The AdS4 vacuum solution, with unit radius and λ2 = λ3 = σ2 = σ3 = 0, uplifts to the

maximally supersymmetric AdS4 × S7 solution.

We now introduce the following ansatz, which breaks translation invariance in both

spatial directions (x, y) of the dual field theory:

ds2 = −U(r)dt2 + U(r)−1dr2 + e2V (r)
(
dx2 + dy2

)
,

σ2 = kx, σ3 = ky, λ2 = λ3 = γ(r) . (2.3)

Notice that the ansatz for the metric preserves the spatial isotropy in the (x, y) directions.

Also, since the σi are periodic variables, the dependence on the spatial coordinates is

periodic in x, y with period 2π/k. This ansatz solves the equations of motion for σ2 and σ3

and moreover because (∂σ2)2 = (∂σ3)2 it is consistent to have λ2 = λ3 = γ. The remaining

equations of motion lead to a first order ODE for U and two second order ODEs for V and

γ given by:

U ′ =
1

2V ′

(
2(1 + 2 cosh γ)− e−2V k2 sinh2 γ + U

(
γ′2 − 2V ′2

))
,

V ′′ = −V ′2 − 1

2
γ′2 ,

Uγ′′ =
(
−2 + e−2V k2 cosh γ

)
sinh γ −

(
U ′γ′ + 2UV ′

)
γ′ . (2.4)

As r →∞ we demand that the solutions approach the AdS4 solution with the following

asymptotic behaviour

U = r2 + ... , e2V = r2 + . . . , γ =
Γ

r
+ . . . . (2.5)

It will be convenient to refer to Γ and k as ‘deformation parameters’ in the following.

For fixed dimensionless parameter Γ/k, by solving the ODEs with prescribed boundary

conditions in the IR, we can then obtain the sub-leading terms in the expansion (2.5) and

these can be used to parametrise ‘expectation values’ of the dual operators. Viewing (2.2)
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from a bottom-up context this is the appropriate language to describe the RG flow when

γ is dual to an operator with scaling dimension ∆ = 2. However, in the top-down context

it is important to note that the ansatz for the complex scalars is written in terms of the

Xi and Yi as

X2 = γ(r) cos(kx), Y2 = γ(r) sin(kx) ,

X3 = γ(r) cos(ky), Y3 = γ(r) sin(ky) , (2.6)

with X1 = Y1 = 0. Now supersymmetry implies that the scalars Xi and the pseudoscalars

Yi are associated with operators of scaling dimension ∆ = 1 and ∆ = 2, respectively. The

parameter Γ therefore describes deformations of two pseudoscalar operators with spatial

dependence given by sin kx and sin ky. However, the deformations of two scalar operators,

which have spatial dependence cos kx and cos ky, are given by the sub-leading terms in (2.5).

It is precisely this tuning of the deformation parameters of these operators that allows us to

construct the RG flows by solving a system of ODE’s. It would be interesting to extend our

solutions away from this tuned situation, but that will necessarily involve solving partial

differential equations and this will be left for future work. We also return to this issue

below when we discuss finite temperature solutions.

The solutions that we construct are in the U(1)4 invariant bosonic sector of N = 8

gauged supergravity. As such, after being uplifted on the S7 to obtain solutions of D = 11

supergravity, they will survive the cyclic quotient of the S7 and hence are relevant for

the N = 6 ABJM theory [20]. The scalar fields Xi are dual to operators that are scalar

bilinears, while the pseudoscalar fields Yi are dual to operators that are fermion bilinears.

More precisely, under the SU(4)×U(1) ⊂ SO(8) holographically identified with the global

symmetries of the ABJM theory, the Xi and Yi each transform in a 150 representation and

are thus dual to operators schematically of the form

Oφφ ∼ Tr

(
φ†
Ā
φB − 1

4
δBĀ φ

†φ

)
, Oψψ ∼ Tr

(
ψ†
Ā
ψB − 1

4
δBĀ ψ

†ψ

)
, (2.7)

respectively, where φ,ψ are scalar and fermion fields of the ABJM theory, respectively. The

RG flows are being driven by spatially modulated deformations of these operators and (2.6)

shows that this breaks spatial isotropy in the (x, y) directions.

2.1 Perturbative deformations

The RG flow solutions that we have constructed depend on the dimensionless deformation

parameter Γ/k. For small deformations, Γ/k � 1, we obtain some important insight by

solving the equations as a perturbative expansion about the AdS4 vacuum. At leading

order in Γ/k we can easily solve the linearised equation of motion for γ. Choosing the

integration constants so that the solution is both regular at the Poincaré horizon and with

boundary conditions as in (2.5) we find

γ(r) =
k

r
e−k/r (Γ/k) +O (Γ/k)2 . (2.8)
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This solution will back react on the metric at order (Γ/k)2 and explicit expressions can be

obtained subject to the appropriate boundary conditions. We find

U = r2

[
1 +

(
k

4r
e−2k/r

)
(Γ/k)2 +O (Γ/k)3

]
,

e2V = r2

[
1 +

1

8

(
1− e−2k/r(1 +

2k2

r2
)

)
(Γ/k)2 +O (Γ/k)3

]
. (2.9)

In the far IR, as r → 0, the metric rapidly approaches the same AdS4 solution that

appears in the UV, with the scale of the approach set by k. The only difference between

the AdS4 solutions in the UV and the IR is that there is a renormalisation of relative

length scales. In the UV we can define the ratio χUV = limr→∞ U
1/2/eV and similarly

χIR = limr→0 U
1/2/eV in the IR, both of which are invariant under scalings of the radial

coordinate. Following [25] we can then define the RG flow invariant, n, (sometimes called

the ‘index of refraction’ for the RG flow) as n ≡ χUV
χIR

. Since in the parametrisation we are

using U → r2 both as r →∞ and r → 0 we have

n =
eV (r → 0)

eV (r →∞)
= 1 +

1

16

Γ2

k2
+O (Γ/k)3 . (2.10)

The recovery of conformal invariance that we see3 for small values of Γ/k is associated

with the fact that the operators used in the deformation have vanishing spectral weight at

low energies. To determine what happens for larger values of Γ/k it is necessary to solve

the equations of motion numerically. Our numerical results, summarised below, indicate

that for arbitrarily large values of Γ/k the RG flows are all boomerang flows. In addition,

we find that for large enough Γ/k all of the RG flow solutions successively approach, for

intermediate values of the radial coordinate r/k, two intermediate scaling behaviours before

hitting the AdS4 behaviour in the far IR.

3 Intermediate scaling solutions

The two intermediate scaling behaviours that we observe in the boomerang RG flows are,

somewhat surprisingly, not associated with exact hyperscaling solutions of the equations

of motion coming from the Lagrangian L in (2.2). In this section we explain their orgin.

3.1 First intermediate scaling regime: the k = 0 flow

The first intermediate scaling regime that we observe on the way to the IR is governed by

large values of the field γ and, moreover, is such that the terms involving k play a sub-

dominant role in the equations of motion. Since the breaking of translation invariance is

sub-dominant the first intermediate scaling behaviour is approximately Lorentz invariant.

3The perturbative argument we used above was also used to argue for boomerang RG flows in the context

of other examples of CFT deformations which break translations [2, 9, 10]. One context it does not apply is

if the linearised deformation gives rise at higher orders in the perturbative expansion to additional sources

with non-vanishing zero modes (i.e. the integral of the source over a spatial period is non-vanishing). It

also does not apply to the type IIB linear dilaton and linear axion solutions of [3] and [4], respectively.
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Let us therefore consider Lorentz invariant RG flow solutions of the equations of mo-

tion (2.4) with k = 0 (i.e. σ2 = σ3 = 0) and e2V = U . We look for solutions that approach

AdS4 in the UV with expansion (2.5). While there aren’t any exact hyperscaling violation

solutions to the equations of motion that we can map onto in the IR, we have numerically

constructed RG flow solutions that approach the following singular behaviour4 in the far

IR as r → 0:

U = e2V = L−2
I r4/3 + . . . , eγ = eγ0r−2/3 + . . . , (3.1)

where L2
I = (10/9)e−γ0 . Notice that the field γ is diverging as r → 0. In particular, the IR

behaviour of the k = 0 flow is approaching that of solutions with hyperscaling violation,

with a running scalar, similar to the flows in [26] (see also [27]). To see this more explicitly,

we introduce a new radial coordinate ρ = (1/3LI)r
−1/3 and, after suitably scaling t, x, y,

we find that we can write the leading form of the IR metric, now located at ρ→∞ as:

ds2 = ρ−(2−θ)
(
−ρ−2(z−1)dt̄2 + dρ2 + dx̄2 + dȳ2

)
, (3.2)

with dynamical exponent z = 1, associated with Lorentz invariance, and hyperscaling

violation exponent θ = −2 (in the parametrisation of [23]). Note that under the scaling

t→ µzt, (x, y)→ µ(x, y), ρ→ µρ , (3.3)

the general metric (3.2) scales as ds2 → µθds. Furthermore, if one heats up these solutions

one finds that the entropy density scales like s ∝ T (2−θ)/z = T 4, a scaling we will see in the

finite temperature solutions that we discuss in section 4.1. Finally, we note that we have

checked that the k = 0 flow does not preserve supersymmetry.

3.2 Second intermediate scaling regime

The second intermediate scaling regime that arises in the RG flows is governed by large

values of the field γ but now the terms involving k play a comparable role in the equations

of motion. Thus, in contrast to the first intermediate scaling regime, this scaling behaviour

breaks translation invariance.

Perhaps the simplest way to describe this behaviour is to consider the following aux-

iliary Lagrangian, L̂, which approximately governs the behaviour of solutions in regions of

spacetime where the field γ is getting large:

L = R− 1

2
(∂λ2)2 − 1

8
eλ2(∂σ2)2 − 1

2
(∂λ3)2 − 1

8
eλ3(∂σ3)2 +

(
eλ2 + eλ3

)
. (3.4)

Within the ansatz (2.3), there exists an exact hyperscaling violation solution for this auxil-

iary theory, which was first given in [28] (see also [29]). It takes the form, for all values of r,

U = L−2
II r

8/3, e2V = e2v0r2/3, eγ = eγ0r2/3 , (3.5)

4The subleading corrections are more easily obtained by switching radial coordinate so that the metric

is of the form ds2 = dR2 + e2W (−dt2 + dx2 + dy2) and we then find that as R → 0 we have e2W =

R4[1 + 2
21
R2 + o(R4)] and eγ = 10

R2 [1 + 1
42
R2 + o(R4)].
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where L2
II = (28/9)e−γ0 and eγ0 = 6e2v0/k2. By introducing a new radial coordinate

ρ = (9L2
II/4)r−2/3 and suitably scaling t, x, y, we can write the metric in the form of (3.2)

with dynamical exponent z = 5/2 and hyperscaling violation exponent θ = 1. In the second

intermediate scaling regime the RG flow solutions approach the behaviour as in (3.5) with

large values of γ (i.e. with r in (3.5) going to ∞.) If one heats up these solutions one finds

that the entropy density scales like s ∝ T 2/5.

4 The RG flows

We now summarise the RG flows that we have constructed numerically. They are solutions

within the ansatz (2.3) and solve the equations of motion (2.4). In the far IR, as r → 0,

they approach AdS4 with expansion given by

U = r2

(
1 + e

−2 k
rcV

(
cV c

2
γ

4kr

)
+ · · ·

)
,

e2V = r2c2
V

(
1− e−2 k

rcV

(
1

4r2
+
c2
V

8k2

)
c2
γ + · · ·

)
,

γ =
cγ
r
e
− k
rcV + · · · , (4.1)

depending on two integration constants, cγ , cV . In the UV, as r →∞, we assume that the

solutions approach AdS4 with the following expansion

U = (r + r+)2

(
1− 1

2

Γ2

(r + r+)2
+

M

(r + r+)3
+ · · ·

)
e2V = (r + r+)2

(
1− 1

2

Γ2

(r + r+)2
− 2

3

Γ Γ̂

(r + r+)3
+ · · ·

)

γ =
Γ

r + r+
+

Γ̂

(r + r+)2
+ . . . , , (4.2)

with the appearance of r+ related to the fact that we have set the IR at r = 0. Our

boundary conditions will be to hold fixed the dimensionless ratio Γ/k. The three constants

of integration Γ̂, r+ and M appearing in (4.2) will be fixed by demanding regularity in

the IR part of the geometry. For example, the perturbative solution (2.9), which has a

smooth IR limit at r = 0, has r+ = Γ2/(8k), Γ̂ = −k Γ and M = kΓ2/2. More generally,

for the solutions that we will obtain numerically these three constants can be fixed by

shooting both from the UV and the IR and then matching at intermediate values of the

radial coordinate. The equations of motion (2.4) that we will be integrating will require

five constants to be fixed in this way. Therefore, two of them will have to come from the IR

expansion. For the RG flows at T = 0 these two constants are cγ and cV in (4.1). For the

finite temperature solutions, which we discuss in subsection 4.1, the two extra constants

will come from an analytic expansion around a regular horizon which will be located at

the fixed position r = 0, (again associated with the appearance of r+ in (4.2)), which is

convenient for the numerics.
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For small Γ/k the solutions are well approximated by the perturbative solutions that

we constructed in section 2.1. After sufficiently increasing the value of Γ/k we then start to

approach the first intermediate scaling regime, governed by the IR behaviour of the k = 0

flow (3.1), thus approximately recovering Lorentz invariance. This first intermediate scaling

regime arises because, since we are deforming by a relevant operator, the dimensionless

deformation parameter, Γ/k, involves k. In particular, one can expect that the Γ/k →∞
behaviour should approach the k = 0 with Γ 6= 0.

Interestingly, for the same large values of Γ/k, as we go further into the IR, we also

approach the second intermediate scaling region (3.5) with z = 5/2. A convenient way5 of

displaying the scaling behaviour is to plot γ′/V ′, −V ′′/(V ′)2 and U ′/(UV ′) as functions

of the dimensionless radial coordinate r/k. In particular, for the first intermediate scaling

regime (3.1) these functions should approach −1, 3/2 and 2, respectively. Similarly for

the second intermediate scaling regime (3.1) these functions should approach 2, 3 and

8, respectively. Furthermore, for boomerang RG flows they should approach 0, 1 and 2,

respectively, both in the UV and in the IR. In figure 2 we demonstrate the behaviour of

these functions for several representative values of Γ/k and we clearly see the boomerang

RG flows and the appearance of the intermediate scaling regimes.

By scanning over different values of Γ/k we can also determine the behaviour of the

RG flow invariant n, as defined in (2.10), and our results are presented in figure 3. For

small values of Γ/k we see that n − 1 depends quadratically on Γ/k, as expected from

the perturbative analysis. For large values Γ/k we find that n asymptotes to a linear

dependence of the form n ∼ 0.253(Γ/k).

4.1 Finite temperature

The intermediate scaling regimes that we have found in the RG flows, for large enough

values of Γ/k, should also manifest themselves at non-zero temperature T , for T/k � Γ/k.

We have constructed finite temperature black hole solutions by changing the IR boundary

conditions from AdS4, as in (4.1), to a regular black hole Killing horizon located at r =

0, with

U = 4πT r +
1

2
e−2V1+k2 sinh2 γ+ r

2 + · · · ,

V = V1+ +
1

8πT

(
2 + 4 cosh γ+ − e−2V1+k2 sinh2 γ+

)
r + · · · ,

γ = γ+ +
1

8πT

(
4 sinh γ+ − e−2V1+k2 sinh 2γ+

)
r + · · · , (4.3)

where T is the temperature which we will be holding fixed. The two constants of integration

γ+ and V1+ are used to find a unique solution of the equations of motion (2.4) upon

matching with the three constants that we discussed below (4.2).

For temperatures T/k � Γ/k we can anticipate that there are intermediate regimes of

low temperature where the solutions approach that of a hyperscaling violation black hole

5The scaling behaviour displayed by these functions is invariant under shifts of the radial coordinate by

a constant.
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Figure 2. Plots of various functions associated with the RG flows, as functions of the dimensionless

radial coordinate r/k, for various values of the dimensionless deformation parameter Γ/k: blue

(Γ/k = 1), orange (Γ/k = 10), purple (Γ/k = 102), green (Γ/k = 103) and red (Γ/k = 2.6 × 105).

The plots demonstrate the boomerang RG flow from AdS4 in the UV to AdS4 in the IR for all

values of Γ/k. For sufficiently large values of Γ/k, on the way to the IR the flows approach two

intermediate scaling regimes.
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Figure 3. Plot of the RG flow invariant n, defined in (2.10), versus deformation parameter Γ/k, for

the boomerang RG flows. The inset shows excellent agreement with the perturbative result given

in (2.10) for Γ/k � 1.
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Figure 4. Behaviour of the entropy density, s, as a function of temperature, for various boomerang

RG flows: blue (Γ/k = 1), orange (Γ/k = 10), purple (Γ/k = 102), green (Γ/k = 103) and red

(Γ/k = 106). In the UV and in the IR we have Ts′/s→ 2, associated with AdS4. We also see, for

large enough values of Γ/k, the appearance of two intermediate scaling regimes that are governed

by the hyperscaling violation solutions which have Ts′/s = 4 and Ts′/s = 2/5.

with z = 5/2, θ = 1 and then, for large temperatures, a hyperscaling violation black hole

with z = 1, θ = −2. Correspondingly, this should give rise to an associated scaling of

thermodynamic quantities. For example, the scaling of the entropy density should begin as

s ∼ T 2 for low temperatures, associated with the AdS4 IR behaviour. Then, as we increase

the temperature we should successively see s ∼ T 2/5 followed by s ∼ T 4, corresponding to

the two hyperscaling regimes, and finally end up with s ∼ T 2 for very high temperatures

corresponding to the AdS4 region in the UV. These features are clearly displayed for a

range of Γ/k as shown in figure 4.

We would like to highlight an important subtlety concerning these finite temperature

black hole solutions. By construction we find a one parameter family of black hole solutions,

labelled by T/k, while holding the parameter Γ/k fixed. As we discussed below (2.6), this

means that we are holding fixed the deformation parameters for the two pseudoscalar

operators, dual to the Yi, as well as the expectation value of the two scalar operators, dual

to the Xi. It is precisely for this particular mixed thermodynamic ensemble that we are

able to construct black hole solutions by solving ordinary differential equations.

4.2 Spectral weight of operators in the RG flows

We now return back to the RG flows at zero temperature and analyse the behaviour of

some correlation functions involving scalar operators. In particular, we will show how

the intermediate scaling regimes can also lead to scaling behaviour appearing in various

spectral functions of the dual field theory, for certain ranges of intermediate frequencies.

We will also see that there can be an interesting kind of universality in which operators

of different scaling dimensions in the UV exhibit the same scaling at intermediate scales.

Some additional interesting features will be highlighted as we proceed.

In general, given that spatial translations have been explicitly broken, we need to

consider linearised perturbations about the RG flows that involve solving partial differential

– 12 –
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equations. However, there are some correlation functions that can be obtained by solving

ordinary differential equations, and this is what we will study here. Specifically, we start

by considering a bulk scalar field φ whose linearised equation of motion in the background

geometry is given by the Klein-Gordon equation(
∇2 −m2

)
φ = 0 . (4.4)

A specific case that we will focus on is when m2 = −2: this arises in the STU model,

given in (A.1), for the scalar field λ1 with σ1 = 0 (i.e. X1 in (2.1)), which is dual to an

operator with ∆ = 1 and also λ1 with σ1 = π/2 (i.e. Y1 in (2.1)), which is dual to an

operator with ∆ = 2. As usual, the retarded Green’s function GR(ω) can be obtained

by writing φ = e−iωt ψ̃(r) and then solving (4.4) with ingoing boundary conditions in the

AdS4 geometry in the far IR. This gives a radial equation for ψ̃ and the ratio of the

normalisable to the non-normalisable solutions in the UV, then gives GR(ω). For example,

for the ∆ = 1 operator we can expand at r → ∞ as ψ̃(r) = ψ1(ω)/r + ψ2(ω)/r2 + ... and

we have GR(ω) ∝ ψ1(ω)/ψ2(ω), while for the ∆ = 2 operator we have the same expansion

with GR(ω) ∝ ψ2(ω)/ψ1(ω).

It is convenient to introduce a new radial coordinate, z, defined by

z = −
∫ +∞

r

dy

U(y)
, (4.5)

and we note that the UV is located at z = 0 and the IR at z = −∞. We then have that

v = t+ z is the ingoing coordinate in Eddington-Finkelstein coordinate. Next, by writing

ψ̃ = e−V ψ, we then deduce that the radial equation can be written in the Schrödinger form

− ∂2
zψ +

(
V − ω2

)
ψ = 0 , (4.6)

where we have defined the effective potential

V = U
(
m2 + e−V ∂r

(
U∂re

V
))
. (4.7)

Now for standard RG flows, which flow from the UV to another geometry with scaling

behaviour in the far IR, matching arguments have been developed in [30], generalising

earlier work, including [31], which show that for small frequencies the spectral function

ImGR(ω) is determined by the spectral function associated with the retarded Green’s

function6 for the IR geometry, ImGR(ω).

We would like to know when something similar occurs for a background geometry with

an intermediate scaling regime for z1 < z < z2. Specifically we want to determine when

ImGR(ω) exhibits scaling behaviour, for certain intermediate values of ω, that is fixed by

spectral functions ImGRi (ω), i = 1, 2, associated with one of the two intermediate scaling

regimes. In order for this to occur we need to ensure that in the region z1 < z < z2, the

solution of the radial equation (4.6), which has ingoing boundary conditions imposed in

the far IR at z → −∞, is predominantly a solution in the intermediate scaling regime with

6As explained in [30], in general it is given by a sum of terms associated with various fields in the IR.
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ingoing boundary conditions imposed at z = z1. In general this will not be the case7 and

the solution will also contain a significant admixture of a solution with outgoing boundary

conditions imposed at z = z1.

To proceed, for the scaling region z1 < z < z2 we assume

|V(z1)| � ω2 � |V(z2)| , (4.8)

and also demand that the potential satisfies

|V(z)| < |V(z1)| � ω2 , for z < z1 . (4.9)

To see that this is sufficient to have intermediate scaling of the spectral function, we next

split the z interval into three regions:

ψ(I)(z) ≈


ψ(I)(z), z < z1 ,

ψ(II), z1 < z < z2 ,

ψ(III), z > z2 .

(4.10)

In the region z < z1, using the perturbative expansion parameter ε = |V(z1)|
ω2 , we can develop

the following perturbative solution

ψ(I)(z) = Cin(ω) e−iωz + Cout(ω) eiωz + ε ψ(I)(z) + · · · , (4.11)

where Cin(ω), Cout(ω) are constants. The infalling boundary conditions at z = −∞ require

that Cout = 0. But this also shows that in the overlapping region around z = z1, to leading

order in ε, we should impose approximate infalling boundary conditions on the matching

solution ψ(II)(z). Thus, to leading order in ε, the solution ψ(II)(z) will be the usual

perturbation in the scaling region z1 < z < z2, with ingoing boundary conditions at z1.

We can then invoke the matching arguments of [30] to match onto the solutions in region

III and deduce that for |V(z1)| � ω2 � |V(z2)|, the spectral function ImGR(ω) will be

determined by ImGR(ω) where GR(ω) is the spectral function for the scaling solution in

the region z1 < z < z2. It is important to appreciate that in making this argument we do

not need to know about the properties of GR(ω) for other values of ω and, for example, it

is possible that it has instabilities which do not play a role.

We can illustrate these ideas for the boomerang RG flows for the special cases men-

tioned above, with m2 = −2 and quantised so that ∆ = 1 or ∆ = 2. In figure 5 we have

plotted the Schrödinger potential |V|/k2 against r/k for the RG flow with Γ/k ∼ 0.7×105.

The plot shows that the potential has a power law behaviour for the intermediate scal-

ing regions with 1 < r/k < 104 and 10−4 < r/k < 1. The plot also shows that the

condition (4.9) is satisfied for both regions and hence we expect that there is an interme-

diate scaling behaviour for the spectral function that is governed by the two hyperscaling

violation solutions.
7For the solutions with intermediate scaling constructed in [16] it was numerically shown that the

conductivity exhibited intermediate scaling. Some matching arguments were also discussed to explain this

behaviour, but the sufficient conditions on the potential for when intermediate scaling appears, that we

identify here, were not discussed.
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Figure 5. Plot of the Schrödinger potential |V|, defined in (4.7), for a massive scalar field with

m2 = −2. Note that V has a zero at r/k ∼ 9.5×10−5. The deformation parameter is Γ/k = 0.7×105

and the intermediate scaling behaviour is between 10−4 < r/k < 1 and 1 < r/k < 104. The plot

shows a clear separation of scales for the values of the potential in these regions.

For 1 < r/k < 104 we have 106 < |V|/k2 < 109 and hence we expect from (4.8) that

there will be intermediate scaling governed by the hyperscaling violation geometry (3.1)

(associated with the k = 0 flow) for the range of frequencies 106 � (ω/k)2 � 109. It is im-

portant to notice that in the intermediate scaling regime, the mass term in the Schrödinger

potential (4.7) is sub-dominant compared to the other term; this can easily be deduced

by taking r → 0 in (3.1). Taking this point into consideration, a straightforward calcula-

tion shows that for the hyperscaling violation geometry (3.1) we have ImGRI (ω) ∼ ω7/5 for

small ω and hence in the boomerang flow we expect to have the scaling ImGR(ω) ∼ ω7/5

for 106 � (ω/k)2 � 109.

Similarly, for 10−4 < r/k < 1 we have 10−8 < |V|/k2 < 106 and hence we expect

intermediate scaling governed by the hyperscaling violation geometry (3.5) for the range

10−8 � (ω/k)2 � 106. Once again the mass term in the Schrödinger potential (4.7) is

sub-dominant compared to the other term in the intermediate scaling regime governed

by the hyperscaling violation geometry (3.5). Now for (3.5) a calculation shows that

ImGRII(ω) ∼ ω5 for small ω and hence for the boomerang flow we expect to have the scaling

ImGR(ω) ∼ ω5 for 10−8 � (ω/k)2 � 106.

We can now check these expectations by numerically constructing the spectral function

ImGR(ω) of the full boomerang RG flow. A key technical point in solving (4.6), is that it is

helpful to pull out an overall factor of e−iωz for ψ, where z is defined in (4.5). Indeed we find

that this deals with the rapid oscillations of ψ throughout the whole of the flow, including

the intermediate scaling regimes. Our results, which involved considerable numerical effort,

are presented in figure 6 for various Γ/k. In particular, for the largest value of Γ/k ∼
0.7 × 105 we see the spectral function exhibits the intermediate scaling behaviour exactly

as predicted above.

An important point to emphasise in the above analysis is that in each of the intermedi-

ate scaling regimes (3.1), (3.5) the mass term appearing in the Schrödinger potential (4.7)

is sub-dominant compared to the other term.8 This means that the nature of the interme-

8As an aside we note that when considering the hyperscaling violation solutions (3.1) and (3.5) as UV

complete solutions in themselves, one finds that the Schrodinger potential admits negative energy bound
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Figure 6. Plots displaying the behaviour of the spectral function ImGR(ω) for a scalar field with

∆ = 1 (top plots) and ∆ = 2 (bottom plots) for various values of Γ/k = 0.7× 10n: purple (n = 1),

blue (n = 2), red (n = 3), dark green (n = 4), light green (n = 5). In the left plot we see the

build up of intermediate scaling regions as Γ/k increases with scaling behaviour governed by the

spectral functions ImGRI (ω) ∼ ω7/5 and ImGRII(ω) ∼ ω5 of the two hyperscaling violation geometries.

The right plot shows the more stringent test of scaling behaviour by plotting the derivative of the

logarithm.

diate scaling that is displayed in figure 6 will be essentially the same for all scalar modes

which have a simple mass term, provided that m2 is much smaller than the second term

inside the outer brackets of (4.7) when evaluated in the intermediate regions. This implies

an interesting type of universality for the intermediate scaling behaviour of a wide class

of operators, irrespective of their UV scaling dimensions, up to some maximum bound set

by (4.7). This is analogous to the universal scaling behaviour seen in standard RG flows

in the far IR as ω → 0.

Furthermore, similar comments apply to scalar modes with different couplings to the

background fields. For example, to illustrate the impact of different couplings, consider

replacing the constant m2 in (4.4) with an r-dependent term m2(r). If m2(r) is still sub-

dominant to the other term in the Schrödinger potential there will be the same kind of

universality in the intermediate scaling behaviour. Alternatively, it may be possible to have

top-down couplings in which m2(r) is the dominant term in an intermediate scaling region

states, when m2 < 0 and hence implies that the solutions are unstable for such scalars. However, as

mentioned, this does not affect our conclusion concerning the intermediate scaling of the spectral functions

on the boomerang RG flows.
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which would again lead to intermediate scaling of the spectral function, but not with the

same kind of universality.

To conclude this section, we would like to highlight one more interesting feature of

the spectral functions displayed in figure 6, independent of the intermediate scaling. For

both the ∆ = 2 quantisation and the ∆ = 1 quantisation we have ImGR(ω) ∝ ω as ω → 0

when Γ/k 6= 0. Indeed this is an example of the standard universal scaling in the far

IR of RG flows that we mentioned above. Now, for the ∆ = 2 quantisation we also have

ImGR(ω) ∝ ω as ω →∞. For this case, as the lattice deformation is switched off, Γ/k → 0,

we continuously approach the AdS4 result ImGR(ω) ∼ ω for all ω. On the other hand for

∆ = 1 quantisation, we have ImGR(ω) ∝ ω as ω → 0, but ImGR(ω) ∝ ω−1 as ω → ∞.

This implies that ImGR(ω) has a maximum for some value of ω, as we see in figure 6.

Furthermore, as Γ/k → 0 this peak gets pushed closer and closer to ω → 0 and we do not

continuously approach the AdS4 result of ImGR(ω) ∼ ω−1 for all ω. It would be interesting

to study this feature in more detail.

5 Final comments

In this paper we have constructed a novel class of RG flows of N = 2 STU gauged su-

pergravity theory that can be uplifted on the seven sphere to obtain solutions of D = 11

supergravity. The solutions break translations, periodically, in both spatial directions. The

solutions flow from AdS4 in the UV to the same AdS4 in the IR and on the way to the

IR, for large enough deformations, they approach two distinct intermediate scaling regimes

with hyperscaling violation. It would be interesting to understand these novel RG flows di-

rectly from the dual field theory.9 In this context the RG flows are driven by deformations

of certain scalar and fermion bilinear operators of the dual CFT, with a specific periodic

dependence on the spatial coordinates governed by a single wavenumber. The intermediate

scaling that we have seen is associated with a class of deformations of the dual CFT within

the framework of a Q-lattice construction. It would be interesting to determine whether

this behaviour persists for more general deformations, by solving the associated partial

differential equations.

We also constructed some finite temperature black holes solutions which lead to the RG

flows in the T → 0 limit. As we explained, these black hole solutions are associated with a

thermodynamic ensemble of the dual field theory in which we hold fixed the deformation

parameters of the pseudoscalar operators and the expectation values of the scalar operators.

It is for this particular ensemble that we are able to construct the black hole solutions by

solving a system of ODEs. It would be interesting to construct solutions in which the

deformations of both sets of operators are held fixed, but to do this one will have to

consider a more general ansatz and solve a system of partial differential equations. At this

9Of course, here we are implicitly assuming that if there are any other RG solutions of D = 11 su-

pergravity with the same asymptotic boundary deformations then the ones we have constructed have the

smallest free energy. It would be interesting to examine this issue in more detail: an analogous investigation

at finite charge density was initiated in [32].
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stage it is not clear to us whether the intermediate scaling that we have observed at T = 0

will persist for finite T in this other ensemble.

We have shown that for large enough deformations the spectral functions of certain

scalar operators also exhibit scaling behaviour that is associated with the two intermediate

scaling regimes, for certain intermediate values of frequency. Moreover, this intermediate

scaling behaviour is independent of the mass of the bulk scalar field and hence indepen-

dent of the conformal dimension of the scalar operator in the dual field theory. Another

interesting feature is that the scaling of the spectral function governed by the hyperscal-

ing violation solution can exist for a certain range of intermediate frequencies, even if the

hyperscaling violation solution exhibits unstable behaviour for other frequencies.

It would be interesting to extend these investigations and calculate the thermoelec-

tric conductivity for the solutions we have constructed. As usual this involves analysing

perturbations of the metric and gauge-fields about the solutions with prescribed boundary

conditions. However, there is an intricate coupling between the gauge-fields and the scalar

and pseudoscalar fields, parametrised by the matrix M in (A.1), and as a consequence it

will be a somewhat involved task to calculate the conductivities, unlike for other Q-lattices.

In general, the thermoelectric DC conductivity can be obtained by solving Navier-Stokes

equations on the black hole horizon [33]. For certain Q-lattice constructions these equations

can be solved explicitly in terms of the horizon data [28, 34, 35]. Here, however, due to

the coupling M it appears that this will not be the case and one will need to solve partial

differential equations on the horizon.

We have argued that at least for Q-lattice constructions which involve relevant oper-

ators governed by a dimensionless parameter Γ/k, the appearance of a Poincaré invariant

intermediate scaling regime should appear for large values of Γ/k. For example, using (2.2)

we can construct anisotropic Q-lattices using just the fields λ2, σ2 with λ3 = σ3 = 0.

Although we have not checked the details, it seems very likely that there will be an inter-

mediate scaling regime governed by the same k = 0 flow that we discussed in section 3.1.

Furthermore, it seems unlikely that this Q-lattice construction will have a second interme-

diate scaling regime. More generally, it is possible to make similar constructions in which

the intermediate scaling regime is governed by an AdS fixed point [36].

The Q-lattice constructions of this paper used a very specific global symmetry of the

maximally supersymmetric N = 8 gauged supergravity theory. The 70 scalars of this theory

parametrise the coset E7(7)/SU(8) and we utilised a specific truncation that kept scalars

parametrising two SL(2)/SO(2) factors in E7(7)/SU(8). Furthermore, we exploited the fact

that the scalar potential was invariant under SO(2)2 and this was utilised to construct our

Q-lattice ansatz. There are clearly many more Q-lattice constructions that could be made

in the N = 8 theory and it would be interesting to explore their properties. For example,

one specific avenue is to utilise the consistent truncations10 that keep a single SL(2)/SO(2)

factor that were discussed in [37].

10These truncations were used in [37] to construct supersymmetric Janus solutions. While the underlying

physical setup is different, it would be interesting to investigate whether there is any relationship with

Q-lattice constructions of boomerang RG flows in some putative limit.

– 18 –



J
H
E
P
0
7
(
2
0
1
7
)
1
2
8

The solutions we have constructed all have vanishing gauge-fields and are associated

with vanishing charge density in the dual field theory. Some of the analogous type IIB

anisotropic flows that we discussed in the introduction have been generalised to finite

charge density in [8, 38] using a straightforward consistent truncation. However, it is less

clear how to add charge to the solutions that we have constructed with an isotropic metric

in the spatial directions of the field theory. In appendix A we have identified a simple

ansatz that is suitable for constructing charged solutions that are spatially anisotropic.

Although our analysis has not been comprehensive, the constructions of some anisotropic

RG flows that we have made did not reveal intermediate scaling behaviour. We think it

would be worthwhile to investigate these charged solutions more systematically as well as

looking for charged isotropic solutions.

Acknowledgments

We thank Ofer Aharony, Nikolay Bobev, Gary Horowitz, Per Kraus, Don Marolf, Jorge

Santos, Marika Taylor and David Tong for helpful discussions. The work of JPG and

CR is supported by the European Research Council under the European Union’s Seventh

Framework Programme (FP7/2007-2013), ERC Grant agreement ADG 339140. The work

of JPG is also supported by STFC grant ST/L00044X/1, EPSRC grant EP/K034456/1,

as a KIAS Scholar and as a Visiting Fellow at the Perimeter Institute.

A STU gauged supergravity and some truncations

The bosonic part of the Lagrangian for the N = 2 STU gauged supergravity theory is

given by

L = R− 1

2

3∑
i=1

(
(∂λi)

2 + sinh2 λi(∂σi)
2
)
−

4∑
a

Re
(
F (a)+
µν MabF

(b)+ µν
)
− g2V , (A.1)

where F
(a)+
µν = 1

2(F
(a)
µν − i ∗ F (a)

µν ), V is the potential just depending on the scalar fields

V = −8
3∑
i

coshλi, (A.2)

andM is a rather complicated matrix that depends on both the modulus and the phase of

the complex scalars Φi = λie
σi . An explicit expression can be found in [17–19]. It is clearly

consistent with the equations of motion to set all of the gauge-fields to zero. It is also

not difficult to see that we can consistently set λ1 = σ1 = 0. Finally we can set λ2 = λ3

provided that we have an ansatz in which (∂σ2)2 = (∂σ3)2 and this what we studied in the

main part of this paper, and we also set g2 = 1/4.

It is also of interest to look for simple frameworks in which we can have Q-lattice

constructions that also carry electric charge. We have found the following ansatz that can

be used to construct RG flows with charge that depend on just one of the spatial directions.

– 19 –
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Introducing coordinates (t, r, x, y) we can take the only dependence on the x direction to

be via two of the periodic σi fields, as in the ansatz:

λ1 = α, λ2 = λ3 = γ, σ1 = 0, σ2 = −σ3 = kx (A.3)

and

F (1) = F (2) = 0, F (3) = F (4) ≡ F with F ∧ F = 0 , (A.4)

The equations of motion of the STU theory can then be obtained from the Lagrangian

L = R− 1

2
(∂α)2 − (∂γ)2 − gxxk2 sinh2 γ − e−αF 2 + 8 g2(coshα+ 2 cosh γ). (A.5)

with all fields just depending on (t, r, y). One can now restrict to an electric ansatz for the

fields in (A.5) that just depend on the radial direction. For the scalar fields we take γ, α

to be functions of r and for the gauge-field we take F = dA with A = At(r). A suitable

anisotropic metric ansatz is given by ds2 = Udt2+U−1dr2+e2V1dx2+e2V2dy2 with U, V1, V2

functions of r.

Finally, we point out that there is a closely related ansatz which leads to (A.5) but with

α→ −α. One way this can arise is by taking λ1 = α, λ2 = λ3 = γ, σ1 = π, σ2 = σ3 = kx,

F (1) = F (2) = 0 and F (3) = −F (4) ≡ F .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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