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1 Introduction

This paper considers estimation and inference in the case of short T (time dimension) and large N

(cross section dimension) dynamic binary choice panel data models with unobserved heterogeneity

that is allowed to be arbitrarily correlated with the covariates. This type of unobserved heterogeneity

is usually referred to as the fixed effect. Such models are of particular interest in many applications

since they can be used to distinguish between the presence of state dependence and the effect of

unobserved heterogeneity, as discussed in Heckman (1981a and 1981b). These models are usually

specified in terms of the distribution of the dependent variable conditional on the lagged dependent

variable, a set of (possibly time-varying) covariates, and an individual specific term that represents

unobserved heterogeneity.

As is well known, for dynamic panel data models with unobserved effects, an important issue

is the treatment of the initial observations. While in some cases initial observations can be viewed

as fixed constants if the actual start of the dynamic process coincides with the first time period in

the data, in general, if the dynamic model under consideration has been in effect before the first

period of the sample under consideration, there is an intrinsic and complex relationship between the

initial observations and the unobserved heterogeneity. Therefore, in general, it is important that

initial observations are allowed to depend on the unobserved individual effects in a model-coherent

manner, in the sense that the dynamic model assumed to generate the observations is compatible

with the processes assumed for the initial observations.

For linear models with an additive unobserved effect, appropriate transformations such as dif-

ferencing have been used to eliminate the unobserved effect, and GMM type estimators have been

proposed to estimate the transformed model. For example, see Anderson and Hsiao (1982), Arel-

lano and Bover (1995), Arellano and Carrasco (2003), Ahn and Schmidt (1995), Blundell and Bond

(1998), Hahn (1999), and Hsiao, Pesaran, and Tahmiscioglu (2002), Hayakawa and Pesaran (2015),

and among others surveyed in Arellano and Honoré (2001), Hsiao (2014), and Pesaran (2015, Ch.

27). However, for nonlinear panel data models in general and binary choice models in particular

the treatment becomes more complicated. When the unobserved effect is assumed to be a random

effect in that it is not correlated with the strictly exogenous variables, Heckman (1981b) suggests

to approximate the conditional distribution of the initial values given the exogenous variables and

the unobserved individual effects, and use maximum likelihood to estimate the model parameters.
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Alternatively, Wooldridge (2005) proposes to specify an auxiliary distribution for the unobserved

individual effects conditional on the initial values and the exogenous variables leading to a simple

conditional maximum likelihood estimation. Both methods, while useful in addressing the initial

value problem, can at best be viewed as approximations of the true (conditional) distribution of

the initial values, and the unobserved heterogeneity, respectively. As discussed in Honoré (2002),

because of the complicated relationship that exist between initial values, unobserved heterogeneity

and the exogenous variables, it is almost unavoidable that modeling these two conditional distri-

butions could be inconsistent with the original model specification, and there could even be some

potential incoherency problems in the case of unbalanced panel data models.

Analysis of dynamic nonlinear panel data models with fixed effects, on the other hand, is further

complicated by the so-called incidental parameters problem, in addition to the initial value problem.

The incidental parameters problem arises because the number of unobserved effects increases with

N , the number of the individuals in the panel. As a result, the maximum likelihood estimator of

the structural parameters, while consistent when both N and T tend to infinity, it is inconsistent

with large N and fixed T .

There are two approaches to dealing with the short T problem in non-linear dynamic panels.

One strand of the literature has focussed on developing modified maximum likelihood estimators

that attain bias reductions when T is fixed. Examples include the papers by Arellano (2003) for

static binary choice panel data models, and by Carro (2007), Bartolucci, Bellio, Salvan, and Sartori

(2012), and Lee and Phillips (2015) for dynamic binary choice panel data models. This approach

still requires T to be relatively large to attain significant bias reductions, as demonstrated in a

number of Monte Carlo studies reported in the literature, even in the simplest case where the initial

values are taken to be fixed constants.

Another approach in the literature is to eliminate the fixed effects as done in the linear mod-

els. This approach, solves the incidental parameters problem, although the initial values problem

remains. So far, however, there are only a few papers following this approach. Honoré and Kyr-

iazidou (2000) consider the dynamic logit model and derive a set of conditions under which the

parameters of the model are identified. They also propose consistent estimators of the model based

on the identification results, albeit the rate of convergence of the estimators is slower than the

usual
√
N -rate. In more recent papers, Bartolucci and Nigro (2010, 2012) consider a version of
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the quadratic exponential model that closely mimics the dynamic logit model and propose a con-

ditional maximum likelihood estimator conditioning on the sufficient statistics for the individual

specific effects. However, with this specification the strict exogeneity assumption usually made on

the covariates in the standard dynamic panel data models is not met.1 Also there could be some

potential incoherency problems arising from the separate model specification for the last period

from the other periods if one conducts sequential estimation, or if one deals with an unbalanced

panel. Arellano and Bonhomme (2011) provide a review of recent developments in the econometric

analysis of nonlinear panel data models.

In this paper we consider a dynamic binary choice panel data model with fixed effects, where

the error term follows an exponential distribution. We show that the model can be written as an

inhomogeneous Markov chain and using a result from Pesaran and Timmermann (2009) we convert

the non-linear model into a linear first-order autoregressive process in the indicator variables, and

derive moment conditions that are free from incidental parameters, and allow us to identify the

structural parameters (the state dependent parameter as well as the coefficients of the exogenous

covariates). Based on these moment conditions we propose GMM estimators that are consistent and

asymptotically normally distributed at the
√
N -rate. Compared with the existing approaches, our

method identifies all the parameters of the model and yields simple-to-implement estimators that

have standard asymptotic properties. It turns out that the exponential specification we entertain,

as well as the moment conditions we employ, are variants of those proposed in Wooldridge (1997).2

In addition to the GMM estimators, since the conditional maximum likelihood approach has

been adopted in the literature in the case of the logistic distribution or the quadratic exponential

distribution in order to eliminate the fixed effects, we also study the conditional likelihood approach,

which can only identify the effect of state dependence under exponentially distributed errors. Since

our GMM estimators are general and simple to implement, we study their finite sample performance

through a comprehensive simulation study and the results indicate that our estimators perform quite

well in relatively small size samples.

Given that we are the first to propose the use of an exponential error distribution in a binary

1Strict exogeneity typically allows us to specify the likelihood of yit conditional on ci, xit and yit−1. But in the

Bartolucci and Nigro (2010) specification, all periods observations of xit must be taken into account. On the strict

exogeneity assumption and the other approaches in the literature, see Wooldridge (2002) for a survey.
2See Remark 1 for more details.
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choice setting, it is important that this choice is motivated and further discussed. The first point to

bear in mind is that in the case of fixed effects binary choice models, the choice of the distribution

is in fact secondary; fixed effects (which are totally free of any restrictions) can be used to match

probability outcomes based on exponential and any other error distribution, including the logistic

ones used in the literature. In the case of models without any covariates (xit’s), the match can

be performed perfectly for all distributional specifications. When the model contains covariates,

the match between the exponential and other distributions, including the logistic, can be done for

specific values of xit, (at some t) or at the mean of xit, namely at xi, as we demonstrate in Section

4.3. Therefore, at least in a binary choice setting the choice of the distribution is more a matter

of analytical and estimation convenience. Moreover, since in analyzing a nonlinear model such as a

binary choice model, a key quantity of interest is the average partial effect (APE), we will investigate

through Monte Carlo simulations how well the APEs are estimated with the exponential model if

the true underlying model happen to be logistic. Our results show that the exponential model yields

sensible estimates for the APEs even with a misspecified error distribution.

The rest of the paper is organized as follows. Section 2 sets out the model. Section 3 considers

the pure dynamic case without any covariates. Section 4 generalizes and extends the analysis of

Section 3 and allows for time-varying covariates. Section 5 presents the Monte Carlo results, and

Section 6 provides some concluding remarks. Technical proofs are provided in an appendix.

2 A General Dynamic Binary Choice Model and its Markov Chain

Representation

Suppose that yit takes the values of zero and unity, for i = 1, 2, ..., N , and t = 1, 2, ..., T , and xit is

a k× 1 vector of strictly exogenous, time-varying regressors; common time-varying regressors, such

as a time dummy, can also be included in xit. The standard dynamic binary panel data model with

fixed effects assumes that

yit = I (y∗it ≥ 0) , (1)

y∗it = ρyi,t−1 + β′xit + ci + uit.
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where y∗it is a latent variable that is not observed by the econometrician, I(A) is an indicator that

takes the value of 1 if A holds and 0 otherwise, uit is the random error term assumed to be identically,

independently distributed (i.i.d.) with mean zeros, and ci represents the individual unobserved effect

that can be arbitrarily correlated with xit and yi,t−1. We suppose that T is fixed and N is sufficiently

large. We are interested in ρ, the state dependence parameter, and β, the coefficients of the k × 1

vector of the covariates, xit, where k is fixed. We refer to ρ and β as the structural parameters, and

refer to {ci, i = 1, 2, . . . , N}, as the incidental parameters.

Denote the distribution of −uit by F (·). Then we have

Pr(yit = 1 |y1,t−1, y2,t−1, ..., yN,t−1; c1, c2, ..., cN ; x1t,x2t, ...,xNt )

= Pr(yit = 1 |yi,t−1, ci,xit ) = F (ρyi,t−1 + β′xit + ci), (2)

where the first equation follows from the strict exogeneity assumption on xit. The commonly used

probit or logit models correspond to F (·) being either the standard normal distribution or the

logistic distribution, respectively.

The model can also be characterized as an inhomogeneous Markov chain with transition prob-

abilities

yi,t−1 =

yit = 0 1

0 1− F (β′xit + ci) F (β′xit + ci)

1 1− F (ρ+ β′xit + ci) F (ρ+ β′xit + ci)

The distribution of yi1 conditional on ci and xi1 is complicated and in general depends on the past

(unknown) values of xit for t ≤ 1. For given values of ci and xit, unconditional probability of

yit = 1, is given by πit = Pr (yit = 1 |ci,xit,xi,t−1, ...xi1,xi0,xi,−1, ...). Then from the structure of

the Markov chain we have

πit = F (β′xit + ci + ρ)πi,t−1 + F (β′xit + ci)(1− πi,t−1),

or

πit = λitπi,t−1 + F (β′xit + ci), (3)

where

λit = F (β′xit + ci + ρ)− F (β′xit + ci).

The above difference equation has a stable solution if |λit| < 1. To avoid absorbing states we

assume that |ci| < K < ∞,
∣∣β′xit∣∣ < K < ∞, and |ρ| < K < ∞, and then note that 0 <
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F (β′xit+ ci+ρ)−F (β′xit+ ci) < 1, if ρ > 0, and 0 < F (β′xit+ ci)−F (β′xit+ ci+ρ) < 1, if ρ < 0.

Recall that F (z) is a non-decreasing positive function of z. Therefore, the distribution of the initial

observation, πi1, converges to a well defined limit on (0, 1). In general, the expression for πi1 is a

complicated function of ci, ρ, and all values of β′xi,τ , for τ ≤ 1. An explicit expression for πi1 can

be found when β = 0. However, the GMM estimators that we develop in this paper do not require

modelling the initial conditions, so long πi1 does not de-generate to 0 or 1, which is satisfied under

the bounded condition given above.

3 The Case of β = 0

3.1 The Likelihood Function

In the case where β = 0, the Markov chain has a time-invariant stationary distribution

Pr (yit = 1 |ci ) =
F (ci)

1− F (ci + ρ) + F (ci)
= π∗i , (4)

Pr (yit = 0 |ci ) =
1− F (ci + ρ)

1− F (ci + ρ) + F (ci)
= 1− π∗i . (5)

We restrict ρ and ci so that ci and ci + ρ lie in the domain of F (·) and the above probabilities are

well defined. Note that unlike in the linear case, this does not necessarily restrict ρ to be bounded

above by 1. It is only required that ci and ρ are bounded.

The joint probability distribution of ci, yi1, yi2, ..., yiT can now be derived using the familiar

decomposition

Pr (ci, yi1, yi2, ..., yiT ) = Pr(ci) Pr(yi1 |ci ) Pr(yi2 |yi1, ci )....Pr(yiT |yi,T−1, ci ).

Consider now the observations yit for t = 1, 2, ..., T, and note that, under stationarity, the likelihood

function for the ith unit at time t = 1 is given by

Pr(yi1 |ci, ρ) = (π∗i )
yi1 (1− π∗i )1−yi1 , (6)

and for time t = 2, 3, ..., T, by

Pr(yit |yi,t−1, ci, ρ) (7)

= [F (ci + ρ)]yityi,t−1 [1− F (ci + ρ)](1−yit)yi,t−1 [F (ci)]
yit(1−yi,t−1) [1− F (ci)]

(1−yit)(1−yi,t−1) .
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Setting Y = (yit, i = 1, ..., N ; t = 1, 2, ..., T ), the log likelihood function for the panel (assuming

independence across i) is given by

l(ρ |Y, c) =

N∑
i=1

[yi1 ln(π∗i ) + (1− yi1) ln(1− π∗i )] +

N∑
i=1

T∑
t=2

yityi,t−1 ln [F (ci + ρ)] +
N∑
i=1

T∑
t=2

(1− yit)yi,t−1 ln [1− F (ci + ρ)] +

N∑
i=1

T∑
t=2

yit(1− yi,t−1) ln [F (ci)] +
N∑
i=1

T∑
t=2

(1− yit)(1− yi,t−1) ln [1− F (ci)] .

It is clear that there is an incidental parameter problem here that cannot be resolved without

a specification of Pr(ci). This can be accomplished by specifying a distribution in terms of the

observables. Note, however, that Pr(ci) can be specified independently of the initial value, yi1, or

the other observations. The assumption that ci are independent across i can also be relaxed to allow

for simple patterns of cross-sectional dependence across i (i.e. using more general specifications of

Pr(c)) although we do not pursue this here.

3.2 Exponential Dynamic Binary Choice Models

The literature on estimation of binary choice panel data models with fixed effects has focussed on

a logit specification for F (·). In this paper we consider an alternative specification. We consider

first the case where β = 0 and equations (4) and (5) hold, and focus on consistent estimation

of ρ. Pesaran and Timmermann (2009) show that a Markov chain can be written as a vector

autoregressive (VAR) model in the indicator variables. In our context it can be easily established

that the implied error term, εit, defined by

εit = yit − F (ci)− [F (ci + ρ)− F (ci)] yi,t−1,

is a martingale difference process with respect to yi,t−1, yi,t−2, ..., namely E (εit |yi,t−1, yi,t−2, ..) = 0.

This result can be established explicitly by noting that for each i and t, εit is a discrete random

variable that takes only 4 distinct values, namely −F (ci), 1−F (ci), 1−F (ci + ρ), and −F (ci + ρ),

with probabilities given by the Markov chain.

The above representation of the dynamic binary choice model suggests the following linear binary

AR(1) regression with reduced form parameters that are non-linear functions of the parameters of
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the underlying model:

yit = F (ci) + [F (ci + ρ)− F (ci)] yi,t−1 + εit. (8)

This representation holds for all choices of F (·), but the fixed effect, ci, is not readily separated

from ρ using equation (8) without further assumptions. One such assumption considers whether it

is possible to factorize F (ci + ρ) − F (ci) into a product form such as G(ρ)H(ci), since this would

allow us to isolate F (ci) from the structural parameter, ρ. Such a factorization is indeed possible

when F (z) = 1− exp(−z) as it satisfies

F (ci + ρ)− F (ci) = exp(−ci) [1− exp(−ρ)] . (9)

In Appendix 7.1 we prove that the exponential is the only non–constant, differentiable, distribution

function that satisfies this condition.3

Consistent estimation of ρ can now be achieved using the conditional maximum likelihood or

the GMM methods.

3.3 Conditional Maximum Likelihood Estimation

Building on an early work by Cox (1958), Chamberlain (1985) shows that it is possible to estimate ρ

consistently using a conditional maximum likelihood estimator (CMLE) approach if F (·) is logistic,

β = 0 and T ≥ 4.4 Honoré and Kyriazidou (2000) extend this analysis to the case where β 6= 0,

under certain restrictions on the distribution of the covariates, xit, over time. In this sub-section

we show similar results hold if F (·) is exponential, β = 0 and T ≥ 3.

Using (6) and (7) the likelihood function (conditional on ci) for the ith unit can be written as

[1− F (ci + ρ) + F (ci)] Pr (yiT |ci, ρ) = [F (ci + ρ)]
∑T
t=2 yityi,t−1 [1− F (ci + ρ)]1−yi1+

∑T
t=2(1−yit)yi,t−1

× [F (ci)]
yi1+

∑T
t=2 yit(1−yi,t−1) [1− F (ci)]

∑T
t=2(1−yit)(1−yi,t−1) .

3To be more precise, we prove that the general form of a function F that satisfies the factorization is given by

F (z) = 1 − C exp(−Dz), for C and D > 0. Since these two parameters are not identifiable, we set them both equal

to 1. Similar rescaling and normalization is also used for the standard logit and probit models.
4See Chamberlain (2010) for identification in a two-period case and Magnac (2004) for more general identification

results with the conditional likelihood approach, and also Magnac (2001) for an empirical application.
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Let siT =
∑T

t=1 yit and piT =
∑T

t=2 yityi,t−1, and write the above likelihood function as

Pr (yiT |ci, ρ) = Pr (siT , piT , yi1, yiT |ci, ρ)

=

[F (ci + ρ)]piT [1− F (ci + ρ)]1−yi1−yiT+siT−piT

[F (ci)]
siT−piT [1− F (ci)]

(T−1)+yi1+yiT−2siT+piT

[1− F (ci + ρ) + F (ci)]
.

It is clear that siT , piT , yi1, and yiT are minimal sufficient statistics for ci and ρ. Following

Andersen (1970), we consider the likelihood function of ρ conditional on given values of siT = s0 and

piT = p0 for all i. Let BiT (s0, p0) be the set of all sequences yi1, yi2, ..., yiT that satisfy
∑T

t=1 yit = s0

and
∑T

t=2 yityi,t−1 = p0, for s0 = 1, ..., T − 1 and p0 = 0, 1, .., T − 1 (s0 > p0). There is no point

considering the values of s0 = 0, T , since for these values the conditional likelihood function does

not depend on ρ.

In general we have

Pr (yi1, yiT
∣∣siT = s0, piT = p0, ci, ρ) =

Pr (siT = s0, piT = p0, yi1, yiT |ci, ρ)

Pr (siT = s0, piT = p0 |ci, ρ)
,

where

Pr (siT = s0, piT = p0, yi1, yiT |ci, ρ) =
Ai(s

0, p0) [1− F (ci)]
yi1+yiT [1− F (ci + ρ)]−yi1−yiT

[1− F (ci + ρ) + F (ci)]
,

and

Pr (siT = s0, piT = p0 |ci, ρ) =
Ai(s

0, p0)
∑

yi1,yiT∈BiT (s0,p0) [1− F (ci)]
yi1+yiT [1− F (ci + ρ)]−yi1−yiT

[1− F (ci + ρ) + F (ci)]
,

in which

Ai(s
0, p0) = [F (ci + ρ)]p

0

[F (ci)]
1+s0−p0

[1− F (ci)]
(T−1)−2s0+p0

[1− F (ci + ρ)]1+s0−p0.

Therefore

Pr (yi1, yiT
∣∣siT = s0, piT = p0, ci, ρ) =

[1− F (ci)]
yi1+yiT [1− F (ci + ρ)]−yi1−yiT∑

yi1,yiT∈BiT (s0,p0) [1− F (ci)]
yi1+yiT [1− F (ci + ρ)]−yi1−yiT

.

It is clear that for a general specification of F (·), the conditional distribution of yi1 and yiT still

depends on the incidental parameters, ci. But in the case of the exponential distribution we have

Pr (yi1, yiT
∣∣siT = s0, piT = p0, ci, ρ) =

exp [ρ(yi1 + yiT )]∑
yi1,yiT∈BiT (s0,p0) exp [ρ(yi1 + yiT )]

,
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which does not depend on c′is.

The conditional likelihood for the cross section observations i = 1, 2, .., N is now given by

Lc(ρ) =

N∏
i=1

T−2∏
p0=0

T−1∏
s0=1

exp [ρ(yi1 + yiT )]∑
yi1,yiT∈BiT (s0,p0) exp [ρ(yi1 + yiT )]

. (10)

Not all the components of this conditional likelihood function will depend on ρ. For example, in

the case where T = 3, which is derived in detail in the appendix, the only component that depends

on ρ is for values of s0 = 1 and p0 = 0. When T = 3 we exclude observation where s0 = 3 and

p0 = 2. The remaining values are (s0, p0) = (2, 0) and (s0, p0) = (2, 1). Under the former we must

have yi1 = 1, yi2 = 0 and yi3 = 1 and

exp [ρ(yi1 + yi3)]∑
yi1,yi3∈Bi3(2,0) exp [ρ(yi1 + yi3)]

= 1.

Under (s0, p0) = (2, 1) the only admissible sequences are (110) and (011), and we have

exp [ρ(yi1 + yi3)]∑
yi1,yi3∈Bi3(2,1) exp [ρ(yi1 + yi3)]

=
exp (ρ)

2 exp (ρ)
=

1

2
.

The only set of observations for which the conditional likelihood depends on ρ is given by

exp [ρ(yi1 + yi3)]∑
yi1,yi3∈Bi3(1,0) exp [ρ(yi1 + yi3)]

=


exp(ρ)

2 exp(ρ)+1 , for (100)

1
2 exp(ρ)+1 , for (010)

exp(ρ)
2 exp(ρ)+1 , for (001)

Hence, the conditional log-likelihood function for the case where T = 3 can be written as

`c(ρ) = ρ
N∑
i=1

(yi1 + yi3)I(si3 = 1)I(pi3 = 0)− log [2 exp (ρ) + 1]
N∑
i=1

I(si3 = 1)I(pi3 = 0).

It is easily verified that this is the same as (25) obtained in the appendix. Following Andersen

(1970), consistency and
√
N -asymptotic normality of the resulting conditional maximum likelihood

estimator can be established.

3.4 GMM Estimation

Under the exponential distribution, the binary AR(1) model (8) can be written as

yit = αi + (1− αi)γyi,t−1 + εit, (11)

10



where αi = 1− exp(−ci), and γ = 1− exp(−ρ). The stability of the above AR(1) is ensured for all

values of ci and ρ for which π∗i defined by (4) strictly lies inside the range (0, 1). Note that for the

exponential distribution and using (9) we have

π∗i =
F (ci)

1− F (ci + ρ) + F (ci)
=

1− exp(−ci)
1− exp(−ci) [1− exp(−ρ)]

(12)

=
αi

1− (1− αi)γ
,

and condition 0 < π∗i < 1 implies that (1 − αi)γ < 1, 1 − αi = exp(−ci) > 0, and 1 − γ >

exp(−ρ) > 0. The latter two conditions are met for all bounded values of ci and ρ. Further, since

F (ci) = 1− exp(−ci) = αi > 0, then condition (1− αi)γ < 1 must also be satisfied since π∗i > 0.

The AR(1) formulation considerably simplifies the estimation problem, but it is still subject to

the incidental parameter problem. First–differencing will not eliminate αi, the incidental parameters

either, since the coefficient of yi,t−1 also depends on αi. But, instead of first-differencing we can

equate two solutions of αi obtained for for two successive periods5

αi =
yi,t − γyi,t−1

1− γyi,t−1
− εi,t

1− γyi,t−1
, for t,

and

αi =
yi,t−1 − γyi,t−2

1− γyi,t−2
− εi,t−1

1− γyi,t−2
, for t− 1.

Equating the above two solutions of αi, now yields the following non-linear difference equation

yit = γyi,t−1 +

(
1− γyi,t−1

1− γyi,t−2

)
(yi,t−1 − γyi,t−2) + vit, (13)

where

vit = εit −
(

1− γyi,t−1

1− γyi,t−2

)
εi,t−1.

Unfortunately, vit does not satisfy any obvious orthogonality condition with respect to the lags

of yit. For example, E(vit |yi,t−2 ) = γE (yi,t−1εi,t−1 |yi,t−2 ) / (1− γyi,t−2), which is not generally

equal to zero due to the contemporaneous dependence of yi,t−1 on εi,t−1. However, the alternative

formulation

eit =

(
1− γyi,t−2

1− γyi,t−1

)
εit − εi,t−1 =

(yit − γyi,t−1) (1− γyi,t−2)

(1− γyi,t−1)
− (yi,t−1 − γyi,t−2), (14)

= (1− yi,t−1)− (1− yit)
(

1− γyi,t−2

1− γyi,t−1

)
, (15)

5Note that since 1− γ > 0, then 1− γyi,t−1 6= 0, noting that yi,t−1 can only take the values of 0 and 1.
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which is obtained by multiplying both sides of (13) by (1− γyi,t−2) / (1− γyi,t−1), does satisfy

usable orthogonality conditions. To see this, note that

E(eit |yi,t−1, yi,t−2 ) =

(
1− γyi,t−2

1− γyi,t−1

)
E(εit |yi,t−1, yi,t−2 )− E(εi,t−1 |yi,t−1, yi,t−2 ).

But E(εit |yi,t−1, yi,t−2 ) = 0 by the Markov property as established in Pesaran and Timmermann

(2009). Hence E(eit |yi,t−1, yi,t−2 ) = −E(εi,t−1 |yi,t−1, yi,t−2 ). Now by chain rule of conditional

expectations

E(eit |yi,t−2 ) = E [E(eit |yi,t−1, yi,t−2 ) |yi,t−2 ]

= −E [E(εi,t−1 |yi,t−1, yi,t−2 ) |yi,t−2 ]

= −E(εit |yi,t−2 ) = 0,

as required. In fact we have, more generally,

E(eit |yi,t−s ) = 0, for s = 2, 3, ... (16)

These moment conditions can be used to estimate γ by GMM using yi,t−2, yi,t−3, ..., as well as the

constant, as instruments, very much as when GMM is applied to the first-differenced version in the

linear case.

Note that the constant (i.e. the sequence of 1’s) should be used as an instrument with caution.

It is easy to show that E(eit) = 0 whenever γ = 0 or γ = γ0. Thus the constant instrument fails to

uniquely pin down γ0. However, the other instruments do not suffer from this anomaly. Therefore,

there is no danger in using the constant as an instrument if it is augmented by one or more lagged

values yi,t−2, yi,t−3, . . ..

Remark 1 Wooldridge (1997) considers multiplicative panel data models of the form τ(yit,λ0) =

φiµ(xit,β0)uit, and shows that with sequential moment conditions on uit as specified in Chamberlain

(1992), the transformation

rit(θ) ≡τ(yit,λ)− [µ(xit,β0)/µ(xit+1,β0)]τ(yit,λ), t = 1, ..., T − 1,

satisfies the conditional moment condition

E[rit(θ0)|φi,xi1, ...xit] = 0, t = 1, ..., T − 1.

12



The sequential nature of the moment conditions allows yi,t−1 to be included in xit. In our case,

we can rewrite our model as 1− yit = φiµ(xit,β0)uit, where µ(xit,β0) = exp(−ρyi,t−1) and φi =

exp(−ci). Noting that exp(ρ∆yit) = (1 − γyi,t−1)/(1 − γρyit), it can be shown that rit(θ0) in our

case is identical to ei,t+1. As a result, the conditional moment conditions in (16) can also be derived

following the set up by Wooldridge (1997).

Notice that since ρ = − ln(1− γ), to estimate ρ consistently we must have γ < 1. Alternatively,

one could consider the GMM estimation problem directly in terms of ρ, namely by considering the

moment conditions in terms of

eit(ρ) =
[∆yit + yi,t−1 exp(−ρ)] [1− yi,t−2 + yi,t−2 exp(−ρ)]

[1− yi,t−1 + yi,t−1 exp(−ρ)]
− ([∆yi,t−1 + yi,t−2 exp(−ρ)] . (17)

Let yi = (yi1, yi2, ..., yiT )′ and let mk(yi, γ) be an enumeration of eit(ρ) for 2 ≤ t ≤ T and eit(ρ)yit−s

for 2 ≤ s ≤ t ≤ T .

E [mk(yi, γ)] = 0, k = 1, 2, ...., (T + 1)(T − 2)/2.

When T = 3, there are two moment conditions:6

E [m1(yi, γ)] = E (ei3) = E

[
(yi3 − γyi2) (1− γyi1)

(1− γyi2)
− (yi2 − γyi1)

]
= 0,

E [m2(yi, γ)] = E (yi1ei3) = E

{
yi1

[
(yi3 − γyi2) (1− γyi1)

(1− γyi2)
− (yi2 − γyi1)

]}
= 0.

For T > 3, further moment conditions can be considered. Let m(yi, γ) = (m1(yi, γ),m2(yi, γ), ...,mK(yi, γ))′,

and write the K = (T + 1)(T − 2)/2 moment conditions as E [m(yi, γ)] = 0. Using the familiar

results on GMM estimation we have

γ̂GMM = arg min
γ

[
M′

N (γ)A′NANMN (γ)
]
,

where

MN (γ) = N−1
N∑
i=1

m(yi, γ),

and AN is a 1×K weight vector. An optimal choice for limN→∞AN = A(γ0) is given by

A(γ0) = D′(γ0)S−1(γ0),

6In the appendix, we considered in detail the case of T = 3 and the single moment E(ei3yi1) = 0. In this case, the

GMM estimator has a closed-form solution.
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where γ0 is the true value of γ, and

S(γ0) = E
[
NMN (γ0)M′

N (γ0)
]
,

D(γ0) = E

[
N−1

N∑
i=1

∂m(yi, γ0)

∂γ

]
= N−1

N∑
i=1

E

(
∂m(yi, γ0)

∂γ

)
.

But

E
[
NMN (γ0)M′

N (γ0)
]

= E

N−1
N∑
i=1

N∑
j=1

E
[
m(yi, γ)m′(yj , γ) |c

] .
where c = (c1, c2, ..., cN )′. Note that conditional on c, yi and yj are independently distributed,

which establishes that m(yi, γ) and m(yj , γ) are also conditionally independent (since range of

variations of yi does not depend on γ). Hence, recalling that E [m(yi, γ)] = 0, we have

E
[
NMN (γ0)M′

N (γ0)
]

= N−1
N∑
i=1

E
[
m(yi, γ)m′(yi, γ)

]
.

In general, analytical expressions for E
[
∂m(yi,γ0)

∂γ

]
and E [m(yi, γ)m′(yi, γ)] will be a complicated

function of c. However, for a given initial consistent estimate of γ, say γ̂, AN can be consistently

estimated as

ÂN = AN (γ̂) =

[
N−1

N∑
i=1

∂m′(yi, γ̂)

∂γ

][
N−1

N∑
i=1

m(yi, γ̂)m′(yi, γ̂)

]−1

. (18)

The asymptotic variance of γ̂GMM is given by

AsyV ar
[√

N(γ̂GMM − γ0)
]

=
[
D′(γ0)S−1(γ0)D(γ0)

]−1
,

which can be consistently estimated as

V̂ ar (γ̂GMM ) =
1

N

[
D̂′(γ̂GMM )Ŝ−1(γ̂GMM )D̂(γ̂GMM )

]−1
,

where

D̂(γ̂GMM ) = N−1
N∑
i=1

∂m′(yi, γ̂GMM )

∂γ
,

and

Ŝ(γ̂GMM ) = N−1
N∑
i=1

m(yi, γ̂GMM )m′(yi, γ̂GMM ).
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The initial estimate of γ, say γ̂INI can be obtained, for example, by imposing equal weights on

the K moment conditions, namely

γ̂INI = arg min
γ

[
M′

N (γ)MN (γ)
]
.

This initial estimate can then be used to compute

ÂN (γ̂INI) =

[
N−1

N∑
i=1

∂m′(yi, γ̂INI)

∂γ

][
N−1

N∑
i=1

m(yi, γ̂INI)m
′(yi, γ̂INI)

]−1

,

with γ̂GMM is computed as

γ̂GMM = arg min
γ

[
M′

N (γ)Â′N (γ̂INI)ÂN (γ̂INI)MN (γ)
]
, (19)

An iterated GMM estimator can also be considered, where in computation of ÂN (γ̂INI), γ̂INI is

replaced by γ̂GMM , and a new GMM estimator is computed using ÂN (γ̂GMM ), and so on.

The variance of ρ̂GMM = − ln(1− γ̂GMM ) can now be obtained using the delta method as

V̂ ar (ρ̂GMM ) =

(
1

1− γ̂GMM

)2

V̂ ar (γ̂GMM ) .

The following theorem illustrates the issues involved in proving the asymptotic properties of

the GMM estimator when only a single instrument, namely yi,t−2, is used. The general case where

additional instruments are considered can be established along similar lines.

Theorem 1. Suppose yit = 1(ci+ρ0yi,t−1 +uit ≥ 0) for i = 1, . . . , N, t = 1, . . . , T and the following

conditions hold

(A1) Pr(ci + ρ0 > 0) = 1, Pr(ci > 0) = 1, and Pr(ci <∞) = 1 for i = 1, 2, . . . , N .

(A2) {uit : i = 1, 2, . . . , N, t = 1, 2, . . . , T} is an independent array of random variables. ui1 is

uniformly distributed on [0, 1], while for t > 1, −uit is geometrically distributed with mean 1. {uit}

is distributed independently of {ci}.

(A3) yi1 = 1
(
ui1 ≤ 1−e−ci

1−e−ci (1−e−ρ0 )

)
, for i = 1, . . . , N .

(A4) R is a compact subset of R containing ρ0 in its interior.

(A5) For all ρ ∈ R, N−1
∑N

i=1 eit(ρ)yi,t−2 →p E [eit(ρ)yi,t−2].

(A6) For all ρ ∈ R, N−1
∑N

i=1 (∂eit(ρ)/∂ρ) yi,t−2 →p E [(∂eit(ρ)/∂ρ) yi,t−2].

(A7) N−1/2
∑N

i=1 eit(ρ0)yi,t−2 →d N(0, v2), where v2 = limN→∞N
−1
∑N

i=1E
[
e2
it(ρ0)y2

i,t−2

]
> 0.
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Then N1/2(ρ̂GMM − ρ0) →d N
(

0, v
E[eit(ρ0)yi,t−2]2

)
, where ρ̂GMM = − ln(1 − γ̂GMM ), and ρ̂GMM is

the GMM estimator defined (19) using yi,t−2 as the instrument.

The positivity of ci and ci + ρ0 in assumption (A1) allows us to circumvent the positivity

constraint on geometrically distributed random variables. Without it, Pr(yit = 1|ci, yi,t−1) = 1 −

exp(−max{0, ci+ρ0yi,t−1}), which greatly complicates the analysis. Assumption (A1) also requires

ci to be finite almost surely; clearly if ci =∞, then ρ0 is not identified.

Assumptions (A2) and (A3) provide the probabilistic structure of the model conditional on ci.

Note that the uniform distribution of ui1 allows yi1 to have the correct stationary distribution given

by (6). Together, assumptions (A2) and (A3) allows the distribution of yit conditional on ci to be

stationary. This makes it possible to find analytic expressions for the unconditional moments of

functions of the data.

Assumptions (A4) is standard in the GMM literature.

Assumptions (A5)-(A7) are high–level asymptotic conditions that hold under a variety of weak–

dependence assumptions on the fixed effects. They hold when ci are cross-sectionally independent

but they may also allow for weak cross-sectional dependence, including weak spatial dependence.7

4 The Case of β 6= 0

In contrast to the logit model studied in Honoré and Kyriazidou (2000, HK), it does not seem

possible to identify β using the CMLE approach in the case of the exponential model considered

in this paper. A key difference is that under exponential specification Pr(yit = 1|ci, yi,t−1,xit) =

1 − exp(−ρyi,t−1 − β′xit − ci), and ci does not get cancelled out from the numerator and the

denominator of conditional probabilities. In contrast HK use a logistic specification, which is not

subject to this problem, although to cancel the incidental parameters in the context of dynamic

7The assumptions we lay out here demonstrate the fact that while the asymptotic properties of GMM estimators

such as consistency and asymptotic normality are established under high level regularity conditions as in Hansen

(1982), whether they are satisfied in a specific nonlinear model is often technically involved and has to be examined

case by case. It is worth noting that in the literature where GMM estimators are proposed, the conventional approach

has been to derive moment conditions of the model and then claim the GMM estimators based on these moment

conditions are consistent and asymptotically normally distributed implicitly assuming that the required regularity

conditions are satisfied.
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logit models we must have T ≥ 4. See Section 2.1 of HK. But the GMM procedure is still applicable

and can be used to identify both γ and β under the exponential model. The GMM approach has the

added advantage that it does not require strong conditions on the covariates. Recall that in the case

of the logistic model with a single exogenous regressor and T = 4, as shown by HK, identification

of β requires xi2 = xi3 with xi1 6= xi2, for all i.

4.1 GMM Estimation in the General Case

In the case where β 6= 0, the dynamic non-linear autoregressive model, (8), associated to the binary

choice model generalizes to

yit = F (β′xit + ci) +
[
F (β′xit + ci + ρ)− F (β′xit + ci)

]
yi,t−1 + εit,

and we continue to have E (εit |yi,t−1, yi,t−2, ...; xit,xi,t−1, ...) = 0. In the exponential case under

consideration, the non-linear AR(1) formulation can be written as

yit − 1 = exp(−β′xit − ci) + exp(−β′xit − ci)(1− exp(−ρ))yi,t−1 + εit.

Setting γ = 1− exp(−ρ) and solving for the fixed effect as before,

exp(−ci) =
exp(β′xit) (1− yit)

(1− γyi,t−1)
+

exp(β′xit)εit
(1− γyi,t−1)

.

Now first differencing to eliminate ci yields

exp(β′xit) (1− yit)
(1− γyi,t−1)

− exp(β′xi,t−1) (1− yi,t−1)

(1− γyi,t−2)
= −exp(β′xit)εit

(1− γyi,t−1)
− exp(β′xi,t−1)εi,t−1

(1− γyi,t−2)
,

which after some algebra simplifies to

eit = exp(β′∆xit)

(
1− γyi,t−2

1− γyi,t−1

)
εit − εi,t−1 (20)

= (1− yi,t−1)− (1− yit)
(

1− γyi,t−2

1− γyi,t−1

)
exp(β′∆xit).

It is easily seen that eit given above reduces to (15) if we set β = 0, as to be expected. Also as

before, yi,t−2,yi,t−3,.... and the constant can be used as instruments.8 Additional instruments are

8The same caveat as mentioned earlier continues to hold. E(eit) = 0 for (γ,β) = (0,0) and for (γ,β) = (γ0,β0).

Therefore, the constant should never be used as an instrument unless accompanied by at least one lagged variable as

an additional instrument.
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also available depending on the nature of the covariates. In the case where xit is exogenous, then

the regressors xi1,xi2, ...,xiT can also be used as instruments.

In empirical applications of the GMM approach the choice of instruments can play an important

role for the small sample properties of the estimators. The problem becomes particularly serious

in panel data models where the number of instruments can rise quite rapidly with T . The pitfalls

in using too many instruments in the case of linear dynamic panel data models is investigated in

Roodman (2009). In the case of non-linear specifications, the use of additional instruments that

involve powers of yi,t−s,for s ≥ 2, or powers of lagged exogenous variables, such as yi,t−2yi,t−3, xi,t−s⊗

xi,t−s, and yi,t−2xi,t−s, can also be justified which could lead to even a larger set of instruments

to be used in GMM estimation. A number of procedures have been proposed to deal with this

problem. Carrasco (2012) proposes using regularization techniques to invert the covariance matrix

of the instruments. Mehrhoff (2009) proposes factorizing the instrument set whereby the full set of

instruments is replaced by a few principal components of the instrument set. Both approaches rely

on related choice parameters such as the extent of regularization/shrinkage in the case of Carrasco’s

approach and the number of principle components to be used as instruments. The application

of these basically linear techniques to the non-linear specification that we consider could also be

problematic as they need not be optimal in non-linear settings. In view of these difficulties we do not

recommend the use of GMM approach developed in this paper for applications where T is relatively

large, say more than 6. In case of non-linear panels with moderate to large T samples the ML

approach combined with bias correction (as proposed by Carro, 2007) might be more appropriate.

4.2 Discussion on Robustness of the Exponential Specification

As discussed in Section 1, various specifications of dynamic binary choice panel data models have

been used in the literature depending on their convenience and/or whether they enable the re-

searcher to resolve the incidental parameter problem. In the same vein, we propose to use the

exponential specification and construct GMM estimators that are consistent and asymptotically

normally distributed. As for any specification in the parametric approach, a natural question is

how robust it is with regard to misspecification. More specifically, suppose that for a realization of

yi,t−1 = {0, 1} and xit = x0
i , the true distribution function is given by

Pr(yit = 1
∣∣yi,t−1, ci,x

0
i ) = F (ρyi,t−1 + β′x0

i + ci),
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but consider an investigator that uses the exponential specification and obtains

Pr(yit = 1
∣∣yi,t−1, ci,e,x

0
i ;Me ) = 1− exp(−ρeyi,t−1 − β′ex

0
i − ci,e),

where the symbol Me denotes an exponential distribution to distinguish it from the true distribution

function. In the case where the Markov chain underlying the true process is stationary we have

0 < F (ρyi,t−1 +β′x0
i + ci) < 1, for all finite values of ρ, β′x0

i , and ci, and hence there exists cie such

that Pr(yit = 1
∣∣yi,t−1, ci,e,x

0
i ;Me ) = F (ρyi,t−1 + β′x0

i + ci), namely

−cie = ln
[
1− F (ρ+ β′x0

i + ci)
]

+ ρe + β′ex
0
i , if yi,t−1 = 1,

= ln
[
1− F

(
β′x0

i + ci
)]

+ β′ex
0
i , if yi,t−1 = 0.

Since, under the exponential distribution cie’s are treated as fixed effects and are allowed to have an

arbitrary degree of correlations with xit, then it is possible to match any distribution function, F (.),

that satisfy the stationary condition 0 < F (.) < 1 for a given realization of xit. It is important to

emphasise that this match is local and not global, and holds approximately in the neighborhood of

x0
i , which can be taken as the sample mean, x̄i.

9 This does not seem to be an important limitation

since in most empirical applications the investigator is concerned with ‘average’ effects and as we

shall see from the Monte Carlo results reported in the sub-section 5.4, the average partial effects

from logistic distribution tend to be well approximated if the estimates are incorrectly based on an

exponential distribution.

5 Simulation Studies

In order to investigate the performance of the GMM and CMLE estimators we conduct a series of

Monte Carlo studies, which we summarize here. We have endeavored where possible to match the

Monte Carlo design employed by Honoré and Kyriazidou (2000).10

5.1 The GMM Estimator

To investigate the small sample properties of the proposed GMM estimator, we generate data

from the exponential dynamic binary choice model, with ρ = 0.5, and include a single exogenous

9We thank a referee for drawing our attention to this point.
10The full set of Monte Carlo results is available from the authors on request.
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regressor in the model. We draw ci ∼ |N(0, σ2
c)| and xit ∼ |N(0, 1)|, independently over i and t.

We then set σc = β so that the fixed effects and exogenous regressors each contribute an equal

amount of variation. The two parameters are solved numerically for a proportion of 1s in the

population of π̄ = 50%, which gives σc = β = 0.318815. The distribution of yi1 is set to the

stationary distribution conditional on ci and xi1. We generate data sets of sizes T = 3, 4, 6, 8 and

N = 250, 500, 1, 000, 2, 500, 5, 000, 10, 000 and consider the mean, variance, bias, and RMSE of the

estimates for ρ and β in 2, 000 replications for each experiment. The estimates are obtained using

the moment conditions

E(eit) = 0, t = 3, 4, . . . , T,

E(xiseit) = 0, t = 3, 4, . . . , T, s = 1, 2, . . . , T,

E(yiseit) = 0, t = 3, 4, . . . , T, s = 1, 2, . . . , t− 2,

and using an estimate for the optimal choice of the GMM weight matrix. There are a total of

1
2(3T + 1)(T − 2) moment conditions. We also consider the size of the tests H0 : ρ = 0 and power

for Ha : ρ = 0.6 and Hb : ρ = 0.4 as well as the size of the tests H0 : β = 0 and power for

Ha : β = 0.418815 and Hb : β = 0.218815, all at 5% significance. Henceforth, this setting will be

referred to as the benchmark specification.11

Tables 1 and 2 give results for variance, bias, and RMSE in the benchmark simulations. Variance,

bias, and RMSE improve with larger N . RMSE and variance improve with increased T . However,

the bias of the GMM estimator of ρ increases with T .

11To simplify the computations we first estimated γ and then estimated ρ as -ln(1 − γ). See (11). This approach

requires γ < 1. In a number of experiments we encountered estimates for γ that were inadmissible (namely they

were larger than 1). This was particularly the case for small values of N . However, the likelihood of obtaining an

inadmissible estimate decreased sharply with N . As a check, in the case of a few experiments we also estimated ρ

directly and without any restrictions and overall found the results to be very similar to the ones based on the indirect

approach.
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Table 1. Benchmark Small Samples Results for Variance, Bias, and RMSE of ρ̂GMM .?

T\N 250 500 1,000 2,500 5,000 10,000

3 Variance 0.0571 0.0326 0.0166 0.0065 0.0031 0.0016

Bias 0.0032 -0.0014 0.0027 0.0009 -0.0007 0.0004

RMSE 0.2239 0.1767 0.1282 0.0806 0.0556 0.0394

4 Variance 0.0240 0.0123 0.0066 0.0025 0.0012 0.0006

Bias -0.0446 -0.0253 -0.0104 -0.0041 -0.0020 -0.0011

RMSE 0.1514 0.1110 0.0815 0.0503 0.0349 0.0248

6 Variance 0.0105 0.0060 0.0026 0.0010 0.0005 0.0003

Bias -0.0889 -0.0442 -0.0209 -0.0057 -0.0026 -0.0011

RMSE 0.1252 0.0879 0.0554 0.0328 0.0226 0.0159

8 Variance 0.0075 0.0042 0.0018 0.0006 0.0003 0.0002

Bias -0.1557 -0.0774 -0.0309 -0.0081 -0.0032 -0.0014

RMSE 0.1613 0.0992 0.0528 0.0267 0.0181 0.0128

? ρ = 0.5, β = 0.32, xit = |N(0, 1)|, ci ∼ |N(0, 0.322)|.
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Table 2. Benchmark Small Samples Results for Variance, Bias, and RMSE of β̂GMM .?

T\N 250 500 1,000 2,500 5,000 10,000

3 Variance 0.0192 0.0078 0.0035 0.0015 0.0007 0.0004

Bias 0.0100 0.0073 0.0024 0.0012 0.0006 0.0007

RMSE 0.1300 0.0869 0.0591 0.0384 0.0274 0.0195

4 Variance 0.0101 0.0039 0.0019 0.0008 0.0004 0.0002

Bias 0.0024 0.0016 -0.0012 0.0006 0.0000 0.0003

RMSE 0.0942 0.0609 0.0430 0.0277 0.0198 0.0137

6 Variance 0.0047 0.0021 0.0010 0.0004 0.0002 0.0001

Bias -0.0172 -0.0040 -0.0002 0.0006 0.0003 0.0005

RMSE 0.0653 0.0448 0.0323 0.0206 0.0140 0.0099

8 Variance 0.0035 0.0016 0.0008 0.0003 0.0001 0.0001

Bias -0.0323 -0.0128 -0.0008 0.0005 0.0003 0.0001

RMSE 0.0607 0.0406 0.0279 0.0175 0.0122 0.0085

? ρ = 0.5, β = 0.32, xit = |N(0, 1)|, ci ∼ |N(0, 0.322)|.

Tables 3 and 4 give the results for size and power. For T = 3 and 4, size is satisfactory even for

a relatively small N . However, there are large size distortions for T = 6 and 8, most likely owing

to the rapidly (quadratically) growing number of instruments. For these cases, one needs large N

to reduce the percentage of over-rejection. Notably, size for the β tests improves more rapidly than

the size for the ρ tests with increased N . We need N ≥ 2, 500 to bring down the size to below 10%

for ρ and N ≥ 1, 000 for β.
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Table 3. Benchmark Small Samples Results for Size and Power of Tests Based on ρ̂GMM .?

T\N 250 500 1,000 2,500 5,000 10,000

3 Size H∗0 0.0536 0.0636 0.0627 0.0600 0.0515 0.0545

Power H†a 0.1157 0.1382 0.1728 0.2811 0.4595 0.7115

Power H‡b 0.0433 0.0683 0.1102 0.2331 0.4255 0.7380

4 Size H0 0.0817 0.0728 0.0697 0.0540 0.0545 0.0505

Power Ha 0.2240 0.2619 0.3180 0.5560 0.8315 0.9780

Power Hb 0.0618 0.0781 0.1976 0.5045 0.8205 0.9875

6 Size H0 0.2478 0.1508 0.0901 0.0625 0.0560 0.0530

Power Ha 0.5937 0.5780 0.6855 0.9045 0.9955 1.0000

Power Hb 0.0986 0.1549 0.3540 0.8525 0.9935 1.0000

8 Size H0 0.7072 0.3977 0.1816 0.0750 0.0530 0.0605

Power Ha 0.9309 0.8785 0.9020 0.9875 1.0000 1.0000

Power Hb 0.3026 0.1433 0.4667 0.9630 1.0000 1.0000

? ρ = 0.5, β = 0.32, xit = |N(0, 1)|, ci ∼ |N(0, 0.322)|.
∗ H0 : ρ = 0.5. † Ha : ρ = 0.6. ‡ Hb : ρ = 0.4 (5% level).
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Table 4. Benchmark Small Samples Results for Size and Power of Tests Based on β̂GMM .?

T\N 250 500 1,000 2,500 5,000 10,000

3 Size H∗0 0.0604 0.0511 0.0541 0.0490 0.0610 0.0540

Power H†a 0.1608 0.2457 0.4184 0.7274 0.9430 0.9990

Power H‡b 0.1140 0.2102 0.4149 0.7654 0.9705 0.9995

4 Size H0 0.0800 0.0660 0.0522 0.0545 0.0505 0.0445

Power Ha 0.2564 0.4081 0.6670 0.9400 0.9990 1.0000

Power Hb 0.1940 0.4023 0.6354 0.9675 1.0000 1.0000

6 Size H0 0.1450 0.0875 0.0641 0.0620 0.0450 0.0485

Power Ha 0.5737 0.7185 0.8848 0.9975 1.0000 1.0000

Power Hb 0.3658 0.6500 0.9049 0.9990 1.0000 1.0000

8 Size H0 0.2732 0.1376 0.0950 0.0660 0.0565 0.0590

Power Ha 0.8258 0.8842 0.9630 1.0000 1.0000 1.0000

Power Hb 0.4664 0.7399 0.9750 1.0000 1.0000 1.0000

? ρ = 0.5, β = 0.32, xit = |N(0, 1)|, ci ∼ |N(0, 0.322)|.
∗ H0 : β = 0.3188. † Ha : β = 0.4188. ‡ Hb : β = 0.2188 (5% level).

We next modify the benchmark DGP of yit, xit and ci in various ways and look at the behavior

of our estimators. A selection of the results of these alternative specifications is given in Table 5 for

T = 3 and N = 500.

First, we look at the effect of changing the variance of the fixed effects. We increase σc so that

π̄ = 0.75 and then further so that π̄ = 0.95. As to be expected, increasing σc causes a deterioration

of the estimates, increasing the percentage of γ′s falling out of bounds, along with variance, bias,

and RMSE, a rise in size and decrease in power. However, the empirical size is still generally close

to the nominal size for N ≥ 5, 000.

Next, we vary ρ and β individually in the benchmark simulation, choosing ρ = ρbm ± 0.4 and

β = βbm ± 0.2, where ρbm and βbm denote the benchmark values. These variations impart little

change to the results of the benchmark. The higher value of ρ causes a fall in the percentage of γ

falling out of bounds.

We then modify the benchmark to allow the fixed effect to be correlated with the exogenous

variables. We set ci = bω,T (ωx̄bm
i +(1−ω)cbm

i ), where x̄bm
i = 1

T

∑T
t=1 x

bm
it and cbm

i is the benchmark

value of the fixed effect, for ω = 0.25, 0.50, 0.75. bω,T is chosen so that π̄ is equal to the benchmark

value. This has little or no effect on the results.
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We also consider the effect of cross-sectional heterogeneity in xit by modifying the benchmark

exogenous process to, xit = h(µi + σi|εit|), where µi ∼ U(0, 1), σ2
i ∼ χ2

2, and εit ∼ N(0, 1). We

set h = 0.52444 to match the value of π̄ in the benchmark model. We find that the results for

the estimates of ρ are not much affected by the heterogeneity in the xit processes. The results for

β, on the other hand, have higher variance, bias, and RMSE than the results obtained under the

benchmark model. The same also applies to size and power where under heterogeneity we observe

a deterioration in size and power as compared to the benchmark case.

We then consider the effect of autocorrelation in the exogenous variables on the results. In this

case we modify the benchmark exogenous process to xit = |0.1ζit + dT + 0.2t|, where for each i, ζit

is a Gaussian AR(1) with autoregressive coefficient 0.5, variance 1, and independently distributed

across i. ci are generated as in the benchmark case. The parameters are calibrated by simulation

to produce an expected proportion of 1’s of π̄bm in populations of size N = 10, 000. We find

that autocrrelation in the covariates has no significant effect on the results for the estimates of ρ.

However, the variance, bias, and RMSE of the estimate of β are all higher than in the benchmark.

Size also deteriorates with autocorrelation, with power being significantly lower than under the

benchmark case.
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5.2 GMM versus CMLE

In this subsection we report comparative results for GMM and CMLE estimation methods for ρ

with β = 0. Recall that CMLE method is not applicable to the exponential model if β 6= 0. GMM

estimation uses the following moment conditions,

E(eit) = 0, t = 3, . . . , T,

E(yiseit) = 0, t = 3, . . . , T, s = 1, . . . , t− 2.

The CMLE procedure is described in Section 3.3.

The results for bias and RMSE are summarized in Tables 6 and 7, and for size and power in

Tables 8 and 9. In terms of RMSE, GMM outperforms CMLE for all values of T under consideration

(T = 3, 4, 6,8), although for T = 6 and 8 GMM shows a higher degree of bias than CMLE. In terms

of size, CMLE does better than GMM, and matches the nominal size for all values of T , whilst

GMM tends to over-reject when T > 6. But generally GMM outperforms CMLE in terms of power

when the sizes are comparable.

Table 6. Small Samples Results for CMLE Estimates of ρ when β = 0.?

T\N 250 500 1,000 2,500 5,000 10,000

3 Variance 0.1000 0.0484 0.0237 0.0093 0.0044 0.0024

Bias 0.0300 0.0150 0.0107 0.0031 0.0025 0.0006

RMSE 0.3176 0.2205 0.1543 0.0966 0.0666 0.0487

4 Variance 0.0477 0.0230 0.0116 0.0050 0.0022 0.0011

Bias 0.0078 0.0034 0.0052 0.0017 -0.0009 -0.0008

RMSE 0.2186 0.1518 0.1077 0.0706 0.0474 0.0336

6 Variance 0.0300 0.0130 0.0064 0.0026 0.0013 0.0006

Bias -0.0100 -0.0031 -0.0039 -0.0007 0.0003 -0.0005

RMSE 0.1600 0.1141 0.0804 0.0512 0.0357 0.0255

8 Variance 0.0203 0.0105 0.0055 0.0020 0.0010 0.0005

Bias -0.0019 0.0009 -0.0008 -0.0004 -0.0006 0.0001

RMSE 0.1427 0.1026 0.0745 0.0447 0.0318 0.0230

? ρ = 0.5, β = 0, ci ∼ |N(0, 0.322)|.
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Table 7. Small Samples Results for GMM Estimates of ρ when β = 0.?

T\N 250 500 1,000 2,500 5,000 10,000

3 Variance 0.0640 0.0325 0.0170 0.0069 0.0032 0.0017

Bias 0.0301 0.0130 0.0055 0.0005 0.0001 0.0007

RMSE 0.2427 0.1774 0.1301 0.0828 0.0567 0.0412

4 Variance 0.0264 0.0135 0.0067 0.0027 0.0012 0.0006

Bias -0.0121 -0.0045 -0.0022 -0.0015 -0.0017 -0.0001

RMSE 0.1599 0.1161 0.0818 0.0522 0.0353 0.0249

6 Variance 0.0115 0.0054 0.0026 0.0010 0.0005 0.0002

Bias -0.0288 -0.0121 -0.0057 -0.0014 -0.0005 -0.0006

RMSE 0.1105 0.0747 0.0515 0.0318 0.0217 0.0156

8 Variance 0.0080 0.0036 0.0015 0.0006 0.0003 0.0002

Bias -0.0514 -0.0174 -0.0052 -0.0018 -0.0005 0.0000

RMSE 0.1030 0.0622 0.0394 0.0249 0.0177 0.0127

? ρ = 0.5, β = 0, ci ∼ |N(0, 0.322)|.

Table 8. Small Sample Size and Power Results for CMLE Estimation of ρ when β = 0.?

T\N 250 500 1000 2,500 5,000 10,000

3 Size H∗0 0.0445 0.0440 0.0520 0.0410 0.0430 0.0540

Power H†a 0.0640 0.0730 0.0915 0.1750 0.2895 0.5475

Power H‡b 0.0455 0.0600 0.0900 0.1715 0.3100 0.5320

4 Size H0 0.0525 0.0510 0.0560 0.0600 0.0540 0.0510

Power Ha 0.0800 0.0970 0.1490 0.3155 0.5650 0.8450

Power Hb 0.0625 0.0900 0.1545 0.3265 0.5365 0.8430

6 Size H0 0.0500 0.0475 0.0500 0.0525 0.0475 0.0535

Power Ha 0.1000 0.1530 0.2640 0.4995 0.7935 0.9765

Power Hb 0.0900 0.1415 0.2230 0.4990 0.7990 0.9725

8 Size H0 0.0455 0.0520 0.0615 0.0485 0.0445 0.0540

Power Ha 0.1090 0.1600 0.3000 0.6010 0.8710 0.9920

Power Hb 0.1050 0.1790 0.2890 0.6025 0.8810 0.9905

? ρ = 0.5, β = 0, ci ∼ |N(0, 0.322)|.
∗ H0 : ρ = 0.5. † Ha : ρ = 0.6. ‡ Hb : ρ = 0.4 (5% level).
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Table 9. Small Sample Size and Power Results for GMM Estimation of ρ when β = 0.?

T\N 250 500 1,000 2,500 5,000 10,000

3 Size H∗0 0.0496 0.0509 0.0533 0.0510 0.0485 0.0515

Power H†a 0.0926 0.1081 0.1523 0.2646 0.4405 0.6915

Power H‡b 0.0380 0.0566 0.1016 0.2216 0.3895 0.7025

4 Size H0 0.0712 0.0607 0.0595 0.0650 0.0545 0.0480

Power Ha 0.1761 0.2007 0.2890 0.5305 0.8090 0.9755

Power Hb 0.0577 0.1069 0.2150 0.4840 0.8130 0.9815

6 Size H0 0.1097 0.0795 0.0690 0.0545 0.0425 0.0420

Power Ha 0.3179 0.3865 0.5750 0.8795 0.9930 1.0000

Power Hb 0.1268 0.2310 0.4640 0.8840 0.9960 1.0000

8 Size H0 0.1989 0.1055 0.0615 0.0490 0.0580 0.0540

Power Ha 0.5746 0.5915 0.7735 0.9785 1.0000 1.0000

Power Hb 0.1643 0.3490 0.7035 0.9840 1.0000 1.0000

? ρ = 0.5, β = 0, ci ∼ |N(0, 0.322)|.
∗ H0 : ρ = 0.5. † Ha : ρ = 0.6. ‡ Hb : ρ = 0.4 (5% level).

5.3 Reducing the Number of Instruments

In order to address the issue of the large number of instruments, we us the benchmark DGP and limit

the number of instruments adopting five different procedures. (1) The first (benchmark) procedure

uses all available linear instruments as detailed in subsection 5.1. Procedure (2) restricts the set of

instruments, following the method proposed by Mehrhoff (2009), by utilizing only the few largest

principal components (PC) of the instruments in estimation. The number of principal components

is selected so that at least 95% of the total variation of the instruments under consideration is

explained by the PC’s.12 Procedure (3) reduces the number of instruments to two lags of yit and

xit, as well as the constant. That is, it utilizes the following 5T − 11 moment conditions,

E(eit) = 0, E(xiteit) = 0, E(xi,t−1eit) = 0, for t = 3, 4, ..., T ;

E(yi,t−2eit) = 0, for t = 3, 4, ..., T ;

E(yi,t−3eit) = 0, for t = 4, 5, ..., T.

12We also tried setting the threshold at 90%. This gets rid of too much information when T is small and does not

help much for large T so it does not substantively change the main results of our experiments.
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Procedure (4) applies Mehrhoff’s method to the reduced set of instruments under (3). Finally,

procedure (5) reduces the number of instruments further by using two lags of yit, and only one lag

of xit, as well as the constant, bringing the total number of instruments to 4T − 9.

Tables 10 and 11 report the results for T = 4, 6, 8 and N = 250, 500, 2, 500, as these were the

sample sizes for which the GMM estimator performed worse. Reducing the number of instruments

typically improves bias and size at a small cost to variance and RMSE. The benefit of the reduction

in the number of instruments is most pronounced for T = 6, 8, where bias and size are significantly

improved. In terms of variance, procedure (1) is optimal. Procedures (4) and (5) have the lowest

bias. Procedure (2) is best for the RMSE of β̂. For the RMSE of ρ̂, there is no clear winner among

the alternative instrument selection procedures, although procedure (5) performs best in terms of

RMSE for T = 8. Procedures (4) and (5) have the best size properties. We conclude that the

GMM estimator performs well for large T when the number of instruments is reduced by one of the

methods employed here.

5.4 Average Partial Effects

To provide additional support for our choice of the exponential specification, here we present evi-

dence of its ability to reproduce the average partial effects of a dynamic logistic model. Suppose

the DGP is given by the logistic specification

Pr(yit = 1 |yi,t−1, cil, xit ) =
eρlyi,t−1+βlxit+cil

1 + eρlyi,t−1+βlxit+cil
.

Then the marginal effect for continuous xit is

∂ Pr (yit = 1|yi,t−1, cil, xit)

∂xit
=

βle
ρlyi,t−1+βlxit+cil

(1 + eρlyi,t−1+βlxit+cil)2
.

On the other hand, the marginal effect of yi,t−1 is given as

Pr (yit = 1 |yi,t−1 = 1, cil, xit )− Pr (yit = 1 |yi,t−1 = 0, cil, xit ) =
eρl+βlxit+cil

1 + eρl+βlxit+cil
− eβlxit+cil

1 + eβlxit+cil
.

For a particular xit, say the average x̄ = 1
NT

∑
i,t xit, we may be interested in the average marginal

effect over the entire population (i.e. averaging over the fixed effects). These quantities may be
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calculated as,

APEX (yi,t−1 = 1, xit = x̄) = eβ
′
lx̄+ρlβl lim

N→∞

1

N

N∑
i=1

ecil

(1 + ecil+βlx̄+ρl)
2 ,

APEX (yi,t−1 = 0, xit = x̄) = eβlx̄βl lim
N→∞

1

N

N∑
i=1

ecil

(1 + ecil+βlx̄)
2 ,

APEY (xit = x̄) = eβlx̄ (eρl − 1) lim
N→∞

1

N

N∑
i=1

[
ecil

(1 + ecil+βlx̄) (1 + ecil+ρl+βlx̄)

]
,

where the averages over i are obtained by drawing from the distribution of cil. That is, the average

partial effects are obtained by stochastic integration over cil.

Now suppose that data from this logistic DGP are used to estimate ρe and βe using the GMM

procedure we have outlined above (i.e. based on the exponential specification). The question is,

how well do these estimates reproduce the (true) average partial effects given above for the logistic

specification? To answer this question, we must first specify how the fixed effects of the exponential

specification are to be computed. We do this by deriving fixed effects under exponential specification,

cie, in terms of the fixed effects of the true logistic specification, cil, by matching the transitions

from 0 to 1 given xit = x̄i = 1
T

∑
t xit across the two specifications, namely13

1− e−cie−βex̄i =
ecil+βlx̄i

1 + ecil+βlx̄i
,

which yields

e−cie =
eβex̄i

1 + ecil+βlx̄i
.

We may then estimate the average partial effects as

ÂPEX (yi,t−1 = 1, xit = x̄) =β̂ee
−ρ̂e−β̂ex̄ lim

N→∞

1

N

N∑
i=1

eβ̂ex̄i

1 + ecil+βlx̄i
,

ÂPEX (yi,t−1 = 0, xit = x̄) =β̂ee
−β̂ex̄ lim

N→∞

1

N

N∑
i=1

eβ̂ex̄i

1 + ecil+βlx̄i
,

ÂPEY (xit = x̄) =e−β̂ex̄(1− e−ρ̂e) lim
N→∞

1

N

N∑
i=1

eβ̂ex̄i

1 + ecil+βlx̄i
.

13It is also possible to match the transitions from 1 to 1 given xit = x̄i. This gives slightly different exponential fixed

effects. But it does not change the general conclusion of this section. The results that condition on x̄i are available

from the authors on request.
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The benchmark APE results are computed under the logistics model employed by Honoré and

Kyriazidou (2000), where ρl = 0.5, βl = 1, xit ∼ N(0, π2/3), and cil ∼ N(0, 1). To avoid any com-

plications with initial conditions, the data are burned in for the first 100 periods in each replication,

while being careful to keep xit fixed across replications. The simulations are based on N = 1, 000,

T = 3, and each experiment is repeated 2, 000 times to obtain the mean, variance, bias, and RMSE

of the APEs. We vary the DGP and the data sets in a variety of ways (see Table 12).

The results indicate that the average partial effects obtained using the exponential specification,

with matched fixed effects as explained above, are close to the true average partial effects. In partic-

ular, the ÂPEY is typically quite close to APEY . This provides further evidence of the robustness

of the exponential specification in that it yields sensible estimates for the average partial effects

even when the exponential distribution is misspecified. In fact, the same exercise was conducted

using a probit distribution. The results were similar and in all cases matched the sign of the true

partial effects, although they showed a greater degree of bias.14

6 Conclusion

In this paper we consider identification and estimation of dynamic binary response panel data

models. We develop an exponential class of models and derive CML and GMM estimators that

enable us to eliminate the unobserved heterogeneity and at the same time to identify the model

parameters. We show that for the exponential family of distributions that we consider the GMM

approach is more generally applicable and yields consistent and
√
N asymptotically normal estima-

tors for dynamic models with and without covariates. But in the case of exponentially distributed

errors the CML approach can only identify the state dependence parameter and cannot identify

the parameters of the covariates. The GMM approach proposed here is simple, general, and offers

several advantages over the existing estimators that will be particularly appealing for analyzing

microeconomic panel data from a dynamic perspective.

As is well known, it is important to use a dynamic binary choice specification to model the state

dependence in a panel setting because of the model’s ability to distinguish the state dependence

from the unobserved heterogeneity among other useful features. The dynamic binary choice models,

14To save space the results for the probit distribution are available in an online supplement.

34



T
ab

le
12

.
L

o
g
is

ti
c

v
s.

Im
p

li
ed

E
x
p

o
n

en
ti

a
l

A
ve

ra
g
e

P
a
rt

ia
l

E
ff

ec
ts

.

E
x
p

er
im

en
t

1
2

3
4

5
6

7
8

9
1
0

1
1

A
P
E
X

1
0.

19
87

0.
18

91
0
.2

0
5
0

0
.2

9
8
3

0
.0

9
9
3

0
.1

7
2
1

0
.2

2
3
8

0
.1

9
8
8

0
.1

9
8
7

0
.2

0
0
9

0
.1

9
8
4

M
ea

n
Â
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however, have been rarely used in analyzing microeconomic data, mainly due to the problems

associated with the initial condition in combination with the incidental parameter problems. Our

approach based on the exponential specification resolves the incidental parameter problem and the

resulting estimators can be readily implemented, and also have good asymptotic properties.

Both the GMM and the CML estimators perform well under a variety of scenarios. Our results

show that the estimators are robust to changes in the variance of the fixed effects, different values

of ρ and β, correlation between the fixed effects and the regressors, heterogeneity in the regressors

across the different units, and autocorrelation in the regressors. In each of the experiments, we

considered bias, variance, RMSE, size, and power of the GMM estimators. GMM worked quite well

for relatively small sample sizes. We also tested the CMLE and compared its performance to the

GMM estimator. Interestingly, GMM emerges as a better estimator than CMLE for small values of

T (when β = 0 and both estimators are applicable). In the case of large T we experimented with the

moment reduction techniques of Mehrhoff (2009) finding significant improvements in performance

in small samples. We also presented evidence of the ability of the exponential specification to match

the average partial effects from a logistic dynamic binary choice model.

7 Appendix

7.1 Proof of the Uniqueness of the Exponential Distribution

Proposition A1: Suppose F is a differentiable cumulative distribution function. If there exist functions G and H such

that F (x+ y)− F (x) = G(y)H(x) then F = 1− C exp(−Dx) for some positive constants C and D.

Proof: Assume without loss of generality that sgn(G(y)) = sgn(y) and H is non–negative. Now take the limit as

y → ∞. Then A = limy→∞G(y) exists and 1 − F (x) = AH(x). Since F is a cumulative distribution function,

it is non–constant and so A 6= 0. In particular, the non–negativity of G over positive real numbers implies that

A > 0. This now implies that F (x + y) − F (x) = A−1(1 − F (x))G(y). Divide both sides by y and take the limit

as y → 0. The differentiability of F implies that B = limy→0 G(y)/y exists and F ′(x) = B
A

(1 − F (x)). Since F is

non–decreasing and bounded by 0 and 1, the sign of B cannot be negative. Since F is also non–constant B 6= 0 so

we must have B > 0. The final step is to note that we have arrived at a differential equation in x that can be solved

as, F (x) = 1−C exp(−B
A
x) for some constant C. Again, since F is a cumulative distribution function, we must have

C > 0.
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7.2 GMM in the case where β = 0 and T = 3

In the case where T = 3 we only have one moment condition with which to estimate γ (or ρ), namely

N∑
i=1

ei3(γ)yi1 =

N∑
i=1

yi1

[
(yi3 − γyi2) (1− γyi1)

(1− γyi2)
− (yi2 − γyi1)

]
= 0. (21)

Note that ei3(γ) does not depend on γ if yi1 + yi2 + yi3 = 0 or = 3. Consider now the case where yi1 + yi2 + yi3 = 2,

and note further that observations where yi1 = 0 and yi2 = yi3 = 1 can be dropped since yi1ei3(γ) = 0. The other

remaining cases are (yi1, yi2, yi3) = (1, 0, 0), (1, 1, 0), and (1, 0, 1). Denote the number of cross section units associated

with these patterns of observations over time by n100, n110 and n101, respectively. Then the moment condition in γ

can be written as

n100γ̂GMM,1 − n110 + n101 = 0.

Hence, if n100 6= 0

γ̂GMM,1 =
n110 − n101

n100
.

An estimate for ρ can be obtained if n110 < n100 + n101.

In the case where n100 = 0, the above GMM estimator is not valid. But since E(eit |yi,t−s ) = 0, we also have

unconditionally that E(eit) = 0. This suggests the following sample moment condition

N∑
i=1

[
(yi3 − γyi2) (1− γyi1)

(1− γyi2)
− (yi2 − γyi1)

]
= 0. (22)

Once again we only need to consider observations where yi1 + yi2 + yi3 = 1 or yi1 + yi2 + yi3 = 2. Then we have

n100γ −
1

1− γ n010 + n001 + n101 − n110 = 0, (23)

−n100γ
2 + (n100 + n110 − n001 − n101)γ + n001 + n101 − n110 − n010 = 0. (24)

Preliminary analysis suggests that the solutions to (24) could be complex, and when real could fall outside

the range [0, 1), and hence might not yield sensible estimates for ρ. It is, therefore, more meaningful to use the

unconditional moment condition only when n100 = 0. In this case the solution to the unconditional moment condition

is unique and is given by (obtained by setting n100 in (23) zero)

γ̂GMM,2 = 1− n101

n001 + n101 − n110
.

Hence, in general we could estimate γ by

γ̂GMM =
n110 − n101

n100
, if n100 6= 0,

= 1− n101

n001 + n101 − n110
, if n100 = 0.
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7.3 CMLE in the Case where β = 0 and T = 3

Suppose we have observations yi1, yi2 and yi3 on N individual units. Denote the set of all observations such that

yi1 + yi2 + yi3 = 1 by B and define the sets

A1 = {yi1 = 1, yi2 = 0, yi3 = 0} ,

A2 = {yi1 = 0, yi2 = 1, yi3 = 0} ,

A3 = {yi1 = 0, yi2 = 0, yi3 = 1} .

It is now easily seen that (given the Markov property and (4))

Pr(A1) = Pr(yi1 = 1) Pr(yi2 = 0 |yi1 = 1) Pr(yi3 = 0 |yi2 = 0)

= π∗i [1− F (ci + ρ)] [1− F (ci)]

=
F (ci) [1− F (ci + ρ)] [1− F (ci)]

1− F (ci + ρ) + F (ci)
.

Similarly

Pr(A2) =
F (ci) [1− F (ci + ρ)]2

1− F (ci + ρ) + F (ci)
,

Pr(A3) =
[1− F (ci + ρ)] [1− F (ci)]F (ci)

1− F (ci + ρ) + F (ci)
,

and

Pr(B) = Pr(A1) + Pr(A2) + Pr(A3).

Also

Pr(Ai) = Pr(Ai ∩ B) = Pr(B) Pr(Ai |B ),

and

Pr(Ai |B ) =
Pr(Ai)
Pr(B)

for i = 1, 2, 3.

Hence

Pr(A1 |B ) =
[1− F (ci)]

[1− F (ci + ρ)] + 2 [1− F (ci)]
,

Pr(A2 |B ) =
[1− F (ci + ρ)]

[1− F (ci + ρ)] + 2 [1− F (ci)]
,

Pr(A3 |B ) = 1− Pr(A1 |B )− Pr(A2 |B ).

In the exponential case, 1− F (ci) = exp(−ci) and 1− F (ci + ρ) = exp(−ci − ρ), and

Pr(A1 |B ) =
1

exp(−ρ) + 2
, Pr(A2 |B ) =

exp(−ρ)

exp(−ρ) + 2
,

Pr(A3 |B ) =
1

exp(−ρ) + 2
,

which do not depend on the incidental parameters. It is clear that conditioning on yi1+yi2+yi3 = 0 and yi1+yi2+yi3 =

3 will not help. It only remains to consider the case where the conditioning set is yi1 + yi2 + yi3 = 2. Denoting

C1 = {yi1 = 1, yi2 = 1, yi3 = 0} , C2 = {yi1 = 0, yi2 = 1, yi3 = 1} ,

C3 = {yi1 = 1, yi2 = 0, yi3 = 1} , D = C1 ∪ C2 ∪ C3 = {yi1 + yi2 + yi3 = 2} .
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It is easily seen that

Pr(C1 |D ) =
F (ρ+ ci)

2F (ρ+ ci) + F (ci)
, Pr(C2 |B ) =

F (ρ+ ci)

2F (ρ+ ci) + F (ci)
,

Pr(C3 |B ) =
F (ci)

2F (ρ+ ci) + F (ci)
.

These conditional probabilities depend on ci even if F (·) has an exponential form. Consequently, the only appropriate

conditioning is yi1 + yi2 + yi3 = 1.

The conditional likelihood function for the exponential model is given by

Lc(ρ) =
∏
i∈B

(
1

exp(−ρ) + 2

)yi1+yi3 ∏
i∈B

(
exp(−ρ)

exp(−ρ) + 2

)yi2
=

∏
i∈B

(
1

exp(−ρ) + 2

)yi1+yi2+yi3 ∏
i∈B

(exp(−ρ))yi2 ,

and

lnLc(ρ) = −
∑
i∈B

ln [exp(−ρ) + 2]− ρ
∑
i∈B

yi2 (25)

= − ln [exp(−ρ) + 2]

N∑
i=1

I(yi1 + yi2 + yi3 = 1)− ρ
N∑
i=1

yi2I(yi1 + yi2 + yi3 = 1),

where I(A) = 1 is A is true and I(A) = 0 if A is not true. The conditional log-likelihood function can be written

more compactly as

lnLc(ρ) = nB {− ln [exp(−ρ) + 2]− ρ p̂} ,

where nB =
∑N
i=1 I(yi1 + yi2 + yi3 = 1), and

p̂ =

∑N
i=1 yi2I(yi1 + yi2 + yi3 = 1)∑N
i=1 I(yi1 + yi2 + yi3 = 1)

=

∑N
i=1 I(yi1 = 0, yi2 = 1, yi3 = 0)∑N
i=1 I(yi1 + yi2 + yi3 = 1)

.

Also since
∂ lnLc(ρ)

∂ρ
= nB

{
exp(−ρ)

2 + exp(−ρ)
− p̂

}
,

then the conditional maximum likelihood estimator of ρ is given by

ρ̂ = − ln

(
2p̂

1− p̂

)
. (26)

The standard error for ρ̂ can be obtained using the second derivative of the conditional log-likelihood function. We

have

V ar(ρ̂) =
1

nB

[2 + exp(−ρ)]2

2 exp(−ρ)
.

7.4 Proof of Theorem 1

Given assumption (A3), and using (12) we have

π∗i = Pr(yi1 = 1|ci) =
1− e−ci

1− e−ci(1− e−ρ0)
,
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and it is evident that this choice of initial distribution makes yit stationary conditional on ci. Thus π∗i = Pr(yit =

1|ci) = Pr(yi1 = 1|ci) for t ≥ 1. To simplify notation we first note that eit defined by (15) can also be written as:15

eit = eρ∆yi,t−1(yit − 1) + 1− yi,t−1.

Let fi(ρ) = eityi,t−2, and note that

E
[
eρ∆yi,t−1(yit − 1)yi,t−2

]
= E

[
E(yit − 1|ci, yi,t−1, yi,t−2, . . .)e

ρ∆yi,t−1yi,t−2

]
= −E(e−ci−ρ0yi,t−1eρ∆yi,t−1yi,t−2)

= −E(e−ci−(ρ0−ρ)yi,t−1−ρyi,t−2yi,t−2)

= −E
[
E(e−(ρ0−ρ)yi,t−1 |ci, yi,t−2, yi,t−3, . . .)e

−ci−ρyi,t−2yi,t−2

]
= −E

[
(e−(ρ0−ρ)(1− e−ci−ρ0yi,t−2) + e−ci−ρ0yi,t−2)e−ci−ρyi,t−2yi,t−2

]
= −E(e−ci−(ρ0−ρ)−ρyi,t−2yi,t−2 − e−2ci−(ρ0−ρ)−(ρ+ρ0)yi,t−2yi,t−2

+ e−2ci−(ρ+ρ0)yi,t−2yi,t−2)

= −e−ρ0E(e−ciπ∗i ) + e−2ρ0E(e−2ciπ∗i )− e−ρ0−ρE(e−2ciπ∗i ).

Also

E [(1− yi,t−1)yi,t−2] = E [E(1− yi,t−1|ci, yi,t−2, yi,t−3, . . .)yi,t−2]

= E(e−ci−ρ0yi,t−2yi,t−2) = e−ρ0E(e−ciπ∗i ).

Summing up we obtain

E [fi(ρ)] = (e−ρ0 − e−ρ)e−ρ0E(e−2ciπ∗i ).

Clearly E(e−2ciπ∗i ) ≤ 1. On the other hand, using assumption (A1),

E(e−2ciπ∗i ) = E

(
e−2ci(1− e−ci)

1− e−ci(1− e−ρ0)

)
≥ E

(
1

2
e−2ci(1− e−ci)

)
≥ K

2
Pr(e−2ci(1− e−ci) ≥ K).

Assumption (A1) implies that 0 < e−ci < 1 almost surely, thus it is possible to choose K so that the right hand side

is positive. Thus E [fi(ρ)] is continuous in ρ and equals zero if and only if ρ = ρ0. This satisfies Assumption 1.1 of

Harris and Mátyás (1999).

Consider now f ′i(ρ) = eρ∆yi,t−1∆yi,t−1(yit − 1)yi,t−2, which is clearly continuous and bounded by emax(R) for all

ρ ∈ R. It follows that,

|fi(ρ)− fi(ρ′)| ≤ emax(R)|ρ− ρ′|,

for all ρ, ρ′ ∈ R and so f is Lipschitz. This, together with assumptions (A4) and (A5) implies that N−1∑N
i=1 fi(ρ)

converges uniformly to E [fi(ρ)] by Corollary 3.1 of Newey (1991).16 This satisfies Assumption 1.2 of Harris and

Mátyás (1999) and it follows from the their Theorem 1.1 that ρ̂ is consistent.

15Since γ = 1 − exp(−ρ), and because yi,t−1 and yi,t−2 take 0 and 1 values only, then it is easily verified that

(1− γyi,t−2) / (1− γyi,t−1) and eρ∆yi,t−1 give the same values for all admissible choices of yi,t−1 and yi,t−2.
16See the discussion in Harris and Mátyás (1999) pp. 14-17.
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The continuity of f ′i(ρ) satisfies Assumption 1.7 of Harris and Mátyás (1999). f ′′i (ρ) = eρ∆yi,t−1(∆yi,t−1)2(yit −

1)yi,t−2 is bounded again by emax(R). Thus f ′i(ρ) itself is Lifschitz and employing assumption (A6) it follows again

from Newey (1991) that N−1∑N
i=1 f

′
i(ρ) converges uniformly to E [f ′i(ρ)]. By Theorem 4.1.5 of Amemiya (1985),

N−1∑N
i=1 f

′
i(ρ̂) converges to Ef ′i(ρ0). This satisfies Assumption 1.8 of Harris and Mátyás (1999).

Now let i 6= j. By Assumption (A2), fi(ρ) and fj(ρ) are independent conditional on ci and cj . Therefore,

E [fi(ρ)fj(ρ)] = E [E(fi(ρ)|ci, cj)E(fj(ρ)|ci, cj)]. Assumption (A2) again implies that conditional on ci, fi(ρ) is

independent of cj . Thus E(fi(ρ)|ci, cj) = E(fi(ρ)|ci). It follows that E [fi(ρ)fj(ρ)] = E [E(fi(ρ)|ci)E(fj(ρ)|cj)]. Since

E(fi(ρ0)|ci) = 0, we have that E [fi(ρ0)fj(ρ0)] = 0 for i 6= j and so var
[
N−1/2∑N

i=1 fi(ρ0)
]

= N−1∑N
i=1 E

[
f2
i (ρ0)

]
.

Thus Assumption (A7) implies the last necessary assumption of Harris and Mátyás (1999), namely their Assumption

1.9.
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Method of Moments Estimation, ed. by L. Mátyás, Cambridge, U.K.: Cambridge University Press.

Hahn, J. (1999): “How Informative is the Initial Condition in the Dynamic Panel Data Model with Fixed Effects?”

Journal of Econometrics, 93, 309-326.

Hansen, L. P. (1982): “Large Sample Properties of Generalized Methods of Moments Estimators,” Econometrica,

50, 1029-1054.

Hayakawa, K. and M. H. Pesaran (2015), Robust standard errors in transformed likelihood estimation of dynamic

panel data models with cross-sectional heteroskedasticity, Journal of Econometrics, 188, 111-134.

Heckman, J. (1981a): “The Incidental Parameters Problem and the Problem of Initial Conditions in Estimating a

Discrete Time-Discrete Data Stochastic Process,” in Structural Analysis of Discrete Panel Data with Econo-

metric Applications, ed. by C. Manski and D. McFadden, Cambridge: MIT Press.

Heckman, J. (1981b): “Heterogeneity and State Dependence,” in Studies in Labor Markets, ed. by S. Rosen, Chicago:

University of Chicago Press.
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Honoré, B., and E. Kyriazidou (2000): “Panel Data Discrete Choice Models with Lagged Dependent Variables,”

Econometrica, 68, 839-874.

Hsiao, C. (2014): Analysis of Panel Data, Third Edition, Cambridge, U.K.: Cambridge University Press.

Hsiao, C., M. H. Pesaran, and K. A. Tahmiscioglu (2002): “Maximum Likelihood Estimation of Fixed Effects

Dynamic Panel Data Models Covering Short Time Periods,” Journal of Econometrics, 109, 107–150.

42



Lee, Y. and P.C.B. Phillips (2015): “Model selection in the presence of incidental parameters,” Journal of Econo-

metrics, 188(2), 474-489.

Magnac, T. (2001): “Subsidised Training and Youth Employment: Distinguishing Unobserved Heterogeneity from

State Dependence in Labour Market Histories,” Economic Journal, 110, 805-837.

Magnac, T. (2004): “Panel Binary Variables and Sufficiency: Generalizing Conditional Logit,” Econometrica, 72,

1859-1876.

Mehrhoff, J. (2009): “A Solution to the Problem of Too Many Instruments in Dynamic Panel Data GMM,” Discussion

Paper, Series 1, Economic Studies, Deutsche Bundesbank, Frankfurt.

Newey, W. K. (1991). “Uniform Convergence in Probability and Stochastic Equicontinuity,” Econometrica, 59,

1161-1167.

Pesaran, M. H. (2015). Time Series and Panel Data Econometrics. Oxford, U.K.: Oxford University Press.

Pesaran, M. H., and A. Timermann (2009): “Testing Dependence Among Serially Correlated Multicategory Vari-

ables,” Journal of the American Statistical Association, 104, 325-337.

Roodman, D. (2009): “A Note on the Theme of Too Many Instruments,” Oxford Bulletin of Economics and Statistics,

71, 135-158.

Wooldridge, J. M. (1997): “Multiplicative Panel Data Models without the Strict Exogeneity Assumption,” Econo-

metric Theory, 13, 667-678.

Wooldridge, J. M. (2002): Econometric Analysis of Cross Section and Panel Data, Cambridge, U.S.A.: MIT Press.

Wooldridge, J. M. (2005): “Simple Solutions to the Initial Conditions Problem in Dynamic, Nonlinear Panel-Data

Models with Unobserved Heterogeneity,” Journal of Applied Econometrics, 20, 39–54.

43


