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Abstract We study bilateral bargaining á la Nash (1953) but where players face two sources of un-

certainty when demands are mutually incompatible. First, there is complete breakdown of negotiations

with players receiving zero payoffs, unless with probability p, an arbiter is called upon to resolve the

dispute. The arbiter uses the Final-Offer-Arbitration mechanism whereby one of the two incompatible

demands is implemented. Second, the arbiter may have a preference bias towards satisfying one of the

players that is private information to the arbiter and players commonly believe that the favored party is

player 1 with probability q. Following Nash’s idea of ‘smoothing’, we assume that 1−p is larger for larger

incompatibility of demands. We provide a set of conditions on p such that, as p becomes arbitrarily small,

all equilibrium outcomes converge to the Nash solution outcome if q = 1/2, that is when the uncertainty

regarding the arbiter’s bias is maximum. Moreover, with q 6= 1/2, convergence is obtained on a special

point in the bargaining set that, independent of the nature of the set, picks the generalized Nash solution

with as-if bargaining weights q and 1− q. We then extend these results to infinite-horizon where instead

of complete breakdown, players are allowed to re-negotiate.
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1 Introduction

NASH (1950) CONSIDERED TWO-PERSON bargaining problems consisting of a feasible set S and a

disagreement point d ∈ S which the parties receive if no agreement is reached. He showed that there is

a unique utility pair in S, now known as the Nash solution, that is isolated by all bargaining solutions

satisfying a set of desirable porperties. Using the noncooperative approach, Nash (1953) proposed what

is now popularly called the Nash demand game (NDG), where two players simultaneously make demands

(after they simultaneously announce their respective disagreement points) and each player receives the

payoff he demands if the demands are jointly feasible, but their disagreement payoffs otherwise. Simplicity

and reasonability are two celebrated virtues of the NDG that allow to support the Nash solution as a

Nash equilibrium outcome. Nevertheless, multiplicity of equilibrium outcomes is a sweeping problem

of the NDG as every point on the Pareto frontier is a Nash equilibrium outcome. In addition, it has

the ‘pure’ chilling-effect equilibrium where both players demand their maximum feasible utilities and

earn their disagreement payoffs. Nash (1953) resolved this equilibrium-multiplicity problem suggestively,

arguing that under a slight perturbation of the game – which has been called ‘smoothing’ since then and

presumably yielding either uncertainty about the feasible set S or requiring outside injection of utilities

– there exists a unique equilibrium that is the only necessary limit of the equilibrium points of ‘smoothed

games’. Abreu and Pearce (2015) formalizes Nash’s smoothing and provides a set of conditions for this

perturbation environment that yields the Nash solution convergence result.1

The seminal contribution of Nash and its recent formalization by Abreu and Pearce not only pro-

vide a firm theoretical understanding of non-cooperative bargaining, but are also useful in predicting

outcomes in many bargaining environments with uncertainty over the bargaining set or availability of

outside resources.2 However, these ‘perturbation’ features are not always observed in real world nego-

tiations and important contributions without these assumptions include works by Carlsson (1991) and

Dutta (2012). In addition, the literature is relatively underdeveloped when it comes to non-cooperative

foundations of the asymmetric ‘generalized’ Nash solution that, especially since Binmore, Rubinstein

and Wolinsky (1986), has become increasingly prominent in the ‘money and search’ (e.g., Lagos and

Wright, 2005), ‘legislative bargaining’ (e.g., Laruelle and Valenciano, 2007), ‘median voter’ (e.g., Herings

and Predtetchinski, 2010), ‘industrial organization’ (e.g., Chen, Ding and Liu, 2016) and ‘contest’ (e.g.,

Corchón and Dahm, 2010) literatures, among others. We note that Carlsson (1991) is again an exception

that addresses convergence to the generalized Nash solutions.

The purpose of the present paper is to understand the significance of the standard and the general-

ized Nash solutions in an institutionally distinct bargaining environment that connects the NDG with

Final-Offer-Arbitration (FOA), a feature that has not received adequate attention in the literature. Our

motivation draws upon many real world disputes where private parties are seen to bargain amongst

themselves, but upon failing to reach an agreement, an external arbiter is sometimes called upon to

resolve the dispute by the use of the FOA mechanism of upholding the demand from one party (and

providing the residual to the other). Such real world bargaining situations, as discussed later in this

section, are often characterized by two sources of uncertainty that bargainers have to cope with: (i) the

act of initiating an arbitration procedure and (ii) the arbiter’s bias. We ask how these uncertainties affect

bargaining outcomes and, among other things, show that the Nash solution is the only outcome that is

obtained in the limit as the probability of initiating an arbitration vanishes but the uncertainty about

the arbiter’s bias is at its maximum. We also study the ‘path’ to this convergence and show that when

1 They then extend the static NDG to an infinite-horizon setting to avoid the “awkward possibility in Nash’s original

formulation that bargainers who have made incompatible demands will be held perpetually to threats they would both

prefer not to carry out” to show that, independent of time preferences of the players, all stationary subgame perfect

equilibria of their infinite-horizon model approach the standard Nash solution outcome.
2 Osborne and Rubinstein (1990) also proposed a variant of NDG where incompatible demands always lead to disagree-

ment, while compatible demands close to the boundary may also lead to disagreement with small probability. Their game

also implies that the Nash solution outcome is the limit equilibrium outcome and outside injections of utility are not needed.

However, their NDG has this unnatural feature in which players have to waste the surplus with some probability even when

their demands are compatible.
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bargainers have no prior information about the arbiter’s bias and the arbitration initiation probability

satisfies some additional properties, equilibrium demands are always incompatible and symmetric around

the Nash solution, leading either to breakdown or arbitration.

We consider a standard (one-shot) NDG where each player receives the payoff he demands if the

demands are jointly feasible. Otherwise, with probability 1 − p, players receive zero payoffs, while with

probability p an arbitration stage is initiated. At the arbitration stage, each player’s demand is selected

randomly as the outcome with probabilities q and 1− q, respectively. We call p the arbitration initiation

probability (or simply, the initiation probability) and its complement 1 − p the breakdown probability.

We assume that the arbiter selects one of the two players’ demands based upon his preference bias.

In real world bargaining environments that motivate this study, it is often the case that the parties in

conflict represent different social and economic classes, like landlords vs. tenants, workers vs. firms, man

vs. woman, or developed vs. underdeveloped nations. Arbiters may indeed have ideological inclinations

towards one party or the other in addition to further information about the dispute that is not always

available to the parties in conflict. We interpret q as the common prior held by the two players that the

favored party in any unresolved dispute will be player 1. Thus uncertainty about the arbiter’s bias is at

its maximum when q = 1/2. We also make this ‘mechanism’ share the presentiment of Nash’s smoothing:

if the players’ incompatible demands are farther from each other, players should expect a higher risk

of breakdown in negotiations leading to disagreement (i.e., to their receiving zero payoffs, as we will

normalize the disagreement payoffs to zero for each player).3

The FOA mechanism used by the arbiter is popular in the Industrial Relations literature where biased

arbitration has been the subject of serious academic analysis (see for instance Bloom and Cavanagh,

1986) and complains about biased arbiters have been consistently reported.4 The uncertainty about

arbiters’ bias is also well documented. For example, as reported by Ashenfelter (1987, p. 343), “[u]nlike

the expectations of many, employers have won only about one-third of the final-offer decisions in New

Jersey.”Likewise, de las Mercedes Adamuz and Ponsat́ı (2009, p. 280) more recently reported that“[w]hile

some arbitrators do act on principle – imposing a fair settlement, independently of the concessions that

precede their appointment – there is strong empirical evidence that this is not usually the case.”5

For a fairly general class of two-person bargaining problems, we provide a set of ‘regularity conditions’

on the arbitration initiation function p so that as p becomes arbitrarily small, these conditions guarantee

convergence of all equilibrium outcomes to the Nash solution outcome when q = 1
2 and to a particular

outcome for each q 6= 1
2 that can be thought of as the generalized Nash solution (where q and 1 − q

represent the bargaining weights). We then extend the static NDG environment to an infinite-horizon

NDG where with probability p any incompatible demands are resolved via arbitration in period t, while

with probability 1− p the game moves to the next period, t+ 1, in which players make fresh demands.

We show that for each discount factor δ, all stationary equilibria of the infinite horizon game tend to the

convergent point of the static game if the regularity conditions on p are now satisfied by the function

3 Our model also shares some features with those on bargaining with observable commitment studied by Crawford (1982),

Ellingsen and Miettinen (2008) or Li (2011). In these models, players make simultaneous demands and also have the option

to make irreversible commitments to their demands. If only one player commits then the other has to give in, if both

commit and the demands are mutually infeasible, the disagreement outcome is implemented, and if neither is committed,

then bargaining goes on. In such environments, mixed strategy equilibria can appear and resemble outcomes similar to the

one of random settlements studied by us. See also Malueg (2010) for mixed strategy equilibria in NDG in general.
4 (Biased) random settlements are not only confined to industrial relations but are widespread in sports. In the UEFA

European Champions League, in an elimination round a second leg match will go to a penalty shootout - which is after

all a random settlement - after a tied overtime score in the second leg, if both teams had identical opposite scores in the

original two rounds (e.g., 2-1, 1-2; 1-1, 1-1, etc.). Further, the shootout can be biased towards the home team due to the

crowd support.
5 It has been claimed that the popularity of arbitration as a mechanism to settle disputes has been declining

due to concerns about biased arbiters: “International contracts include arbitration clauses more than domestic con-

tracts, but also at a surprisingly low rate” (Eisenberg and Miller, 2007, p. 373). It is a serious concern of arbi-

tration agencies as well. To alleviate biased arbitration, the Federal Mediation and Conciliation Service (FMCS) al-

lows the disputing parties to select an arbitrator by alternately crossing off one name from a panel of seven names

(https://www.fmcs.gov/services/arbitration/arbitration-policies-and-procedures/).
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p
1−(1−p)δ . Our regularity conditions on the initiation probability are similar, though not identical, to

the ones on Nash’s smoothing function reported in Abreu and Pearce (2015), suggesting that a ‘random

settlement’ environment like the one we study here can be seen as a close substitute for the bargaining-set

uncertainty or the feasibility of outside resources. We also do not require bargainers to end up wasting

the surplus when demands are mutually feasible and close to the boundary of the bargaining set, as in

Osborne and Rubinstein (1990). This, along with the alternate frameworks of Carlsson (1991) and Dutta

(2012), enriches the predictive power and institutional robustness of the Nash solution.

At the heart of the convergence results lies the fact that the chance of initiating the random settlement

phase is small as we show that only then do actual bargaining outcomes start to resemble the Nash solu-

tion. An example where the arbitration opportunity arose with a very small probability when breakdown

risk was very high is as follows. In 2011, the Australian federal government unexpectedly chose to inter-

vene in the heated Qantas strike to send it to arbitration. The Minister for Infrastructure and Transport,

Anthony Albanese, noted that they “went through 16 hours of hearings to come up with a decision.” The

Transport Workers Union national secretary Tony Sheldon commented that“The government has stepped

in, it’s the first to my knowledge in the history of this country” (http://www.smh.com.au/travel/fair-

work-ends-qantas-industrial-dispute-20111031-1mqsq.html#ixzz1qS0s0Upn).6 The results obtained in this

paper then have the following policy implication: if one wants to implement efficient bargaining outcomes

(such as the standard Nash solution) between two parties, one can achieve this by generating a belief that

in the event the parties fail to reach an agreement on their own, there will be a very small probability of

mitigation via a FOA mechanism but with a completely unknown bias of the arbiter.

1.1 Related Literature

Variations on NDG and convergence: Alongside Nash (1953) and Abreu and Pearce (2015), there have

been a few other papers that studied variants of the NDG setup. Carlsson (1991) provided another noisy

variant of NDG, in which (i) players’ actions are subject to some ‘mistakes’ and (ii) if players’ demands

do not exhaust the available surplus, some of the remainder (including the entire amount) is distributed -

thus inefficient outcomes are allowed to be avoided - according to an exogenously fixed ‘surplus partition’

rule. As a result, the player with a better bargaining weight, who is supposed to obtain a larger share

of the remainder, ends up – counter-intuitively – with the lower equilibrium payoff. In the limit as the

noise vanishes, the equilibrium outcome converges to one of the generalized Nash solution outcomes.

Breakdown in bargaining : Regarding the risk of breakdown that occurs in our model with probability

1−p, Zeuthen (1930) was the first to suggest a theory of iterative concessions in which negotiators cared

about that risk. Harsanyi (1956) showed that Zeuthen’s iterative process converges to the (standard)

Nash solution outcome. Later, Aumann and Kurz (1977) - defining a measure of a player’s ‘boldness’ as

the maximum probability which makes him willing to take the risk of losing the entire gain against an

additional small gain - observed that the Nash solution outcome turns out to be the point at which both

players are equally ‘bold’. More recently, Howard (1992) proposed a one-shot but a multiple-stage setup

providing noncooperative foundations for the Nash solution. Howard’s setup was significantly simplified

by Rubinstein, Safra and Thomson (1992), which highlighted an endogenous risk of breakdown and the

presence of Nature’s choice - that are akin to bargaining in real life.

6 Rule 17 of “Rules of Arbitration and Conciliation” of Indian Council of Arbitration also illustrates that arbitration

requests of the disputants may not be automatically accepted: “(a) on receipt of an application for arbitration, the Reg-

istrar shall have absolute discretion to accept or reject the said application. The Registrar is not bound to give reasons

for the exercise of his discretion. Before deciding on the acceptability of an application for arbitration, the Registrar may

ask the parties for further information and particulars of their claims. (b) Similarly, if any information or particulars

regarding the arbitration agreement furnished by claimant with the application for arbitration are found to be incor-

rect or false, at any time subsequently, the Registrar shall have a like power to reject the application for arbitration”

(http://www.icaindia.co.in/Rules-Arbitration.pdf). So depending on the circumstances, the probability of initiation of

arbitration can be small, ill-defined or unspecified.
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Bargaining and arbitration: The relation between strategic bargaining and arbitration rules is well stud-

ied. It is argued that the chilling equilibrium at the bargaining stage often arises with settlement schemes

that use Conventional Arbitration (CA). As in CA, it has been observed that typically arbiters in disputes

merely split the difference between the offers of two parties, leading to a ‘chilling effect’ on negotiations,

i.e., making each party reluctant to make concessions - as concessions lead to worse outcomes for that

party - and thus making the collective bargaining process lose its entire significance. On the other hand,

under Final-offer Arbitration (FOA), each party submits an offer and the arbiter must choose one of

these two offers as the final outcome (see, for instance, Chatterjee (1981) for a comparative theoretical

analysis of FOA and CA). Depending upon the bargainers’ beliefs about the arbiter’s social preferences

of fairness or impartiality, equilibrium demands can be moderated under FOA. Since Stevens (1966)

proposed FOA to replace CA, FOA has been used extensively in the U.S. and many other countries.

Variations on Steven’s ideas were also studied by Crawford (1979) to improve the design of FOAs. Since

only one of the demands get selected randomly as the outcome at the settlement stage in our variant of

NDG, our settlement mechanism resembles FOA in many ways and remains ex-post efficient as any FOA

would. However, in the space of expected settlement outcomes, our mechanism can be interpreted as CA.

In fact, all our results go through if we use CA directly on the outcome space as well where the location

of the expected outcome is determined by the arbiter’s bias. It is important to note in this respect that

maximum uncertainty (q = 1/2) about the arbiter’s bias in the FOA framework leads to unbiased reso-

lution in expected outcomes in the CA sense. Interestingly, however, the threat of complete breakdown

(that occurs with probability 1 − p) allows us to avoid the inevitability of the chilling equilibrium. In

addition, our environment endogenizes the initiation probability of using an arbitration mechanism as

the arbiter may not even be called for duty if the players’ extreme initial positions are hopelessly apart,

resembling the case where the breakdown probability 1− p is large.

Arbitration, bargaining and convergence: Anbarci and Boyd III (2011) studied a one-shot, two-stage

variant of NDG, where the probability p of initiating a settlement is exogenously given but like us,

settlement is randomized. They show that at the highest level of p that allows the players to reach an

agreement on the equilibrium path, there is a unique Nash equilibrium in which the outcome coincides

with the Kalai-Smorodinsky solution outcome while at lower levels of p, there are multiple equilibria.

Further, the ‘chilling equilibrium’ - one where each player demands the maximum feasible for himself,

given S, is a serious problem in that setup too, as in Nash (1953); the chilling equilibrium arises as the

unique equilibrium and any agreement equilibrium vanishes when p approaches one.7

2 Nash Bargaining with Random Settlement

Preliminaries: Nash’s two-person cooperative bargaining problem is a pair (S, d) where S ⊂ R2 is the

set of feasible utility allocations (in short the feasible set) and d ∈ S is the disagreement point which

is the outcome that results if no agreement is reached by the two parties. For simplicity we normalize

d = (d1, d2) = (0, 0). Then the bargaining problem will be defined by S ⊂ R2
+ alone. We will use the

following notation for vector inequalities: x ≥ y means xi ≥ yi for all i = 1, 2; x > y means x ≥ y and

there is some i with xi > yi; x � y means xi > yi for all i. The set S is assumed to contain some

x� (0, 0) and to be convex, compact, and comprehensive. Comprehensiveness means that if x ∈ S and

(0, 0) ≤ y ≤ x, then y ∈ S. Let B be the set of all convex, compact, and comprehensive bargaining

problems S. A solution is a function f : B→ R2
+ with fS = (fS1 , f

S
2 ) ∈ S for all S ∈ B. Let ∂S denote the

weak Pareto frontier (or simply, Pareto frontier, or boundary) of S, where ∂S = {x ∈ S : x′ � x implies

x′ 6∈ S}. We will also need ∂∗S, the strong Pareto frontier of S, where ∂∗S = {x ∈ S : x′ > x implies

x′ /∈ S}. Clearly, ∂∗S ⊆ ∂S. For simplicity, we assume that the slope at any x ∈ ∂∗S is well-defined.

However, we allow the Pareto frontier to have “kinks” at the two ends of the strong Pareto frontier (i.e.,

7 Anbarci and Feltovich (2012), who experimentally tested the predictions of Anbarci and Boyd III (2011), indeed verified

that at very high levels of p, equilibria involving immediate agreement cease to exist and only the chilling-effect equilibria

remain.
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we allow the Pareto frontier to have a horizontal segment or a vertical segment). Let bSi be the maximum

or ideal payoff that Player i obtains in S, i.e., bSi = max{xi : (x1, x2) ∈ S}, for i = 1, 2. The ideal point

of S is given by bS = (bS1 , b
S
2 ). Throughout our analysis, we will assume that bargaining is non-trivial in

that it is not conflict-free, i.e., bS /∈ S.

The Nash Solution: The standard (symmetric) Nash solution N in any S is given byNS = argmaxx∈Sx1×
x2 (Nash, 1950). A generalized Nash solution (with bargaining weight beta) N (β) in any S is given by

N (β)S = argmaxx∈S(x1)β × (x2)1−β where β ∈ (0, 1).

The Nash Demand Game (NDG): In an NDG, players 1 and 2 simultaneously make demands xi with

xi ∈ [0, bSi ]. If x = (x1, x2) ∈ S, Player i receives xi. Otherwise, both players get 0. NDG has a multiplicity

of Nash equilibria since every point on the strong Pareto frontier is a Nash equilibrium outcome as well as

the ‘pure’ chilling-effect equilibrium with payoffs (0, 0). Given (x1, x2), denote Player i’s payoff function

by Li = xiH(x1, x2) where H(x1, x2) = 1 for (x1, x2) ∈ S and H(x1, x2) = 0 otherwise. Nash (1953)

smoothed the payoff function L by replacing the indicator function H with a continuous approximation h

such that h equals H on S, but then drops off to zero in a continuous way. The smoothed payoff function

for Player i is the expected utility Gi(x1, x2) = xih(x1, x2).

Nash Demand Game with Random Settlement (NDG-RS): For any xi ∈ [0, bSi ], let x∗j (xi) be the maximum

payoff that Player j obtains in S, i.e., x∗j (xi) = max{xj : (xi, xj) ∈ S}. Hence, we have (x1, x
∗
2(x1)) ∈ ∂S

for any x1 ∈ [0, bS1 ] and (x∗1(x2), x2) ∈ ∂S for any x2 ∈ [0, bS2 ]. In addition, if (x1, x2) ∈ ∂∗S, then we

must have x1 = x∗1(x2) and x2 = x∗2(x1). We will use “Player i’s demand xi” and “Player i’s (implicit)

proposal (xi, x
∗
j (xi))” whenever each one is called for. Let

SI = {(x1, x2)|x1 ∈ [0, bS1 ], x2 ∈ [0, bS2 ], (x1, x2) /∈ S}

be the set of combinations of Player 1’s demand and Player 2’s demand where the two players’ demands

are incompatible. Note that S and SI partition the rectangle [0, bS1 ] × [0, bS2 ]. Let p be a probability

(function) that is a mapping p : ∂S ∪ SI → [0, 1) such that p(x) = 1 for any x ∈ ∂S and 0 ≤ p(x) < 1

for any x ∈ SI . The function p is the arbitration initiation probability function (or, initiation probability

function, for short) and 1− p is thus the breakdown probability (function).

For any given initiation probability function p(·), the Nash Demand Game with Random Settlement

(NDG-RS) that we consider is defined as follows:

- Phase 1 (‘Agreement’ Phase): Players 1 and 2 simultaneously make demands xi with xi ∈ [0, bSi ].

If x = (x1, x2) ∈ S, Player i receives xi. Otherwise, we move to Phase 2;

- Phase 2 (‘Breakdown or Random Settlement’ Phase): Nature makes a choice: with probability

1− p(x) the game terminates with (0, 0) payoffs while with probability p(x), Nature brings in an arbiter

to resolve the dispute. The arbiter implements Player 1’s demand x1 (and thus his effective proposal

(x1, x
∗
2(x1))) with probability q ∈ (0, 1) and Player 2’s demand x2 (and thus his effective proposal

(x∗1(x2), x2)) with probability 1− q ∈ (0, 1).

We interpret q and 1− q as the common prior belief held by the players about the arbiter’s bias towards

Player 1 and Player 2 respectively. We say that an NDG-RS is Maximum Bias Uncertain if q = 1
2 . The

payoff of Player i = 1, 2 at strategy profile x = (x1, x2) ∈ [0, bS1 ]× [0, bS2 ] is:

U1(x) =


x1 if x ∈ S

p(x)[qx1 + (1− q)x∗1(x2)] if x /∈ S,
(1)

and
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U2(x) =


x2 if x ∈ S

p(x)[qx∗2(x1) + (1− q)x2] if x /∈ S.
(2)

Our focus is on pure-strategy Nash equilibria of an NDG-RS. We say x ∈ R2 is a “Phase 1 Nash

equilibrium” if x ∈ S and it is a “Phase 2 Nash equilibrium” if x /∈ S.

3 Analysis

For any ε > 0 and any (x1, x2) ∈ [0, bS1 ]× [0, bS2 ], let Nε(x1, x2) be a neighborhood of (x1, x2) in [0, bS1 ]×
[0, bS2 ], i.e., Nε(x1, x2) consists of all points in [0, bS1 ]× [0, bS2 ] whose (Euclidean) distances with the point

(x1, x2) are less than ε. Let Nε(∂S) be a neighborhood of ∂S in [0, bS1 ]× [0, bS2 ], i.e., Nε(∂S) = {(x′1, x′2) ∈
[0, bS1 ]× [0, bS2 ]|(x′1, x′2) ∈ Nε(x1, x2) for some (x1, x2) ∈ ∂S}.

For any p and any constant c ∈ [0, 1], let x2 = x∗2(x1, c|p) be the implicit function of the equation

p(x1, x2) = c (whenever the implicit function of the equation is well defined). That is, p(x1, x
∗
2(x1, c|p)) =

c. Thus, for a given c, the function x2 = x∗2(x1, c|p) (as a function of x1) defines an “iso-probability curve”

in the (x1, x2) plane on which the probability of initiating random settlement is constant at c (see Figure 1

for an illustration of the iso-probability curve). The slope of the iso-probability curve that passes through

the point (x1, x2) is
∂x∗2(x1, c|p)

∂x1
|c=p(x1,x2), or simply,

∂x∗2(x1, p(x1, x2)|p)
∂x1

, with slight abuse of notation.
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Fig. 1 Iso-probability curves.

Definition 1 We say that a sequence of probabilities {pn}∞n=1 is regular, if it satisfies the following

conditions:

(i) For each n, pn is differentiable on (∂S ∪ SI)\E where E = {(x1, x2) ∈ ∂S|x1 = bS1 or x2 = bS2 };8

(ii) For each n, − qi
bSi

<
∂pn(x1, x2)

∂xi
≤ 0 for any (x1, x2) ∈ ∂∗S with xi < bSi , where qi = q for i = 1 and

qi = 1− q for i = 2.

(iii) For any ε > 0, pn converges uniformly to 0 on SI\Nε(∂S) as n→∞;

(iv) For some i = 1, 2, there exist some ε1 > 0 and ε2 > 0 and N1 > 0 such that

∂pn(x1, x2)

∂xi
< − 1

bSi − ε2
pn(x1, x2)

8 We exclude E from the differentiable domain of p because p can never be differentiable at any point in E. In particular,

noticing that the domain of p is ∂S ∪ SI ,
∂p(x1, x2)

∂x1
is not well defined if (x1, x2) ∈ ∂S and x1 = bS1 , and

∂p(x1, x2)

∂x2
is

not well defined if (x1, x2) ∈ ∂S and x2 = bS2 .
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for all (x1, x2) ∈ Nε1(bS1 , b
S
2 ) for all n > N1;

(v) For any i = 1, 2,
∂pn(x1, x2)

∂xi
≤ 0 on SI for all n and there exists an ε3 > 0 such that

∂pn(x1, x2)

∂xi
< 0

on SI ∩Nε3(∂S) for all n;

(vi)

{
∂x∗2(x1, pn(x1, x2)|pn)

∂x1

}∞
n=1

exists and is uniformly continuous at any (x1, x2) ∈ ∂∗S.9,10

We obtain the following result (proved in Appendix 1).

Theorem 1 Let {pn}∞n=1 be a regular sequence of probabilities. Let {(x̂n1 , x̂n2 )}∞n=1 be a sequence of Nash

equilibria where (x̂n1 , x̂
n
2 ) is a Nash equilibrium of the NDG-RS that uses the breakdown probability 1−pn

and that the probability that Player 1’s demand is chosen is q ∈ (0, 1) when the game moves to random

settlement. Then, as n → ∞, (x̂n1 , x̂
n
2 ) must converge to the Nash solution outcome if q = 1

2 and to the

generalized Nash solution outcome (with as-if bargaining weight q) if q 6= 1
2 .

3.1 Role of Each Condition for Regularity

In this section, we will briefly explain the intuitions behind Theorem 1 and in particular, the role of the

various conditions in the definition of the regularity of a sequence of probabilities p. We will then provide

a comparison of our regularity conditions with those obtained by Abreu and Pearce (2015).

Condition (ii) requires the initiation probability function p to decrease at a speed that is sufficiently slow

as players’ demands move slightly away from the Pareto frontier. It is needed to ensure that there is no

Phase 1 Nash equilibrium in the game. If this condition is violated, then there may exist multiple Phase

1 Nash equilibria, and they may not shrink to a single point as the initiation probability function p goes

to zero. To see this, imagine the extreme case where p is zero at any point on SI ; in this case, all points

on the Pareto frontier is a Phase 1 Nash equilibrium outcome.

Condition (iii) implies that for any fixed combination of players’ demands, the initiation probability

function p will decrease to zero as n goes to infinity. We need Condition (iii) in particular to ensure that

as n grows, players’ equilibrium proposals will become closer and closer. Otherwise, we cannot guarantee

convergence.

Condition (iv) plays the following role. For expositional purposes, suppose that there are no vertical and

horizontal segments of the Pareto frontier. Note then that as Player i increases his demand by one unit,

the benefit will be pqi, and the loss will be −∂p(x1, x2)

∂xi
(qixi + qjx

∗
i (xj)), where qi = q if i = 1 and

qi = 1− q if i = 2. Observe that the above marginal loss is approximately equal to −∂p(x1, x2)

∂xi
qibi when

(x1, x2) is close to (bS1 , b
S
2 ). If Condition (iv) holds, then this marginal loss is strictly greater than pqi, i.e.,

as (x1, x2) approaches (bS1 , b
S
2 ), the marginal loss of increasing a player’s demand is strictly greater than

the marginal benefit from doing so. So, the players’ equilibrium proposals can never approach (bS1 , b
S
2 )

in the limit. Note that, intuitively, as p goes to zero, players’ equilibrium proposals either converge to

each other (because making a proposal that is far away from the opponent’s proposal will lead to p = 0

and is worse than making a proposal that is close to the opponent’s proposal) or converge to (bS1 , b
S
2 )

(because given that a player’s opponent makes an extreme demand, it is a best response for the player

9 When (x1, x2) = (bS1 , x
∗
2(bS1 )),

∂x∗2(x1, pn(x1, x2)|pn)

∂x1
refers to the left derivative, and when (x1, x2) = (x∗1(bS2 ), bS2 ),

∂x∗2(x1, pn(x1, x2)|pn)

∂x1
refers to the right derivative.

10 Note that a sequence (of functions) {fn(x)}∞n=1 converges uniformly to a function f on domain X if for every ε > 0

there exists an N such that |fn(x)− f(x)| < ε for any n ≥ N and any x ∈ X. A function sequence {fn(x)}∞n=1 is uniformly

continuous at some point x ∈ X if for every ε > 0, there exists δ > 0 such that |fn(y)− fn(x)| < ε for all n for any y ∈ X
for which |y − x| < δ.
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to also make an extreme demand if there are no vertical and horizontal segments in the Pareto frontier).

So, Condition (iv) rules out the latter case.11

Condition (v) is required in addition to ensure that the iso-probability curve of p exists in some neigh-

borhood of the Pareto frontier. In particular, if Condition (v) holds, then
∂x∗2(x1, pn(x1, x2)|pn)

∂x1
is well

defined for any combination of demands (x1, x2) that are incompatible but is sufficiently close to the

Pareto frontier as in this case,

∂x∗2(x1, pn(x1, x2)|pn)

∂x1
= −

∂pn(x1, x2)

∂x1
∂pn(x1, x2)

∂x2

.

Condition (vi) says that the initiation probability function p is “smooth” in the neighborhood of the

Pareto frontier in the sense that as players’ (incompatible) demands converge to the Pareto frontier, the

slope of the iso-probability curve of p also converges to the slope of the Pareto frontier.12 The condition

guarantees that if players’ equilibrium proposals converge to each other, then they must converge to the

generalized Nash solution outcome. To see this point, again, we use the marginal benefit/loss argument. If

Player i increases his demand by ∆xi, then the benefit is pqi∆xi, and the loss is ∆p(qix̂i+(1−qi)x∗i (x̂j)),
which is approximately ∆px̂i in the limit if the two players’ equilibrium proposals converge to each other;

but in equilibrium the marginal benefit equals the marginal loss, which implies that pqi∆xi = ∆px̂i for

i = 1, 2. So, we have:
∆p/∆x1
∆p/∆x2

=
q1x̂2
q2x̂1

. (3)

Note that
∆p/∆x1
∆p/∆x2

is exactly the slope of the iso-probability curve (i.e.,
∂x∗2(x̂1, p(x̂1, x̂2)|p)

∂x1
). With

Condition (vi),
∆p/∆x1
∆p/∆x2

converges to the slope of the Pareto frontier as (x̂1, x̂2) converges to some point

(x1, x2) on the Pareto frontier. So, equation (3) implies:

∆x2
∆x1

∣∣∣∣∂S =
q1x2
q2x1

=
qx2

(1− q)x1
.

This in turn, however, implies that the limit outcome must be the generalized Nash solution outcome

with bargaining weight q.

3.1.1 Comparison with Abreu and Pearce

The institutional setup for resolving incompatible demands is different from ours in Abreu and Pearce

(2015) where breakdown is prevented with probability p by meeting the demands through outside injec-

tion of resources. They also provide regularity conditions on the ‘perturbation’ function p under which

the equilibrium outcomes of the perturbed NDG converge to the Nash solution outcome as the pertur-

bation goes to zero. Their conditions and ours share common features and are very similar in spirit.

In particular, both our Condition (iv) and Abreu and Pearce (2015)’s Condition (i) require that as a

player’s demand moves further away from the feasible set, p decreases very rapidly. This is also consistent

with Nash’s argument: “...as less and less smoothing is used, h will decrease more and more rapidly on

moving away from B...” (Nash (1953, p. 133)). Note that these conditions are necessary for the Nash

11 See more on this in Remark 4 below.

12 Notice that if (x1, x2) ∈ ∂∗S, then x∗2(x1, pn(x1, x2)|pn) = x∗2(x1, 1|pn) = x∗2(x1). So, we have
∂x∗2(x1, pn(x1, x2)|pn)

∂x1
=

∂x∗2(x1)

∂x1
for any (x1, x2) ∈ ∂∗S.
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solution convergence because players’ demands may be trapped at the chilling outcome (bS1 , b
S
2 ) as p

goes to zero and the above conditions rule this situation out. In addition, both our Condition (vi) and

Condition (ii) in Abreu and Pearce (2015) require that as players’ (incompatible) demands move close

to the Pareto frontier, the slope of the iso-probability curve be close to that of the Pareto frontier. As

explained in Section 3.1, Condition (vi) is a key one which guarantees the Nash solution convergence. It

is also worth to note that our Condition (ii)—which requires that p does not decrease at a too-fast speed

at the boundary of S as players demands slightly move away from the boundary—is ‘seemingly’ absent

in Abreu and Pearce (2015). However, in their paper, the domain of their perturbation function includes

the entire feasible set, S, and the perturbation function is assumed to be (continuously) differentiable

in its entire domain. Since the perturbation function is held constant at 1 for all x ∈ S, the continuous

differentiability of the perturbation function implies that the derivative of the perturbation function with

respect to any player’s demand must equal zero at the boundary of S. Hence, Condition (ii) is trivially

satisfied in Abreu and Pearce (2015). Note that Condition (ii) and Condition (iv) (along with Condition

(v)), roughly imply that as the distance between two players’ proposals increases, p first decreases at a

slow speed, but then decreases at a sufficiently fast speed as players’ proposals are close to the extreme

demands - as is also the case in Abreu and Pearce (2015).

We end this section with the following two remarks.

Remark 1 As n→∞, it is not immediately clear whether the value of p at the equilibrium demands in

the NDG-RS will converge to zero or one. This is because as n increases, there exist two effects. The first

is that p will decrease for any given combination of players’ incompatible demands. The second is that

the two players’ equilibrium proposals become closer, which will increase p. It can be shown that the

second effect completely dominates the first effect and that the value of p at the equilibrium demands

will converge to one. This also implies that the players’ expected equilibrium payoffs will converge to the

Nash solution payoffs as n goes to infinity. In Appendix 2, we show the following: Let {(x̂n1 , x̂n2 )}∞n=1 be a

sequence of Nash equilibria where (x̂n1 , x̂
n
2 ) is a Nash equilibrium of the NDG-RS that uses the breakdown

probability 1− pn where {pn}∞n=1 is regular and that the probability that Player 1’s demand is chosen is

q ∈ (0, 1) when the game moves to random settlement. If (x̂n1 , x̂
n
2 ) converges to some point on ∂∗S as

n→∞, then it must be true that pn(x̂n1 , x̂
n
2 )→ 1 as n→∞.

Remark 2 We now compare our setup and Nash’s smoothing setup graphically (see Figure 2). In our

NDG-RS, when players make incompatible demands, the game turns into a lottery where either the

disagreement point is chosen or a point inside S (in particular, the middle point of the two players’

incompatible proposals) is chosen.13 However, in Nash’s smoothing, when players make incompatible

demands, either the disagreement point or a point outside S is chosen as the outcome.

3.2 Examples of Endogenous Breakdown Probabilities

In this section, we will first give an intuitive example in which the sequence of probabilities p is regular

and thus the Nash solution convergence result holds. Then we will give one example in which the sequence

is not regular (and consequently there is no convergence result), even though both examples are based

on the common concept of the “Minimal Agreement Point” which will be defined next. For simplicity, we

only consider the case q = 1/2 throughout this section.

3.2.1 Minimal Agreement Point and Convergence

Consider a particular regular sequence of probabilities based on the “Minimal Agreement Point” (MAP)

defined as follows. Let A(x1,x2) = {(y1, y2) ∈ S : (y1, y2) ≥ (x1, x2)} be the set of all points that (weakly)

13 The lottery generated by our game in fact has three states, the agreement point and the two incompatible proposals.

The latter can be merged into one in expectations (denoted in the figure by the point ‘Ours’) as the players are expected

utility maximizers.
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Fig. 2 A comparison with Nash’s smoothing.

Pareto dominate (x1, x2) in S. For any X ⊆ S, let α(X) be the area of X. For simplicity, we normalize

α(S) = 1. Let (x1, x2) /∈ S. Then, m(x1, x2) = (x∗1(x2), x∗2(x1)) (or in short m(x) = (x∗1, x
∗
2)) is called

the Minimal Agreement Point since Player 1’s demand already acknowledges that Player 2 should get

x∗2(x1) at least (i.e., even if Player 1’s demand prevails) and Player 2’s demand already acknowledges

that Player 1 should get at least x∗1(x2) (i.e., even if Player 2’s demand prevails). Thus, m(x) is a very

intuitive reference point for generating breakdown probability functions 1− p(x).

Note that Am(x1,x2) (or simply, Am(x)) is the set of all points that are (weakly) Pareto superior to

MAP. Figure 3 illustrates m(x) and Am(x).
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Fig. 3 Pareto superior sets with respect to the Minimal Agreement Point m(x1, x2).

Let the MAP-based breakdown probability be 1−p(x) = α(Am(x)) and the n-th MAP-based breakdown

probability be 1− pn(x) = 1− [1− α(Am(x))]
n. So, the n-th MAP-based initiation probability is pn(x) =

[1 − α(Am(x))]
n. It can be verified that the sequence of the n-th MAP-based initiation probabilities is

regular.

Proposition 1 As n → ∞, the two players’ equilibrium proposals (x̂n1 , x̂
n
2 ) in any Nash equilibrium of

the NDG-RS that uses the n-th MAP-based breakdown probability 1− pn and has maximum bias uncer-

tainty (viz. q = 1/2) converge to the Nash solution outcome. Moreover, (x̂n1 , x
∗
2(x̂n1 )) and (x∗1(x̂n2 ), x̂n2 ),

must surround the Nash solution outcome on the Pareto frontier (i.e., (x̂n1 , x
∗
2(x̂n1 )) must lie on the lower

right of the Nash solution outcome on the Pareto frontier or coincide with the Nash solution outcome, and

(x∗1(x̂n2 ), x̂n2 ) must lie on the upper left of the Nash solution outcome on the Pareto frontier or coincide

with the Nash solution outcome).
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The proof of Proposition 1 is moved to Appendix 1. For now, consider the following feasible set that

yields a linear Pareto frontier:

S = {(x1, x2)|0 ≤ x1 ≤
√

2, 0 ≤ x2 ≤
√

2 and 0 ≤ x1 + x2 ≤
√

2}.

Noting that the area of S is 1, let 1− pn(x) = 1− [1− α(Am(x))]
n. Let {(x̂n1 , x̂n2 )}∞n=1 be a sequence of

Nash equilibria where (x̂n1 , x̂
n
2 ) is a Nash equilibrium of the NDG-RS that uses the breakdown probability

1− pn and is maximum bias uncertain. Then it can be verified that

x̂n1 = x̂n2 =

√
2

2
+

√
2n2 + 2−

√
2n

2
.

It is obvious that as n→∞, both players’ equilibrium proposals converge to (
√

2/2,
√

2/2) (i.e., the

Nash solution outcome). The convergence path is depicted in Figure 4 below.
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Fig. 4 Convergence of Nash equilibrium to the Nash solution.

3.2.2 Minimal Agreement Point and Non-convergence

Convergence to the Nash solution outcome is not automatic for any type of breakdown probability that

looks reasonable. To make this point consider a breakdown probability 1 − p which is based on the

measure of all outcomes not weakly Pareto-dominated by MAP, (x∗1, x
∗
2), instead of the one that is used

in the previous subsection which is based on the measure of all outcomes weakly Pareto superior to MAP,

(x∗1, x
∗
2). Note that the latter set is embedded in the former set. We will show that the Nash solution

convergence never happens in this case; in particular, any efficient demand pair turns out to be a Nash

equilibrium (as in the original NDG without smoothing), while the only viable Phase 2 Nash equilibrium

turns out to be the chilling-effect equilibrium.

Let B(x1,x2) = {(y1, y2) ∈ S : (y1, y2) ≤ (x1, x2)} be the set of all points that are (weakly) Pareto

dominated by (x1, x2) in S. Then, Bm(x1,x2) (or simply, Bm(x)) is the set of all points that are (weakly)

Pareto inferior to the minimal agreement point, MAP (see Figure 5). Let the alternative MAP-based

breakdown probability be 1 − p(x) = 1 − α(Bm(x)). So, the alternative MAP-based initiation probability

is p(x) = α(Bm(x)).

Remark 3 Note that the MAP-based breakdown probability 1 − p(x) = α(Am(x)) is continuous in the

‘divergence’ between the players’ demands while the alternative one 1− p(x) = 1− α(Bm(x)) is not. To

see this, consider two demands x1 and x2 such that (x1, x2) ∈ ∂∗S. Then, the probability of obtaining

disagreement payoffs is 0 (since players’ demands are compatible). Suppose now that x1 increases to

x′1 = x1 + ε, where ε > 0 but is arbitrarily small. Under 1 − p(x) = α(Am(x)), the probability of

obtaining disagreement payoffs remains arbitrarily close to zero while under the alternative one 1−p(x) =

1− α(Bm(x)), it involves a ‘jump’.
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Fig. 5 Pareto inferior sets with respect to the minimal agreement point m(x1, x2).

Remark 3 implies that the alternative MAP-based initiation probability does not satisfy condition

(ii). This implies that the n-th alternative MAP-based initiation probability (i.e., pn = α(Bm(x))
n) also

does not. Thus, the sequence of the n-th alternative MAP-based initiation probability cannot be regular,

and the Nash solution convergence result is not guaranteed if we use the n-th alternative MAP-based

initiation probability.

Our next result, proved in Appendix 1, illustrates that there exist two types of Nash equilibria

in the NDG-RS that uses the alternative MAP-based breakdown probability and has maximum bias

uncertainty. First, any (x1, x2) ∈ ∂∗S is an equilibrium and thus there is a continuum of agreement

equilibria. Second, the ‘chilling-effect’ outcome (bS1 , b
S
2 ) is the only possible Phase 2 Nash equilibrium,

although in this equilibrium, the breakdown probability 1− p is one since α(S) = 1.

Proposition 2 In the NDG-RS that uses the alternative MAP-based breakdown probability and has

maximum bias uncertainty (viz. q = 1/2), any (x1, x2) ∈ ∂∗S is a Phase 1 Nash equilibrium and the

chilling-effect equilibrium (bS1 , b
S
2 ) is the only possible Phase 2 Nash equilibrium. In addition, (bS1 , b

S
2 ) is

a Phase 2 Nash equilibrium if and only if x∗1(bS2 ) = 0 and x∗2(bS1 ) = 0.

As alluded to in Remark 3 above, 1 − p(x) = α(Am(x)) differs from 1 − p(x) = 1 − α(Bm(x)) in

that the former is continuous while the latter is discontinuous in the divergence of individual demands.

This difference leads to the fact that any point on the Pareto frontier is a Nash equilibrium outcome

with 1 − p(x) = 1 − α(Bm(x)), but not with 1 − p(x) = α(Am(x)). Another difference between them is

that with 1 − p(x) = 1 − α(Bm(x)), if a player makes an extreme demand, then 1 − p is one no matter

how generous the opponent’s proposal will be (assuming that the Pareto frontier has no vertical or

horizontal segments), while with 1− p(x) = α(Am(x)), if a player makes an extreme demand, 1− p will

decrease as the opponent’s proposal becomes more generous. This second difference implies that with

1− p(x) = 1−α(Bm(x)), both players making extreme demands is a Nash equilibrium in the case where

the Pareto frontier has no vertical or horizontal segments.

The comparison of 1− p(x) = α(Am(x)) vs. 1− p(x) = 1− α(Bm(x)) reveals a number of interesting

features of our NDG-RS schemes. First that if a breakdown probability is α(Am(x)), then negotiation

moves to Phase 2 that involves potential agreements on two outcomes that surround the Nash solution

outcome. In terms of expectation, this yields an inefficient outcome. However, as this breakdown prob-

ability approaches one, these two outcomes converge to the Nash solution outcome and both players

indeed demand what the Nash solution outcome would yield them. However, this convergence is triv-

ially violated when one moves to the alternative MAP-based breakdown probability 1 − α(Bm(x)) in

two ways: any efficient agreement remains robust as an equilibrium outcome as does the only Phase 2

Nash equilibrium outcome (i.e., the chilling-effect outcome) albeit only when the probability of moving

to the random settlement stage is also zero. Thus, the interesting contrast is that while the alternative

MAP-based breakdown probability 1−α(Bm(x)) fails in obtaining the Nash solution outcome as a unique
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equilibrium outcome, with the MAP-based breakdown probability α(Am(x)), all equilibria are Phase 2

Nash equilibria.14

Remark 4 Condition (iv) of Definition 1 is a sufficient condition for the non-existence of chilling-effect

equilibrium. Hence any violation of it will not guarantee the existence of an equilibrium with chilling-

effect. However, consider the following natural variant of the above MAP-based continuation probability

p used in section 3.2.1 that violates Condition (iv) in a special way, but satisfies all other conditions

of Definition 1: p(x1, x2) = 0 if xi = bSi for at least some i = 1, 2. Such a ‘mechanism’ can emerge

out of an institutional norm where it is understood that the institution is willing to help bargainers by

allowing for some chance for arbitration provided every bargainer shows at least some sign of giving

something positive to her bargaining partner; otherwise, that is, if even one individual shows no mercy,

the institution will punish that individual by disallowing any form of continuation. Here it is easy to see

that, provided there are no vertical or horizontal segments on the Pareto frontier, there is an equilibrium

where each player i = 1, 2 demands bSi and this is the only equilibrium where at least for one i, the

demand is bSi . Thus, Condition (iv) of Definition 1 (and Condition (i) as in Abreu and Pearce (2015)) is

an important element of regularity to get away from the chilling-effect equilibrium present originally in

Nash’s NDG.

The example in Section 3.2.2 violates both Condition (ii) and Condition (iv) (as it also has the feature

that p(x1, x2) = 0 if xi = bSi for at least some i). In the example, violating Condition (ii) leads to the

fact that any point on the Pareto frontier is an equilibrium, and violating Condition (iv) leads to the fact

that (bS1 , b
S
2 ) is the only possible Phase 2 equilibrium. So, making the chilling-effect outcome the only

possible Phase 2 equilibrium here is due to the violation of Condition (iv), rather than the violation of

Condition (ii).

Apart from Nash’s original smoothing and its foundations by Abreu and Pearce (2015), the chilling-

effect has been ruled out in the existing literature by others as well. For example, Dutta (2012) adds a

second stage to the standard NDG where bargainers, facing incompatible demands, can decide whether

to stick to their original demands or give in to the demands of their partners by incurring a cost. Very

high initial demands give competitors the option to generate a large negative surplus that then gets

shared between the bargainers, thereby putting oneself into a position where yielding to the competitor’s

original demand becomes a dominant strategy in the second stage. This keeps players away from extreme

demands.

4 Infinite-horizon

We now consider an infinite-horizon NDG-RS where in each period, if players’ demands (x1, x2) are

compatible, then the game ends immediately with each player obtaining what he demands. If players’

demands (x1, x2) are incompatible, then with initiation probability p(x1, x2), the game moves to random

settlement stage (in which (x1, x
∗
2(x1)) is chosen with probability q and (x∗1(x2), x2) is chosen with

probability 1 − q), while with probability 1 − p(x1, x2), the game moves to the next period in which

players make new demands in the next period, and this continues. We focus on stationary (subgame-

perfect) equilibria in which players’ demands in any period t do not depend on the history of the game

before t. Let (x1, x2) be a stationary equilibrium for the infinite-horizon NDG-RS, where players make the

demands (x1, x2) in all periods. If (x1, x2) ∈ S, Player i’s utility in such an equilibrium is Ui(x1, x2) = xi.

If (x1, x2) /∈ S, then

Ui(x1, x2) = p(x1, x2)[qixi + (1− qi)x∗i (xj)] + (1− p(x1, x2))δUi(x1, x2),

where δ is the discount factor. This yields

Ui(x1, x2) =
p(x1, x2)

1− (1− p(x1, x2))δ
[qixi + (1− qi)x∗i (xj)].

14 In the second part of Appendix 2 we provide another example of a seemingly desirable breakdown probability, based

on Euclidean distance between ‘offers,’ that does not yield convergence to the Nash solution outcome.

14



Note that if Player 1 deviates to a demand x′1 in all periods, then Player 1’s utility will be U1(x′1, x2) =
p(x′1,x2)

1−(1−p(x′1,x2))δ
[q1x

′
1 + (1 − q1)x∗1(x2)] if (x′1, x2) /∈ S and U1(x′1, x2) = x′1 if (x′1, x2) ∈ S. We can define

U2(x1, x
′
2) similarly. Since (x1, x2) is an equilibrium, it implies that U1(x1, x2) ≥ U1(x′1, x2) for any

x′1 ∈ [0, bS1 ] and U2(x1, x2) ≥ U2(x1, x
′
2) for any x′2 ∈ [0, bS2 ].15 This implies that if (x1, x2) is a stationary

equilibrium of the infinite horizon game, then it is also a Nash equilibrium in the static game where the

initiation probability function p is replaced by another initiation probability function g = p
1−(1−p)δ . So,

we obtain the following result.

Theorem 2 Let {pn}∞n=1 be a sequence of probabilities and let gn = pn
1−(1−pn)δ . Suppose that {gn}∞n=1 is

regular. Let {(x̂n1 , x̂n2 )}∞n=1 be a sequence of stationary equilibria where (x̂n1 , x̂
n
2 ) is a stationary equilibrium

of the infinite-horizon NDG-RS that uses the breakdown probability 1− pn and where Player 1’s demand

is chosen with probability q ∈ (0, 1) when the game moves to the random settlement stage in any period.

Then, as n → ∞, (x̂n1 , x̂
n
2 ) must converge to the Nash solution outcome if q = 1

2 and to the generalized

Nash solution outcome (with as-if bargaining weight q) if q 6= 1
2 .

5 Conclusion

There are many real world situations where negotiation between two parties - like employers and workers,

divorce partners or nation-states - are undertaken under the possibility that if negotiations break down

then an external arbiter is called upon to resolve the crisis. In such situations, the bargaining parties

may face uncertainty regarding whether such arbitration will take place, and if it does, whether the

arbiter would be biased towards one of them. We have incorporated these features in an otherwise

standard NDG that probabilistically allows players to resolve their incompatible demands via a random

settlement scheme where a biased arbiter uses the FOA mechanism to select one of the two demands.

The ‘randomness’ of the settlement mechanism in the eyes of the bargainers is driven by incomplete

information about the arbiter’s bias. The probability of initiating the random settlement scheme is

endogenous as larger incompatibility of individual demands reduces this initiation probability.

We have provided conditions on this initiation probability function and the stochastic structure of the

random settlement mechanism to guarantee that every Nash equilibrium of our game converges to the

standard or the generalized Nash solution outcome as the chances of arbitration vanishes. We show that

the standard Nash solution is related to maximum entropy concerning the uncertainty over the arbiter’s

bias. We have then extended the static environment to an infinite-horizon (dynamic) setup and proved

that these conditions are also useful to obtain convergence of stationary equilibria to the Nash solution

in such a dynamic model where players are given the option to renegotiate. From a policy perspective,

our results suggest that giving the bargainers a tiny chance of resolving disagreements through arbiters

whose bias are totally unknown can yield desirable outcomes.

6 Appendix 1: Proofs

Proof of Theorem 1

Our proof consists of three steps.

Step 1. In this step, we will show that if (x̂1, x̂2) is a Nash equilibrium of an NDG-RS that has settlement bias

q ∈ (0, 1) (i.e., Player 1’s demand is chosen with probability q when the game moves to random settlement) and uses the

breakdown probability 1 − p where p satisfies Condition (ii) (i.e., −
qi

bSi
<

∂p(x1, x2)

∂xi
≤ 0 for any (x1, x2) ∈ ∂∗S with

xi < bSi , where qi = q for i = 1 and qi = 1 − q for i = 2), then (x̂1, x̂2) must be a Phase 2 Nash equilibrium, that is

(x̂1, x̂2) /∈ S. Moreover, for any i, if x̂i < bSi , then p(x̂1, x̂2)qi = −
∂p(x̂1, x̂2)

∂xi
(qix̂i + (1 − qi)x∗i (x̂j)), and if x̂i = bSi , then

p(x̂1, x̂2)qi ≥ −
∂p(x̂1, x̂2)

∂xi
(qix̂i + (1− qi)x∗i (x̂j)).

15 Note that these inequalities are the necessary (but not sufficient) conditions for (x1, x2) to be an equilibrium in the

infinite-horizon NDG-RS.
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We now prove the above statements. There are two possible types of Nash equilibria: Phase 1 Nash equilibria and

Phase 2 Nash equilibria. So, we have the following two cases.

(i) Phase 1 Nash equilibria, i.e., the Nash equilibria where players’ demands are compatible with each other : For this

case, let (x̂1, x̂2) ∈ S be a Phase 1 Nash equilibrium. Then, we must have (x̂1, x̂2) ∈ ∂∗S (if not, then (x̂1, x̂2) cannot

be a Nash equilibrium because one of the two players will have an incentive to deviate to a slightly higher demand,

and the two players’ proposals are still compatible when the player makes the deviation). Suppose x̂1 < bS1 . Notice

that Player 1’s payoff is U1(x1, x2) = p(x1, x2)(qx1 + (1 − q)x∗1(x2)) if the two players’ demands (x1, x2) ∈ ∂S ∪ SI .

Taking the derivative of Player 1’s payoff with respect to x1 at (x̂1, x̂2) on the domain ∂S ∪ SI , we have16
∂U1(x̂1, x̂2)

∂x1
=

∂p(x̂1, x̂2)

∂x1
(qx̂1+(1−q)x∗1(x̂2))+p(x̂1, x̂2)q =

∂p(x̂1, x̂2)

∂x1
x̂1+p(x̂1, x̂2)q =

∂p(x̂1, x̂2)

∂x1
x̂1+q ≥

∂p(x̂1, x̂2)

∂x1
bS1 +q > −q+q = 0,

where the second equality follows from the fact that x∗1(x̂2) = x̂1 (which is due to the fact that (x̂1, x̂2) ∈ ∂∗S), and the

second inequality follows from Condition (ii). The above inequality then implies that Player 1 is strictly better off by

making a slightly higher demand. If x̂1 = bS1 , then we must have x̂2 < bS2 because (x̂1, x̂2) ∈ ∂∗(S) and (bS1 , b
S
2 ) /∈ ∂∗(S).

In this case, it can be shown that Player 2 has an incentive to deviate to a slightly higher demand (the proof is similar to

the case where x̂1 < bS1 ). So, we have proved that (x̂1, x̂2) cannot be a Nash equilibrium. Thus, there is no Phase 1 Nash

equilibrium.

(ii) Phase 2 Nash equilibria, i.e., the Nash equilibria where players’ demands are not compatible with each other : Let

(x̂1, x̂2) /∈ S be a Phase 2 Nash equilibrium. Then, we must have x̂1 > x∗1(x̂2) and x̂2 > x∗2(x̂1). For Player i, we have

either x̂i < bSi or x̂i = bSi . We consider Player 1 first. We have the following two cases.

Case 1: x̂1 < bS1 . Since (x̂1, x̂2) is a Nash equilibrium, we must have:

x̂1 = argmaxx∗1(x̂2)<x1<b
S
1
U1(x1, x̂2) = argmaxx∗1(x̂2)<x1<b

S
1
p(x1, x̂2)(qx1 + (1− q)x∗1(x̂2)) (4)

The first order condition of the maximization problem in (4) is that
∂p(x̂1, x̂2)

∂x1
(qx̂1 + (1− q)x∗1(x̂2)) + p(x̂1, x̂2)q = 0.

That is, p(x̂1, x̂2)q = −
∂p(x̂1, x̂2)

∂x1
(qx̂1 + (1− q)x∗1(x̂2)).

Case 2: x̂1 = bS1 . In this case, it must be true that Player 1’s marginal utility at (x̂1, x̂2) is non-negative. So, we must

have p(x̂1, x̂2)q ≥ −
∂p(x̂1, x̂2)

∂x1
(qx̂1 + (1− q)x∗1(x̂2)).

Similarly, for Player 2, if x̂2 < bS2 , then p(x̂1, x̂2)(1 − q) = −
∂p(x̂1, x̂2)

∂x2
((1 − q)x̂2 + qx∗2(x̂1)). If x̂2 = bS2 , then

p(x̂1, x̂2)(1− q) ≥ −
∂p(x̂1, x̂2)

∂x2
((1− q)x̂2 + qx∗2(x̂1)).

Finally, if in addition we have that p it is a twice differentiable function and is (weakly) decreasing as well as strictly

concave in xi (for i = 1, 2), then the necessary conditions above are also sufficient. Therefore a Nash equilibrium must

exist.

Step 2. In this step, we show that if {(x̂n1 , x̂n2 )}∞n=1 is a sequence of Nash equilibria where (x̂n1 , x̂
n
2 ) is a Nash equilibrium

of the NDG-RS that has settlement bias q and uses the breakdown probability 1− pn where {pn}∞n=1 is a regular sequence

of probabilities, then the two players’ equilibrium proposals, (x̂n1 , x
∗
2(x̂n1 )) and (x∗1(x̂n2 ), x̂n2 ), will converge to each other as

n goes to infinity. In particular, we will show that limn→∞(x̂n1 − x∗1(x̂n2 )) = 0 and limn→∞(x̂n2 − x∗2(x̂n1 )) = 0.

Suppose that limn→∞(x̂n1 − x∗1(x̂n2 )) = 0 does not hold. Then, using the fact that x̂n1 − x∗1(x̂n1 ) > 0 for all n (noticing

that for any n, (x̂n1 , x̂
n
2 ) must be a Phase 2 Nash equilibrium according to Step 1), there must exist a subsequence of

{(x̂n1 , x̂n2 )}∞n=1, say {(x̂nk
1 , x̂

nk
2 )}∞k=1, such that x̂

nk
1 − x∗1(x̂

nk
2 ) > ε for all k and for some ε > 0. Notice that the sequence

{x̂nk
1 − x∗1(x̂

nk
2 )}∞k=1 lies in a compact set (because |x̂nk

1 − x∗1(x̂
nk
2 )| ≤ bS1 for any k), so it must have a convergent

subsequence, say {x̂
nkl
1 − x∗1(x̂

nkl
2 )}∞l=1. In addition, we must have liml→∞(x̂

nkl
1 − x∗1(x̂

nkl
2 )) = ε′ for some ε′ ≥ ε.

Since (x̂
nkl
1 , x̂

nkl
2 ) must be a Phase 2 Nash equilibrium for any l, it must be true that in the NDG-RS that uses the

breakdown probability pnkl
and has settlement bias q, making the demand x̂

nkl
1 is not worse than making the demand

x∗1(x̂
nkl
2 ) for Player 1 (the latter demand will make the two players’ demands just compatible). That is, (qx̂

nkl
1 + (1 −

q)x∗1(x̂
nkl
2 ))pnkl

(x̂
nkl
1 , x̂

nkl
2 ) ≥ x∗1(x̂

nkl
2 ). The fact that liml→∞(x̂

nkl
1 − x∗1(x̂

nkl
2 )) = ε′ > 0 and the fact that pn converges

to 0 uniformly on any domain where an arbitrarily small neighborhood of ∂S is excluded (i.e., Condition (iii)) imply that

16 In the remainder of the paper, we use
∂f(x̂1, x̂2)

∂xi
to denote

∂f(x1, x2)

∂xi
|(x1,x2)=(x̂1,x̂2).
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pnkl
(x̂
nkl
1 , x̂

nkl
2 ) converges to zero as l→∞. This implies that x∗1(x̂

nkl
2 )→ 0 as l→∞. So, x̂

nkl
2 → bS2 as l→∞. Similarly,

we have x∗2(x̂
nkl
1 )→ 0 as l→∞, and thus x̂

nkl
1 → bS1 as l→∞.

Suppose that Condition (iv) holds for i = 1. Let ε̂ = min{ε1, ε2}. Since x̂
nkl
1 → bS1 and x̂

nkl
2 → bS2 , we have |x̂

nkl
1 −bS1 | <

ε̂ and |x̂
nkl
2 − bS2 | < ε̂ for all l > L for some L > N1. This implies that (x̂

nkl
1 , x̂

nkl
2 ) ∈ Nε̂(b

S
1 , b

S
2 ) ⊆ Nε1 (bS1 , b

S
2 ) for

all l > L. It also implies that qx̂
nkl
1 + (1 − q)x∗1(x̂

nkl
2 ) ≥ qx̂

nkl
1 ≥ q(bS1 − ε̂) for all l > L. So, for any l > L, we

have −
∂pnkl

(x̂
nkl
1 , x̂

nkl
2 )

∂x1
(qx̂

nkl
1 + (1 − q)x∗1(x̂

nkl
2 )) ≥ −

∂pnkl
(x̂
nkl
1 , x̂

nkl
2 )

∂x1
q(bS1 − ε̂) ≥ −

∂pnkl
(x̂
nkl
1 , x̂

nkl
2 )

∂x1
q(bS1 − ε2) >

1

bS1 − ε2
pnkl

(x̂
nkl
1 , x̂

nkl
2 )q(bS1 − ε2) = pnkl

(x̂
nkl
1 , x̂

nkl
2 )q, where the first inequality follows from the fact that qx̂

nkl
1 +

(1 − q)x∗1(x̂
nkl
2 ) ≥ q(bS1 − ε̂) and −

∂pnkl
(x̂
nkl
1 , x̂

nkl
2 )

∂x1
≥ 0 (according to Condition (v)), the second inequality follows

from the fact that −
∂pnkl

(x̂
nkl
1 , x̂

nkl
2 )

∂x1
≥ 0 and bS1 − ε̂ ≥ bS1 − ε2, and the last inequality follows from the fact that

−
∂pnkl

(x̂
nkl
1 , x̂

nkl
2 )

∂x1
>

1

bS1 − ε2
pnkl

(x̂
nkl
1 , x̂

nkl
2 ) for any (x̂

nkl
1 , x̂

nkl
2 ) ∈ Nε1 (bS1 , b

S
2 ) (according to Condition (iv)).

Since (x̂
nkl
1 , x̂

nkl
2 ) is a Phase 2 Nash equilibrium, according to Step 1, we must have pnkl

(x̂
nkl
1 , x̂

nkl
2 )q ≥

−
∂pnkl

(x̂
nkl
1 , x̂

nkl
2 )

∂x1
(qx̂

nkl
1 +(1−q)x∗1(x̂

nkl
2 )) (and pnkl

(x̂
nkl
1 , x̂

nkl
2 )(1−q) ≥ −

∂pnkl
(x̂
nkl
1 , x̂

nkl
2 )

∂x2
((1−q)x̂

nkl
2 +qx∗2(x̂

nkl
1 )))

for any l. However, we have shown that −
∂pnkl

(x̂
nkl
1 , x̂

nkl
2 )

∂x1
(qx̂

nkl
1 + (1− q)x∗1(x̂

nkl
2 )) > pnkl

(x̂
nkl
1 , x̂

nkl
2 )q when l is suffi-

ciently large, a contradiction.

So, limn→∞(x̂n1 − x∗1(x̂n2 )) = 0 must hold. Similarly, we can show that limn→∞(x̂n2 − x∗2(x̂n1 )) = 0 must hold. Hence,

we have proved that the two players’ equilibrium “proposals” must converge to each other.

Step 3. In this step, we show that if {(x̂n1 , x̂n2 )}∞n=1 is a sequence of Nash equilibria where (x̂n1 , x̂
n
2 ) is a Nash equilibrium

of the NDG-RS that has settlement bias q and uses the breakdown probability 1− pn where {pn}∞n=1 is a regular sequence

of probabilities, then the sequence {(x̂n1 , x̂n2 )}∞n=1 must converge to the generalized Nash solution outcome with bargaining

weight q as n → ∞, i.e., limn→∞ x̂n1 = xN
q

1 and limn→∞ x̂n2 = xN
q

2 where (xN
q

1 , xN
q

2 ) is the generalized Nash solution

outcome with bargaining weight q.

Suppose that limn→∞ x̂n1 = xN
q

1 does not hold. Then there exists a subsequence of {(x̂n1 , x̂n2 )}∞n=1, say {(x̂ni
1 , x̂

ni
2 )}∞i=1,

such that |x̂ni
1 − xN

q

1 | > ε for all i and for some ε > 0. Notice that the sequence {x̂ni
1 }∞i=1 lies in a compact set, so it must

have a convergent subsequence, say {x̂
nij

1 }∞j=1. Let x′1 be the limit of this subsequence, then we must have |x′1 − xN
q

1 | ≥ ε.
Since limn→∞(x̂n2 −x∗2(x̂n1 )) = 0 and x∗2(x1) is a continuous function, we have limj→∞ x̂

nij

2 = limj→∞ x∗2(x̂
nij

1 ) = x∗2(x′1).

Observing that x′1 = bS1 and x∗2(x′1) = bS2 cannot hold simultaneously because (x′1, x
∗
2(x′1)) ∈ ∂∗S and (bS1 , b

S
2 ) /∈ ∂∗S, we

thus have the following three cases.

Case 1. x′1 = bS1 and x∗2(x′1) < bS2 . Since limj→∞ x̂
nij

2 = x∗2(x′1) < bS2 , we have x̂
nij

2 < bS2 when j is sufficiently large.

So, we have pnij
(x̂
nij

1 , x̂
nij

2 )(1 − q) = −
∂pnij

(x̂
nij

1 , x̂
nij

2 )

∂x2
((1 − q)x̂

nij

2 + qx∗2(x̂
nij

1 )) when j is sufficiently large. On the

other hand, we have pnij
(x̂
nij

1 , x̂
nij

2 )q ≥ −
∂pnij

(x̂
nij

1 , x̂
nij

2 )

∂x1
(qx̂

nij

1 + (1− q)x∗1(x̂
nij

2 )) (notice that this is true regardless

of whether x̂
nij

1 = bS1 or x̂
nij

1 < bS1 ). So,
∂pnij

(x̂
nij

1 , x̂
nij

2 )

∂x1
(qx̂

nij

1 + (1 − q)x∗1(x̂
nij

2 )) ≥
∂pnij

(x̂
nij

1 , x̂
nij

2 )

∂x2
((1 − q)x̂

nij

2 +

qx∗2(x̂
nij

1 ))
q

1− q
when j is sufficiently large. So,

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x1

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x2

≤
(1− q)x̂

nij

2 + qx∗2(x̂
nij

1 )

qx̂
nij

1 + (1− q)x∗1(x̂
nij

2 )

q

1− q
when j is sufficiently

large (observing that
∂pnij

(x̂
nij

1 , x̂
nij

2 )

∂x2
< 0 when j is sufficiently large because (x̂

nij

1 , x̂
nij

2 ) ∈ SI ∩ Nε3 (∂S) when j is

sufficiently large, according to Condition (v)). We now consider the following two subcases.
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The first subcase is that x∗2(x′1) = x∗2(bS1 ) = 0. In this case, we have limj→∞
(1− q)x̂

nij

2 + qx∗2(x̂
nij

1 )

qx̂
nij

1 + (1− q)x∗1(x̂
nij

2 )

q

1− q
=

(1− q)× 0 + q × 0

qbS1 + (1− q)bS1

q

1− q
= 0. On the other hand, we have

lim
j→∞

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x1

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x2

= lim
j→∞

(−
∂x∗2(x̂

nij

1 , pnij
(x̂
nij

1 , x̂
nij

2 )|pnij
)

∂x1
) = −

∂x∗2(bS1−)

∂x1
> 0.

The first equality in the above equation follows from the fact that by differentiating pn(x1, x∗2(x1, c|pn)) = c (for

c < 1) with respect to x1 we have

∂pn(x1, x∗2(x1, c|pn))

∂x1
∂pn(x1, x∗2(x1, c|pn))

∂x2

= −
∂x∗2(x1, c|pn)

∂x1
, which implies that

∂pn(x1, x2)

∂x1
∂pn(x1, x2)

∂x2

=

−
∂x∗2(x1, pn(x1, x2)|pn)

∂x1
by setting c = pn(x1, x2). The second equality in the above equation follows from the

facts that limj→∞ x̂
nij

1 = x′1 = bS1 and limj→∞ x̂
nij

2 = limj→∞ x∗2(x̂
nij

1 ) = x∗2(x′1) = x∗2(bS1 ) and the facts that

{
∂x∗2(x1, pn(x1, x2)|pn)

∂x1
}∞n=1 is uniformly continuous at any point on ∂∗S and

∂x∗2(x1, pn(x1, x2)|pn)

∂x1
=
∂x∗2(x1)

∂x1
for any

(x1, x2) ∈ ∂∗S and any pn. So, we have shown that limj→∞

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x1

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x2

> limj→∞
(1− q)x̂

nij

2 + qx∗2(x̂
nij

1 )

qx̂
nij

1 + (1− q)x∗1(x̂
nij

2 )

q

1− q
.

This is a contradiction with the fact that

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x1

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x2

≤
(1− q)x̂

nij

2 + qx∗2(x̂
nij

1 )

qx̂
nij

1 + (1− q)x∗1(x̂
nij

2 )

q

1− q
for sufficiently large j.

The second subcase is that x∗2(x′1) = x∗2(bS1 ) > 0. In this case, there must exist a vertical segment

from (bS1 , 0) to (bS1 , x
∗
2(bS1 )) on the Pareto frontier. In addition, we have limj→∞

(1− q)x̂
nij

2 + qx∗2(x̂
nij

1 )

qx̂
nij

1 + (1− q)x∗1(x̂
nij

2 )

q

1− q
=

(1− q)x∗2(bS1 ) + qx∗2(bS1 )

qbS1 + (1− q)bS1

q

1− q
=

x∗2(bS1 )

bS1

q

1− q
. On the other hand, we have limj→∞

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x1

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x2

=

limj→∞(−
∂x∗2(x̂

nij

1 , pnij
(x̂
nij

1 , x̂
nij

2 )|pnij
)

∂x1
) = −

∂x∗2(bS1−)

∂x1
. So, we have −

∂x∗2(bS1−)

∂x1
≤
x∗2(bS1 )

bS1

q

1− q
. This implies that

(bS1 , x
∗
2(bS1 )) must be the generalized Nash solution outcome with bargaining weight q. This is a contradiction with the fact

that x′1 6= xN
q

1 .

Case 2. x′1 < bS1 and x∗2(x′1) = bS2 . This case cannot hold. The analysis is similar to Case 1 and is omitted.

Case 3. x′1 < bS1 and x∗2(x′1) < bS2 . The facts that limj→∞ x̂
nij

1 = x′1 < bS1 and that limj→∞ x̂
nij

2 =

x∗2(x′1) < bS2 imply that x̂
nij

1 < bS1 and x̂
nij

2 < bS2 when j is sufficiently large. So, we have pnij
(x̂
nij

1 , x̂
nij

2 ) =

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x1
(qx̂

nij

1 + (1 − q)x∗1(x̂
nij

2 ))
1

q
=

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x2
((1 − q)x̂

nij

2 + qx∗2(x̂
nij

1 ))
1

1− q
when j is

sufficiently large. So,

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x1

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x2

=
(1− q)x̂

nij

2 + qx∗2(x̂
nij

1 )

qx̂
nij

1 + (1− q)x∗1(x̂
nij

2 )

q

1− q
when j is sufficiently large. How-

ever, noticing that limj→∞

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x1

∂pnij
(x̂
nij

1 , x̂
nij

2 )

∂x2

= limj→∞(−
∂x∗2(x̂

nij

1 , pnij
(x̂
nij

1 , x̂
nij

2 )|pnij
)

∂x1
) = −

∂x∗2(x′1)

∂x1
and
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limj→∞
(1− q)x̂

nij

2 + qx∗2(x̂
nij

1 )

qx̂
nij

1 + (1− q)x∗1(x̂
nij

2 )
= limj→∞

(1− q)x∗2(x′1) + qx∗2(x′1)

qx′1 + (1− q)x′1
=

x∗2(x′1)

x′1

q

1− q
, we must have −

∂x∗2(x′1)

∂x1
=

x∗2(x′1)

x′1

q

1− q
. This implies that x′1 = xN

q

1 , which is a contradiction with the assumption that x′1 6= xN
q

1 .

So, we have shown that limn→∞ x̂n1 = xN
q

1 must hold. This implies that {(x̂n1 , x̂n2 )}∞n=1 must converge to the generalized

Nash solution outcome with bargaining weight q.

Proof of Proposition 1

For the first part of Proposition 1, it is sufficient to show that the sequence of the n-th MAP-based probabilities is

regular.
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Fig. 6 Impact of an increase in Player 1’s demand.

Let p̂(x) = 1 − α(Am(x)). So, the n-th MAP-based initiation probability pn = p̂n. Notice that
∂p̂n(x1, x2)

∂xi
=

np̂n−1(x1, x2)
∂p̂(x1, x2)

∂xi
= 0 for any (x1, x2) ∈ ∂∗S with xi < bSi because

∂p̂(x1, x2)

∂xi
= 0 for any (x1, x2) ∈ ∂∗S

with xi < bSi .17 So, pn satisfies Condition (ii) for any n. Condition (iii) is satisfied because as n → ∞, pn converges to

zero at any (x1, x2) ∈ SI\Nε(∂S) for any ε > 0 and {pn}∞n=1 is a monotonically decreasing sequence of functions. For

Condition (iv), notice that when the initiation probability is p̂, if the two players’ demands (x1, x2) are incompatible and

Player 1 increases his demand by ∆x1, then the initiation probability p will decrease by ∆p ≈ 1
2

(∆x1)(|
∂x∗2(x1)

∂x1
|∆x1) +

(|
∂x∗2(x1)

∂x1
|∆x1)(x1−x∗1(x2)) (see the right figure of Figure 6). So,

∂p̂(x1, x2)

∂x1
=
∂x∗2(x1)

∂x1
(x1−x∗1(x2)). If (x1, x2) is close to

(bS1 , b
S
2 ), then

∂p̂(x1, x2)

∂x1
≈
∂x∗2(x1)

∂x1
(bS1 −x∗1(bS2 )). Notice that

∂pn(x1, x2)

∂x1
= np̂n−1 ∂p̂(x1, x2)

∂x1
< −

1

b1 − ε2
p̂n if and only

if n
∂p̂(x1, x2)

∂x1
< −

1

b1 − ε2
p̂. The latter inequality holds if (x1, x2) is in a sufficiently small neighborhood of (bS1 , b

S
2 ) because

∂p̂(x1, x2)

∂x1
≈
∂x∗2(x1)

∂x1
(bS1 −x∗1(bS2 )) is bounded away from zero when (x1, x2) is sufficiently close to (bS1 , b

S
2 ) (which implies

that n
∂p̂(x1, x2)

∂x1
goes to negative infinity as n → ∞). So, Condition (iv) is satisfied. Condition (v) is satisfied obviously.

For Condition (vi), note that

∂x∗2(x1, pn(x1, x2)|pn)

∂x1
= −

∂pn(x1, x2)

∂x1
∂pn(x1, x2)

∂x2

= −
np̂n−1 ∂p̂(x1, x2)

∂x1

np̂n−1
∂p̂(x1, x2)

∂x2

= −

∂p̂(x1, x2)

∂x1
∂p̂(x1, x2)

∂x2

= −

∂x∗2(x1)

∂x1
(x1 − x∗1(x2))

∂x∗1(x2)

∂x2
(x2 − x∗2(x1))

.

17 In order to see the latter point, notice that when Player i increases his demand from a level (say xi) that is just

compatible with his opponent’s demand to xi + ∆xi, the probability of moving to settlement stage will decrease by an

amount that is on the order of (∆xi)
2 (see the left figure of Figure 6). So, we have

∂p̂(x1, x2)

∂xi
= 0 for any (x1, x2) ∈ ∂∗(S)

with xi < bSi .
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As (x1, x2) converges to some point on the strong Pareto frontier, the last term in the above equation will converge to the

slope of the Pareto frontier at that point (because
x1 − x∗1(x2)

x2 − x∗2(x1)
will converge to

∂x∗1(x2)

∂x2
). That is,

∂x∗2(x1, pn(x1, x2)|pn)

∂x1

is continuous at any point on the strong Pareto frontier. Since
∂x∗2(x1, pn(x1, x2)|pn)

∂x1
is the same for all n, this implies

that
∂x∗2(x1, pn(x1, x2)|pn)

∂x1
is uniformly continuous at any point on the strong Pareto frontier.

We now prove the second part of Proposition 1. The Nash solution outcome (xN1 , x
N
2 ) must be such that (xN1 , x

N
2 ) ∈ ∂∗S

and
xN2
xN1

= −
∂x∗2(xN1 )

∂x1
. This implies that if (x′1, x

′
2) ∈ ∂S is such that

x′2
x′1

> −
∂x∗2(x′1)

∂x1
, then (x′1, x

′
2) must lie on the upper

left of the Nash solution outcome on the Pareto frontier or coincide with the Nash solution outcome. If (x′1, x
′
2) ∈ ∂S is

such that
x′2
x′1

< −
∂x∗2(x′1)

∂x1
, then (x′1, x

′
2) must lie on the lower right of the Nash solution outcome on the Pareto frontier

or coincide with the Nash solution outcome.

Let (x̂n1 , x̂
n
2 ) be a Phase 2 Nash equilibrium of the NDG-RS that uses the n-th MAP-based breakdown probability 1−pn,

where pn = p̂n with p̂(x) = 1−α(Am(x)). If x̂n1 = bS1 , then it is obvious that (x̂n1 , x
∗
2(x̂n1 )) must lie on the lower right of the

Nash solution outcome on the Pareto frontier or coincide with the Nash solution outcome. If x̂n1 < bS1 , then according to

Step 1 of the proof of Theorem 1, we have p̂n(x̂n1 , x̂
n
2 ) = −

∂p̂n(x̂n1 , x̂
n
2 )

∂x1
(x̂n1 +x∗1(x̂n2 )) = −np̂n−1 ∂p̂(x̂

n
1 , x̂

n
2 )

∂x1
(x̂n1 +x∗1(x̂n2 )) =

−np̂n−1 ∂x
∗
2(x̂n1 )

∂x1
(x̂n1 − x∗1(x̂n2 ))(x̂n1 + x∗1(x̂n2 )) (where the last equality is because

∂p̂(x1, x2)

∂x1
=

∂x∗2(x1)

∂x1
(x1 − x∗1(x2)) if

(x1, x2) are incompatible; see also the proof for the first part of Proposition 1). For Player 2, we have p̂n(x̂n1 , x̂
n
2 ) ≥

−
∂p̂n(x̂n1 , x̂

n
2 )

∂x2
(x̂n2 +x∗2(x̂n1 )) = −np̂n−1 ∂p̂(x̂

n
1 , x̂

n
2 )

∂x2
(x̂n2 +x∗2(x̂n1 )) = −np̂n−1 ∂x

∗
1(x̂n2 )

∂x2
(x̂n2 −x∗2(x̂n1 ))(x̂n2 +x∗2(x̂n1 )), regardless

of whether x̂2 < bS2 or x̂2 = bS2 . So, we have −
∂x∗2(x̂n1 )

∂x1
(x̂n1 −x∗1(x̂n2 ))(x̂n1 +x∗1(x̂n2 )) ≥ −

∂x∗1(x̂n2 )

∂x2
(x̂n2 −x∗2(x̂n1 ))(x̂n2 +x∗2(x̂n1 )).

That is,
x̂n2 + x∗2(x̂n1 )

x̂n1 + x∗1(x̂n2 )
≤

∂x∗2(x̂n1 )

∂x1
(
∂x∗1(x̂n2 )

∂x2
)−1

x̂n2 − x∗2(x̂n1 )

x̂n1 − x∗1(x̂n2 )

. Noting that
x̂n2 − x∗2(x̂n1 )

x̂n1 − x∗1(x̂n2 )
≥ −(

∂x∗1(x̂n2 )

∂x2
)−1 (which is due to the fact that

the two players’ demands x̂n1 and x̂n2 are incompatible and the fact that the Pareto frontier is concave because S is convex)

and
x̂n2 + x∗2(x̂n1 )

x̂n1 + x∗1(x̂n2 )
>
x∗2(x̂n1 )

x̂n1
, we must have

x∗2(x̂n1 )

x̂n1
< −

∂x∗2(x̂n1 )

∂x1
. So, (x̂n1 , x

∗
2(x̂n1 )) must be on the lower right of the Nash

solution outcome on the Pareto frontier or coincide with the Nash solution outcome.

Similarly, we can show that Player 2’s equilibrium proposal (x∗1(x̂n2 ), x̂n2 ) must lie on the upper left of the Nash solution

outcome on the Pareto frontier or coincide with the Nash solution outcome. �

Proof of Proposition 2

(i) Phase 1 Nash equilibria: Let (x̂1, x̂2) be a Phase 1 Nash equilibrium. Then, we must have (x̂1, x̂2) ∈ S. In addition,

we must have (x̂1, x̂2) ∈ ∂∗S (if not, then (x̂1, x̂2) cannot be a Nash equilibrium because one of the two players will have

an incentive to deviate to a higher demand, and the two players’ proposals are still compatible when the player makes

the deviation). We will next show that any (x1, x2) ∈ ∂∗S is a Nash equilibrium. Let (x̂1, x̂2) be a given point on ∂∗S.

Let Player 2’s demand x̂2 be given. If Player 1 makes the demand x̂1, then the two players’ demands are just compatible

and Player 1’s payoff is thus x̂1. Suppse Player 1 makes the demand x′1 with x′1 > x̂1; Player 1 is never better off by

decreasing his demand, so the only possible deviation for Player 1 is to increase his demand. Then Player 1’s payoff is
x̂1 + x′1

2
p, where p is the initiation probability when Player 1’s demand is x′1 and Player 2’s demand is x̂2. Notice that

p = α(Bm(x′1,x̂2)
) = α(B(x∗1(x̂2), x∗2(x′1))) = α(B(x̂1, x∗2(x′1))) = x̂1x∗2(x′1), where the third equality follows from the fact

that (x̂1, x̂2) ∈ ∂∗S. So,
x̂1 + x′1

2
p =

x̂1 + x′1
2

x̂1x∗2(x′1) = x̂1
x̂1x∗2(x′1) + x′1x

∗
2(x′1)

2
≤ x̂1

2α(S)

2
= x̂1 (the inequality is strict

if x̂1 > 0). So, Player 1 is better off by making the demand x̂1 (which is just compatible with Player 2’s demand) than

deviating to any higher demand. Similarly, Player 2 is better off by making the demand x̂2 (which is just compatible with

Player 1’s demand) than deviating to any higher demand. So, we have proved that any (x1, x2) ∈ ∂∗S must be a Nash

equilibrium.

(ii) Phase 2 Nash equilibria: Let (x̂1, x̂2) be a Phase 2 Nash equilibrium. Then we must have (x̂1, x̂2) /∈ S. This implies

that x̂1 > x∗1(x̂2) and x̂2 > x∗2(x̂1).

If Player 2’s demand x̂2 is such that x∗1(x̂2) > 0, then according to the proof of (i), Player 1 is strictly better off by

making the demand x∗1(x̂2), rather than x̂1. So, (x̂1, x̂2) cannot be a Nash equilibrium.

If Player 2’s demand x̂2 is such that x∗1(x̂2) = 0 (which must imply that x̂2 = bS2 ), then for Player 1, any x̂1 ∈ [0, bS1 ]

is a best response (because the initiation probability p will be zero regardless of Player 1’s demand). However, only if x̂1
is such that x∗2(x̂1) = 0 (which must imply that x̂1 = bS1 ), will x̂2 = bS2 be a best responses of Player 2. So, (bS1 , b

S
2 ) is the

only possible Phase 2 Nash equilibrium, and it is a Phase 2 Nash equilibrium if and only if x∗1(bS2 ) = 0 and x∗2(bS1 ) = 0

(note that, if x∗1(bS2 ) > 0 - which occurs when there is a horizontal segment in the Pareto frontier - or x∗2(bS1 ) > 0 - which
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occurs when there is a vertical segment in the Pareto frontier - then there is no Phase 2 Nash equilibrium). In addition,

there is no other Phase 2 Nash equilibria. �

7 Appendix 2

Proof of Remark 1

Since {pn}∞n=1 is regular, (x̂n1 , x̂
n
2 ) can only be a Phase 2 Nash equilibrium for any n (according to Step 1 in the proof of

Theorem 1). This implies that (qx̂n1 + (1− q)x∗1(x̂n2 ))pn(x̂n1 , x̂
n
2 ) ≥ x∗1(x̂n2 ) and ((1− q)x̂n2 + qx∗2(x̂n1 ))pn(x̂n1 , x̂

n
2 ) ≥ x∗2(x̂n1 )

for all n (because for Player i, making the demand x̂i cannot be strictly worse off than making the demand that is just

compatible with the opponent’s demand). Let (x′1, x
′
2) ∈ ∂∗S be the limit point of {(x̂n1 , x̂n2 )}∞n=1, i.e., limn→∞ x̂n1 = x′1

and limn→∞ x̂n2 = x′2. Since (x′1, x
′
2) ∈ ∂∗S, we must have either x′1 > 0 or x′2 > 0. We thus have the following two cases.

(i) x′1 > 0. In this case, (qx̂n1 +(1−q)x∗1(x̂n2 ))pn(x̂n1 , x̂
n
2 ) ≥ x∗1(x̂n2 ) implies that pn(x̂n1 , x̂

n
2 ) ≥

x∗1(x̂n2 )

qx̂n1 + (1− q)x∗1(x̂n2 )
when

n is sufficiently large (using the fact that qx̂n1 +(1−q)x∗1(x̂n2 ) > 0 when n is sufficiently large because limn→∞ x̂n1 = x′1 > 0).

We have limn→∞
x∗1(x̂n2 )

qx̂n1 + (1− q)x∗1(x̂n2 )
= 1 because limn→∞ x̂n1 = x′1 and limn→∞ x∗1(x̂n2 ) = x∗1(x′2) = x′1 (where the last

equality holds because (x′1, x
′
2) ∈ ∂∗S). In addition, pn(x̂n1 , x̂

n
2 ) ≤ 1 for all n. So, we have limn→∞ pn(x̂n1 , x̂

n
2 ) = 1.

(ii) x′2 > 0. The proof is similar to case (i) and is omitted.

We thus have proved that limn→∞ pn(x̂n1 , x̂
n
2 ) = 1 if {(x̂n1 , x̂n2 )}∞n=1 converges to some point on ∂∗S where (x̂n1 , x̂

n
2 )

is a Nash equilibrium in the NDG-RS that uses the breakdown probability 1− pn where {pn}∞n=1 is regular and that the

probability that Player 1’s demand is chosen is q ∈ (0, 1) when the game moves to random settlement.

Euclidean Divergence and Non-convergence

We next consider an intuitively-appealing p function that uses the Euclidean distance between the two players’ demands

to determine the probability of moving to settlement stage. Even though such a p is continuous at the boundary of S, the

resulting NDG-RS fails to have the Nash solution outcome as the limit equilibrium outcome.

When players make their demands, one can convert these demands into proposals by using the Pareto frontier of S.

Given two such resulting proposals, a breakdown probability is based on Euclidean divergence if the breakdown probability

decreases as the Euclidean distance between the two proposals falls. Noting that the maximum possible distance between

any two proposals in S is
√

(bS1 )2 + (bS2 )2, an Euclidean divergence breakdown probability 1− pd is given by

1− pd(x1, x2) =

√
(x1 − x∗1(x2))2 + (x2 − x∗2(x1))2√

(bS1 )2 + (bS2 )2

for any (x1, x2) ∈ SI (and 1− pd(x1, x2) = 0 for any (x1, x2) ∈ ∂S). It turns out that this otherwise intuitively appealing

breakdown probability does not lead to Nash solution convergence. To see this, notice that (x1, x2) ∈ ∂∗S is a Phase 1

Nash equilibrium if and only if no player has an incentive to deviate to some higher demand. This means that for Player 1,

if he deviates to some higher demand, say x′1, then his payoff pd(x′1, x2)
x′1 + x1

2
, must not be greater than x1 (the payoff

when Player 1 chooses not to deviate). That is,1−
√

(x′1 − x∗1(x2))2 + (x2 − x∗2(x′1))2√
(bS1 )2 + (bS2 )2

 x′1 + x1

2
≤ x1,

i.e., √(x′1 − x1)2 + (x∗2(x1)− x∗2(x′1))2√
(bS1 )2 + (bS2 )2

 x′1 + x1

2
≥
x′1 − x1

2

since (x1, x2) ∈ ∂∗S. That is, we have

x′1 + x1 ≥

√
(bS1 )2 + (bS2 )2√

1 + (
x∗2(x′1)− x∗2(x1)

x′1 − x1
)2

for any x′1 > x1. Similarly, Player 2 has no incentive to deviate to some higher demand x′2 > x2 if and only if

x′2 + x2 ≥

√
(bS1 )2 + (bS2 )2√

1 + (
x∗1(x′2)− x∗1(x2)

x′2 − x2
)2

.

21



Suppose that bS1 = bS2 = 1 and that S = {(x1, x2)|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 and 0 ≤ x1 + x2 ≤ k} for some k ∈ [1, 3
2

). Then,

it can be verified that any (x1, x2) ∈ ∂∗S with
1

2
≤ x1 ≤ 1 and

1

2
≤ x2 ≤ 1 is a Phase 1 Nash equilibrium because if

x1 ≥
1

2
and x2 ≥

1

2
, then for any x′1 > x1, we have

x′1 + x1 >

√
2√

1 +

(
x∗2(x′1)− x∗2(x1)

x′1 − x1

)2
= 1

and for any x′2 > x2, we have

x′2 + x2 >

√
2√

1 +

(
x∗1(x′2)− x∗1(x2)

x′2 − x2

)2
= 1.

Let pn = pnd . Note that as n increases, pn decreases for any given incompatible demands (i.e., for any (x1, x2) ∈ SI).

This implies that all Phase 1 Nash equilibria when the initiation probability is pd will remain as Phase 1 Nash equilibria

when the initiation probability is pn for any n > 1, because as n increases, a player will have less incentive to deviate from

a demand that is compatible with his opponent’s demand to some higher demand. So, if we use {pn}∞n=1 as the sequence

of probabilities, then the Nash solution convergence result cannot hold.
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