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1 Introduction

This paper considers estimation and inference in the case of short T' (time dimension) and large N
(cross section dimension) dynamic binary choice panel data models with unobserved heterogeneity
that is allowed to be arbitrarily correlated with the covariates. This type of unobserved heterogeneity
is usually referred to as the fixed effect. Such models are of particular interest in many applications
since they can be used to distinguish between the presence of state dependence and the effect of
unobserved heterogeneity, as discussed in Heckman (1981a and 1981b). These models are usually
specified in terms of the distribution of the dependent variable conditional on the lagged dependent
variable, a set of (possibly time-varying) covariates, and an individual specific term that represents
unobserved heterogeneity.

As is well known, for dynamic panel data models with unobserved effects, an important issue
is the treatment of the initial observations. While in some cases initial observations can be viewed
as fixed constants if the actual start of the dynamic process coincides with the first time period in
the data, in general, if the dynamic model under consideration has been in effect before the first
period of the sample under consideration, there is an intrinsic and complex relationship between the
initial observations and the unobserved heterogeneity. Therefore, in general, it is important that
initial observations are allowed to depend on the unobserved individual effects in a model-coherent
manner, in the sense that the dynamic model assumed to generate the observations is compatible
with the processes assumed for the initial observations.

For linear models with an additive unobserved effect, appropriate transformations such as dif-
ferencing have been used to eliminate the unobserved effect, and GMM type estimators have been
proposed to estimate the transformed model. For example, see Anderson and Hsiao (1982), Arel-
lano and Bover (1995), Arellano and Carrasco (2003), Ahn and Schmidt (1995), Blundell and Bond
(1998), Hahn (1999), and Hsiao, Pesaran, and Tahmiscioglu (2002), Hayakawa and Pesaran (2015),
and among others surveyed in Arellano and Honoré (2001), Hsiao (2014), and Pesaran (2015, Ch.
27). However, for nonlinear panel data models in general and binary choice models in particular
the treatment becomes more complicated. When the unobserved effect is assumed to be a random
effect in that it is not correlated with the strictly exogenous variables, Heckman (1981b) suggests
to approximate the conditional distribution of the initial values given the exogenous variables and

the unobserved individual effects, and use maximum likelihood to estimate the model parameters.



Alternatively, Wooldridge (2005) proposes to specify an auxiliary distribution for the unobserved
individual effects conditional on the initial values and the exogenous variables leading to a simple
conditional maximum likelihood estimation. Both methods, while useful in addressing the initial
value problem, can at best be viewed as approximations of the true (conditional) distribution of
the initial values, and the unobserved heterogeneity, respectively. As discussed in Honoré (2002),
because of the complicated relationship that exist between initial values, unobserved heterogeneity
and the exogenous variables, it is almost unavoidable that modeling these two conditional distri-
butions could be inconsistent with the original model specification, and there could even be some
potential incoherency problems in the case of unbalanced panel data models.

Analysis of dynamic nonlinear panel data models with fixed effects, on the other hand, is further
complicated by the so-called incidental parameters problem, in addition to the initial value problem.
The incidental parameters problem arises because the number of unobserved effects increases with
N, the number of the individuals in the panel. As a result, the maximum likelihood estimator of
the structural parameters, while consistent when both N and T tend to infinity, it is inconsistent
with large N and fixed T'.

There are two approaches to dealing with the short 7' problem in non-linear dynamic panels.
One strand of the literature has focussed on developing modified maximum likelihood estimators
that attain bias reductions when 7' is fixed. Examples include the papers by Arellano (2003) for
static binary choice panel data models, and by Carro (2007), Bartolucci, Bellio, Salvan, and Sartori
(2012), and Lee and Phillips (2015) for dynamic binary choice panel data models. This approach
still requires T to be relatively large to attain significant bias reductions, as demonstrated in a
number of Monte Carlo studies reported in the literature, even in the simplest case where the initial
values are taken to be fixed constants.

Another approach in the literature is to eliminate the fixed effects as done in the linear mod-
els. This approach, solves the incidental parameters problem, although the initial values problem
remains. So far, however, there are only a few papers following this approach. Honoré and Kyr-
iazidou (2000) consider the dynamic logit model and derive a set of conditions under which the
parameters of the model are identified. They also propose consistent estimators of the model based
on the identification results, albeit the rate of convergence of the estimators is slower than the

usual v/ N-rate. In more recent papers, Bartolucci and Nigro (2010, 2012) consider a version of



the quadratic exponential model that closely mimics the dynamic logit model and propose a con-
ditional maximum likelihood estimator conditioning on the sufficient statistics for the individual
specific effects. However, with this specification the strict exogeneity assumption usually made on
the covariates in the standard dynamic panel data models is not met.! Also there could be some
potential incoherency problems arising from the separate model specification for the last period
from the other periods if one conducts sequential estimation, or if one deals with an unbalanced
panel. Arellano and Bonhomme (2011) provide a review of recent developments in the econometric
analysis of nonlinear panel data models.

In this paper we consider a dynamic binary choice panel data model with fixed effects, where
the error term follows an exponential distribution. We show that the model can be written as an
inhomogeneous Markov chain and using a result from Pesaran and Timmermann (2009) we convert
the non-linear model into a linear first-order autoregressive process in the indicator variables, and
derive moment conditions that are free from incidental parameters, and allow us to identify the
structural parameters (the state dependent parameter as well as the coefficients of the exogenous
covariates). Based on these moment conditions we propose GMM estimators that are consistent and
asymptotically normally distributed at the v/N-rate. Compared with the existing approaches, our
method identifies all the parameters of the model and yields simple-to-implement estimators that
have standard asymptotic properties. It turns out that the exponential specification we entertain,
as well as the moment conditions we employ, are variants of those proposed in Wooldridge (1997).2

In addition to the GMM estimators, since the conditional maximum likelihood approach has
been adopted in the literature in the case of the logistic distribution or the quadratic exponential
distribution in order to eliminate the fixed effects, we also study the conditional likelihood approach,
which can only identify the effect of state dependence under exponentially distributed errors. Since
our GMM estimators are general and simple to implement, we study their finite sample performance
through a comprehensive simulation study and the results indicate that our estimators perform quite
well in relatively small size samples.

Given that we are the first to propose the use of an exponential error distribution in a binary

1Strict exogeneity typically allows us to specify the likelihood of y;; conditional on ¢;, x;; and yi;_1. But in the
Bartolucci and Nigro (2010) specification, all periods observations of x;;+ must be taken into account. On the strict

exogeneity assumption and the other approaches in the literature, see Wooldridge (2002) for a survey.
2See Remark 1 for more details.



choice setting, it is important that this choice is motivated and further discussed. The first point to
bear in mind is that in the case of fixed effects binary choice models, the choice of the distribution
is in fact secondary; fixed effects (which are totally free of any restrictions) can be used to match
probability outcomes based on exponential and any other error distribution, including the logistic
ones used in the literature. In the case of models without any covariates (x;’s), the match can
be performed perfectly for all distributional specifications. When the model contains covariates,
the match between the exponential and other distributions, including the logistic, can be done for
specific values of x;, (at some t) or at the mean of x;;, namely at X;, as we demonstrate in Section
4.3. Therefore, at least in a binary choice setting the choice of the distribution is more a matter
of analytical and estimation convenience. Moreover, since in analyzing a nonlinear model such as a
binary choice model, a key quantity of interest is the average partial effect (APE), we will investigate
through Monte Carlo simulations how well the APEs are estimated with the exponential model if
the true underlying model happen to be logistic. Our results show that the exponential model yields
sensible estimates for the APEs even with a misspecified error distribution.

The rest of the paper is organized as follows. Section 2 sets out the model. Section 3 considers
the pure dynamic case without any covariates. Section 4 generalizes and extends the analysis of
Section 3 and allows for time-varying covariates. Section 5 presents the Monte Carlo results, and

Section 6 provides some concluding remarks. Technical proofs are provided in an appendix.

2 A General Dynamic Binary Choice Model and its Markov Chain
Representation

Suppose that y;; takes the values of zero and unity, for i =1,2,..., N, and t = 1,2, ..., T, and x;; is

a k x 1 vector of strictly exogenous, time-varying regressors; common time-varying regressors, such

as a time dummy, can also be included in x;. The standard dynamic binary panel data model with

fixed effects assumes that

vie = I(y;>0), (1)

vh = pyit—1 + B'Xi + ¢ + uir



where y}, is a latent variable that is not observed by the econometrician, I(A) is an indicator that
takes the value of 1 if A holds and 0 otherwise, u;; is the random error term assumed to be identically,
independently distributed (i.i.d.) with mean zeros, and ¢; represents the individual unobserved effect
that can be arbitrarily correlated with x;; and y; ;—1. We suppose that T is fixed and N is sufficiently
large. We are interested in p, the state dependence parameter, and 3, the coefficients of the k£ x 1
vector of the covariates, x;¢, where k is fixed. We refer to p and 3 as the structural parameters, and
refer to {¢;, i =1,2,..., N}, as the incidental parameters.

Denote the distribution of —u;; by F(-). Then we have

Pr(yic = 1|Y14—1,Y24—1s -, YN,t—1;C1, €2, . CN'; X1t, X2t .., XNt )

= Pr(yi = 1|yis—1,ci,%it) = Fpyir—1 + B'xit + &), (2)

where the first equation follows from the strict exogeneity assumption on x;;. The commonly used
probit or logit models correspond to F'(:) being either the standard normal distribution or the
logistic distribution, respectively.

The model can also be characterized as an inhomogeneous Markov chain with transition prob-
abilities

Yit = 0 1
Yit-1= 0 1— F(B'%xi +¢) F(B'xit + ¢;)
1 1-F(p+8%it+c) F(p+ 8%t +ci)

The distribution of y;; conditional on ¢; and x;; is complicated and in general depends on the past
(unknown) values of x;; for ¢ < 1. For given values of ¢; and x;;, unconditional probability of
yit = 1, is given by my = Pr (yir = 1|¢4, Xit, Xit—1, -.-Xi1, Xi0, Xi,—1, ... ). Then from the structure of

the Markov chain we have
mit = F(B'%it + ¢ + p)mis—1 + F(B'xi + ¢;) (1 — mip—1),
or
mit = \ieTie—1 + F(B8'xit + ¢i), (3)
where
Ait = F(B'%i + ¢ + p) — F(B'xi + ci).
The above difference equation has a stable solution if |A;;| < 1. To avoid absorbing states we

assume that |¢;| < K < oo,

B’xit| < K < oo, and [p| < K < oo, and then note that 0 <



F(Bxi+ci+p)—F(Bxyu+c)<1,if p>0,and 0 < F(B'%xi +¢;) — F(B'%xit +c;+p) < 1,if p < 0.
Recall that F'(z) is a non-decreasing positive function of z. Therefore, the distribution of the initial
observation, 7,1, converges to a well defined limit on (0,1). In general, the expression for m;; is a
complicated function of ¢;, p, and all values of 8'x; ,, for 7 < 1. An explicit expression for 7;; can
be found when 8 = 0. However, the GMM estimators that we develop in this paper do not require
modelling the initial conditions, so long m;; does not de-generate to 0 or 1, which is satisfied under

the bounded condition given above.

3 The Case of 3=0

3.1 The Likelihood Function

In the case where 3 = 0, the Markov chain has a time-invariant stationary distribution

1) — F(e) .

Priva=1le) = T=pms )1 F@) ™ )
0l — 1—F(ci+p) _ .

Prive=0le) = T Fe ) rme L (5)

We restrict p and ¢; so that ¢; and ¢; 4 p lie in the domain of F () and the above probabilities are
well defined. Note that unlike in the linear case, this does not necessarily restrict p to be bounded
above by 1. It is only required that ¢; and p are bounded.

The joint probability distribution of ¢;, vy;1, ¥i2, ..., ¥s7 can now be derived using the familiar

decomposition

Pr(¢i, i1, vi2, - vir) = Pr(e;) Pr(y i) Pr(yiz |yin, ¢i)-... Pr(vir |yir—1, ¢).

Consider now the observations y;; for t = 1,2, ..., T, and note that, under stationarity, the likelihood

function for the 7" unit at time ¢ = 1 is given by
Pr(yit [ei, p) = (w0 (1 —m;)' o, (6)
and for time t = 2,3,...,T, by

Pr(yit |yit—1,ci,p) (7)
_ [F(Cl + p)]yityi,t—l [1 o F(Ci + p)}(l—yit)yi,t—l [F(Ci)]yit(l—yi,t—l) [1 _ F(Ci)](l—yit)(l—yz‘,t—l) )



Setting Y = (yi, t = 1,...,N;t = 1,2,...,T), the log likelihood function for the panel (assuming

independence across ) is given by

M=

WplY,c) = [y In(77) + (1 — i) In(1 — 7)] +

1

-.
Il

(1 —yit)yip—1In[l — F(c; + p)] +

Mﬂ

T
Z YitYit— lln Cz"‘ﬂ +Z

M=

i=1 t=2 i=1 t=2
N T N T
SN wi( =g ) [Fe)]+ YD (1= yi)(1 = yig—1) In[L = F(ci)].
i=1 t=2 i=1 t=2

It is clear that there is an incidental parameter problem here that cannot be resolved without
a specification of Pr(c¢;). This can be accomplished by specifying a distribution in terms of the
observables. Note, however, that Pr(c;) can be specified independently of the initial value, y;1, or
the other observations. The assumption that ¢; are independent across ¢ can also be relaxed to allow
for simple patterns of cross-sectional dependence across i (i.e. using more general specifications of

Pr(c)) although we do not pursue this here.

3.2 Exponential Dynamic Binary Choice Models

The literature on estimation of binary choice panel data models with fixed effects has focussed on
a logit specification for F'(-). In this paper we consider an alternative specification. We consider
first the case where 3 = 0 and equations (4) and (5) hold, and focus on consistent estimation
of p. Pesaran and Timmermann (2009) show that a Markov chain can be written as a vector
autoregressive (VAR) model in the indicator variables. In our context it can be easily established

that the implied error term, e, defined by
git = Yit — F(¢;) — [F(ci + p) — F(ci) Yit—1,

is a martingale difference process with respect to y; t—1, yit—2, ..., namely E (it |Yit—1, Yit—2,..) = 0.
This result can be established explicitly by noting that for each ¢ and ¢, €;; is a discrete random
variable that takes only 4 distinct values, namely —F'(¢;), 1 — F(¢;), 1 — F(¢; + p), and —F(¢; + p),
with probabilities given by the Markov chain.

The above representation of the dynamic binary choice model suggests the following linear binary

AR(1) regression with reduced form parameters that are non-linear functions of the parameters of



the underlying model:
yir = F(ci) + [F(ci + p) — F(ci)] yij—1 + it (8)

This representation holds for all choices of F (-), but the fixed effect, ¢;, is not readily separated
from p using equation (8) without further assumptions. One such assumption considers whether it
is possible to factorize F(c; + p) — F(¢;) into a product form such as G(p)H(c;), since this would
allow us to isolate F'(¢;) from the structural parameter, p. Such a factorization is indeed possible

when F(z) =1 — exp(—=z) as it satisfies

F(c; + p) — F(ci) = exp(—¢;) [1 — exp(—p)]. (9)

In Appendix 7.1 we prove that the exponential is the only non—constant, differentiable, distribution
function that satisfies this condition.?

Consistent estimation of p can now be achieved using the conditional maximum likelihood or

the GMM methods.

3.3 Conditional Maximum Likelihood Estimation

Building on an early work by Cox (1958), Chamberlain (1985) shows that it is possible to estimate p
consistently using a conditional maximum likelihood estimator (CMLE) approach if F'() is logistic,
B =0 and T > 4.* Honoré and Kyriazidou (2000) extend this analysis to the case where 3 # 0,
under certain restrictions on the distribution of the covariates, x;;, over time. In this sub-section
we show similar results hold if F'(-) is exponential, 3 = 0 and T > 3.

Using (6) and (7) the likelihood function (conditional on ¢;) for the i unit can be written as

L= Flei+p) + P Pr(yipleip) = [Flei )it L Feg  p)] 70t

% [F(Ci)]yil+ZzT:2 Yie(1=yi,e—1) [1— F(Ci)}ZtT:Q(l—yit)(kyi,t,l) '

3To be more precise, we prove that the general form of a function F that satisfies the factorization is given by
F(z) =1— Cexp(—Dz), for C and D > 0. Since these two parameters are not identifiable, we set them both equal

to 1. Similar rescaling and normalization is also used for the standard logit and probit models.
4See Chamberlain (2010) for identification in a two-period case and Magnac (2004) for more general identification

results with the conditional likelihood approach, and also Magnac (2001) for an empirical application.



Let s;7 = Zthl yir and pyr = Zthg YitYit—1, and write the above likelihood function as

Pr(y,rlci,p) = Pr(siv,pir,vit, it |ci, p)
[F(ci + p)]piT [1 _ F(ci + p)]lfyiryiTJrsz-TfpiT
[F(Ci”siT_piT [1 _ F(Ci)](T_1)+yi1+yiT_25iT+piT

[1— F(ci+p)+ F(a)]

It is clear that s;7, pir,yi1, and y;7 are minimal sufficient statistics for ¢; and p. Following
Andersen (1970), we consider the likelihood function of p conditional on given values of s;7 = s” and
pir = p° for all i. Let B;ir(s%,p°) be the set of all sequences ;1, yi2, ..., yir that satisfy Zle yir = s°
and ZtT:2 Yit¥it—1 = p°, for s = 1,...,T — 1 and p° = 0,1,..,T — 1 (s > p°). There is no point
considering the values of s° = 0,7, since for these values the conditional likelihood function does
not depend on p.

In general we have

Pr(sir = SoapiT = poayn, Yir |Cin p)
Pr (si7 = 8O, pir = p° |cs, p)

Pr (yir, yir |sir = %, pir = 1% ¢i, p) =

)

where

Ai(so,po) [1 _ F(Ci)}yil"!‘yiT [1 _ F(ci 4 p)]—yn—yn
[1 = F(ei + p) + F(ci)] ’

Pr (sir = s, pir = p°, yi1, vir |ciy p) =

and

Ai(so,po) Zyil,yiTEBiT(so,pO) [1- F(Ci)]yi1+yiT (1= F(ci+p)] o7
[1—F(ci+p) + F(ci))] 7

Pr(sip = 8, pir = 1° |ci, p) =
in which
Ai(s°, %) = [F(ci+ p)P" [F(e)] 72 [1 = F(en)| T 724" [1 = Fe; 4 p)) 7"

Therefore

[1 _ F(ci)]yu-i-ym [1 _ F(Ci + p)]_yil_yiT
Tsaresatr (1~ FEP 7 [ Flect p] 72

It is clear that for a general specification of F'(-), the conditional distribution of y;; and y;r still

Pr (yi1, yir !Sz‘T = SoapiT = pO,Cz‘,P) =

depends on the incidental parameters, ¢;. But in the case of the exponential distribution we have

exp [p(yi1 + vir)]
yi1,yir €Bir (s0,p0) XP [P(yﬂ + yiT)] ’

Pr (yi1, yir ‘SiT = SO,pz‘T = pO,CuP) = S



which does not depend on ¢s.
The conditional likelihood for the cross section observations ¢ = 1,2, .., N is now given by

N T-2T-1

Le(p) = H H H = exp [p(yi + yir)] (10)

1=1p0=0s0=1 i1,y €EBiT (s°,p°) eXp [P(yil + le)] '

Not all the components of this conditional likelihood function will depend on p. For example, in
the case where T' = 3, which is derived in detail in the appendix, the only component that depends
on p is for values of s = 1 and p° = 0. When T = 3 we exclude observation where s’ = 3 and
p = 2. The remaining values are (s°,p%) = (2,0) and (s°,p°) = (2,1). Under the former we must
have y;1 = 1,9, = 0 and y;3 = 1 and

exp [p(yi1 + ¥i3)] _
Zyil»yBeBB(Q,O) xXp [p(yil + yz’3)]

Under (s%,p°) = (2,1) the only admissible sequences are (110) and (011), and we have

exp [p(yi1 + ¥i3)] _exp(p) 1

Zyil,yigeBig(Zl) eXp [p(yll + y23)] B 2 eXp (p) B 2

The only set of observations for which the conditional likelihood depends on p is given by

b)) for (100)

2exp(p)+1°
exp [p(yi1 + Yis)] _ L for (010
ZyilvyiseBig(l,O) €xp [p(yil + yz?,)] QeXp(g)))—I—l’
ex
%, for (001)

Hence, the conditional log-likelihood function for the case where T'= 3 can be written as

N N
le(p) = p Y _(yin +yiz)(siz = 1)1 (piz = 0) —log [2exp (p) + 1] Y _ I(si3 = 1)I(piz = 0).
i=1 i=1

It is easily verified that this is the same as (25) obtained in the appendix. Following Andersen
(1970), consistency and v/ N-asymptotic normality of the resulting conditional maximum likelihood

estimator can be established.
3.4 GMM Estimation
Under the exponential distribution, the binary AR(1) model (8) can be written as
Yit = i + (1 — o) vyie—1 + €its (11)

10



where a; = 1 — exp(—¢;), and v = 1 — exp(—p). The stability of the above AR(1) is ensured for all
values of ¢; and p for which 7} defined by (4) strictly lies inside the range (0,1). Note that for the
exponential distribution and using (9) we have

. F(c;) 1 —exp(—¢;)

WS TR+ F@) - 1= en(a) (L exn(—7] (12
T 11—y

and condition 0 < 7f < 1 implies that (1 —a;)y < 1, 1 — oy = exp(—¢;) > 0, and 1 — v >
exp(—p) > 0. The latter two conditions are met for all bounded values of ¢; and p. Further, since
F(c;) =1 —exp(—¢;) =y > 0, then condition (1 — a;)y < 1 must also be satisfied since 7} > 0.
The AR(1) formulation considerably simplifies the estimation problem, but it is still subject to
the incidental parameter problem. First—differencing will not eliminate «;, the incidental parameters
either, since the coefficient of y; ;1 also depends on «;. But, instead of first-differencing we can

equate two solutions of c; obtained for for two successive periods®

Yt — VYit—1 Eit f
P = — , for ¢,
I —vyig—1 1=yt
and
o Yit—1 — VWit-2 €it—1 for t — 1

7

1L —YYie—2 I —vyit—2
Equating the above two solutions of «;, now yields the following non-linear difference equation

L —Yir—1

1_ ’sz,t2> (Vi1 = VWii—2) + vit, (13)

Yit = VYit—1 + <

where

_ 1 —vYiz—1
Vit = &it — 71 i Eit—1-
1,t—

Unfortunately, v;; does not satisfy any obvious orthogonality condition with respect to the lags
of yi. For example, E(viy |yit—2) = VE (Yig—1€it—1|Yit—2) / (1 — Yyi1—2), which is not generally

equal to zero due to the contemporaneous dependence of y; ;1 on €;;—1. However, the alternative

formulation
L —vyit—2 Yit — VWit—1) (1 — YWie—2
€it < Vit >5it —&it—1 = ( i~ Vi )( LLL ) - (yi,tfl —’Y%,tq), (14)
L —vyit (1= vyit-1)
1- V?Jz’tz)
= (I—yigo1) — (1—yy) [ —22) 15
(1) = (1 ) (o222 (15)

SNote that since 1 — > 0, then 1 — yy; +_1 # 0, noting that y; 1 can only take the values of 0 and 1.

11



which is obtained by multiplying both sides of (13) by (1 —~yit—2) /(1 —vyyit—1), does satisfy
usable orthogonality conditions. To see this, note that

L —vYit—2

E(eit|Yit—1,Yit—2) = (1 S
it —

) E(eit [Yii—1,Yit—2) — E(€it—1|Yit—1, Yit—2)-

But E(eit |Yit—1,Yit—2) = 0 by the Markov property as established in Pesaran and Timmermann
(2009). Hence E(eit |Yit—1,Yit—2) = —E(€it—1|Yit—1,Yit—2). Now by chain rule of conditional

expectations

E(eit|yit—2) = E[E(eit|Vit—1,Vit—2) |Yit—2]
= —F [E<5z',t—1 ’yi,t—la yi,t—2> ’yi,t—2]

= —E(eitlyit—2) =0,
as required. In fact we have, more generally,
E(eit|yit—s) =0, for s =2,3, ... (16)

These moment conditions can be used to estimate v by GMM using y; ;—2, ¥; t—3, ..., as well as the
constant, as instruments, very much as when GMM is applied to the first-differenced version in the
linear case.

Note that the constant (i.e. the sequence of 1’s) should be used as an instrument with caution.
It is easy to show that E(e;;) = 0 whenever v = 0 or v = 4. Thus the constant instrument fails to
uniquely pin down 7,. However, the other instruments do not suffer from this anomaly. Therefore,
there is no danger in using the constant as an instrument if it is augmented by one or more lagged

values y; ¢t 2, Yit—3,. .

Remark 1 Wooldridge (1997) considers multiplicative panel data models of the form 7(yi, Ao) =
Gip(Xit, Bg)uwit, and shows that with sequential moment conditions on w; as specified in Chamberlain

(1992), the transformation
rie(0) =7 (yit, A) — [p(Xit, Bo) /n(Xit11, Bo)I T (yie, A),t = 1,.., T — 1,
satisfies the conditional moment condition
E[rit(00)|d;, xi1, .. xi¢) = 0,t =1,...., T — 1.

12



The sequential nature of the moment conditions allows y;1—1 to be included in x;. In our case,
we can rewrite our model as 1— yi = ¢;p(Xit, Bo)wit, where (X, By) = exp(—pyit—1) and ¢; =
exp(—c;). Noting that exp(pAyir) = (1 —vyii—1)/(1 — vpyir), it can be shown that ri;(6o) in our
case is identical to ej 1. As a result, the conditional moment conditions in (16) can also be derived

following the set up by Wooldridge (1997).

Notice that since p = —In(1 — ), to estimate p consistently we must have v < 1. Alternatively,
one could consider the GMM estimation problem directly in terms of p, namely by considering the

moment conditions in terms of

Ayt + i1 exp(— 1—yit—9+yit—oexp(—
eile) = S t [i - y('t—pl)]‘F[ y‘t—1tex2p(—/))t] : =) B ([Ayi,tfl + Yit—2 exp(—p)]. (17)

Let y; = (yi1, Yi2, ---, yir)’ and let mg(y;,y) be an enumeration of e;;(p) for 2 <t < T and e;t(p)yit—s
for2<s<t<T.
Emilyin)] =0, k= 1,2, ... (T + 1)(T — 2)/2.

When T = 3, there are two moment conditions:®

E[mi(yi,7)] = El(es)=FE [(%3 _(71%_2)7(;12; 1) — (yi2 — 'Yyil)] =0,
Elma(ys7)] = E(yaes)=E {yﬂ [(yig _(nyLiZ; W) _ (yi2 — ’sz‘l):| } =0.

For T > 3, further moment conditions can be considered. Let m(y,,v) = (m1(y:,7), m2(yi, ), ---» mi (yi, 7)),
and write the K = (T'+ 1)(T — 2)/2 moment conditions as E [m(y;,7)] = 0. Using the familiar

results on GMM estimation we have
Yauu = argmin My (v)ANANMN(7)]

where
N

My(y) =N m(y;,7),
i=1

and Ay is a 1 x K weight vector. An optimal choice for limy_,cAn = A(7y) is given by

A7) =D'(79)8 " (70,

5In the appendix, we considered in detail the case of T = 3 and the single moment E(e;3y:1) = 0. In this case, the

GMM estimator has a closed-form solution.
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where 7, is the true value of v, and

S(v0) = E[NMy(v9)My(70)]

N1 i 8m(§’z"70 ] _ N1 ZE <8m yza’70)> .

D(y =
(70) 2 ,y

But

E [NMy (79)My (70)] = 1ZZE[ m(y;,7)m (yj,v)!C}
i=1 j=1

where ¢ = (c1,¢2,...,cn)'. Note that conditional on ¢, y; and y; are independently distributed,
which establishes that m(y,,~) and m(yj,’y) are also conditionally independent (since range of
variations of y; does not depend on ). Hence, recalling that E [m(y,,v)] = 0, we have

N

E [NMy(79)My(19)] = N7' > E [m(y;,7)m’(y,;,7)] -
=1

In general, analytical expressions for E [%f’o)} and F [m(y,,v)m’'(y;,v)] will be a complicated

function of c. However, for a given initial consistent estimate of -y, say 4, An can be consistently
estimated as

N -1

N / N
Ay=Ax() = [N‘l > 01“;2;”] [N—l > my; Hm'(y;3)| - (18)
i=1

=1

The asymptotic variance of Y572/ is given by

AsyVar [\/N('AVGMM - 70)] - [D,(VO)S_I(VO)D(Vo)}_lv

which can be consistently estimated as

= 1 14, A1 . -1
Var ('VGMM):N [D/(VGMM)S I(VGMM)D(’YGMM)} ,

where
ﬁ(’YGMM —1 Z om’( yza’YGMM)’
and N
SGeum) =N~ Z m(y;, Yern) ™' (¥ Yenn)-
i=1

14



The initial estimate of v, say 477 can be obtained, for example, by imposing equal weights on

the K moment conditions, namely

YINT = arg mWiH My (v)Mpy(7)] -

This initial estimate can then be used to compute

N -1
1 81’[1 y 77 ) — A~ A~
An(FinT) = [ - Z 2L N~ Zm(yi77INI)m/(yia7INI> )
i=1
with Y50 18 computed as
Yomm = al“gmvin |:M/N( AN (Bvr) A (FAYINI)MN(’)’)} ; (19)

An iterated GMM estimator can also be considered, where in computation of AN(’? INT)s YINT 18

replaced by 4 and a new GM M estimator is computed using A N and so on.
p Y YGMM > P g YamMM )

The variance of pgyr = — In(1 — garar) can now be obtained using the delta method as
_ 1 z__
Var (ﬁGMM) =\ 7= Var (’AYGMM) :
L =Yemm

The following theorem illustrates the issues involved in proving the asymptotic properties of
the GMM estimator when only a single instrument, namely y; ;—2, is used. The general case where
additional instruments are considered can be established along similar lines.

Theorem 1. Suppose y;+ = 1(¢;+ poyit—1+uix > 0) fori =1,...,N,t =1,...,T and the following
conditions hold

(A1) Pr(c;+pg>0)=1,Pr(c; >0) =1, and Pr(¢; < o0) =1fori=1,2,...,N.

(A2) {uy i =1,2,...,N,t = 1,2,...,T} is an independent array of random variables. wu;; is
uniformly distributed on [0, 1], while for ¢t > 1, —u;; is geometrically distributed with mean 1. {u;}
is distributed independently of {¢;}.

A3) yin =1 (uzl < %), fori=1,...,N.

(

(A4) R is a compact subset of R containing p in its interior.

(A5) For all p € R, NS eanlp)yii—2 —p E [ein(p)yi—a)-

(A6) For all p € R, N~* S0, (Deir(p)/0p) yis—2 —p E [(Deir(p)/Dp) yir—2]-
(A7) N

AT) NN eir(po)yii—2 —a N(0,0?), where v = limy 0 N YN, E [ (Po)vi- 2] >0
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Then N'2(Bgaras — po) —a N (0, m), where poprar = —In(1 = Yanr), and Paaray is
the GMM estimator defined (19) using y; ;2 as the instrument.

The positivity of ¢; and ¢; + py in assumption (A1) allows us to circumvent the positivity
constraint on geometrically distributed random variables. Without it, Pr(y;: = 1|¢j, yit—1) = 1 —
exp(— max{0, ¢; + pg¥i—1}), which greatly complicates the analysis. Assumption (A1) also requires
¢; to be finite almost surely; clearly if ¢; = oo, then pg is not identified.

Assumptions (A2) and (A3) provide the probabilistic structure of the model conditional on ¢;.
Note that the uniform distribution of u;; allows 1;1 to have the correct stationary distribution given
by (6). Together, assumptions (A2) and (A3) allows the distribution of y;; conditional on ¢; to be
stationary. This makes it possible to find analytic expressions for the unconditional moments of
functions of the data.

Assumptions (A4) is standard in the GMM literature.

Assumptions (A5)-(A7) are high-level asymptotic conditions that hold under a variety of weak—
dependence assumptions on the fixed effects. They hold when ¢; are cross-sectionally independent

but they may also allow for weak cross-sectional dependence, including weak spatial dependence.”

4 The Case of B3#0

In contrast to the logit model studied in Honoré and Kyriazidou (2000, HK), it does not seem
possible to identify B using the CMLE approach in the case of the exponential model considered
in this paper. A key difference is that under exponential specification Pr(yi: = 1|c;, yit—1,%it) =
1 — exp(—pyit—1 — B'x; — ¢i), and ¢; does not get cancelled out from the numerator and the
denominator of conditional probabilities. In contrast HK use a logistic specification, which is not

subject to this problem, although to cancel the incidental parameters in the context of dynamic

"The assumptions we lay out here demonstrate the fact that while the asymptotic properties of GMM estimators
such as consistency and asymptotic normality are established under high level regularity conditions as in Hansen
(1982), whether they are satisfied in a specific nonlinear model is often technically involved and has to be examined
case by case. It is worth noting that in the literature where GMM estimators are proposed, the conventional approach
has been to derive moment conditions of the model and then claim the GMM estimators based on these moment
conditions are consistent and asymptotically normally distributed implicitly assuming that the required regularity

conditions are satisfied.
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logit models we must have T' > 4. See Section 2.1 of HK. But the GMM procedure is still applicable
and can be used to identify both v and 3 under the exponential model. The GMM approach has the
added advantage that it does not require strong conditions on the covariates. Recall that in the case
of the logistic model with a single exogenous regressor and T' = 4, as shown by HK, identification

of B requires x;0 = ;3 with x;1 # x40, for all 4.

4.1 GMM Estimation in the General Case

In the case where 3 # 0, the dynamic non-linear autoregressive model, (8), associated to the binary

choice model generalizes to
yit = F(B'xit + ¢;) + [F(B'%it + ¢i + p) — F(B'%it + )] Yi—1 + €i,

and we continue to have E (&4 |Yit—1,Yit—2,---; Xit, Xit—1,...) = 0. In the exponential case under

consideration, the non-linear AR(1) formulation can be written as

yit — 1= exp(=B'xit — ¢;) + exp(—B%it — ¢;)(1 — exp(—p))yit—1 + &it.

Setting v = 1 — exp(—p) and solving for the fixed effect as before,

_ exp(B'xit) (1 — yir) n exp(8'xit)eit
(1= vyit—1) (1 —vyit—1)

exp(—¢;)

Now first differencing to eliminate ¢; yields

exp(B'xit) (1 —yir)  exp(B'xip—1) (1 —yig—1) _ exp(B'xi)en  exp(B'Xip—1)eit-1

(I —vyit—1) (1 —vyit—2) (1 —vyi,t—1) (1 —vyi—2)

which after some algebra simplifies to
1 —VYig—2
€t = eXp(ﬁlAXit) <1’yy”1 Eit — Eit—1 (20)
— VYit—

1 — vy -
= (i) = () (7222 ) exp( )
— VYit—1

It is easily seen that e; given above reduces to (15) if we set 3 = 0, as to be expected. Also as

before, y;:—2 ¥ii—3,.... and the constant can be used as instruments.® Additional instruments are

8The same caveat as mentioned earlier continues to hold. E(ei;) = 0 for (v, 8) = (0,0) and for (v, 8) = (v, Bo)-
Therefore, the constant should never be used as an instrument unless accompanied by at least one lagged variable as

an additional instrument.
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also available depending on the nature of the covariates. In the case where x;; is exogenous, then
the regressors x;1, X;2, ..., X;7 can also be used as instruments.

In empirical applications of the GMM approach the choice of instruments can play an important
role for the small sample properties of the estimators. The problem becomes particularly serious
in panel data models where the number of instruments can rise quite rapidly with 7". The pitfalls
in using too many instruments in the case of linear dynamic panel data models is investigated in
Roodman (2009). In the case of non-linear specifications, the use of additional instruments that
involve powers of y; ;s for s > 2, or powers of lagged exogenous variables, such as y; —2v; 13, X; 1—s®
Xit—s, and y;1_92X; s, can also be justified which could lead to even a larger set of instruments
to be used in GMM estimation. A number of procedures have been proposed to deal with this
problem. Carrasco (2012) proposes using regularization techniques to invert the covariance matrix
of the instruments. Mehrhoff (2009) proposes factorizing the instrument set whereby the full set of
instruments is replaced by a few principal components of the instrument set. Both approaches rely
on related choice parameters such as the extent of regularization/shrinkage in the case of Carrasco’s
approach and the number of principle components to be used as instruments. The application
of these basically linear techniques to the non-linear specification that we consider could also be
problematic as they need not be optimal in non-linear settings. In view of these difficulties we do not
recommend the use of GMM approach developed in this paper for applications where T is relatively
large, say more than 6. In case of non-linear panels with moderate to large T samples the ML

approach combined with bias correction (as proposed by Carro, 2007) might be more appropriate.

4.2 Discussion on Robustness of the Exponential Specification

As discussed in Section 1, various specifications of dynamic binary choice panel data models have
been used in the literature depending on their convenience and/or whether they enable the re-
searcher to resolve the incidental parameter problem. In the same vein, we propose to use the
exponential specification and construct GMM estimators that are consistent and asymptotically
normally distributed. As for any specification in the parametric approach, a natural question is
how robust it is with regard to misspecification. More specifically, suppose that for a realization of

Yit—1 = {0,1} and x;; = x¥, the true distribution function is given by
Pr(yit = 1|yig-1,¢.%; ) = Flpyi—1 + B'x] + i),
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but consider an investigator that uses the exponential specification and obtains
Pr(yic = 1 |yis—1, Cie, X75 Me ) = 1 — exp(—peyii—1 — BeX;] — Cie),

where the symbol M, denotes an exponential distribution to distinguish it from the true distribution
function. In the case where the Markov chain underlying the true process is stationary we have
0 < F(pyit—1 + B’x? +¢;) < 1, for all finite values of p, 3 x?, and ¢;, and hence there exists ¢;. such

that Pr(yit = 1 |yit—1, Cie, X3 Me) = F(pyiz—1 + B'x? + ¢;), namely

—Cie = In [1 - F(IO + /B/X? + Cl)] + Pe + B;X?> if Yit—1 = L,

= In [1 —F (,BIX? + cz)} + ,B/BX?, if y;1—1 = 0.

Since, under the exponential distribution ¢;.’s are treated as fixed effects and are allowed to have an
arbitrary degree of correlations with z;;, then it is possible to match any distribution function, F' (.),
that satisfy the stationary condition 0 < F(.) < 1 for a given realization of x;;. It is important to
emphasise that this match is local and not global, and holds approximately in the neighborhood of
x?, which can be taken as the sample mean, %;.” This does not seem to be an important limitation
since in most empirical applications the investigator is concerned with ‘average’ effects and as we
shall see from the Monte Carlo results reported in the sub-section 5.4, the average partial effects
from logistic distribution tend to be well approximated if the estimates are incorrectly based on an

exponential distribution.

5 Simulation Studies

In order to investigate the performance of the GMM and CMLE estimators we conduct a series of
Monte Carlo studies, which we summarize here. We have endeavored where possible to match the

Monte Carlo design employed by Honoré and Kyriazidou (2000).°

5.1 The GMM Estimator

To investigate the small sample properties of the proposed GMM estimator, we generate data

from the exponential dynamic binary choice model, with p = 0.5, and include a single exogenous

9We thank a referee for drawing our attention to this point.
10T e full set of Monte Carlo results is available from the authors on request.
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regressor in the model. We draw ¢; ~ |N(0,02)| and z;; ~ |N(0,1)], independently over i and t.
We then set 0. = B so that the fixed effects and exogenous regressors each contribute an equal
amount of variation. The two parameters are solved numerically for a proportion of 1s in the
population of @ = 50%, which gives 0. = 8 = 0.318815. The distribution of y;; is set to the
stationary distribution conditional on ¢; and x;;. We generate data sets of sizes T' = 3,4, 6,8 and
N = 250,500, 1,000, 2, 500, 5,000, 10,000 and consider the mean, variance, bias, and RMSE of the
estimates for p and (8 in 2,000 replications for each experiment. The estimates are obtained using

the moment conditions

E(ey) =0, t=3,4,...,T,
E(ziseq) =0, t=3,4,...,T, s=1,2,...,T,
E(yiseir) =0, t=3,4,...,T, s=1,2,...,t =2,

and using an estimate for the optimal choice of the GMM weight matrix. There are a total of
$(3T + 1)(T — 2) moment conditions. We also consider the size of the tests Hy : p = 0 and power
for Hy : p = 0.6 and Hp : p = 0.4 as well as the size of the tests Hy : § = 0 and power for
H, : = 0.418815 and Hj : § = 0.218815, all at 5% significance. Henceforth, this setting will be
referred to as the benchmark specification.!!

Tables 1 and 2 give results for variance, bias, and RMSE in the benchmark simulations. Variance,

bias, and RMSE improve with larger N. RMSE and variance improve with increased T'. However,

the bias of the GMM estimator of p increases with T'.

"To simplify the computations we first estimated v and then estimated p as -In(1 — 7). See (11). This approach
requires v < 1. In a number of experiments we encountered estimates for 7 that were inadmissible (namely they
were larger than 1). This was particularly the case for small values of N. However, the likelihood of obtaining an
inadmissible estimate decreased sharply with N. As a check, in the case of a few experiments we also estimated p
directly and without any restrictions and overall found the results to be very similar to the ones based on the indirect

approach.
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Table 1. Benchmark Small Samples Results for Variance, Bias, and RMSE of paaras-*

T\N 250 500 1,000 2,500 5,000 10,000
3 Variance 0.0571  0.0326  0.0166  0.0065 0.0031  0.0016
Bias 0.0032 -0.0014 0.0027  0.0009 -0.0007  0.0004
RMSE 02239 0.1767 0.1282 0.0806 0.0556  0.0394
4 Variance 0.0240  0.0123  0.0066  0.0025 0.0012  0.0006
Bias -0.0446 -0.0253 -0.0104 -0.0041 -0.0020 -0.0011
RMSE  0.1514 0.1110 0.0815 0.0503 0.0349  0.0248
6 Variance  0.0105  0.0060  0.0026  0.0010  0.0005  0.0003
Bias -0.0889 -0.0442 -0.0209 -0.0057 -0.0026 -0.0011
RMSE  0.1252 0.0879 0.0554 0.0328 0.0226  0.0159
8 Variance 0.0075  0.0042  0.0018  0.0006  0.0003  0.0002
Bias -0.1557 -0.0774 -0.0309 -0.0081 -0.0032 -0.0014

RMSE  0.1613  0.0992 0.0528 0.0267 0.0181  0.0128
*p=0.5, 8 =0.32, 2y = [N(0,1)], ¢; ~ | N(0,0.322)].

21



Table 2. Benchmark Small Samples Results for Variance, Bias, and RMSE of EG MM

T\N 250 500 1,000 2,500 5,000 10,000
3 Variance  0.0192  0.0078  0.0035 0.0015 0.0007 0.0004
Bias 0.0100  0.0073  0.0024 0.0012 0.0006 0.0007
RMSE  0.1300 0.0869 0.0591 0.0384 0.0274 0.0195
4 Variance  0.0101  0.0039  0.0019  0.0008 0.0004 0.0002
Bias 0.0024 0.0016 -0.0012 0.0006 0.0000 0.0003
RMSE  0.0942 0.0609 0.0430 0.0277 0.0198 0.0137
6 Variance  0.0047  0.0021  0.0010 0.0004 0.0002 0.0001
Bias -0.0172 -0.0040 -0.0002 0.0006 0.0003  0.0005
RMSE  0.0653 0.0448 0.0323 0.0206 0.0140 0.0099
8 Variance  0.0035  0.0016  0.0008 0.0003 0.0001 0.0001
Bias -0.0323 -0.0128 -0.0008 0.0005 0.0003 0.0001

RMSE  0.0607 0.0406 0.0279 0.0175 0.0122 0.0085
*p=0.5, 8=0.32, 24 = |N(0,1)], ¢; ~ |N(0,0.322)|.

Tables 3 and 4 give the results for size and power. For T' = 3 and 4, size is satisfactory even for
a relatively small N. However, there are large size distortions for 7' = 6 and 8, most likely owing
to the rapidly (quadratically) growing number of instruments. For these cases, one needs large N
to reduce the percentage of over-rejection. Notably, size for the 8 tests improves more rapidly than
the size for the p tests with increased N. We need N > 2,500 to bring down the size to below 10%
for p and N > 1,000 for S.
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Table 3. Benchmark Small Samples Results for Size and Power of Tests Based on pgpsar-*
T\N 250 500 1,000 2,500 5,000 10,000
3 Size H{ 0.0536 0.0636 0.0627 0.0600 0.0515 0.0545

Power Hi 0.1157 0.1382 0.1728 0.2811 0.4595 0.7115
Power Hg 0.0433 0.0683 0.1102 0.2331 0.4255 0.7380
4 Size Hy 0.0817 0.0728 0.0697 0.0540 0.0545 0.0505
Power H, 0.2240 0.2619 0.3180 0.5560 0.8315 0.9780
Power H, 0.0618 0.0781 0.1976 0.5045 0.8205 0.9875
6 Size Hy 0.2478 0.1508 0.0901 0.0625 0.0560 0.0530
Power H, 0.5937 0.5780 0.6855 0.9045 0.9955 1.0000
Power H, 0.0986 0.1549 0.3540 0.8525 0.9935 1.0000
8 Size H 0.7072  0.3977 0.1816 0.0750 0.0530 0.0605
Power H, 0.9309 0.8785 0.9020 0.9875 1.0000 1.0000
Power H, 0.3026 0.1433 0.4667 0.9630 1.0000 1.0000
* p =05, 8=0.32, i = |N(0,1)], ¢; ~ | N(0,0.322)].
*Ho:p=05.1H,:p=06.% Hy:p=0.4 (5% level).
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Table 4. Benchmark Small Samples Results for Size and Power of Tests Based on Bapss.*

T\N 250 500 1,000 2,500 5,000 10,000
3 Size H ~ 0.0604 0.0511 0.0541 0.0490 0.0610 0.0540
Power H] 0.1608 0.2457 0.4184 0.7274 0.9430 0.9990
Power Hf 01140 0.2102 0.4149 0.7654 0.9705 0.9995
4 Size Hy 0.0800 0.0660 0.0522 0.0545 0.0505 0.0445
Power H, 0.2564 0.4081 0.6670 0.9400 0.9990 1.0000
Power H, 0.1940 0.4023 0.6354 0.9675 1.0000 1.0000
6 Size Hy 0.1450  0.0875 0.0641 0.0620 0.0450 0.0485
Power H, 0.5737 0.7185 0.8848 0.9975 1.0000 1.0000
Power H, 0.3658 0.6500 0.9049 0.9990 1.0000 1.0000
8 Size Hy 0.2732  0.1376  0.0950 0.0660 0.0565 0.0590
Power H, 0.8258 0.8842 0.9630 1.0000 1.0000 1.0000
Power H, 0.4664 0.7399 0.9750 1.0000 1.0000 1.0000
*p=0.5,06=0.32 24 = |N(0,1)|, ¢; ~ [N(0,0.322)].
*Hy:B=0.3188. " H,: 3 =0.4188. ¥ Hy: 3 =0.2188 (5% level).

We next modify the benchmark DGP of y;:, x;+ and ¢; in various ways and look at the behavior
of our estimators. A selection of the results of these alternative specifications is given in Table 5 for
T =3 and N = 500.

First, we look at the effect of changing the variance of the fixed effects. We increase o, so that
7 = 0.75 and then further so that @ = 0.95. As to be expected, increasing o. causes a deterioration
of the estimates, increasing the percentage of 7's falling out of bounds, along with variance, bias,
and RMSE, a rise in size and decrease in power. However, the empirical size is still generally close
to the nominal size for N > 5,000.

Next, we vary p and £ individually in the benchmark simulation, choosing p = pP™ 4 0.4 and
B = BP™ £ 0.2, where pP™ and P™ denote the benchmark values. These variations impart little
change to the results of the benchmark. The higher value of p causes a fall in the percentage of ~
falling out of bounds.

We then modify the benchmark to allow the fixed effect to be correlated with the exogenous
variables. We set ¢; = by, 7(wZP™ + (1 —w)cP™), where zP™ = L S 2P and ™ is the benchmark
value of the fixed effect, for w = 0.25,0.50,0.75. b, 7 is chosen so that 7 is equal to the benchmark

value. This has little or no effect on the results.
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We also consider the effect of cross-sectional heterogeneity in z;; by modifying the benchmark
exogenous process to, x;x = h(w; + oilei|), where p; ~ U(0,1), 07 ~ x3, and ; ~ N(0,1). We
set h = 0.52444 to match the value of 7 in the benchmark model. We find that the results for
the estimates of p are not much affected by the heterogeneity in the x;; processes. The results for
B, on the other hand, have higher variance, bias, and RMSE than the results obtained under the
benchmark model. The same also applies to size and power where under heterogeneity we observe
a deterioration in size and power as compared to the benchmark case.

We then consider the effect of autocorrelation in the exogenous variables on the results. In this
case we modify the benchmark exogenous process to x;; = [0.1¢;; + dr + 0.2t|, where for each i, (;;
is a Gaussian AR(1) with autoregressive coefficient 0.5, variance 1, and independently distributed
across i. ¢; are generated as in the benchmark case. The parameters are calibrated by simulation
to produce an expected proportion of 1’s of #°™ in populations of size N = 10,000. We find
that autocrrelation in the covariates has no significant effect on the results for the estimates of p.
However, the variance, bias, and RMSE of the estimate of 8 are all higher than in the benchmark.
Size also deteriorates with autocorrelation, with power being significantly lower than under the

benchmark case.
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5.2 GMM versus CMLE

In this subsection we report comparative results for GMM and CMLE estimation methods for p
with 8 = 0. Recall that CMLE method is not applicable to the exponential model if 8 # 0. GMM

estimation uses the following moment conditions,

E(eit)zo, t:3,...,T,

E(yiseit) =0, t=3,...,T, s=1,...,t—2.

The CMLE procedure is described in Section 3.3.

The results for bias and RMSE are summarized in Tables 6 and 7, and for size and power in
Tables 8 and 9. In terms of RMSE, GMM outperforms CMLE for all values of T" under consideration
(T = 3,4,6,8), although for "= 6 and 8 GMM shows a higher degree of bias than CMLE. In terms
of size, CMLE does better than GMM, and matches the nominal size for all values of T', whilst
GMM tends to over-reject when T > 6. But generally GMM outperforms CMLE in terms of power

when the sizes are comparable.

Table 6. Small Samples Results for CMLE Estimates of p when 3 = 0.*

T\N 250 500 1,000 2,500 5,000 10,000
3 Variance  0.1000  0.0484  0.0237  0.0093 0.0044 0.0024
Bias 0.0300  0.0150  0.0107  0.0031  0.0025  0.0006
RMSE 0.3176  0.2205 0.1543  0.0966  0.0666  0.0487
4 Variance 0.0477  0.0230  0.0116  0.0050  0.0022  0.0011
Bias 0.0078  0.0034 0.0052  0.0017 -0.0009 -0.0008
RMSE 0.2186  0.1518  0.1077  0.0706  0.0474  0.0336
6 Variance 0.0300 0.0130 0.0064 0.0026  0.0013  0.0006
Bias -0.0100 -0.0031 -0.0039 -0.0007 0.0003 -0.0005
RMSE 0.1600 0.1141  0.0804 0.0512 0.0357  0.0255
8 Variance 0.0203  0.0105 0.0055 0.0020 0.0010  0.0005
Bias -0.0019  0.0009 -0.0008 -0.0004 -0.0006 0.0001

RMSE 0.1427  0.1026  0.0745  0.0447 0.0318  0.0230
*p=0.58=0,c¢ ~|N(0,0.322)|.
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Table 7. Small Samples Results for GMM Estimates of p when 3 = 0.*

T\N 250 500 1,000 2,500 5,000 10,000
3 Variance 0.0640 0.0325 0.0170  0.0069  0.0032  0.0017
Bias 0.0301  0.0130  0.0055  0.0005 0.0001  0.0007
RMSE 0.2427  0.1774  0.1301  0.0828  0.0567  0.0412
4 Variance 0.0264 0.0135 0.0067  0.0027  0.0012  0.0006
Bias -0.0121  -0.0045 -0.0022 -0.0015 -0.0017 -0.0001
RMSE 0.1599  0.1161  0.0818 0.0522 0.0353  0.0249
6 Variance 0.0115  0.0054 0.0026  0.0010  0.0005  0.0002
Bias -0.0288 -0.0121 -0.0057 -0.0014 -0.0005 -0.0006
RMSE 0.1105 0.0747  0.0515 0.0318 0.0217  0.0156
8 Variance 0.0080  0.0036  0.0015 0.0006  0.0003  0.0002
Bias -0.0514 -0.0174 -0.0052 -0.0018 -0.0005 0.0000

RMSE 0.1030  0.0622 0.0394 0.0249 0.0177  0.0127
*p=0.5,8=0,c ~|N(0,0.322)|.

Table 8. Small Sample Size and Power Results for CMLE Estimation of p when 8 = 0.*
T\N 250 500 1000 2,500 5,000 10,000
3 Size H{ 0.0445 0.0440 0.0520 0.0410 0.0430 0.0540

Power Hi 0.0640 0.0730 0.0915 0.1750 0.2895 0.5475
Power Hg 0.0455 0.0600 0.0900 0.1715 0.3100 0.5320
4 Size H 0.0525 0.0510 0.0560 0.0600 0.0540 0.0510
Power H, 0.0800 0.0970 0.1490 0.3155 0.5650 0.8450
Power H, 0.0625 0.0900 0.1545 0.3265 0.5365 0.8430
6 Size Hy 0.0500 0.0475 0.0500 0.0525 0.0475 0.0535
Power H, 0.1000 0.1530 0.2640 0.4995 0.7935 0.9765
Power H, 0.0900 0.1415 0.2230 0.4990 0.7990 0.9725
8 Size H 0.0455 0.0520 0.0615 0.0485 0.0445 0.0540
Power H, 0.1090 0.1600 0.3000 0.6010 0.8710 0.9920
Power H, 0.1050 0.1790 0.2890 0.6025 0.8810 0.9905
*p=0.5,8=0,c ~|N(0,0.322)|.
*Ho:p=05.THy:p=06.% Hy:p=0.4 (5% level).
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Table 9. Small Sample Size and Power Results for GMM Estimation of p when 8 = 0.*
T\N 250 500 1,000 2,500 5,000 10,000
3 Size H{ 0.0496 0.0509 0.0533 0.0510 0.0485 0.0515

Power Hl 0.0926 0.1081 0.1523 0.2646 0.4405 0.6915
Power Hg 0.0380 0.0566 0.1016 0.2216 0.3895 0.7025
4 Size Hy 0.0712 0.0607 0.0595 0.0650 0.0545 0.0480
Power H, 0.1761 0.2007 0.2890 0.5305 0.8090 0.9755
Power H, 0.0577 0.1069 0.2150 0.4840 0.8130 0.9815
6 Size H 0.1097 0.0795 0.0690 0.0545 0.0425 0.0420
Power H, 0.3179 0.3865 0.5750 0.8795 0.9930 1.0000
Power H, 0.1268 0.2310 0.4640 0.8840 0.9960 1.0000
8 Size H 0.1989 0.1055 0.0615 0.0490 0.0580 0.0540
Power H, 0.5746 0.5915 0.7735 0.9785 1.0000 1.0000
Power H, 0.1643 0.3490 0.7035 0.9840 1.0000 1.0000
*p=0.5,8=0,c ~|N(0,0.322)|.
*Ho:p=05.1H,:p=06.% Hy:p=0.4 (5% level).

5.3 Reducing the Number of Instruments

In order to address the issue of the large number of instruments, we us the benchmark DGP and limit
the number of instruments adopting five different procedures. (1) The first (benchmark) procedure
uses all available linear instruments as detailed in subsection 5.1. Procedure (2) restricts the set of
instruments, following the method proposed by Mehrhoff (2009), by utilizing only the few largest
principal components (PC) of the instruments in estimation. The number of principal components
is selected so that at least 95% of the total variation of the instruments under consideration is
explained by the PC’s.!?2 Procedure (3) reduces the number of instruments to two lags of y; and

Zit, as well as the constant. That is, it utilizes the following 57" — 11 moment conditions,
E(ei) =0, E(zyei) =0, E(xii—1e4) =0, for t =3,4,..,T;

E(yit—2ei) =0, for t =3,4,...,T;

E(yit—seir) =0, for t =4,5,...,T.

12WWe also tried setting the threshold at 90%. This gets rid of too much information when T is small and does not

help much for large T so it does not substantively change the main results of our experiments.
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Procedure (4) applies Mehrhoff’s method to the reduced set of instruments under (3). Finally,
procedure (5) reduces the number of instruments further by using two lags of y;;, and only one lag
of x;, as well as the constant, bringing the total number of instruments to 47 — 9.

Tables 10 and 11 report the results for T' = 4,6,8 and N = 250, 500, 2,500, as these were the
sample sizes for which the GMM estimator performed worse. Reducing the number of instruments
typically improves bias and size at a small cost to variance and RMSE. The benefit of the reduction
in the number of instruments is most pronounced for 7' = 6, 8, where bias and size are significantly
improved. In terms of variance, procedure (1) is optimal. Procedures (4) and (5) have the lowest
bias. Procedure (2) is best for the RMSE of B. For the RMSE of 7, there is no clear winner among
the alternative instrument selection procedures, although procedure (5) performs best in terms of
RMSE for T' = 8. Procedures (4) and (5) have the best size properties. We conclude that the
GMM estimator performs well for large T" when the number of instruments is reduced by one of the

methods employed here.

5.4 Average Partial Effects

To provide additional support for our choice of the exponential specification, here we present evi-
dence of its ability to reproduce the average partial effects of a dynamic logistic model. Suppose
the DGP is given by the logistic specification

eP1Yit—1+BTis+ca

Pr(yis = 1|yit—1,Cit, Tir ) = .
(yit |yl’t Ly Cil, Tit ) 1 4+ ePit—1+Bizitca

Then the marginal effect for continuous x;; is

OPr (yit = 1‘yi7t_17 il int) lglepzyi,t—l-i-ﬁzxiz-i-cu
i o (1 + epzyi,t71+ﬁzxit+ciz)2'

On the other hand, the marginal effect of y; ;1 is given as

eP1HBizittca eBizittci

PI‘ (yit - 1 ‘yi7t_1 - 17 Cil, -Tit) B Pl“ (yit - 1 ‘yi7t_1 - 07 Cil, xit) - 1 + epl+ﬂll'it+cil N 1 + €Bl$it+0il ’

For a particular z;;, say the average x = ﬁ Zi’t Zit, we may be interested in the average marginal

effect over the entire population (i.e. averaging over the fixed effects). These quantities may be
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calculated as,

N
S 1 ecil
APEX s g = ]_ o= 7 = 6lm+pl 1 e
(Yit—1 ) Tit = T) ¢ B Ng%o N ZZ; (1+ ecz'z+ﬂli+pz)2’
8,2 1 N efil
APEX (v:+ 1 =0. 2. = %) = B lim — P EEE—
(ii—1 , Tit = T) ey Neo N ; (1+ eCinrBzi)z’

ecil

(1+ ecil""ﬁlj) 1+ e¢u+ﬂz+51f) ’

N—oo

N
- 1
APEY (i = %) = €P%(ePr — 1) lim —
(i = T) e’1* (e ) lim Ni;[

where the averages over 7 are obtained by drawing from the distribution of ¢;;. That is, the average
partial effects are obtained by stochastic integration over c¢;;.

Now suppose that data from this logistic DGP are used to estimate p, and /3, using the GMM
procedure we have outlined above (i.e. based on the exponential specification). The question is,
how well do these estimates reproduce the (true) average partial effects given above for the logistic
specification? To answer this question, we must first specify how the fixed effects of the exponential
specification are to be computed. We do this by deriving fixed effects under exponential specification,
Cie, In terms of the fixed effects of the true logistic specification, ¢;;, by matching the transitions

from 0 to 1 given x4 = Z; = % Zt T across the two specifications, namely13

| e _ eCit+B1Zi
1 + eCatBi®i’
which yields
eﬁe-’ii
e
el = ———
1 + ecatBiTi

We may then estimate the average partial effects as

— B — —A 7@ 1 1 N eBeii

APEX (gt =1, o0 =3) Boe P Jhim 3% o

ABBX (yior = 0, a1 = ) <Foe % m L3~

(o1 =0 a0 = 2) =Pee™ i ) o
Py = —B.z P NS et
1=

131t is also possible to match the transitions from 1 to 1 given x;; = &;. This gives slightly different exponential fixed
effects. But it does not change the general conclusion of this section. The results that condition on Z; are available

from the authors on request.
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The benchmark APE results are computed under the logistics model employed by Honoré and
Kyriazidou (2000), where p; = 0.5, 3, = 1, x4 ~ N(0,7%/3), and ¢; ~ N(0,1). To avoid any com-
plications with initial conditions, the data are burned in for the first 100 periods in each replication,
while being careful to keep x;; fixed across replications. The simulations are based on N = 1,000,
T = 3, and each experiment is repeated 2,000 times to obtain the mean, variance, bias, and RMSE
of the APEs. We vary the DGP and the data sets in a variety of ways (see Table 12).

The results indicate that the average partial effects obtained using the exponential specification,
with matched fixed effects as explained above, are close to the true average partial effects. In partic-
ular, the APEY is typically quite close to APEY . This provides further evidence of the robustness
of the exponential specification in that it yields sensible estimates for the average partial effects
even when the exponential distribution is misspecified. In fact, the same exercise was conducted
using a probit distribution. The results were similar and in all cases matched the sign of the true

partial effects, although they showed a greater degree of bias.!4

6 Conclusion

In this paper we consider identification and estimation of dynamic binary response panel data
models. We develop an exponential class of models and derive CML and GMM estimators that
enable us to eliminate the unobserved heterogeneity and at the same time to identify the model
parameters. We show that for the exponential family of distributions that we consider the GMM
approach is more generally applicable and yields consistent and v/ N asymptotically normal estima-
tors for dynamic models with and without covariates. But in the case of exponentially distributed
errors the CML approach can only identify the state dependence parameter and cannot identify
the parameters of the covariates. The GMM approach proposed here is simple, general, and offers
several advantages over the existing estimators that will be particularly appealing for analyzing
microeconomic panel data from a dynamic perspective.

As is well known, it is important to use a dynamic binary choice specification to model the state
dependence in a panel setting because of the model’s ability to distinguish the state dependence

from the unobserved heterogeneity among other useful features. The dynamic binary choice models,

1Ty save space the results for the probit distribution are available in an online supplement.
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however, have been rarely used in analyzing microeconomic data, mainly due to the problems
associated with the initial condition in combination with the incidental parameter problems. Our
approach based on the exponential specification resolves the incidental parameter problem and the
resulting estimators can be readily implemented, and also have good asymptotic properties.

Both the GMM and the CML estimators perform well under a variety of scenarios. Our results
show that the estimators are robust to changes in the variance of the fixed effects, different values
of p and 3, correlation between the fixed effects and the regressors, heterogeneity in the regressors
across the different units, and autocorrelation in the regressors. In each of the experiments, we
considered bias, variance, RMSE, size, and power of the GMM estimators. GMM worked quite well
for relatively small sample sizes. We also tested the CMLE and compared its performance to the
GMM estimator. Interestingly, GMM emerges as a better estimator than CMLE for small values of
T (when 8 = 0 and both estimators are applicable). In the case of large T" we experimented with the
moment reduction techniques of Mehrhoff (2009) finding significant improvements in performance
in small samples. We also presented evidence of the ability of the exponential specification to match

the average partial effects from a logistic dynamic binary choice model.

7 Appendix

7.1 Proof of the Uniqueness of the Exponential Distribution

Proposition Al: Suppose F is a differentiable cumulative distribution function. If there exist functions G and H such
that F(z +vy) — F(z) = G(y)H(z) then F = 1 — Cexp(—Dxz) for some positive constants C' and D.

Proof: Assume without loss of generality that sgn(G(y)) = sgn(y) and H is non-negative. Now take the limit as
y — 0o. Then A = limy ,o G(y) exists and 1 — F(x) = AH(x). Since F is a cumulative distribution function,
it is non—constant and so A # 0. In particular, the non—negativity of G over positive real numbers implies that
A > 0. This now implies that F(z +y) — F(z) = A™*(1 — F(2))G(y). Divide both sides by y and take the limit
as y — 0. The differentiability of F' implies that B = lim, 0 G(y)/y exists and F’'(z) = £(1 — F(z)). Since F is
non—decreasing and bounded by 0 and 1, the sign of B cannot be negative. Since F' is also non—constant B # 0 so
we must have B > 0. The final step is to note that we have arrived at a differential equation in = that can be solved
as, Fl(z) =1— Cexp(—%x) for some constant C. Again, since F' is a cumulative distribution function, we must have

C>0.
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7.2 GMM in the case where =0 and T =3

In the case where T' = 3 we only have one moment condition with which to estimate 7 (or p), namely

Zeis(v)yu = Zyil [(yiB _ayf?y;;; i) (yiz —yyar) | = 0. (21)

Note that e;3(y) does not depend on « if y;1 + yi2 + yis = 0 or = 3. Consider now the case where y;1 + yi2 + yis = 2,
and note further that observations where y;1 = 0 and y;2 = y;3 = 1 can be dropped since y;1e;3(7) = 0. The other
remaining cases are (y:1,¥:2,¥i3) = (1,0,0),(1,1,0), and (1,0, 1). Denote the number of cross section units associated
with these patterns of observations over time by m100,n110 and nio1, respectively. Then the moment condition in ~
can be written as

n100Yamm,1 — "110 + nio1 = 0.

Hence, if n100 # 0

N _ Ni10 — Mol
Yemma = T -
1100

An estimate for p can be obtained if n110 < 1100 + n101-
In the case where nigo = 0, the above GMM estimator is not valid. But since E(est |ys,t—s ) = 0, we also have

unconditionally that E(e;;) = 0. This suggests the following sample moment condition

Z [(yiB —(’nyL;tQ; Yyi1) — (yi2 —yya)| = 0. (22)

Once again we only need to consider observations where ;1 + yi2 + i3 = 1 or yi1 + yi2 + yis = 2. Then we have

11007 — no10 + Nnoo1 + n1o1 — N110 = 0, (23)

1—
—n1007y” + (n100 + m110 — no01 — M101)7Y + No01 + N101 — M110 — o010 = 0. (24)

Preliminary analysis suggests that the solutions to (24) could be complex, and when real could fall outside
the range [0,1), and hence might not yield sensible estimates for p. It is, therefore, more meaningful to use the
unconditional moment condition only when n100 = 0. In this case the solution to the unconditional moment condition

is unique and is given by (obtained by setting nigo in (23) zero)

n101
1001 + M101 — N110

’?GMM,Q =1-
Hence, in general we could estimate v by

. ni110 — N1o01 .
Yomum = ————,ifnioo #0,
1100
n1o1 .
= 1-— 5 if nio00 = 0.
7001 + M101 — M110
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7.3 CMLE in the Case where f =0 and T =3

Suppose we have observations y;1,yi2 and y;3 on N individual units. Denote the set of all observations such that

yi1 + yi2 + yis = 1 by B and define the sets

Ar = {ya =1,yi2 =0,y3 =0},
A2 = {yll = 07 Yi2 = 1’%3 - 0}7
As = {yi1 =0,yi2 =0,yi3 = 1}.

It is now easily seen that (given the Markov property and (4))

Pr(A:1) = Pr(yan =1)Pr(yi2 =0]yin = 1) Pr(yiz =0y = 0)

= 7 [1—F(ci+p)|[1 - F(c:)]
F(c:) [1 = F(ei + p)] [1 — F(e)]
1—F(ci +p) + F(ci) .

Similarly
_ F(e)[1=F(ci +p)
Pr(4z2) = 1—F(ci+p)+ F(a)’
[1 = F(ei +p)] [l = F(ci)] Fei)
P TRt o) F@)
and
Pr(B) = PI‘(.A1) + PI‘(AQ) + PI‘(Ag).
Also
Pr(A;) = Pr(A; N B) =Pr(B) Pr(A; |B),
and
Pr(A; |B) = l;rféi)) fori=1,2,3.
Hence
_ [1 - F(c)]
PrAIB) = R+ o+ 2 = Fle)
_ [1— F(ci + p)]
PridIB) = TR Tl 2l - e
Pr(As |B) = 1-—Pr(A|B)— Pr(A2|B).

In the exponential case, 1 — F(¢;) = exp(—c;) and 1 — F(¢; + p) = exp(—c¢; — p), and

R __exp(=p)

Pr(A;|B) = p(—p) 12’ Pr(A;[B) = exp(—p) + 2
1

Pr(As |B) exp(—p) + 2’

which do not depend on the incidental parameters. It is clear that conditioning on y;1+yi2+yizs = 0 and yi1 +yi2+yiz =

3 will not help. It only remains to consider the case where the conditioning set is y:1 + yi2 + y:3 = 2. Denoting

C1 {yir = L,yi2 = 1,43 = 0}, Co = {yi1 = 0,42 = 1,43 = 1},

Cs3 {yir = L,ysi2 = 0,453 = 1}, D=C1 UC2UCs = {yi1 + yiz + viz = 2}.

38



It is easily seen that

B F(p+c) _ F(p+c)
Ry pues ey o Mol iy sy
F(Cz)

Pr(Cs|B) =

2F(p+ci) + Flei)
These conditional probabilities depend on ¢; even if F(-) has an exponential form. Consequently, the only appropriate
conditioning is y;1 + yi2 + yis = 1.

The conditional likelihood function for the exponential model is given by

B 1 Yi1+Yi3 exp(—p) Yi2
Lte) = ll <exp(—p) + 2) g (exp(—p) + 2)
1 Yi1+yi2+yi3 vin
= g <W> g (exp(—p))¥*2,
and
InL:(p) = -— Zln [exp(—p) + 2] — pzyiz (25)
i€B i€B

= —Inlexp(—p) + 2| Z I(yin +yi2 +yiz = 1) — pz Y2l (yi1 + yiz + yiz = 1),

i=1 i=1
where I(A) = 11is A is true and I(A) = 0 if A is not true. The conditional log-likelihood function can be written

more compactly as
InLe(p) = np {—In[exp(—p) + 2] — p p},

where ng = 3N | I(yi + yi2 + yis = 1), and

P Zf\;l Yol (yi1 + yi2 + yiz = 1) _ Zi\;l I(yi1 = 0,yi2 = 1,53 = 0)

Zil I(yin + yiz +yis = 1) vazl I(yi1 + yiz + yis = 1)
Also since
Oln L, - R
) _ { exp(=p) p} ’
dp 2+ exp(—p)
then the conditional maximum likelihood estimator of p is given by
2p
D= —1 . 2
p=n (%) 20

The standard error for p can be obtained using the second derivative of the conditional log-likelihood function. We
have
L [2+exp(=p)]*

Var(p) = g 2exp(—p)

7.4 Proof of Theorem 1

Given assumption (A3), and using (12) we have

1—e %
1—eci(l—ero)’

m; = Pr(ya = 1) =
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and it is evident that this choice of initial distribution makes y;: stationary conditional on ¢;. Thus 7; = Pr(y;: =

1|e;) = Pr(yia = 1|¢;) for t > 1. To simplify notation we first note that e;; defined by (15) can also be written as:'®

eir = "2V (g — 1) + 1 —yieo.
Let fi(p) = €iyi,i—2, and note that

E [e”Ayivt—l(yit — l)yi,t72i| =FE [E(yit — 1|ci, Yi,e—1,Yit—2, - - -)6pAyi’t_1yi,t72]
_ _E(efcifpoyi,tflepAyi,t—lyi’t72)
_ _E(e*Cif(Pofp)yi,t—l*Pyi,t—zyi’t72)

_ —(Po—P)Yi,t—1 —Ci—pYit—2
=-F [E(e 0TPWit =t ey yi s o yios, ... )e TPV 2y,

E—— ) [(e—(Po—P)(l _ e_c'i_poy'i,t—Z) + e_ci_Poyi,t—Z)e_ci_loyi,t—2yi’t72:|

_ _E(e_ci_(pO_P)_Pyi,t—2 —2ci—(po—p)—(p+pPo)Vi,t—2

Yit—2 — € Yi,t—2

—2¢; —(p+ s
+e c;—(p+pP0)Yi,t zyi,t—Q)

=—e POB(e “im}) +e POE(e in)) —e PO PE(e 2 r)).
Also
E[(1=yit-1)yit—2]=E[EQ —yii—1l|ci,Yit—2,Yit—3, - -)Yi,i—2]
— E(eiciipoyi’t72yi,t—2) — eipoE(eiciﬂ':f).
Summing up we obtain
Elfi(p)) = (70 — e")e™0 B(e™ >},
Clearly FE(e™2¢r}) < 1. On the other hand, using assumption (A1),

e ¢ (1 —e )

— efci(l — e—Po

E(e *n})=E (1 )) >E (%e*%iu - e*c'i)) > gPr(e*%iu —e ) > K).

Assumption (A1) implies that 0 < e™% < 1 almost surely, thus it is possible to choose K so that the right hand side
is positive. Thus E [fi(p)] is continuous in p and equals zero if and only if p = p,. This satisfies Assumption 1.1 of
Harris and Métyds (1999).

Consider now fi(p) = e”Ayi't*IAyi,tq(yit — 1)ys,t—2, which is clearly continuous and bounded by emax(R) for all
p € R. It follows that,

|filp) = filo)] < ™™o = p],

for all p, o’ € R and so f is Lipschitz. This, together with assumptions (A4) and (A5) implies that N ! Zf\;l fi(p)
converges uniformly to E [f;(p)] by Corollary 3.1 of Newey (1991).'® This satisfies Assumption 1.2 of Harris and

Miétyés (1999) and it follows from the their Theorem 1.1 that p is consistent.

5Since y=1- exp(—p), and because y;+—1 and y; -2 take 0 and 1 values only, then it is easily verified that

(1 —yit2)/ (1 —~yis1) and eP2¥5i-1 give the same values for all admissible choices of y; ;1 and i ;2.
16See the discussion in Harris and Matyds (1999) pp. 14-17.
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The continuity of f/(p) satisfies Assumption 1.7 of Harris and Métyas (1999). f/'(p) = e?2¥it=1(Ay; 1—1) (yir —
1)ys,t—2 is bounded again by M (R) - Thyg fi(p) itself is Lifschitz and employing assumption (A6) it follows again
from Newey (1991) that N~ SN f/(p) converges uniformly to E[f/(p)]. By Theorem 4.1.5 of Amemiya (1985),
N~V fI(P) converges to Ef!(p,). This satisfies Assumption 1.8 of Harris and Matyas (1999).

Now let i # j. By Assumption (A2), fi(p) and f;(p) are independent conditional on ¢; and c¢j. Therefore,
Efi(p)fi(p)] = EE(fi(p)lci,c;)E(fi(p)|ci,ci)]. Assumption (A2) again implies that conditional on ¢;, fi(p) is
independent of ¢;. Thus E(fi(p)|ci,c;) = E(fi(p)lci). It follows that E [fi(p) fi(p)] = E[E(fi(p)|c:)E(f;(p)|c;)]. Since
E(fi(py)lci) = 0, we have that E [fi(py)f;(py)] =0 for i # j and so var [Nfl/z PO fi(po)] =N E[f(po)]-
Thus Assumption (A7) implies the last necessary assumption of Harris and Métyds (1999), namely their Assumption

1.9.

REFERENCES

Ahn, S. C., and P. Schmidt (1995): “Efficient Estimation of Models for Dynamic Panel Data,” Journal of Econo-
metrics, 68, 5-27.

Amemiya, T. (1985): Advanced Econometrics. Cambridge: Harvard University Press.

Andersen, E. B. (1970): “Asymptotic Properties of Conditional Maximum Likelihood Estimators,” Journal of the
Royal Statistical Society, Series B, 32, 283-301.

Anderson, T. W., and C. Hsiao (1982): “Formulation and Estimation of Dynamic Models Using Panel Data,” Journal
of Econometrics, 18, 67-82.

Arellano, M. (2003): “Discrete Choice with Panel Data.” Investigaciones Econdmicas, XXVII (3), 423-458.
Arellano, M., and S. Bonhomme (2011): “Nonlinear Panel Data Analysis,” Annual Review of Economics, 3, 395-424.

Arellano, M., and O. Bover (1995): “Another Look at the Instrumental Variables Estimation of Error-Component
Models,” Journal of Econometrics, 68, 29-51.

Arellano, M., and R. Carrasco (2003): “Binary Choice Panel Data Models with Predetermined Variables,” Journal
of Econometrics, 115, 125-157.

Arellano, M., and B. Honoré (2001): “Panel Data Models: Some Recent Developments,” in Handbook of Economet-
rics, Vol. 5, ed. by J. Heckman and E. Leamer, Amsterdam: North-Holland.

Bartolucci, F., R. Bellio, A. Salvan, and N. Sartori (2016): “Modified Profile Likelihood for Fixed-Effects Panel Data
Models,” Econometric Reviews, 35, 1271-12809.

Bartolucci, F., and V. Nigro (2010): “A Dynamic Model for Binary Panel Data with Unobserved Heterogeneity

Admitting a y/n-Consistent Conditional Estimator,” Econometrica, 78, 719-733.

Bartolucei, F., and V. Nigro (2012): “Pseudo Conditional Maximum Likelihood Estimation of the Dynamic Logit
Model for Binary Panel Data,” Journal of Econometrics, 170, 102-116.

41



Blundell, R., and S. Bond (1998): “Initial Conditions and Moment Restrictions in Dynamic Panel Data Models,”
Journal of Econometrics, 87, 115-143.

Chamberlain, G. (1985): “Heterogeneity, Omitted Variable Bias, and Duration Dependence,” in Longitudinal Anal-

ysis of Labor Market Data, ed. by J. Heckman and B. Singer, Cambridge: Cambridge University Press.

Chamberlain, G. (1992): “Comment: Sequential Moment Restrictions in Panel Data,” Journal of Business and

Economic Statistics, 10, 20-26.

Chamberlain, G. (2010): “Binary Response Models for Panel Data: Identification and Information,” Econometrica,

78, 159-168.

Carrasco, M. (2012): “A Regularization Approach to the Many Instruments Problem,” Journal of Econometrics,

170, 383-398.

Carro, J. M. (2007): “Estimating Dynamic Panel Data Discrete Choice Models with Fixed Effects,” Journal of
FEconometrics, 140, 503-528.

Cox, D. R. (1958): “Some Problems Connected with Statistical Inference,” The Annals of Mathematical Statistics,
29(2), 357-372.

Harris, D., and L. Matyds (1999): “Introduction to the Generalised Method of Moments Estimation,” in Generalized
Method of Moments Estimation, ed. by L. Matyas, Cambridge, U.K.: Cambridge University Press.

Hahn, J. (1999): “How Informative is the Initial Condition in the Dynamic Panel Data Model with Fixed Effects?”
Journal of Econometrics, 93, 309-326.

Hansen, L. P. (1982): “Large Sample Properties of Generalized Methods of Moments Estimators,” Econometrica,

50, 1029-1054.

Hayakawa, K. and M. H. Pesaran (2015), Robust standard errors in transformed likelihood estimation of dynamic

panel data models with cross-sectional heteroskedasticity, Journal of Econometrics, 188, 111-134.

Heckman, J. (1981a): “The Incidental Parameters Problem and the Problem of Initial Conditions in Estimating a
Discrete Time-Discrete Data Stochastic Process,” in Structural Analysis of Discrete Panel Data with Econo-

metric Applications, ed. by C. Manski and D. McFadden, Cambridge: MIT Press.

Heckman, J. (1981b): “Heterogeneity and State Dependence,” in Studies in Labor Markets, ed. by S. Rosen, Chicago:

University of Chicago Press.
Honoré, B. (2002): “Nonlinear Models with Panel Data,” Portuguese Economic Journal, 1, 163-179.

Honoré, B., and E. Kyriazidou (2000): “Panel Data Discrete Choice Models with Lagged Dependent Variables,”
Econometrica, 68, 839-874.

Hsiao, C. (2014): Analysis of Panel Data, Third Edition, Cambridge, U.K.: Cambridge University Press.

Hsiao, C., M. H. Pesaran, and K. A. Tahmiscioglu (2002): “Maximum Likelihood Estimation of Fixed Effects
Dynamic Panel Data Models Covering Short Time Periods,” Journal of Econometrics, 109, 107-150.

42



Lee, Y. and P.C.B. Phillips (2015): “Model selection in the presence of incidental parameters,” Journal of Econo-
metrics, 188(2), 474-489.

Magnac, T. (2001): “Subsidised Training and Youth Employment: Distinguishing Unobserved Heterogeneity from
State Dependence in Labour Market Histories,” Economic Journal, 110, 805-837.

Magnac, T. (2004): “Panel Binary Variables and Sufficiency: Generalizing Conditional Logit,” Econometrica, 72,
1859-1876.

Mehrhoff, J. (2009): “A Solution to the Problem of Too Many Instruments in Dynamic Panel Data GMM,” Discussion

Paper, Series 1, Economic Studies, Deutsche Bundesbank, Frankfurt.

Newey, W. K. (1991). “Uniform Convergence in Probability and Stochastic Equicontinuity,” Econometrica, 59,
1161-1167.

Pesaran, M. H. (2015). Time Series and Panel Data Econometrics. Oxford, U.K.: Oxford University Press.

Pesaran, M. H., and A. Timermann (2009): “Testing Dependence Among Serially Correlated Multicategory Vari-
ables,” Journal of the American Statistical Association, 104, 325-337.

Roodman, D. (2009): “A Note on the Theme of Too Many Instruments,” Ozford Bulletin of Economics and Statistics,
71, 135-158.

Wooldridge, J. M. (1997): “Multiplicative Panel Data Models without the Strict Exogeneity Assumption,” Econo-
metric Theory, 13, 667-678.

Wooldridge, J. M. (2002): Econometric Analysis of Cross Section and Panel Data, Cambridge, U.S.A.: MIT Press.

Wooldridge, J. M. (2005): “Simple Solutions to the Initial Conditions Problem in Dynamic, Nonlinear Panel-Data

Models with Unobserved Heterogeneity,” Journal of Applied Econometrics, 20, 39-54.

43



