
Subscriber access provided by UNIV OF DURHAM

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

Syntheses of Diverse Donor-Substituted Bisbenzofuro[2,3-b:3’,2’-
e]pyridines (BBZFPys) via Pd Catalysis, and Their Photophysical Properties

Yuhei Itai, Yuji Nishii, Patrycja Stachelek, Przemyslaw Data,
Youhei Takeda, Satoshi Minakata, and Masahiro Miura

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b01451 • Publication Date (Web): 13 Aug 2018

Downloaded from http://pubs.acs.org on August 15, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



 1

Syntheses of Diverse Donor-Substituted 

Bisbenzofuro[2,3-b:3’,2’-e]pyridines (BBZFPys) via Pd Catalysis, and 

Their Photophysical Properties 

Yuhei Itai,† Yuji Nishii,†,‡ Patrycja Stachelek,§ Przemyslaw Data,*,§,∥,⊥ Youhei Takeda,*,† Satoshi 

Minakata,† and Masahiro Miura*,† 

†
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, 

Osaka 565-0871, Japan 

‡
Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, 

Yamadaoka 2-1, Suita, Osaka 565-0871, Japan 

§
Durham University, Physics Department, South Road, Durham DH1 3LE, United Kingdom 

∥Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland 

⊥Center of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, 

Poland 

przemyslaw.data@durham.ac.uk; takeda@chem.eng.osaka-u.ac.jp; miura@chem.eng.osaka-u.ac.jp 

 

Table of Contents 

 

Abstract 

 A series of bisbenzofuro[2,3-b:3’,2’-e]pyridines (BBZFPys) bearing a chlorine 

functionality have been efficiently synthesized through a Pd-catalyzed double oxidative 

intramolecular C–H/C–H coupling of mono-chlorinated 2,6-diaryloxypyridines.  The subsequent 

Buchwald-Hartwig amination of the chlorinated BBZFPys allowed for the access to a new class of 

donor-acceptor (D-A) π-conjugated compounds that comprise of BBZFPy as an electron-acceptor 

(A) and diarylamines as a donor (D) units.  The investigation of the steady-state photophysical 

properties of the prepared D-A compounds revealed that they are emissive in both of solution and 

solid states in blue-to-green color region.  The singlet-triplet energy splitting (∆EST) was found 

much smaller than that of substituent-free BBZFPy (0.70 eV), ranging from 0.01 to 0.56 eV.  The 

time-resolved spectroscopy revealed that the D-A compounds comprising of a 

bis(tert-butyl)carbazole as the D and CF3-attached BBZFPy as the A showed delayed fluorescence 
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 2

(DF) in non-polar matrix host material (Zeonex®D), while in a polar matrix (DPEPO), 

room-temperature phosphorescence (RTP) was faintly observed.  Furthermore, organic 

light-emitting diodes (OLEDs) fabricated with the D-A compounds as a blue-emitter showed a 

moderate external quantum efficiencies (EQEs) up to 1.5%.   

 

Introduction 

Benzofuro[2,3-b]pyridines (BZFPys) constitute an important scaffold in medicinal 

chemistry and materials science.  For example, 4-amino or aryl-substituted BZFPys serve as a class 

of multi-kinase inhibitors,1 while BZFPys having an electron-donating group at the 6-position serve 

as promising bipolar host materials for blue phosphorescent organic light-emitting diodes 

(PHOLEDs).2  Traditionally, BZFPYs are prepared through intramolecular SNAr cyclization of the 

diazonium salts derived from 3-amino-2-phenoxypyridines.  Nevertheless, this method requires the 

preparation of explosive diazonium compounds, and the product yields are typically low.1  Recent 

progress mainly focuses on the utilization of transition-metal catalysis, allowing milder reaction 

conditions.  Ames and Opalko reported a Pd-catalyzed Heck-type cyclization of 

2-(2-bromophenoxy)pyridine to give non-substituted BZFPy, albeit in a low yield,3a while the Li 

group developed a Pd-catalyzed high-yielding protocol that comprises of the stannylation of 

3-iodo-2-(2-iodophenoxy)pyridine and the subsequent intramolecular Stille cross-coupling.3b  

Another efficient route to BZFPys involves a CuTC-mediated intramolecular Ullmann-type 

O-cyclization of 2-(2-chloropyridin-3-yl)phenols.3c  A Rh-catalyzed CN-cleaving cyclization of 

2-(2-chlorophenoxy)nicotinonitrile developed by the Tobisu and Chatani group constitutes an 

intriguing route to BZFPy skeleton.3d  Nevertheless, these precedent methods use the 

pre-functionalized aryloxypyridine substrates, and therefore, multi steps are required from readily 

available organic compounds.   

Oxidative C–H/C–H coupling of heteroatom-linked polyarenes would be one of the most 

atom-economical, straightforward, and diverse approaches to polycondensed heteroacenes, because a 

large variety of the diaryl ethers, amines, and sulfides are readily available.4–6  As a program of our 

research on direct C–H functionalization of aromatic compounds via transition-metal catalysis,7 we 

have contributed to the development of highly atom- and step-economical synthetic methods for 

ladder-type heteroacenes (e.g., thienobenzofurans5a and benzobis- and benzotrisbenzofurans).5b  

More recently, we have developed a Pd-catalyzed oxidative intramolecular double C–H/C–H 

coupling of 2,6-diaryloxypyridines to give bisbenzofuro[2,3-b:3’,2’-e]pyridines (BBZFPys) (Eq. 1).6  

The preliminary investigation of the physicochemical properties of substituent-free BBZFPy 

revealed that its chloroform solution emits a violet fluorescence (λem 360 nm) with a narrow Stokes 

shift (∆λ 1041 cm–1) and a high photoluminescence quantum yield (PLQY) (ΦF 0.70).  Other 
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 3

interesting physicochemical aspects involve a wide HOMO/LUMO gap (Eg 3.44 eV), a high triplet 

energy (ET 2.88 eV), and a high electron affinity (EA: 2.67 eV),6 indicating that the BBZFPy can 

serve as a unique electron accepting building block for organic functional materials. 

Donor-acceptor (D-A) π-conjugated organic compounds have increasingly emerged as 

useful scaffolds for organic functional materials such as organic photovoltaics (OPVs),8a organic 

light-emitting diodes (OLEDs),8b and bio-imaging probes.8c  Specifically, twisted D–A 

π-conjugated compounds that show charge transfer (CT) emissions have rapidly attracted much 

attention as promising thermally activated delayed fluorescence (TADF) materials over the last 

several years.8b,9  To gain efficient TADF with D-A conjugated systems, the reverse intersystem 

crossing (RISC) from the triplet excited state (T1) to the singlet charge transfer state (1CT) should be 

promoted by modifying the D/A combinations and the D–A dihedral angles.10  As one of the key 

criteria for designing TADF-active molecules, it is desirable to tune the singlet-triplet energy 

splitting (∆EST) to be almost zero.   

Based on these backgrounds, we decided to expand our oxidative intramolecular C–H/C–H 

coupling method6 to the preparation of diverse D-A-type BBZFPys and to investigate the 

photophysical properties of the resulting D-A compounds with the aim at applying to organic 

emitters in OLED devices.  Herein we disclose a highly atom- and step-economical synthetic 

strategy for the preparation of D-A-type BBZFPys through a sequential protocol comprising of a 

Pd-catalyze intramolecular C–H/C–H oxidative coupling of monochloro 2,6-diaryloxypyridines and 

the subsequent Buchwald-Hartwig amination (Eq. 2).  Photophysical properties of the D-A 

compounds in solution and solid states also have been investigated.  Furthermore, applications of 

the D-A compounds as a blue emitter in OLED devices have been demonstrated. 

 

 

Results and Discussion 

Design and Syntheses 

As an initial study, theoretical calculation of a D-A type BBZFPy in the gas phase was 

conducted by the DFT method at the B3LYP/6-31G level (Figure 1; for the details, see the 

Supporting Information).  The optimized structure of the D-A compound in the ground state takes 
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the twisted conformation around the C–N bond with the dihedral angle being 58.5 ° (Figure 1), 

which would be the consequence of the balance between the steric repulsion of aromatic C–H groups 

of the D and A units and weak π-system conjugation.  This propensity of the D-A twisted structure 

was rationalized by the potential energy surface (PES) scan of the grond state of this D-A compound 

around the D-A dihedral angle (Figure S1).  The ∆EST of the simplest D-A BBZFPy compound was 

estimated by the time-dependent DFT (TDDFT) method at the same level using the optimized 

structure of the ground state (for the details, see the Supporting Information).  Although the TDDFT 

calculation using the B3LYP functional often gives substantial errors for the charge transfer excited 

states of D-A type molecules, it is still useful for a brief estimation of ∆EST of designed molecules, 

due to the low calculation cost.  Owing to the twisted structure, the HOMO and LUMO are 

distinctly separated (Figure 1), and thereby ∆EST being substantially reduced to 0.26 eV, which is 

much narrower than that of BBZFPy (0.70 eV).6   

 

Figure 1. The illustrative summary of the theoretical calculation by the DFT method. 

 

As starting substrates, unsymmetric 2,6-diaryloxypyridines 2 were readily prepared by the 

sequential double substitution of the dihalo groups of 2,6-dichloro- and dibromopyridines with 

phenol derivatives (Scheme 1).  The treatment of dichloropyridines with about a half equivalent of 

phenol derivatives under basic conditions (Conditions A, Scheme 1) selectively gave 

mono-substituted products 1a–1d in high yields (88–93% based on the amount of phenol substrates), 

while in the case of dibromopyridine, Cu-catalyzed Ullmann-type O-arylation11 gave the 

corresponding monoaryloxy bromopyridine 1e and 1f in moderate yields (Conditions B, Scheme 1).  

Using similar reaction conditions (Conditions C and D, Scheme 1),12 the remaining halogen group 

was substituted with phenol derivatives to give a variety of unsymmetric diaryloxypyridines 2. 

Page 4 of 33

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 5

 

Scheme 1. Preparation of unsymmetric chloro-bearing 2,6-diaryloxypyridines 2. 

 

To synthesize precursors for D-A-type BBZFPys and to verify the generality of the 

previously developed oxidative C–H/C–H coupling, diaryloxypyridines 2 were subjected to the 

slightly modified coupling reaction conditions (Table 1).6  In the presence of Pd(TFA)2 as a catalyst 

and AgOAc as a stoichiometric oxidant, p-chlorinated diphenoxypyridine 2a smoothly underwent the 

double C–H/C–H coupling to give monochlorinated BBZFPy product 3a in a good yield (80%).  

The oxidative reactions using diaryloxypyridines that have a para-tert-butyl group on a benzene ring 

and a p- and m-Cl substituent on the other aryl moiety (2b and 2c) gave 3b and 3d, respectively, in 

good yields.  On the other hand, the reactions of pyridines with meta-tert-butyl and p-Cl (2d) and 

m-Cl (2e) functionalities afforded the corresponding products 3d and 3e in low yields.  From the 

diaryloxypyridines with an ortho-tert-butyl substituent (2f and 2g), cyclized products 3f and 3g, 

respectively, in moderate yields (63% and 68%).  To enhance the electron-accepting ability of the 

BBZFPy core, CF3-incorporated substrates 2h and 2i were subjected to the reaction conditions to 

afford electron-deficient BBZFPys 3h and 3i, respectively, in moderate yields.  Under these 

oxidative conditions, the chloro functionality of BBZFPy remains intact, which would be a merit of 

using this atom- and step-economical synthetic method.  
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 6

Table 1. Scope of the Pd-catalyzed intramolecular double C–H/C–H oxidative coupling of 2a 

 

Substrate Product (Isolated yield) 

 
 

aReaction conditions: 2 (0.40 mmol), Pd(TFA)2 (40 µmol, 10 mol%), and AgOAc 

(1.60 mmol, 4.0 equiv) in PivOH (4.0 mL) in a 10 mL Schlenk tube at 150 °C for 16 

h under air. b2a (0.40 mmol), Pd(TFA)2 (80 µmol, 20 mol%), and AgOAc (6.0 

equiv) in PivOH (4.0 mL) in a 10 mL Schlenk tube at 150 °C for 16 h under air. 
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 7

With a variety of BBZFPy building blocks in hand, a series of diarylamines were 

incorporated into the acceptor core through the Pd-catalyzed Buchwald-Hartwig amination (Table 2).  

MoPhos was found effective for executing the challenging C–Cl amination.13  The amination of the 

simplest BBZFPy 3a with carbazole and carbazolylcarbazole gave 4aa and 4ab in poor isolated 

yields (17% and 3%, respectively), probably due to the low solubilities of the starting materials and 

products in o-xylene.  On the other hand, the amination of 3b, which has a sterically-demanding 

alkyl group (t-Bu) on the benzofuranyl unit, resulted in D-A compounds 4ba, 4bb, 4bc, and 4bd in 

moderate to good yields (Table 2), probably due to the increased solubilities of the substrates and the 

products.  Amination of 3b with phenothiazine, acridone, and diphenylamine also successfully gave 

the corresponding products 4be, 4bf, and 4bg, albeit in low yields.  The versatility of this protocol 

starting from 2,6-dihalopyridine was demonstrated by preparing a variety of regio isomers of D-A 

compounds (i.e., 4ba, 4ca, 4da, 4fa, and 4ga), which would allow for structure-properties 

relationship (SPR) studies.  Furthermore, this method allows for the syntheses of D–A conjugated 

compounds whose electron-withdrawing ability is enhanced with a CF3 group (4ha, 4hc, 4hd, 4hg, 

and 4ic).   
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 8

 

Table 2. Synthesis of donor-substituted BBZFPys through Buchwald-Hartwig amination of 3a 

 

 
aReaction conditions: 3 (0.50 mmol), [(π-allyl)PdCl]2 (10 µmol, 2 mol%), MoPhos (40 µmol, 8 mol%), 

and NaOt-Bu (0.60 mmol, 1.2 equiv) in o-xylene (2.0 mL) in a 10 mL Schlenk tube at 130 °C for 16 h 

under N2 atmosphere. b 3.0 mL of o-xylene was used as the solvent. 
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Steady-State Photophysical Properties 

 To explore the possibilities of the D-A-type BBZFPys as emissive materials for 

optoelectronic devices, the steady-state photophysical properties in diluted solutions and solid states 

were investigated.  Figure 2 illustrates representative UV-vis absorption and steady-state 

photoluminescence (PL) spectra of 4aa, 4bc, 4bd, 4hc, and 4ic in solutions (Figure 2a, c, e, g, and i) 

and in the solid state (Figure 2b, d, f, h, and j) (for other compounds, see the Figure S6–S8), and the 

properties of all the D-A compounds are summarized in Table 3 and 4.  Typically, in CHCl3 

solutions, almost all the compounds exhibited an absorption at around 290 nm and structured 

absorptions ranging from 330 nm to 380 nm (Figure 2a, c, e, g, and i), which are very similar to that 

of non-substituted BBZFPy.6  Upon the irradiation of UV light, all the compounds are emissive in 

solution in violet-to-green region, with the PLQYs ranging from 0.01 to 0.71 (Table 3).  

Steady-state photoluminescence (PL) spectra of the CHCl3/EtOH (1:4 v/v) solution of 4aa recorded 

at room temperature showed a broad Gaussian-type shape peaked at 448 nm (Figure 2a, green line).  

When compared with non-substituted BBZFPy,6 the Stokes shift is much larger (6547 cm–1 for 4aa, 

1041 cm–1 for BBZFPy), which is typical to the emissions from the singlet charge-transfer excited 

state (1CT) of D-A type conjugated compounds.  In fact, distinct positive-solvatochromism of the 

emissions were observed with a D-A compound 4hc, which has an electron-withdrawing group (CF3) 

on the BBZFPy acceptor core (Figure S9, Table S12).  In the cases of 4ab, 4ba, 4bb, 4bc, 4bg, 4da, 

4fa, 4hc, along with the 1CT emissions, the remnant emissions from the local excited state of the 

acceptor (1LEA) or the donor (1LED) were observed (Figure 2c, g; Figure S6a, c, e; Figure S7a, e, g), 

which would reflect the slow electron transfer (EA) process within these molecules due to 

significantly twisted D-A geometries.9g,f,10c  The population of the 1LE and 1CT emissions is 

inverted in the cases of phenoxazine- and phenothiazine-, and acridone-substituted BBZFPys (4bd, 

4be, and 4bf, Figure 2e, Figure S6g, and Figure S6i, respectively), implying their perpendicularly 

twisted and rigid D-A geometries in solutions to suppress the ET process from the D to A units.  

This was supported by the PES scans of a series of D-A compounds 4aa, 4bd, 4bd, 4bf, and 4bg 

(Figure S1–5): Compounds 4bd, 4be, and 4bf have the potential minima where the D-A interplanar 

angles make a right angle, while 4aa and 4bg take less twisted angles (ca. 58° and 42 °, respectively) 

at the potential minima.  All the phosphorescence (PH) spectra recorded at 77 K in the CHCl3/EtOH 

(1:4 v/v) solutions looked alike, featured with vibronic structures (e.g., blue lines in Figure 2a, c, e, g, 

and i), and they are almost superimposed with the PH spectrum of non-substituted BBZFPy.6  This 

strongly suggests that the nature of the excited triplet states of the D-A compounds are almost 

correlated with that of the local excited triple state of BBZFPy (3LEA).6  Owing to the stabilized 
1CT states and the dominant contribution of the 3LEA in their triplet excited states with a high energy 
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 10

level (at around 2.88 eV), the singlet-triplet energy splitting (∆E1CT-3LE) in solution are narrower than 

that of BBZFPy (0.70 eV) in all cases, ranging from 0.01 to 0.56 (Table 3).  Overall, quantum 

yields are very low except for 4bf and 4ca.  Taken together with the facts that these D-A 

compounds also have small ∆E1CT-3LE, it is speculated that either efficient intersystem crossing (ISC) 

process followed by non-radiative decays based on the molecular rotation and/or vibration or charge 

recombination leading to the “dark” state are the possible reasons for such low quantum yields. 

In the solid states, several compounds that contain carbazoles as the donor (e.g., 4aa, 4ba, 

4bc, and 4da) showed aggregation-induced enhanced emission (AIEE) properties,14 implying that 

twisted geometries suppress intermolecular π-π interactions in the solid states.  Judged from the 

similarity of the phosphorescence spectra between the solution and solid states, the triplet nature of 

D-A-type BBZFPys 4 can be correlated with the 3LE states of the acceptor.  Interesting features 

were observed with 4aa, 4ba, 4fa, and 4ga, where dual emissions were observed, one with structured 

PH (λem 450–700 nm) from the 3LEA as observed in solutions and the one overlapped with the PL 

from the 1LE of the donor or acceptor (λem 350–450 nm).   
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 11

 

Figure 2. (a), (c), (e), (g), and (i) Normalized UV-vis absorption (red, 50 µM, CHCl3), fluorescence 

(green, 50 µM, EtOH/CHCl3 4:1 v/v measured at room temperature), and phosphorescence (blue, 10 

µM, EtOH/CHCl3 4:1 v/v measured at 77K) of diluted solutions of 4aa, 4bc, 4bd, 4hc, and 4ic. (b), 

(d), (f), (h), and (j) Normalized absorption (red), fluorescence (green, measured at room temperature), 

and phosphorescence (blue, measured at 77K) of 4aa, 4bc, 4bd, 4hc, and 4ic in the solid state. 
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 12

Table 3. Selected photophysical data of diluted solutions of D-A compounds 

Compd λabs
 

(nm)a 

PLλem
 

(nm) a,b 
ΦPL

 

(%)a,c 

PHλem
 

(nm)d 

E1CT 

(eV)e 
E3LE 

(eV)f 
∆E1CT-3LE 

(eV) 

4aa 294, 330, 340, 346 448 0.074 426, 440, 459 3.24 2.96 0.28 

4ab 294, 354 489 0.027 426, 439, 457 3.10 2.97 0.13 

4ba 294, 335, 342, 348 446 0.076 429, 443, 459 3.30 2.95 0.35 

4bb 334, 343, 348 446 0.150 429, 443, 461 3.30 2.95 0.35 

4bc 298, 337, 342, 346 444 0.044 428, 444, 462 3.28 2.95 0.33 

4bd 295, 334, 341, 347 491 0.057 454, 469, 490 –g 2.81 – 

4be 295, 337, 342, 348 371, 524 0.016 495, 532 –g 2.68 – 

4bf 375, 396 409, 431 0.391 476, 510 3.09 2.72 0.37 

4bg 263, 319, 339, 342 379, 465 0.083 470 3.01 2.85 0.16 

4ca 332, 340, 347 396 0.714 450, 480 3.36 2.84 0.52 

4da 294, 336, 344, 350 417 0.075 432, 446, 464 3.30 2.89 0.41 

4fa 293, 333, 342, 348 419 0.072 425, 439, 456 3.27 2.97 0.30 

4ga 294, 355 397 0.704 449, 480 3.41 2.96 0.45 

4ha 292, 330, 339, 342 438 0.074 426, 440, 456 3.23 3.00 0.23 

4hc 297, 331, 338, 345 364, 460 0.058 428, 460 3.07 3.00 0.07 

4hd 289, 330, 343, 344 489 0.055 455, 469, 489 2.81 2.82 0.02 

4hg 328, 338, 345 487 0.099 477 2.87 2.86 0.01 

4ic 298, 333, 340, 346 466 0.065 429, 461 3.05 2.98 0.07 
a Measured at room temperature using CHCl3 solutions (c ~ 50 µM). b PLλem indicates the 

lowest-energy wavelength of the maximum emission. c Absolute quantum yields were measured 

with a spectrometer equipped with an integrated sphere. d Measured at 77 K using EtOH/CHCl3 = 

4:1 (c ~ 50 µM). e Determined from the following equation: E1CT = 1240/λonset, 1CT, where λonset, 1CT 

indicates the onset wavelength (nm) of the CT emission observed at room temperature. f 

Determined from the following equation: E3LE = 1240/λonset, 3LE, where λonset, 3LE indicates the onset 

wavelength (nm) of the phosphorescence emission observed at 77 K. g Due to the absence of CT 

emission, E1CT value was not estimated.  

 

Table 4. Selected photophysical data of D-A compounds in solid states 

Compd λabs
 

(nm)a 

PLλem
 

(nm) a,b 
ΦPL

 

(%)a,c 

PHλem
 

(nm)d 

E1CT 

(eV)e 
E3LE 

(eV)f 
∆E1CT-3LE 

(eV) 

4aa 316 387 0.216 464, 504 3.37 2.74 0.63 
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4ab – 388 0.040 – 3.82 – – 

4ba 286, 318, 345 410, 434 0.210 410, 438, 487, 

503, 527, 548, 

565, 597 

3.16 2.64 0.52 

4bb 281, 319, 343 416 0.126 483, 495 3.21 2.86 0.35 

4bc 285, 318, 346 450 0.185 470 3.22 2.92 0.30 

4bd 314, 348, 370 464 0.067 495, 544, 560 3.02 2.68 0.34 

4be 320, 377 493 – 516, 556 2.88 2.48 0.40 

4bf 318, 348, 376, 393 433, 458 0.097 – 3.02 – – 

4bg 284, 386 460 0.066 470 3.01 2.85 0.16 

4ca 332, 340, 347 396 0.304 507, 524 3.01 2.64 0.37 

4da 283, 318, 352 426 0.221 476, 512 3.26 2.81 0.45 

4fa 281, 324 401 0.073 410, 468, 487, 

520 

3.37 2.85 0.52 

4ga 286, 329 415 0.218 416, 477, 517 3.02 2.68 0.34 

4ha 282, 320, 365 419 0.094 438, 476, 501 3.24 2.81 0.43 

4hc 287, 322, 349 414 0.071 476, 506 –g 2.75 – 

4hd 316, 364 383 0.061 551, 568 –g 2.44 – 

4hg 287 456 0.132 532 2.99 2.58 0.41 

4ic 286, 320, 349, 414 455 0.063 476 2.92 2.77 0.15 
a Measured at room temperature. b PLλem indicates the lowest-energy wavelength of the maximum 

emission. c Absolute quantum yields were measured with a spectrometer equipped with an 

integrated sphere. d Measured at 77 K. e Determined from the following equation: E1CT = 

1240/λonset, 1CT, where λonset, 1CT indicates the onset wavelength (nm) of the CT emission observed at 

room temperature. f Determined from the following equation: E3LE = 1240/λonset, 3LE, where λonset, 

3LE indicates the onset wavelength (nm) of the phosphorescence emission observed at 77 K. g The 

CT and LE emissions seem to be overlapped, and the CT emission is too weak. Therefore, the 1CT 

energies cannot be determined. 

 

Time-Resolved Photophysical Analysis 

 To investigate the dynamic behavior of the photo-excited states of a promising D-A 

compound 4hc that shows a small ∆E1CT-3LE, time-resolved luminescence spectroscopy of 4hc was 

performed in both inert non-polar Zeonex®D host (Figure 3a and b) and DPEPO host (Figure 4a and 

b), the latter of which was used to mimic the chemical environment within an OLED device.  Also, 

to explore the effect of the CF3 position of the BBZFPy core on photophysical properties, the 
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photophysics of 4ic, which is a regioisomer of 4hc, was also investigated (Figure 3c, d; Figure 4c, d).  

Both showed emissions within two distinct time regions.  The first, decaying with a lifetime within 

the nanosecond time regime in all the materials, is attributed to prompt emission from the singlet 

excited state due to its temperature independence (Figure 3a, c; Figure 4a, c).  The emission spectra 

acquired in both Zeonex®D and DPEPO at the time delay (TD) of 3 ns showed a Gaussian-like peak 

(black and green lines in Figure 3b, d; Figure 4b, d) that decayed quite fast and then reappeared in 

almost the same place (blue lines in Figure 3b, d) or in the lower energy region (blue line in Figure 

4d) over longer times.  The first species can be attributed to the emission from the charge transfer 

(1CT) singlet excited state.  The energy onset of this CT emission follows the same trend as 

observed in solution (Figure 2): 3.38 eV for 4hc and 3.32 eV for 4ic in Zeonex®D; 3.28 eV for 4hc 

and 3.20 eV for 4ic in DPEPO host. 

At the longer delay times, in the microsecond/millisecond delay time regions, delayed 

emission (DE) was observed in Zeonex®D (Figure 3a, c).  Depending upon the experimental 

temperature, both the singlet state DE and triplet state emission were observed on similar millisecond 

timescales, and therefore the emission from each state is most easily elucidated upon spectral 

inspection at different temperatures (Figure 3a, c).  At ambient temperature, the DE was observed 

with the same spectral shape and onset energy as the prompt CT spectra (Figure 3b, d).  Therefore, 

it can be identified as delayed fluorescence (DF), but the emission is so weak, it would be difficult to 

distinguish between TADF and triplet-triplet annihilation (TTA)15 process.  With all the materials, 

the emission from the triplet state was observed at a low temperature (80 K), with this triplet energy 

being found at 3.00 eV (4hc) and 2.98 (4ic) in Zeonex®D (Figure 3b, d) and 2.96 eV (4hc) and 2.96 

(4ic) in DPEPO (Figure 4b, d).  From the energetical point of view, ∆EST of the materials are 

estimated to be 0.38 eV (4hc) and 0.36 (4ic) in Zeonex®D (Figure 3b, d), and 0.32 eV (4hc) and 0.24 

eV (4ic) in DPEPO (Figure 4b, d).  These moderate values suggested a moderate exchange energy, 

probably due to the moderate D-A twisted angles. 

As for the compounds in Zeonex®D host, we can conclude that there is some DF 

contribution, while in DPEPO host, their behavior is different.  It seems that there is no DF 

emission at all.  Moreover, the delayed emission disappeared for compound 4hc at a higher 

temperature (Figure 4b).  What is interesting, in the film composed of compound 4ic with the 

DPEPO host, there was a weak room temperature phosphorescence (RTP), which might be a 

candidate for RTP materials for future organic electronic applicastions.16  
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Figure 3. (a) Plot of 1% w/w 4hc in Zeonex®D emission intensity against delay time measured 80 K 

(black), 130 K (red), 180 K (green), 230 K (blue), 280 K (cyan), 330 K (pink). (b) Normalized 

intensity spectra of 1% w/w 4hc in Zeonex®D at both 330 K and 80 K. (c) Plot of 1% w/w 4ic in 

Zeonex®D emission intensity against delay time measured 80 K (black), 130 K (red), 180 K (green), 

230 K (blue), 280 K (cyan), 330 K (pink). (d) Normalized intensity spectra of 1% w/w 4ic in 

Zeonex®D at both 330 K and 80 K.  
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Figure 4. (a) Plot of 10% w/w 4hc in DPEPO emission intensity against delay time measured 80 K 

(black), 130 K (red), 180 K (green), 230 K (blue), 280 K (cyan), 330 K (pink). (b) Normalized 

emission spectra of 10% w/w 4hc in DPEPO at varying delay times at 330 K and 80 K. (c) Plot of 

10% w/w 4ic in DPEPO emission intensity against delay time measured 80 K (black), 130 K (red), 

180 K (green), 230 K (blue), 280 K (cyan), 330 K (pink). (d) Normalized emission spectra of 10% 

w/w 4ic in DPEPO at varying delay times at 330 K and 80 K. 

 

OLED Applications 

Before applying the compounds 4hc and 4ic as blue emitters in OLED devices, their 

thermal stabilities were investigated with thermogravimetric analyses (TGA).  The degradation 

temperatures (defined at 5 wt% loss) Td of 4hc and 4ic under air were found over 330 °C (Figure 

S10), which are high enough for the purification and deposition of OLED devices with vacuum 

thermal deposition method.  As the final step of the analyses, the OLED devices were fabricated 

(Figure 5).  The device structures of [ITO/NPB (50 nm)/CzSi (10 nm)/10% 4hc (dev 1) or 4ic (dev 

3) in mCP (20 nm)/TPBi (50 nm)/LiF (1 nm)/Al (100 nm)] and [ITO/NPB (40 nm)/CzSi (10 

nm)/10% 4hc (dev 2) or 4ic (dev 4) in DPEPO (20 nm)/DPEPO (10 nm)/TPBi (50 nm)/LiF (1 

nm)/Al (100 nm)] were chosen for comparison (Figure 5).  The inspection of the characteristics of 

the fabricated OLED revealed that the EL observed in all the devices are ascribed to the CT 

emissions from the compounds 4hc and 4ic.  The overall efficiency is moderate (around 1%), which 
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should be caused by low delayed fluorescence contribution.  The most efficient devices were the 

ones fabricated with DPEPO host, which resulted an efficiency around 1.5% external quantum 

efficiency (EQE) with the brightness up to 2000 cd/m2 (Figure 5).  The turn-on voltage was between 

2 V (dev 2) and 3 V (dev 1), while the OLED characteristic showed the roll-off dependency, 

especially for device 4. 

 

 

Figure 5. Device characteristic of dev 1–4. 

 

Conclusion 

 In conclusion, we have established a highly atom- and step-economical synthetic 

procedures for diverse D-A-structured BBZFPys utilizing a Pd-catalyzed intramolecular double C–

H/C–H oxidative coupling of chlorinated 2,6-diaryloxypyridines and the subsequent 

Buchwald-Hartwig amination.  With this protocol, a series of regioisomers of D-A-type BBZFPys 

are selectively accessible.  The steady-state photophysical investigation of the D-A compounds has 

showed that they are emissive in violet-to-green region, with ∆EST values being moderately narrow 

in solution and solid states.  Time-resolved inspection has revealed the host-dependent involvement 

of delayed fluorescence from 4hc and 4ic in Zeonex®D host, while the 4ic in DPEPO shows RTP.  

Furthermore, these compounds have been demonstrated to be utilized as blue-emitters in OLED 

devices, with the EQE achieving 1.5 %. 

 

Experimental Section 

General Experimental Methods. Nuclear magnetic resonance spectra were measured operating at 

400 MHz (1H NMR), at 100 MHz (13C NMR), and at 376 MHz (19F NMR).  1H NMR chemical 

shifts were reported in ppm relative to the resonance in TMS at δ 0.00. 13C NMR chemical shifts 

were reported in ppm relative to the residual solvent signals of CDCl3 at δ 77.16.  High resolution 

mass spectra (HRMS) were recorded with APCI-TOF.  Melting points were measured with Mettler 

Toledo MP90.  GC analysis was carried out using a Shimadzu silicon OV-17 column (2.6 mm × 1.5 
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m).  UV-vis spectra were acquired with Shimadzu UV-2500 PC and JASCO V-750 spectrometers.  

PL spectra and PLQY measurements were conducted with Shimadzu RF-5300PC Spectro Fluoro 

Photometer (fluorescence) and JASCO FP-8500 Spectro Fluoro Photometer (phosphorescence).  

The DFT calculations were performed by using the Gaussian 09 package.17  

 Materials. DMSO, NMP, and o-xylene were dried over CaH2 and distilled under reduced 

pressure before use.  All the other reagents were purchased from commercial sources and used as 

received without further purification.  

 General procedure for the preparation of 2-chloro-6-aryloxypyridines 1a–1d 

(Conditions A in Scheme 1): To a flask (50 mL) equipped with a magnetic stirring bar, 

2,6-dichloropyridine (2.20 g, 15 mmol), phenol derivative (7.5 mmol), and K2CO3 (8.29 g, 60 mmol) 

were added, and the atmosphere inside the flask was replaced with N2 gas.  DMSO (20 mL) was 

added to the flask with a syringe, and the resulting solution was stirred at 160 °C for 24 h.  After the 

reaction completed, AcOEt (20 mL) and water (20 mL) were added to the reaction mixture, and the 

organic layer was extracted with AcOEt for 3 times, dried with Na2SO4, and filtered through 

activated alumina.  The filtrate was concentrated under reduced pressure to give oil residue, which 

was then dissolved in an eluent and purified by column chromatography on silica gel.  Further 

purification was conducted with GPC. 

2-Chloro-6-phenoxypyridine (1a) [CAS No. 23628-24-2]. Purified by column 

chromatography (eluent n-hex/AcOEt 20:1) on silica gel followed by GPC (CHCl3). 2.01 g, 93%, 

white solid; m.p. 83.8–85.8 °C; 1H NMR (400 MHz, CDCl3) δ 6.73 (dd, J = 8.1, 0.6 Hz, 1H), 7.03 

(dd, J = 7.6, 0.6 Hz, 1H), 7.12–7.15 (m, 2H), 7.22 (tt, J = 7.5, 1.1 Hz, 1H), 7.38–7.43 (m, 2H), 7.61 

(dd, J = 8.0, 8.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 109.2, 118.6, 121.1, 125.2, 129.9, 141.5, 

149.2, 153.7, 163.2; HRMS (APCI) m/z (M+H)+ calcd for C11H9ClNO: 206.0367, found: 206.0367.  

All the spectroscopic data are in accordance with the literature.18 

2-Chloro-6-(4-tert-butylphenoxy)pyridine (1b). Purified by column chromatography 

(eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3). 2.59 g, 94%,white solid; m.p. 

61.4–62.4 °C; 1H NMR (400 MHz, CDCl3) δ 1.34 (s, 9H), 6.71 (dd, J = 8.1, 0.5 Hz, 1H), 7.02 (dd, J 

= 7.6, 0.6 Hz, 1H), 7.07 (dd, J = 6.7, 2.1 Hz, 2H), 7.40 (dd, J = 6.7, 2.1 Hz, 2H), 7.59 (dd, J = 8.1, 

8.1 Hz, 1H); 13C NMR (100 MHz, CDCl3): δ 31.6, 34.6, 109.0, 118.4, 120.4, 126.8, 141.4, 148.0, 

149.2, 151.3, 163.5; HRMS (APCI) m/z (M+H)+ calcd for C15H17ClNO: 262.0993, found: 262.1006. 

2-Chloro-6-(3-tert-butylphenoxy)pyridine (1c). Prepared by following a general 

procedure using 20 mmol of 2,6-dichloropyridine, 14 mmol of 3-tert-butylphenol, 80 mmol of 

K2CO3, and 20 mL of DMSO.  Purified by column chromatography (eluent n-hex/AcOEt 10:1) on 

silica gel followed by GPC (CHCl3). 3.43 g, 88%, colorless oil; 1H NMR (400 MHz, CDCl3) δ 1.32 

(s, 9H), 6.70 (d, J = 8.0 Hz, 1H), 6.95 (ddd, J = 7.9, 2.4, 1.0 Hz, 1H), 7.03 (d, J = 7.6 Hz, 1H), 7.17 
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(dd, J = 2.1, 2.1 Hz, 1H), 7.24 (ddd, J = 7.7, 1.6, 1.1 Hz, 1H), 7.32 (dd, J = 7.9, 7.9 Hz, 1H), 7.60 (dd, 

J = 7.9, 7.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 31.3, 34.8, 108.9, 117.8, 118.2, 118.4, 122.1, 

129.3, 141.4, 149.1, 153.52, 153.56, 163.3; HRMS (APCI) m/z (M+H)+ calcd for C15H17ClNO: 

262.0993, found: 262.0992. 

2-Chloro-6-(2-tert-butylphenoxy)pyridine (1d). Prepared by following a general 

procedure using 20 mmol of 2,6-dichloropyridine, 14 mmol of 3-tert-butylphenol, 80 mmol of 

K2CO3, and 20 mL of DMSO.  Purified by column chromatography (eluent n-hex/AcOEt 10:1) on 

silica gel followed by GPC (CHCl3). 3.37 g, 92%, white solid; m.p. 36.1–37.8 °C; 1H NMR (400 

MHz, CDCl3) δ 1.37 (s, 9H), 6.66 (d, J = 8.1 Hz, 1H), 6.95 (dd, J = 7.8, 1.4 Hz, 1H), 7.03 (d, J = 7.6 

Hz, 1H), 7.13–7.23 (m, 2H), 7.44 (dd, J = 7.7, 1.7 Hz, 1H), 7.59 (dd, J = 7.8, 7.8 Hz, 1H); 13C NMR 

(100 MHz, CDCl3) δ 30.3, 34.7, 109.3, 118.3, 122.5, 125.0, 127.2, 127.6, 141.4, 141.6, 149.4, 152.6, 

163.5; HRMS (APCI) m/z (M+H)+ calcd for C15H17ClNO: 262.0993, found: 262.0998. 

General procedure for the preparation of 2-bromo-6-aryloxypyridines 1e and 1f 

(Conditions B in Scheme 1): These compounds were prepared by modifying a reported procedure.11  

To a flask (100 mL) equipped with a magnetic stirring bar, 2,6-dibromopyridine (6.39 g, 27 mmol), 

CuI (514.2 mg, 2.7 mmol, 10 mol%), picolinic acid (664.8 mg, 5.4 mmol, 20 mol%), and K3PO4 

(11.46 g, 54 mmol) were added, and the atmosphere inside the flask was replaced with N2 gas.  

Phenol derivative (15 mmol) was dissolved into DMSO (50 mL), which then was added to the flask 

with a syringe, and the resulting solution was stirred at 90 °C for 24 h.  After the reaction 

completed, AcOEt (80 mL), water (80 mL), and ethylenediamine (10 mL) were added to the reaction 

mixture, and the organic layer was extracted with AcOEt for 3 times, dried with Na2SO4, and filtered 

through activated alumina.  The filtrate was concentrated under reduced pressure to give oil residue, 

which was then dissolved in an eluent and purified by column chromatography on silica gel.  

Further purification was conducted with GPC. 

2-Bromo-6-[4-(trifluoromethyl)phenoxy]pyridine (1e). Purified by column 

chromatography (eluent n-hex/AcOEt 5:1) on silica gel followed by GPC (CHCl3). 2.41g, 51%, pale 

yellow oil; 1H NMR (400 MHz, CDCl3) δ 6.89 (dd, J = 8.1, 0.6 Hz, 1H), 7.24–7.27 (m, 3H), 7.58 (dd, 

J = 7.7, 7.7 Hz, 1H), 7.66 (dd, J = 8.9, 0.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 110.5, 121.0, 

123.4, 124.1 (q, J = 272.0 Hz), 127.0 (q, J = 33 Hz), 127.1 (q, J = 3.7 Hz), 139.2, 141.6, 156.5, 

162.0; 19F NMR (376 MHz, CDCl3) δ –61.99; HRMS (APCI) m/z (M+H)+ calcd for C12H8BrF3NO: 

317.9736, found: 317.9735. 

2-Bromo-6-[3-(trifluoromethyl)phenoxy]pyridine (1f). Purified by column 

chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3). 3.58 g, 75%, 

pale yellow oil; 1H NMR (400 MHz, CDCl3) δ 6.87 (d, J = 8.0 Hz, 1H), 7.23–7.26 (m, 1H), 7.35 (dd, 

J = 7.9, 1.7 Hz, 1H), 7.42 (s, br, 1H), 7.46–7.59 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 110.2, 

Page 19 of 33

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 20

118.2 (q, J =3.7 Hz), 121.7 (q, J = 4.0 Hz), 123.2, 123.7 (q, J = 273.1 Hz), 124.4, 130.3, 1321.29 (q, 

J = 33.0 Hz), 139.27, 141.5, 153.9, 162.2; 19F NMR (376 MHz, CDCl3) δ –62.66; HRMS (APCI) 

m/z (M+H)+ calcd for C12H8BrF3NO: 317.9736, found: 317.9735. 

General procedure for the preparation of 2a–2g (Conditions C in Scheme 1): To a flask 

equipped with a magnetic stirring bar, 2-halo-6-aryloxypyridine 1 (9.81 mmol), phenol derivative 

(11.7 mmol), and K2CO3 (4.06 g, 29.4 mmol) were added, and the atmosphere inside the flask was 

replaced with N2 gas.  DMSO (13 mL) was added to the flask with a syringe, and the resulting 

solution was stirred at 160 °C for 24 h.  After the reaction completed, AcOEt and water were added 

to the reaction mixture, and the organic layer was extracted with AcOEt for 3 times, dried with 

Na2SO4, and filtered through activated alumina.  The filtrate was concentrated under reduced 

pressure to give oil residue, which was then dissolved in CHCl3 and purified by column 

chromatography on silica gel.  Further purification was conducted with GPC. 

2-(4-Chlorophenoxy)-6-phenoxypyridine (2a). Purified by column chromatography 

(eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3). 2.62 g, 80%, pale yellow oil; 1H 

NMR (400 MHz, CDCl3) δ 6.52 (ddd, J = 8.0, 7.9, 0.5 Hz, 2H), 6.99–7.11 (m, 4H), 7.17 (tt, J = 7.4, 

1.2 Hz, 1H), 7.23–7.28 (m, 2H), 7.30–7.35 (m, 2H), 7.64 (dd, J = 8.0, 8.0 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 104.4, 121.2, 121.3, 122.6, 122.7, 124.8, 129.4, 129.5, 142.3, 152.4, 153.8, 162.0, 

162.5; HRMS (APCI) m/z (M+H)+ calcd for C17H13ClNO2: 298.0629, found: 298.0628. 

2-(4-tert-Butylphenoxy)-6-(4-chlorophenoxy)pyridine (2b) [CAS No. 2085326-80-1]. 

Prepared by following a general procedure on a 6 mmol scale (1b). Purified by column 

chromatography (eluent n-hex/AcOEt 20:1) on silica gel followed by GPC (CHCl3). 1.52 g, 72%, 

colorless oil; Spectroscopy data were in good agreement with those reported previously.6 1H NMR 

(400 MHz, CDCl3) δ 1.33 (s, 9H), 6.49 (dd, J = 8.0, 0.5 Hz, 1H), 6.51 (dd, J = 7.9, 0.5 Hz, 1H), 6.97 

(d, J = 8.9 Hz, 2H), 7.02 (d, J = 8.9 Hz, 2H), 7.23 (d, J = 8.9 Hz, 2H), 7.31 (d, J = 8.9 Hz, 2H), 7.62 

(dd, J = 7.9, 7.8 Hz, 1H); HRMS (APCI) m/z (M+H)+ calcd for C21H21NO2Cl: 354.1255, found: 

354.1264.  All the spectroscopic data are in accordance with the literature.6 

2-(4-tert-Butylphenoxy)-6-(3-chlorophenoxy)pyridine (2c) [CAS No. 2085326-82-3]. 

Prepared by following a general procedure on a 11.5 mmol scale (1b). Purified by column 

chromatography (eluent n-hex/AcOEt 20:1) on silica gel followed by GPC (CHCl3). 2.47 g, 61%, 

colorless oil; 1H NMR (400 MHz, CDCl3) δ 1.31 (s, 9H), 6.53 (dd, J = 7.5, 7.4 Hz, 2H), 6.97–7.02 

(m, 3H), 7.08–7.12 (m, 2H), 7.21 (dd, J = 8.3, 8.1 Hz, 1H), 7.32–7.34 (m, 2H), 7.64 (dd, J = 8.2, 7.9 

Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 31.5, 34.5, 104.4, 104.6, 119.5, 120.7, 121.7, 124.7, 126.4, 

130.1, 134.5, 142.3, 147.5, 151.3, 154.6, 161.82, 162.81; HRMS (APCI) m/z (M+H)+ calcd for 

C21H21ClNO2: 354.1255, found: 354.1245.  All the spectroscopic data are in accordance with the 

literature.6 
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2-(3-tert-Butylphenoxy)-6-(4-chlorophenoxy)pyridine (2d). Prepared by following a 

general procedure on a 5.73 mmol scale (1c). Purified by column chromatography (eluent 

n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3). 1.45 g, 72%, colorless oil; 1H NMR (400 

MHz, CDCl3) δ 1.27 (s, 9H), 6.48 (d, J = 7.8 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 6.88 (ddd, J = 7.8, 

2.4, 1.1 Hz, 1H), 7.02–7.04 (m, 2H), 7.08 (dd, J = 2.1, 2.1 Hz, 1H), 7.18–7.27 (m, 4H), 7.63 (dd, J = 

7.8, 7.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 31.3, 34.8, 104.2, 104.4, 118.3, 118.5, 121.8, 122.6, 

129.1, 129.4, 129.6, 142.3, 152.4, 153.3, 153.7, 162.0, 162.8; HRMS (APCI) m/z (M+H)+ calcd for 

C21H21ClNO2: 354.1255, found: 354.1257. 

2-(3-tert-Butylphenoxy)-6-(3-chlorophenoxy)pyridine (2e). Prepared by following a 

general procedure on a 5.73 mmol scale (1c). Purified by column chromatography (eluent 

n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3). 1.27 g, 63%, yellow oil; 1H NMR (400 

MHz, CDCl3) δ 1.27 (s, 9H), 6.50 (dd, J = 8.0, 0.5 Hz, 1H), 6.56 (dd, J = 7.9, 0.5 Hz, 1H), 6.90 (ddd, 

J = 8.0, 2.3, 1.1 Hz, 1H), 6.99 (ddd, J = 8.2, 2.3, 1.0 Hz, 1H), 7.08–7.11 (m, 3H), 7.17–7.28 (m, 3H), 

7.65 (dd, J = 7.9, 7.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 31.3, 34.8, 104.6, 104.7, 118.2, 118.4, 

119.4, 121.6, 121.8, 124.6, 129.0, 130.1, 134.6, 142.3, 153.3, 153.7, 154.7, 161.7, 162.8; HRMS 

(APCI) m/z (M+H)+ calcd for C21H21ClNO2: 354.1255, found: 354.1237. 

2-(2-tert-Butylphenoxy)-6-(4-chlorophenoxy)pyridine (2f). Prepared by following a 

general procedure on a 5.73 mmol scale (1d). Purified by column chromatography (eluent 

n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3). 1.65 g, 82%, colorless oil; 1H NMR (400 

MHz, CDCl3) δ 1.33 (s, 9H), 6.48–6.51 (m, 2H), 6.89–6.92 (m, 1H), 7.00–7.04 (m, 2H), 7.08–7.15 

(m, 2H), 7.21–7.25 (m, 2H), 7.36–7.39 (m, 1H), 7.63 (dd, J = 7.9, 7.9 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ 30.4, 34.7, 104.1, 105.0, 122.5, 123.2, 124.7, 126.9, 127.3, 129.4, 129.6, 141.5, 1421.2, 

152.6, 152.7, 162.1, 162.9; HRMS (APCI) m/z (M+H)+ calcd for C21H21ClNO2: 354.1255, found: 

354.1255. 

2-(2-tert-Butylphenoxy)-6-(3-chlorophenoxy)pyridine (2g). Prepared by following a 

general procedure on a 5.73 mmol scale (1d). Purified by column chromatography (eluent 

n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3). 1.66 g, 82%, colorless oil; 1H NMR (400 

MHz, CDCl3) δ 1.33 (s, 9H), 6.53 (dd, J = 7.9, 7.9 Hz, 2H), 6.92 (dd, J = 7.8, 1.6 Hz, 1H), 6.96 (ddd, 

J = 8.2, 2.1, 1.0 Hz, 1H), 7.06–7.16 (m, 4H), 7.17–7.22 (m, 1H), 7.37 (dd, J = 7.8, 1.9 Hz, 1H), 7.65 

(dd, J = 7.9, 7.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 30.4, 34.7, 104.4, 105.4, 119.2, 121.5, 

123.1, 124.6, 124.7, 126.9, 127.3, 130.1, 134.5, 141.5, 142.3, 152.7, 154.8, 161.8, 162.9; HRMS 

(APCI) m/z (M+H)+ calcd for C21H21ClNO2: 354.1255, found: 354.1236. 

General procedure for the preparation of 2h and 2i (Conditions D in Scheme 1): These 

compounds were prepared by modifying a reported procedure.6  To a flask (20 mL) equipped with a 

magnetic stirring bar, 2-brom-6-aryloxypyridine 1e or 1f (5.00 mmol), phenol derivative (7.00 
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mmol), CuI (95.2 mg, 0.50 mmol, 10 mol%), and Cs2CO3 (2.44 g, 7.5 mmol) were added, and the 

atmosphere inside the flask was replaced with N2 gas.  NMP (10 mL) was added to the flask with a 

syringe, and the resulting solution was stirred at 160 °C for 24 h.  After the reaction completed, 

AcOEt and water were added to the reaction mixture, and the organic layer was extracted with 

AcOEt for 3 times, dried with Na2SO4, and filtered through activated alumina.  The filtrate was 

concentrated under reduced pressure to give oil residue, which was then dissolved in CHCl3 and 

purified by column chromatography on silica gel.  Further purification was conducted with GPC. 

2-(4-Chlorophenoxy)-6-(4-(trifluoromethyl)phenoxy)pyridine (2h). Purified by column 

chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3).  1.65g, 90%, 

pale yellow oil; 1H NMR (400 MHz, CDCl3) δ 6.58 (dd, J = 8.0, 0.5 Hz, 1H), 6.62 (dd, J = 7.9, 0.5 

Hz, 1H), 6.96–7.00 (m, 2H), 7.15 (d, J = 8.3 Hz, 2H), 7.22–7.26 (m, 2H), 7.56 (d, J = 8.4 Hz, 2H), 

7.70 (dd, J = 8.0, 8.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 105.1, 121.4, 122.8, 124.2 (q, J = 

270.7 Hz), 126.76 (q, J = 32.7 Hz), 126.78 (q, J = 3.7 Hz), 129.5, 130.1, 142.7, 152.2, 156.4, 161.4, 

162.1; 19F NMR (376 MHz, CDCl3) δ –62.01; HRMS (APCI) m/z (M+H)+ calcd for C18H12ClF3NO2: 

366.0503, found: 366.0507. 

2-(4-Chlorophenoxy)-6-(3-(trifluoromethyl)phenoxy)pyridine (2i). Purified by column 

chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3).  1.65 g, 90%, 

pale yellow oil; 1H NMR (400 MHz, CDCl3) δ 6.60 (dd, J = 8.0, 0.6 Hz, 1H), 6.61 (dd, J = 7.9, 0.5 

Hz, 1H), 6.94–6.98 (m, 2H), 7.19–7.24 (m, 3H), 7.30–7.31 (m, 1H), 7.37–7.41 (m, 2H), 7.70 (dd, J = 

8.0, 8.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 104.9, 105.1, 118.4 (q, J = 3.4 Hz), 121.4 (q, J =3.7 

Hz), 122.7, 123.8 (q, J = 272.7 Hz), 124.8, 129.4, 130.00, 130.01, 131.9 (q, J = 33 Hz), 142.7, 152.2, 

154.0, 161.6, 162.0; 19F NMR (376 MHz, CDCl3) δ –62.63; HRMS (APCI) m/z (M+H)+ calcd for 

C18H12ClF3NO2: 366.0503, found: 366.0503. 

 General procedure for oxidative C–H/C–H coupling of 2: The reaction was conducted 

with a slightly modified procedure from those previously reported by our group.6  To a Schlenk 

tube (10 mL) equipped with a magnetic stirring bar, 2,6-diaryloxypyridine 2 (0.40 mmol), Pd(TFA)2 

(13.2 mg, 0.04 mmol, 10 mol%), AgOAc (267.0 mg, 1.60 mmol), and PivOH (4.0 mL) were added 

under air, and the flask was capped with a septum.  The mixture was stirred at 160 °C for 16 h.  

After the reaction completed, CH2Cl2 (5 mL) was added to the reaction mixture, and the resulting 

suspension was filtered through a Celite pad with an eluent of CH2Cl2 to remove the residue of silver.  

The filtrate was concentrated under reduced pressure to give.  The solid was washed with hexane 

and methanol and collected and dried with suction filtration to give doubly cyclized product 3.  Any 

further purifications were not conducted, and the product 3 was used for the successive amination 

step.  

2-Chlorobis(benzofuro)[2,3-b:3’,2’-e]pyridine (3a).  The title compound was prepared 
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under slightly modified conditions from a general procedure using Pd(TFA)2 (26.4 mg, 0.08 mmol, 

20 mol%), AgOAc (400.5 mg, 2.40 mmol), and 3a was extracted with a Soxhlet extractor (CHCl3, 

4.5 h) and purified by washing with hexane followed by drying with suction filter.  125.8 gm, 80%, 

white solid; m.p. >300 °C; 1H NMR (400 MHz, CDCl3) δ 7.43–7.50 (m, 2H), 7.52–7.57 (m, 1H), 

7.61 (dd, J = 8.7, 0.4 Hz, 1H), 7.69 (ddd, J = 8.3, 0.8, 0.8 Hz, 1H), 8.00 (dd, J = 2.1, 0.4 Hz, 1H), 

8.03 (ddd, J = 7.6, 1.3, 0.6 Hz, 1H), 8.77 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 109.0, 112.4, 112.5, 

113.4, 120.6, 120.8, 122.9, 123.9, 124.3, 124.6, 127.71, 127.99, 129.3, 130.1, 137.4, 139.0, 154.9; 

HRMS (APCI) m/z (M+H)+ calcd for C17H9ClNO2: 294.0316, found: 294.0319. 

2-(tert-Butyl)-10-chlorobis(benzofuro)[2,3-b:3',2'-e]pyridine (3b) [CAS No. 

2085326-57-2]. 92.7 mg, 75%, white solid; m.p. 202.0–204.0 °C; 1H NMR (400 MHz, CDCl3) δ 1.46 

(s, 9H), 7.37 (dd, J = 8.7, 2.2 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 7.49 (d, J = 8.7 Hz, 1H), 7.53 (dd, J 

= 8.6, 2.1 Hz, 1H), 7.97 (d, J = 2.1 Hz, 1H), 8.03 (d, J = 2.1 Hz, 1H), 8.63 (s, 1H); HRMS (APCI) 

m/z (M+H)+ calcd for C21H17NO2Cl: 350.0942, found: 350.0934.  All the spectroscopic data are in 

accordance with the literature.6 

2-(tert-Butyl)-9-chlorobis(benzofuro)[2,3-b:3',2'-e]pyridine (3c) [CAS No. 

2085326-59-4]. Prepared by following a general procedure using 1.6 mmol of 2c, Pd(TFA)2 (0.16 

mmol), AgOAc (6.4 mmol), and PivOH (16 mL) in a 50 mL Schlenk tube.  314.6 mg, 56%, white 

solid; m.p. 269.6–271.6 °C; 1H NMR (400 MHz, CDCl3) δ 1.45 (s, 9H), 7.42 (dd, J = 8.3, 1.8 Hz, 

1H), 7.59–7.60 (m, 2H), 7.69 (d, J =1.8 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 8.02–8.03 (m, 1H), 8.79 (s, 

1H); 13C NMR (100 MHz, CDCl3) δ 31.9, 35.1, 111.7, 112.5, 113.0, 114.3, 117.1, 121.2, 121.7, 122.1, 

122.4, 124.3, 125.6, 133.1, 134.4, 147.1, 153.0, 154.8, 162.0; HRMS (APCI) m/z (M+H)+ calcd for 

C21H17ClNO2: 350.0942, found: 350.0947.  All the spectroscopic data are in accordance with the 

literature.6 

9-(tert-Butyl)-2-chlorobis(benzofuro)[2,3-b:3',2'-e]pyridine (3d). Prepared by following 

a general procedure using 1.6 mmol of 2d, Pd(TFA)2 (0.16 mmol), AgOAc (6.4 mmol), and PivOH 

(16 mL) in a 50 mL Schlenk tube.  110.9 mg, 19%,white solid; m.p. 249.6 °C (decomp.); 1H NMR 

(400 MHz, CDCl3) δ 1.43 (s, 9H), 7.45–7.51 (m, 2H), 7.59 (d, J = 8.7 Hz, 1H), 7.70 (s, 1H), 7.93 (d, 

J = 8.2 Hz, 1H), 7.97 (d, J = 1.7 Hz, 1H), 8.71 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 31.7, 35.5, 

109.2, 112.3, 113.9, 114.1, 119.8, 120.2, 120.55, 120.56, 121.5, 122.46, 122.47, 124.4, 127.5, 129.2, 

152.4, 152.9, 155.3; HRMS (APCI) m/z (M+H)+ calcd for C21H17ClNO2: 350.0942, found: 350.0942. 

3-(tert-Butyl)-9-chlorobis(benzofuro)[2,3-b:3',2'-e]pyridine (3e). Prepared by following 

a general procedure using 1.6 mmol of 2e, Pd(TFA)2 (0.16 mmol), AgOAc (6.4 mmol), and PivOH 

(16 mL) in a 50 mL Schlenk tube.  38.0 mg, 7%, white solid; m.p. 233.7–235.7 °C; 1H NMR (400 

MHz, CDCl3) δ 1.44 (s, 9H), 7.41 (dd, J = 8.3, 1.8 Hz, 1H), 7.50 (dd, J = 8.3, 1.7 Hz, 1H), 7.70 (ddd, 

J = 4.2, 1.7, 0.4 Hz, 2H), 7.92 (ddd, J = 8.3, 4.5, 0.5 Hz, 2H), 8.73 (s, 1H); 13C NMR (100 MHz, 
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CDCl3) δ 31.7, 35.5, 108.0, 109.2, 112.5, 113.0, 114.1, 114.8, 118.3, 119.9, 120.2, 121.2, 121.4, 

122.2, 124.3, 133.0, 135.9, 152.3, 155.3; HRMS (APCI) m/z (M+H)+ calcd for C21H17ClNO2: 

350.0942, found: 350.0933. 

8-(tert-Butyl)-2-chlorobis(benzofuro)[2,3-b:3',2'-e]pyridine (3f). Prepared by following 

a general procedure using 1.6 mmol of 2f, Pd(TFA)2 (0.16 mmol), AgOAc (6.4 mmol), and PivOH 

(16 mL) in a 50 mL Schlenk tube.  353.6 mg, 63%, white solid; m.p. 179.8–181.5 °C; 1H NMR 

(400 MHz, CDCl3) δ 1.60 (s, 9H), 7.36–7.40 (m, 1H), 7.45–7.49 (m, 2H), 7.61 (d, J = 8.8 Hz, 1H), 

7.89 (d, J = 7.0 Hz, 1H), 7.99 (d, J = 2.2 Hz, 1H), 8.75 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 29.9, 

34.6, 112.1, 113.2, 133.7, 118.4, 120.4, 122.4, 122.7, 123.7, 124.2, 124.7, 127.4, 129.1, 135.8, 152.8, 

153.0, 161.4, 161.7; HRMS (APCI) m/z (M+H)+ calcd for C21H17ClNO2: 350.0942, found: 350.0940. 

8-(tert-Butyl)-3-chlorobis(benzofuro)[2,3-b:3',2'-e]pyridine (3g). Prepared by following 

a general procedure using 1.6 mmol of 2g, Pd(TFA)2 (0.16 mmol), AgOAc (6.4 mmol), and PivOH 

(16 mL) in a 50 mL Schlenk tube.  380.0 mg, 68%,white solid; m.p. 212.2–213.2 °C; 1H NMR (400 

MHz, CDCl3) δ 1.60 (s, 9H), 7.36–7.47 (m, 3H), 7.70 (d, J = 1.6 Hz, 1H), 7.88 (dd, J = 7.6, 1.3 Hz, 

1H), 7.93 (d, J = 8.3 Hz, 1H), 8.76 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 29.9, 34.7, 112.5, 113.0, 

113.8, 118.5, 121.2, 121.6, 122.3, 122.9, 123.7, 124.3, 124.8, 133.1, 135.9, 153.1, 154.8, 161.2, 

161.7; HRMS (APCI) m/z (M+H)+ calcd for C21H17ClNO2: 350.0942, found: 350.0933. 

2-Chloro-10-(trifluoromethyl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (3h). Prepared by 

following a general procedure using 1.6 mmol of 2h, Pd(TFA)2 (0.16 mmol), AgOAc (6.4 mmol), 

and PivOH (16 mL) in a 50 mL Schlenk tube.  399.4 mg, 69%, white solid; m.p. 257.9–259.9 °C; 
1H NMR (400 MHz, CDCl3) δ 7.50 (dd, J = 8.7, 2.0 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.76–7.82 (m, 

2H), 7.99 (d, J = 2.0 Hz, 1H), 8.31 (s, 1H), 8.81 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 112.8, 112.9, 

113.3, 113.5, 118.4 (q, J = 4.0 Hz), 120.7, 123.0, 123.3, 123.8, 124.3 (q, J = 273.1 Hz), 125.0 (q, J = 

3.7 Hz), 126.6 (q, J = 33.0 Hz), 128.2, 129.6, 153.1, 156.2, 162.31, 162.38; 19F NMR (376 MHz, 

CDCl3) δ –61.11; HRMS (APCI) m/z (M+H)+ calcd for C18H8ClF3NO2: 362.0190, found: 362.0206. 

2-Chloro-9-(trifluoromethyl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (3i). Prepared by 

following a general procedure using 1.6 mmol of 2i, Pd(TFA)2 (0.16 mmol), AgOAc (6.4 mmol), and 

PivOH (16 mL) in a 50 mL Schlenk tube.  265.9 mg, 46%, white solid; m.p. 267.8–269.8 °C; 1H 

NMR (400 MHz, CDCl3) δ 7.50 (dd, J = 8.7, 2.1 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.72 (d, J = 8.1 

Hz, 1H), 7.94 (s, 1H), 7.99 (d, J = 2.2 Hz, 1H), 8.12 (d, J = 8.1 Hz, 1H), 8.81 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 110.0 (q, J = 4.0 Hz), 112.7, 113.4, 113.6, 120.8, 120.9 (q, J = 3.7 Hz), 121.2, 123.7, 

123.9, 124.1 (q, J = 272.0 Hz), 125.8, 128.2, 129.6, 130.0 (q, J = 33.0 Hz), 153.2, 154.0, 162.5, 

162.6; 19F NMR (376 MHz, CDCl3) δ –61.57; HRMS (APCI) m/z (M+H)+ calcd for C18H8ClF3NO2: 

362.0190, found: 362.0203. 

 General Procedure for Pd-Catalyzed Buchwald-Hartwig Amination of Chlorinated 
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BBZFPys: According to the literature,13 the Buchwald-Hartwig amination of chlorinated BBZFPys 

were conducted by the following procedure: To the Schlenk tube (10 mL), chlorinated BBZFPy (e.g., 

3d, 175 mg, 0.50 mmol), [(π-allyl)PdCl]2 (3.6 mg, 10 µmol, 2.0 mol%), MoPhos (14.0 mg, 40 µmol, 

8.0 mol%), NaOt-Bu (57.6 mg, 0.6 mmol, 1.2 equiv) and o-xylene (2 mL) were added under the N2 

atmosphere.  The resulting mixture was stirred at 130 °C for 16 h.  After the reaction completed, 

AcOEt (20 mL) and water (20 mL) were added to the reaction mixture, and the organic layer was 

extracted with AcOEt for 3 times, dried with Na2SO4, and filtered through activated alumina.  The 

filtrate was concentrated under reduced pressure to give solid.  The resulting solid was dissolved in 

chloroform and purified by column chromatography on silica gel.  Further purification was 

conducted with GPC (CHCl3).   

2-(9H-Carbazol-9-yl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4aa). Purified by column 

chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3).  35.9 mg, 17%, 

white solid; m.p. >300 °C; 1H NMR (400 MHz, CDCl3) δ 7.33 (ddd, J = 8.0, 6.1, 1.7 Hz, 2H), 7.41–

7.47 (m, 5H), 7.55 (td, J = 8.2, 1.0 Hz, 1H), 7.70 (dd, J = 8.3, 2.2 Hz, 2H), 7.90 (d, J = 8.6 Hz, 1H), 

8.01 (d, J = 7.6 Hz, 1H), 8.19–8.21 (m, 3H), 8.80 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 109.7, 

112.4, 113.0, 113.6, 113.9, 119.8, 120.2, 120.5, 120.8, 122.6, 123.0, 123.4, 123.9, 124.4, 126.2, 127.0, 

127.9, 133.6, 141.5, 153.5, 154.9, 162.0, 162.2; HRMS (APCI) m/z (M+H)+ calcd for C29H17N2O2: 

425.1285, found: 425.1288. 

2-(9H-[3,9'-Bicarbazol]-9-yl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4ab). Purified by 

column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3).  9.4 

mg, 3%, white solid; m.p. 197.2–198.2 °C; 1H NMR (400 MHz, CDCl3) δ 7.27–7.62 (m, 13H), 7.71 

(d, J = 8.2 Hz, 1H), 7.79 (dd, J = 8.6, 2.3 Hz, 1H), 7.96 (d, J = 8.6 Hz, 1H), 8.02 (d, J = 7.0 Hz, 1H), 

8.16–8.21 (m, 3H), 8.29 (d, J = 2.0 Hz, 1H), 8.34 (d, J = 1.2 Hz, 1H), 8.85 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 109.9, 110.1, 110.8, 112.4, 112.9, 113.8, 114.0, 119.7, 119.8, 120.4, 120.86, 120.89, 

122.6, 123.0, 123.1, 123.2, 123.9, 124.5, 124.6, 125.8, 126.0, 126.9, 128.0, 130.2, 133.3, 140.6, 

141.6, 142.0, 142.2, 153.73, 153.78, 154.9, 162.1, 162.2; HRMS (APCI) m/z (M+H)+ calcd for 

C41H24N3O2: 590.1863, found: 590.1863. 

2-(tert-Butyl)-10-(9H-carbazol-9-yl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4ba).  

Purified by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC 

(CHCl3).  173.5 mg, 72%, white solid; m.p. 190.5–192.5 °C; 1H NMR (400 MHz, CDCl3) δ 1.44 (s, 

9H), 7.33 (ddd, J = 8.0, 5.8, 2.1 Hz, 2H), 7.14–7.45 (m, 4H), 7.60–7.62 (m, 2H), 7.70 (dd, J = 8.7, 

2.2 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H), 8.02 (s, 1H), 8.19–8.21 (m, 3H), 8.83 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 31.9, 35.1, 107.3, 109.7, 111.7, 112.8, 113.6, 114.3, 117.2, 119.6, 120.2, 122.2, 122.8, 

123.4, 124.5, 125.7, 126.2, 126.8, 133.6, 141.5, 147.5, 153.1, 153.5, 162.0, 162.3; HRMS (APCI) 

m/z (M+H)+ calcd for C33H25N2O2: 481.1911, found: 481.1908. 
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2-(9H-[3,9'-Bicarbazol]-9-yl)-10-(tert-butyl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4bb). 

Purified by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC 

(CHCl3).  175.7 mg, 55%, white solid; m.p. 257.2–258.9 °C; 1H NMR (400 MHz, CDCl3) δ 1.46 (s, 

9H), 7.30–7.39 (m, 3H), 7.44 (d, J = 3.6 Hz, 4H), 7.50–7.52 (m, 2H), 7.57–7.64 (m, 4H), 7.77 (dd, J 

= 8.6, 2.1 Hz, 1H), 7.93 (d, J = 8.6 Hz, 1H), 8.03 (s, 1H), 8.16–8.21 (m, 3H), 8.28 (d, J = 1.8 Hz, 

1H), 8.34 (d, J = 1.5 Hz, 1H), 8.86 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 31.9, 35.1, 109.9, 110.1, 

110.8, 111.7, 112.6, 113.8, 114.4, 117.2, 119.6, 119.72, 119.78, 120.4, 120.6, 120.8, 122.1, 122.8, 

123.0, 123.2, 124.5, 124.6, 125.77, 125.79, 126.0, 126.7, 126.9, 130.1, 131.0, 133.2, 140.5, 141.9, 

142.1, 147.2, 153.1, 153.6, 162.0, 162.4; HRMS (APCI) m/z (M+H)+ calcd for C45H32N3O2: 

646.2489, found: 646.2492. 

2-(tert-Butyl)-10-(3,6-di-tert-butyl-9H-carbazol-9-yl)bis(benzofuro)[2,3-b:3',2'-e]pyrid

ine (4bc). Purified by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by 

GPC (CHCl3).  265.7 mg, 89%, white solid; m.p. 210.2–212.2 °C; 1H NMR (400 MHz, CDCl3) δ 

1.44 (s, 9H), 1.49 (s, 18H), 7.36 (dd, J = 8.6, 0.5 Hz, 2H), 7.49 (dd, J = 8.6, 2.0 Hz, 2H), 7.60–7.60 

(m, 2H), 7.68 (dd, J = 8.7, 2.0 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 8.01 (dd, J = 1.7, 0.7 Hz, 1H), 

8.17–8.19 (m, 3H), 8.81 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 31.9, 32.1, 34.9, 35.1, 109.1, 111.6, 

112.8, 113.4, 114.2, 116.4, 117.2, 119.2, 122.2, 122.7, 123.5, 123.9, 124.3, 125.6, 126.5, 134.1, 139.9, 

143.1, 147.16 153.0, 153.2, 162.0, 162.3; HRMS (APCI) m/z (M+H)+ calcd for C41H41N2O2: 

593.3163, found: 593.3166. 

2-(tert-Butyl)-10-(10H-phenoxazin-10-yl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4bd). 

Purified by column chromatography (eluent n-hex/AcOEt 20:1) on silica gel followed by GPC 

(CHCl3).  121.1 mg, 49%, white solid; m.p. 163.1–165.2 °C; 1H NMR (400 MHz, CDCl3): 1.45 (s, 

9H), 5.96 (dd, J = 8.0, 1.5 Hz, 2H), 6.60 (ddd, J = 7.4, 7.4, 1.6 Hz, 2H), 6.68 (ddd, J = 7.4, 7.4, 1.6 

Hz, 2H), 6.74 (dd, J = 7.8, 1.6 Hz, 2H), 7.49 (dd, J = 8.6, 2.1 Hz, 1H), 7.60–7.61 (m, 2H), 7.89 (d, J 

= 8.6 Hz, 1H), 8.01–8.02 (m, 2H), 8.79 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 31.9, 35.1, 111.7, 

112.7, 113.4, 114.4, 114.9, 115.6, 117.2, 121.6, 122.1, 122.8, 123.3, 123.4, 125.6, 125.7, 130.1, 134.7, 

143.8, 144.0, 147.2, 153.1, 153.9, 161.9, 162.3; HRMS (APCI) m/z (M+H)+ calcd for C33H25N2O3: 

497.1860, found: 497.1851. 

2-(tert-Butyl)-10-(10H-phenothiazin-10-yl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4be). 

Purified by column chromatography (eluent n-hex/AcOEt 20:1) on silica gel followed by GPC 

(CHCl3).  67.0 mg, 17%, green solid; m.p. >300 °C; 1H NMR (400 MHz, CDCl3) δ 1.45 (s, 9H), 

6.23–6.25 (m, 2H), 6.83–6.87 (m, 4H), 7.05–7.07 (m, 2H), 7.55 (dd, J = 8.6, 2.1 Hz, 1H), 7.60–7.61 

(m, 2H), 7.90 (d, J = 8.6 Hz, 1H), 8.01–8.07 (m, 2H), 8.79 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 

31.3, 35.1, 111.6, 112.7, 114.3, 114.4, 116.0, 117.2, 120.1, 122.1, 122.7, 122.8, 123.5, 125.3, 125.7, 

126.9, 127.0, 130.5, 136.5, 144.6, 147.1, 153.0, 153.8, 161.9, 162.2; HRMS (APCI) m/z (M+H)+ 
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calcd for C33H25N2O2S: 513.1631, found: 513.1630. 

10-(10-(tert-Butyl)bis(benzofuro)[2,3-b:3',2'-e]pyridin-2-yl)acridin-9(10H)-one (4bf). 

Purified by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC 

(CHCl3).  18.5 mg, 7%, brown solid; m.p. >300 °C; 1H NMR (400 MHz, CDCl3) δ 1.43 (s, 9H), 

6.82 (d, J = 8.6 Hz, 2H), 7.30–7.34 (m, 2H), 7.50–7.54 (m, 3H), 6.60–7.64 (m, 2H), 7.99–8.04 (m, 

3H), 8.64 (dd, J = 8.1, 1.5 Hz, 2H), 8.81 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 31.9, 35.1, 111.7, 

112.3, 114.7, 114.9, 116.9, 117.2, 121.9, 122.0, 122.1, 122.5, 123.0, 125.6, 125.9, 127.6, 129.0, 133.5, 

134.7, 143.6, 147.3, 153.1, 154.5, 162.0, 162.5, 178.3; HRMS (APCI) m/z (M+H)+ calcd for 

C34H25N2O3: 509.1860, found: 509.1860. 

10-(tert-Butyl)-N,N-diphenylbis(benzofuro)[2,3-b:3',2'-e]pyridin-2-amine (4bg). 

Purified by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC 

(CHCl3).  60.6 mg, 25%, brown solid; m.p. 211.8–212.5 °C; 1H NMR (400 MHz, CD2Cl2) δ 1.42 (s, 

9H), 7.03 (tt, J = 7.3, 1.1 Hz, 2H), 7.10–7.13 (m, 4H), 7.26–7.31 (m, 5H), 7.57–7.59 (m, 3H), 7.78 (d, 

J = 2.3 Hz, 1H), 8.00 (s, 1H), 8.71 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 31.9, 35.0, 111.6, 113.0, 

113.2, 113.8, 117.0, 117.1, 122.3, 122.6, 122.7, 123.7, 123.9, 125.3, 125.4, 129.4, 144.3, 146.9, 

148.3, 151.0, 152.9, 162.01, 162.04; HRMS (APCI) m/z (M+H)+ calcd for C33H27N2O2: 483.2067, 

found: 483.2047. 

2-(tert-Butyl)-9-(9H-carbazol-9-yl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4ca). Purified 

by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3).  

120.7 mg, 50%, white solid; m.p. 190.5–192.5 °C; 1H NMR (400 MHz, CDCl3) 1.48 (s, 9H), 7.33 

(dd, J = 7.5, 7.5 Hz, 2H), 7.45 (dd, J = 7.6, 7.2 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 7.62–7.67 (m, 3H), 

7.91 (d, J = 1.5 Hz, 1H), 8.07 (s, 1H), 8.17–8.22 (m, 3H), 8.90 (s, 1H); 13C NMR (100 MHz, CDCl3) 

δ 31.9, 35.1, 109.8, 111.2, 111.7, 112.7, 114.3, 117.2, 120.4, 120.5, 121.5, 122.1, 122.2, 122.5, 122.7, 

123.6, 125.6, 126.2, 137.0, 140.9, 147.1, 153.0, 155.2, 161.9, 162.0; HRMS (APCI) m/z (M+H)+ 

calcd for C33H25N2O2: 481.1911, found: 481.1917. 

9-(tert-Butyl)-2-(9H-carbazol-9-yl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4da). Purified 

by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3).  

197.3 mg, 82%, white solid; m.p. >300 °C; 1H NMR (400 MHz, CDCl3): δ 1.44 (s, 9H), 7.31–7.35 

(m, 2H), 7.40–7.50 (m, 5H), 7.68 (dd, J = 8.6, 2.0 Hz, 1H), 7.72 (s, 1H), 7.87–7.92 (m, 2H), 8.17–

8.20 (m, 3H), 8.74 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 31.6, 35.5, 109.1, 109.7, 112.7, 113.4, 

114.0, 119.6, 119.8, 120.1, 120.2, 120.5, 121.4, 122.5, 123.4, 124.4, 126.1, 126.7, 133.4, 141.4, 

152.3, 153.4, 155.3, 161.7, 162.1; HRMS (APCI) m/z (M+H)+ calcd for C33H25N2O2: 481.1911, 

found: 481.1912. 

8-(tert-Butyl)-2-(9H-carbazol-9-yl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4fa). Purified 

by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3).  
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156.8 mg, 65%, white solid; m.p. 284.5–285.8 °C; 1H NMR (400 MHz, CDCl3) δ 1.63 (s, 9H), 7.31–

7.36 (m, 2H), 7.38 (d, J = 7.7 Hz, 1H), 7.41–7.48 (m, 5H), 7.69 (dd, J = 8.6, 2.1 Hz, 1H), 7.87 (dd, J 

= 7.6, 1.3 Hz, 1H), 7.91 (d, J = 8.6 Hz, 1H), 8.19–8.21 (m, 3H), 8.79 (s, 1H); 13C NMR (100 MHz, 

CDCl3) δ 29.9, 34.7, 109.7, 112.7, 113.6, 113.9, 118.5, 119.7, 120.2, 120.5, 122.8, 122.9, 123.4, 

123.8, 124.4, 124.8, 126.2, 126.8, 133.5, 135.9, 141.5, 153.2, 153.5, 161.6, 162.1; HRMS (APCI) 

m/z (M+H)+ calcd for C33H25N2O2: 481.1911, found: 481.1904. 

8-(tert-Butyl)-3-(9H-carbazol-9-yl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4ga). Purified 

by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC (CHCl3).  

203.5 mg, 85%, white solid; m.p. 244.4–247.1 °C; 1H NMR (400 MHz, CDCl3) δ 1.63 (s, 9H), 7.33 

(t, J = 7.0 Hz, 2H), 7.39–7.53 (m, 6H), 7.67 (dd, J = 8.1, 1.8 Hz, 1H), 7.93 (dd, J = 7.7, 1.6 Hz, 2H), 

8.18 (d, J = 7.7 Hz, 2H), 8.22 (d, J = 8.1 Hz, 1H), 8.87 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 23.0, 

34.7, 109.8, 111.2, 112.7, 113.9, 118.5, 120.4, 120.5, 121.6, 122.1, 122.4, 122.7, 123.0, 123.7, 123.8, 

124.8, 126.2, 136.0, 137.0, 141.0, 153.2, 155.3, 161.3, 162.1; HRMS (APCI) m/z (M+H)+ calcd for 

C33H25N2O2: 481.1911, found: 481.1908. 

2-(9H-Carbazol-9-yl)-10-(trifluoromethyl)bis(benzofuro)[2,3-b:3',2'-e]pyridine (4ha). 

Purified by column chromatography (eluent n-hex/CHCl3 5:1) on silica gel followed by GPC 

(CHCl3).  190.5 mg, 77%, white solid; m.p. 289.2–290.5 °C; 1H NMR (400 MHz, CDCl3) δ 7.32–

7.35 (m, 2H), 7.40–7.46 (m, 4H), 7.72–7.74 (m, 1H), 7.78–7.83 (m, 2H), 7.89–7.92 (m, 1H), 8.18–

8.22 (m, 3H), 8.30 (s, 1H), 8.86–8.87 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 109.6, 112.7, 113.7, 

118.4, 119.6, 119.8, 120.3, 120.5, 123.0, 123.5, 123.9, 124.9, 125.7, 120.2, 126.4, 126.7, 127.2, 

127.4, 133.9, 141.4, 153.5, 156.2, 162.2, 162.5 (*Note: some signals were observed as broad and 

overlapped peaks, probably due to the presence of rotamers.  Thus, it is difficult to identify the 

signals that are coupled with 19F nuclei); 19F NMR (376 MHz, CDCl3) δ –61.13; HRMS (APCI) m/z 

(M+H)+ calcd for C30H16F3N2O2: 493.1158, found: 493.1157. 

2-(3,6-Di-tert-butyl-9H-carbazol-9-yl)-10-(trifluoromethyl)bis(benzofuro)[2,3-b:3',2'-e

]pyridine (4hc). Purified by column chromatography (eluent n-hex/CHCl3 5:1) on silica gel 

followed by GPC (CHCl3).  229.8 mg, 76%, white solid; m.p. >300°C; 1H NMR (400 MHz, CDCl3) 

δ 1.49 (s, 18H), 7.36 (d, J = 8.7 Hz, 2H), 7.50 (dd, J = 8.7, 1.9 Hz, 2H), 7.71 (dd, J = 8.7, 2.1 Hz, 1 

H), 7.77–7.82 (m, 2H), 7.87 (d, J = 8.7 Hz, 1H), 8.19–20 (m, 3H), 8.29 (s, 1H), 8.85 (s, 1H); 13C 

NMR (100 MHz, CDCl3) δ 32.1, 34.9, 109.0, 112.85, 112.89, 113.6, 113.9, 116.5, 118.4 (q, J = 4.2 

Hz), 119.5, 123.1, 123.4, 123.5, 123.9, 124.3 (q, J = 270.5 Hz) 124.9 (q, J = 3.7 Hz), 125.7, 126.6 (q, 

J = 32.3 Hz), 127.2, 134.5, 139.8, 143.3, 153.4, 156.3, 162.3, 162.6; 19F NMR (376 MHz, CDCl3) δ 

–61.14; HRMS (APCI) m/z (M+H)+ calcd for C38H32F3N2O2: 605.2410, found: 605.2416. 

2-(10H-phenoxazin-10-yl)-10-(trifluoromethyl)bis(benzofuro)[2,3-b:3',2'-e]pyridine 

(4hd). Purified by column chromatography (eluent n-hex/CHCl3 5:1) on silica gel followed by GPC 
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(CHCl3).  215.3 mg, 85%, yellow solid; m.p. 283.2–285.2 °C; 1H NMR (400 MHz, CDCl3) δ 5.95 

(dd, J = 7.8, 1.4 Hz, 2H), 6.60 (td, J = 7.8, 1.5 Hz, 2H), 6.68 (td, J = 7.8, 1.4 Hz, 2H), 6.74 (dd, J = 

7.8, 1.5 Hz, 2H), 7.53 (dd, J = 8.6, 2.1 Hz, 1H), 7.79–7.84 (m, 2H), 7.92 (d, J = 8.6 Hz, 1H), 8.05 (d, 

J = 2.1 Hz, 1H), 8.31 (s, 1H), 8.84 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 112.8, 113.0, 113.4, 113.8, 

115.1, 115.7, 118.5 (q, J = 4.2 Hz), 121.7, 123.0, 123.4, 123.6, 123.7, 124.3 (q, J = 271.6 Hz), 125.0 

(q, J = 3.3 Hz), 125.1, 126.6 (q, J = 33.0 Hz), 130.8, 134.7, 135.1, 144.1, 154.1, 156.3, 162.3, 162.0; 
19F NMR (376 MHz, CDCl3) δ –61.10; HRMS (APCI) m/z (M+H)+ calcd for C30H16F3N2O3: 

509.1108, found: 509.1118. 

N,N-Diphenyl-10-(trifluoromethyl)bisbenzofuro[2,3-b:3',2'-e]pyridin-2-amine (4hg). 

Purified by column chromatography (eluent n-hex/AcOEt 10:1) on silica gel followed by GPC 

(CHCl3).  191.0 mg, 77%, yellow solid; m.p. 261.9–263.3 °C; 1H NMR (400 MHz, CDCl3) δ 7.04 (t, 

J = 7.2 Hz, 2H), 7.12–7.14 (m, 4H), 7.26–7.30 (m, 4H), 7.33 (dd, J = 8.8, 2.2 Hz, 1H), 7.58 (d, J = 

8.8 Hz, 1H), 7.75–7.80 (m, 3H), 8.23 (s, 1H), 8.72 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 112.2, 

112.6, 113.0, 114.2, 117.1, 118.2 (q, J = 3.9 Hz), 122.896, 122.898, 123.1, 123.4, 123.8, 124.3 (q, J = 

271.4 Hz), 124.6 (q, J = 3.7 Hz), 125.8, 126.4 (q, J = 32.5 Hz), 129.5, 144.6, 148.2, 151.1, 156.0, 

161.9, 162.5; 19F NMR (376 MHz, CDCl3) δ –61.14; HRMS (APCI) m/z (M+H)+ calcd for 

C30H18F3N2O2: 495.1315, found: 495.1295. 

2-(3,6-Di-tert-butyl-9H-carbazol-9-yl)-9-(trifluoromethyl)bis(benzofuro)[2,3-b:3',2'-e]

pyridine (4ic). Purified by column chromatography (eluent n-hex/CHCl3 3:1) on silica gel followed 

by GPC (CHCl3).  232.8 mg, 77%, white solid; m.p. 291.8 °C (decomp.); 1H NMR (400 MHz, 

CDCl3): δ 1.49 (s, 18H), 7.35 (dd, J = 8.6, 0.5 Hz, 2H), 7.49 (dd, J = 8.6, 2.0 Hz, 2H), 7.71–7.74 (m, 

2H), 7.90 (dd, J = 8.6, 0.5 Hz, 1H), 7.98 (s, 1H), 8.12 (d, J = 8.1 Hz, 1H), 8.19–8.20 (m, 3H), 8.86 (s, 

1H); 13C NMR (100 MHz, CDCl3) δ 32.1, 34.9, 109.1, 109.8 (q, J = 4.0 Hz), 112.5, 113.6, 113.9, 

116.5, 119.4, 120.8 (q, J = 3.7 Hz), 121.2, 123.5, 123.7, 123.8, 123.9, 124.3 (q, J = 272.5 Hz), 125.8, 

127.1, 129.8 (q, J = 33.0 Hz), 134.5, 139.8, 143.3, 153.3, 154.0, 162.4, 162.7; 19F NMR (376 MHz, 

CDCl3) δ –61.54; HRMS (APCI) m/z (M+H)+ calcd for C38H32F3N2O2: 605.2410, found: 605.2405. 

Photophysics. Photoluminescence spectra of thin films were recorded at room temperature 

with Edinburgh Instruments FLS980 fluorescence spectrometer with Xe-lamp as an excitation source 

and R-928 photomultiplier detector.  Phosphorescence, prompt fluorescence (PF), and delayed 

fluorescence (DF) spectra and decays were recorded using nanosecond gated luminescence and 

lifetime measurements (from 400 ps to 1 s) using either third harmonics of a high energy pulsed 

Nd:YAG laser emitting at 355 nm (EKSPLA) or a N2 laser emitting at 337 nm.  Emission was 

focused onto a spectrograph and detected on a sensitive gated iCCD camera (Stanford Computer 

Optics) having a sub-nanosecond resolution. PF/DF time-resolved measurements were performed by 

exponentially increasing gate and integration times.  Temperature-dependent experiments were 
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conducted using a continuous flow liquid nitrogen cryostat (Janis Research) under a nitrogen 

atmosphere. 

Devices. OLEDs have been fabricated on pre-cleaned, patterned indium-tin-oxide (ITO) 

coated glass substrates with a sheet resistance of 20 Ω/sq and ITO thickness of 100 nm.  All small 

molecules and cathode layers were thermally evaporated in Kurt J. Lesker Spectros II evaporation 

system under pressure of 10–6 mbar without breaking the vacuum.  The sizes of pixels were 4 mm2, 

8 mm2 and 16 mm2.Organic semiconductors and aluminium were deposited at a rate of 1 Ås–1, and 

the LiF layer was deposited at 0.1 Ås–1.  The characteristics of the devices were recorded using 

6-inch integrating sphere (Labsphere) connected to a Source Meter Unit and Ocean Optics USB4000 

spectrometer inside the glovebox.  All materials were purchased from Sigma Aldrich or Lumtec and 

were purified by temperature-gradient sublimation in a vacuum. 
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