
IS ROGER FEDERER MORE LOSS AVERSE THAN

SERENA WILLIAMS?

By Nejat Anbarci, K. Peren Arin, Cagla Okten and Christina

Zenker∗

Draft: November 9, 2016

Using data from the high-stakes 2013 Dubai professional tennis

tournament, we find that, compared to a tied score, (i) male play-

ers have a higher serve speed and thus exhibit more effort when be-

hind in score, and their serve speeds get less sensitive to losses or

gains when score difference gets too large, and (ii) female players

do not change their serve speed when behind, while serving slower

when ahead. Thus, male players comply more with Prospect The-

ory exhibiting more loss aversion and reflection effect. Our results

are robust to controlling for player fixed effects and characteristics

with player random effects.

∗ Anbarci: Deakin University, Australia, Nejat.Anbarci@deakin.au.edu. Arin: Zayed University, UAE,
kerim.arin@zu.ac.ae. Okten: Bilkent University, Turkey, cokten@bilkent.edu.tr. Zenker: Zayed Univer-
sity, UAE, christina.zenker@zu.ac.ae. We would like to thank Peter Dicce and James Smith for providing
access to the data, Nick Feltovich, Romain Gauriot, Ilyana Kuziemko, Patrick Nolen, Courtney Nguyen,
Devin Pope, Andre Seidel, Christoph Schumacher, Caroline Williams for providing many useful com-
ments and suggestions, Maurice Schweitzer for encouraging our work, and Zaid Al-Mahmoud, Blagoj
Gegov and Arpad Marinovszki for research assistance.

1



2

I. Motivation

With their famous Prospect Theory, Kahneman and Tversky (1979) postulated

that economic agents make decisions with respect to a salient reference point and

are impacted by losses more than gains - ‘loss aversion’. In addition, they are risk

seeking in losses and risk averse in gains - the ‘reflection effect’. In this paper, we

will examine the performance of very experienced professional male and female

tennis players to test for loss aversion and reflection effect in a very competitive

high-stakes context.

A large empirical literature suggests that loss aversion exists (e.g. Thaler et al.,

1997; Genesove and Mayer, 2001, among others). While there is hardly any

stand-alone literature on the reflection effect, some important papers on risk-

taking behavior in tournament settings provide some support for that effect nev-

ertheless. Bronars (1986), for instance, finds that leading players in sequential

tournaments prefer a low-risk strategy to “lock in” in their gains, whereas lesser

players choose a riskier strategy. Moreover, Nieken and Sliwka (2010) find that

risk-taking behavior crucially depends on the correlation between the outcomes

of a risky strategy as well as on the size of the potential lead of one of the par-

ticipants. In spite of the extent of the literature documenting behavioral biases

such as loss aversion and reflection effect, however, many scholars – including

some who have documented behavioral biases in some domains earlier – remain

skeptical of the claim that biases persist in markets (e.g. List, 2003; Levitt and

List, 2008; Hart, 2005). Critics of the decision bias literature believe that biases

are likely to be extinguished by competition, large stakes, and experience.

In this paper, we first use a theoretical model motivated by the Prospect Theory

of Kahneman and Tversky (1979). Using simple Tullock contest-success functions,

we find that (i) a server will put more effort into his/her serve speed when behind

in score than when ahead in score, (ii) a server will put less effort into his/her

serve speed when significantly behind in score than when slightly behind in score

and, likewise, when significantly ahead in score than slightly ahead in score, and
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finally (iii) overall servers will be more risk averse in the domain of gains than

in the domain of losses. Then we test the predictions of this simple theoretical

model using novel data from the Dubai Duty Free Tennis Championships in 2013.

The data on serve speed was obtained from Hawk-Eye Innovations, which uses a

ball-tracking technology to measure serve speed.

Our research approach is similar to that of Pope and Schweitzer (2011), who

use the performance of professional male golf players to test for loss aversion in a

high-stakes context. The authors analyze putts, i.e., the final shots players take

to complete a hole. They compare the putts golfers attempted to a “reference

point,” i.e., to par which is the typical number of shots golfers take to complete a

hole. In other words, they compare the shots attempted for scores other than par

to par. The authors find that this reference point of par heavily influences male

golfers: when the players are “under par,” i.e., players are in the gain domain,

they are significantly less accurate than when they attempt otherwise similar

putts for par or when they are “over par”. This shows that male players are loss

averse – they invest more focus when putting for par compared to under par to

avoid encoding a loss.

In this paper, we extend Pope and Schweitzers paper. More than applying it to

tennis data, we contribute to the literature in four different ways. First, we have

sufficiently large data for both males and females, and hence we can investigate

gender differences in loss aversion. Second, the special nature of tennis allows

us to investigate the ‘timing’ of loss aversion since we can examine behavioral

responses to differences in point score, game score and set score. Third, our data

on serve speed is a very accurate measure of effort and, therefore, of loss aversion,

as the use of Hawk-Eye Technology enables us to obtain precise measures of serve

speed. Finally, while accuracy of putts only measures an outcome, serve speed

measures the player’s input intensity especially given the fact that the serve is

the only shot in tennis over which a player has full control.

Consequently, our paper is conducive to make an important contribution to
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this literature by documenting loss aversion as well as reflection effect in a very

competitive field setting, with large stakes, with very experienced male and female

professional agents. In addition, in a sense, our results can also serve as a strong

robustness check of those of Pope and Schweitzer that are specific to golf, since

tennis and golf are very different in their competitive nature. In golf one competes

against the whole field (“open play”), while in tennis one competes against only

one opponent/team at a time (“match play”).2 However, we are not the first ones

to apply loss aversion to tennis. A recent paper by Mallard (2016) studies loss

aversion and decision fatigue at the Wimbledon tennis championship

The first step in our analysis what would constitute the natural and well-defined

“reference point” in tennis - as the counterpart of ‘par’ in golf. It is the “tied

score.” In tennis, players are ‘at par’ if the game score is tied in a game (e.g., 0-0,

15-15, 30-30, 40-40, i.e., deuce) or in a set score (e.g., 1-1, . . . , 6-6) or after an

equal number of sets e.g., 1-1 (and 2-2 if it is a grand-slam tournament); players

are not at par otherwise, i.e., a server is behind in his serving game (e.g., 30-40)

or in games in a set after even numbers of games (e.g., 2-4, 1-5, etc.) or in sets

(e.g., 0-1 or 0-2 and 1-2 if it is a grand slam tournament).

In our empirical analysis, we find that male players have a higher serve speed

and thus exhibit more effort when behind in score than when ahead in score

compared to when the score is even. Specifically, we find that being behind in set

score increases male players’ serve speed - and thus effort - in the order of 1.64

mph or one tenth of a standard deviation. Thus, male players exhibit a more risk

seeking behavior in the loss domain as they increase their serve speed much more

when behind than they decrease their serve speed when ahead (loss aversion). In

addition, falling far behind in the game score lowers male players’ serve speed -

and thus effort - and so does pulling far ahead in the game score as well; thus,

their serve speeds get less sensitive to losses or gains when score difference gets

2Open play vs match play can account for different features in these sports. For instance, Laband
(1990) compared golf and tennis and showed, among others, that the open play nature of golf tournaments
leads to a lack of dominance by one or a few players, whereas in contrast the match play nature of tennis
tournaments is conducive to dominance by one or a few players.
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too large (reflection effect), albeit this latter relationship is not fully symmetric

since a player serves harder when he is behind than when he is ahead, which too

supports loss aversion. These are fully in line with our theoretical results and as

predicted by prospect theory overall (Kahneman and Tversky, 1979).

A female player, on the other hand, does not change her serve speed and thus

her effort when behind compared to when the score is tied, while she serves slower

when ahead than when the score is tied. Specifically, being ahead in set score

decreases female players’ serve speed - and thus effort – in the order of 2.65 mph

or one fifth of a standard deviation. Thus, we find that female players are less

risk seeking in the gain domain as they decrease their serve speed much more

when behind than they increase their serve speed when ahead. Further, falling

far behind in the point score lowers serve speed for females and so does pulling far

ahead in the point score as well. These results too are in line with our theoretical

results and thus by prospect theory, albeit in a somewhat different way than those

of male players and in a less significant way as well.

Our results are robust to controlling for player fixed effects as well as player

characteristics in a player random-effects specification. While we find significant

evidence consistent with loss aversion theory for both male and female players in

this high-stakes tournament setting, we also find significant differences in the way

loss aversion manifests itself across genders in that male players exhibit behavior

more consistent with loss aversion than do female players.

The paper is structured as follows. Section 2 provides background for our

paper, reviewing relevant literature and tennis scoring rules. Section 3 presents

our theoretical model and provides testable implications. Section 4 presents data

followed by empirical framework. Section 5 presents and discusses the results.

Section 6 concludes.
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II. A Brief Literature Review

As alluded to before, in Prospect Theory, Kahneman and Tversky (1979) pro-

posed a reference-dependent theory of choice in which economic agents value gains

differently than they value losses in two key ways. First, economic agents value

losses more than they value commensurate gains; i.e., the “value function” is

kinked at the reference point with a steeper gradient for losses than for gains

(loss aversion). Second, economic agents are risk seeking in losses and risk averse

in gains; i.e., the utility function is convex in the loss domain and concave in the

gain domain (the ‘reflection effect’). Loss aversion has been documented in many

laboratory settings (e.g. Thaler et al., 1997; Gneezy and Potters, 1997) and in

several field settings (see Genesove and Mayer, 2001; Camerer et al., 1997; Fehr,

Goette and Zehnder, 2007; Odean, 1998; Mas, 2006), though some scholars have

found evidence to suggest that experience and large stakes may eliminate decision

errors (List 2003, 2004).

Gill and Stone (2010) have theoretically analyzed loss aversion in a tournament-

type setting and argued that a loss averse subject is disappointed if she provides

effort but does not win the prize. The model of Gill and Stone (2010) combines

reference-dependent preferences as in the Prospect Theory of Kahneman and

Tversky (1979) and the endogeneity of agents’ reference points as in the theory

of reference-dependent preferences (Kőszegi and Rabin, 2006). The loss-averse

person may either provide no effort to minimize his disappointment or invest

a very high effort in order to reduce the probability of losing. Gill and Stone

(2010) therefore provide a testable explanation for the substantial variance in

effort provision observed in tournament settings. Eisenkopf and Teyssier (2013)

test this explanation in a laboratory setting and find evidence that loss aversion

affects behavior in tournaments by showing that elimination of losses relative to

expectations decreases the variance of effort.

Empirical evidence on gender differences in loss aversion yields mixed results.

In experimental studies, Rau (2014) finds that females are more loss averse than
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males in investment decisions while Gächter, Johnson and Herrmann (2007) do

not find any gender differences in loss aversion when subjects are confronted with

various gambles. Wang, Rieger and Hens (2013) find that men are in general less

risk averse in gains and less risk seeking in losses than women but the difference is

rather small. Most studies find that females are more risk averse in gains (Agnew

et al., 2008; Borghans et al., 2009; Byrnes, Miller and Schafer, 1999; Croson and

Gneezy, 2009; Dohmen et al., 2011; Von Gaudecker, Van Soest and Wengström,

2011; Hartog, Ferrer-i Carbonell and Jonker, 2002; Schubert et al., 1999).

Results are mixed on whether females are more risk seeking in losses, however.

Some studies find that females are more risk seeking in losses (Schubert et al.,

1999; Fehr-Duda, De Gennaro and Schubert, 2006) while others find that females

are more risk averse in losses (Levin, Snyder and Chapman, 1988). On the other

hand, Booij, Van Praag and Van De Kuilen (2010) and Fehr-Duda, De Gennaro

and Schubert (2006) find no gender difference in utility curvature in gains and

losses, suggesting the observed differences in risk attitudes may be driven by

loss aversion (Booij, Van Praag and Van De Kuilen, 2010; Brooks and Zank,

2005; Schmidt and Traub, 2002) or probability weighting (Fehr-Duda, De Gennaro

and Schubert, 2006). Therefore, the gender differences of risk attitude in losses

are generally less conclusive, and further investigation is needed to test to what

extent such results can be generalized (see Croson and Gneezy, 2009; Eckel and

Grossman, 2008, for summaries of gender difference of risk preference in gains

and losses).

Finally, noting that at important points of a professional tennis match both

genders use a more conservative (i.e., less aggressive) playing strategy in that

the odds of both hitting winners and making unforced errors decrease, Paserman

(2010) points to a different gender difference: the probability of making an un-

forced error relative to hitting a winner falls for women, while it remains constant

for men. Paserman dismisses gender differences on risk attitudes as an explana-

tion of this finding, and instead argues (via a simple game-theoretic model) that



8

a shift from a more aggressive to a less aggressive strategy can optimally arise as

a response to a change in the intrinsic probabilities of hitting winners or making

unforced errors. In other words, if players already know their intrinsic tendencies

that at more important points they are more likely to make unforced errors and

less likely to hit winners when playing aggressively, they will be able to foresee

that and thus choose to revert to a safer playing strategy.

III. A Brief Overview of Tennis Rules

According to the International Tennis Federation (ITF) a standard game is

scored as follows with the server’s score being called first: “0,” “ 15,” “30,”

“40,” “Game,” except if each player/team has won three points, the score is

“Deuce”.3 After “Deuce”, the score is “Advantage” for the player/doubles-team

who wins the next point. If that same player/team also wins the next point, that

player/team wins the “Game;” if the opposing player/team wins the next point,

the score is again “Deuce”. A player/team needs to win two consecutive points

immediately after “Deuce” to win the “Game”. One must win 6 games to win

a set. However, if both players/teams win 5 games, a player/team needs to win

two consecutive games immediately after the 5-5 score or if both players/teams

win 6 games, the winner of the set is determined by a “Tie-break.” During a

tie-break game, points are scored “0,” “1,” “2,” “3,” , etc. The first player/team

to win seven points wins the “Tie-break” and thus the “Set”, provided that there

is a margin of two points over the opponent player/team; thus, if necessary, the

tie-break shall continue until this margin is achieved. Similarly, one must win two

- or three in Grand Slams - sets to win a match. As the Dubai tournament is not

a Grand Slam tournament, a player who wins two sets wins the match.

Of particular interest to our analysis, each player has two chances to initiate

a point, or to “serve.” The first serve is usually faster with also a lot of pace

and/or spin. If the server misses this first serve - be it that it goes out or hits

3http://www.itftennis.com/officiating/rulebooks/rules-of-tennis.aspx
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the net - then he/she has another chance to serve, which is the second serve.

Players generally serve slower during the second serve, since, if a player misses

both serves, it is called a double fault, which means their opponent automatically

wins the point.

IV. Theoretical Framework

Here, we develop a simple theoretical framework to examine the influence that

loss aversion may have on first- and second-serve speeds when players are ahead

or behind in score. (As explained before, similar to golf, there is a well-defined

reference point in tennis, which is represented by a tied score.)

Since in tennis one competes against only one opponent/team at a time (“match

play”), our model will have to incorporate the head-to-head contest feature of

tennis. Unlike in golf where a player has full control over every shot, the only

shot in tennis over which a player has full control is the serve, which also happens

to be the most important shot (often claimed to be determining the outcome

especially in men’s tennis). Therefore, the biggest effort would go into the serve

especially in terms of the speed of the serve; this also means more risk taking. The

returner’s effort, too, is important since he/she has to react as quickly as possible

to a faster serve with a significant physical and cognitive effort as a point cannot

continue without a return that is placed back into the server’s court. Thus, there

is a hierarchy of effort levels such that for the server the most important effort is

in the serve and for the returner the most important effort is in the return.

We first consider the probability of winning a point as a function of server’s

serve effectiveness, which in turn will be a function of effort of the server. Let

gs(es) be the serve effectiveness of the server and es represents the amount of

effort exerted by the server. As mentioned above, let the probability of winning

a point be a function of server’s serve effectiveness which in turn is a function of
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effort of the server:

(1) Prs(win the point while serving) = fs(gs(es), er, α, β) + ε =
eαs

eαs + eβr

where es represents the amount of effort exerted by the server on the serve, er

represents the amount of effort exerted by the returner and ε is random noise. α

and β are such that 1 > α, β > 0 and they depend on who the server is as well

as on zs and zr which represent vectors of player characteristics (e.g., ranking,

height, weight).

This functional form is the well-known standard Tullock (1980) contest-success

function, which indicates that winning is a probabilistic event but depends on

the relative efforts of contestants crucially. Observe that, since 1 > α > 0, f ′s

with respect to es is positive and f ′′s with respect to es negative; i.e., additional

effort strictly increases the probability of winning a point and that fs(·) is strictly

concave in effort.

Note that the level of effort and of risk taking determines the speed of each

serve. To incorporate loss aversion, we utilize the value functions for a winning

score (w), a losing score (l) and a tied score (t) such that

(2) V (w) = 1, V (l) = −λ and V (t) = 0

where, as in Pope and Schweitzer (2011), too, λ > 1 denotes the degree of the

player’s loss aversion. This implies that the difference in value between winning a

service game and a tied score is smaller than the difference in value between a tied

score and losing a point. As such, this value function is a simplified version of the

value function implied by prospect theory, i.e., without diminishing sensitivity in

gains or losses of the reflection effect (we will consider the reflection effect after

Result 1).

There is a cost of effort for the server, cs(es) which strictly increases in effort es



11

with c′s with respect to es is positive and cs” with respect to es is positive as well;

i.e., additional effort strictly increases the cost of effort and that cs(·) is strictly

convex in effort.

Each server’s utility is equal to the values placed on winning and losing a point

weighted by their probabilities and subtracting the cost of effort. For our purposes

of establishing the impact of loss aversion, we only need to compare payoffs of

servers when they are ahead or behind. In particular, a serving player derives the

following expected utility when he/she has an advantageous score (e.g., 40-30)

while serving for the game (or set or match); i.e., when it is a game (or set or

match) point favoring the server, where W denotes this state:4

(3a) Us(W ) =
eαs

eαs + eβr
V (w) +

1 − eαs

eαs + eβr
V (t) − cs(es) =

eαs

eαs + eβr
− cs(es)

Likewise, a serving player derives the following expected utility when he/she

has a disadvantageous score (e.g., 30-40) while serving for the game (or set or

match); i.e., when it is a game (or set or match) point favoring the returner,

where L denotes this state:

(3b) Us(L) =
eαs

eαs + eβr
V (t)+

1 − eαs

eαs + eβr
V (l)−cs(es) =

(
1 − eαs

eαs + eβr

)
(−λ)−cs(es)

Maximizing the utility functions in equation (3a) and (3b) yields the following

first-order conditions (which, interestingly - and despite using a contest-success

function which was not needed and thus not used in Pope and Schweitzer (2011)

-, turn out to be identical to those of Pope and Schweitzer (2011)):

4One can similarly come up value functions for other scores (e.g., 15-0, 0,15, 15-15, 30-15, 15-30, and
30-30) which would need to involve the probabilities of a winning game given that score ceteris paribus.
The analysis that uses only Us (W) at 40-30 and Us (L) at 30-40 will suffice for our purposes for now.
Nevertheless, our more general analysis following Result 1 (which will involve the reflection effect) will
need payoff levels at all scores.
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c′s
f ′s

= 1 when the state is W(4)

c′s
f ′s

= λ when the state is L

These first-order conditions indicate that a server chooses an optimal level of

effort, e∗s, by setting the marginal cost of effort equal to the marginal benefit of

effort when serving. When behind in score, the server chooses a higher optimal

effort level, which equates the ratio of the marginal cost and benefit of effort to

λ, than when ahead, which equates the ratio of the marginal cost and benefit of

effort to 1. Thus, the first-order conditions imply that a server chooses a higher

effort level in the loss domain than he/she does in the gain domain. We then

obtain the following result.

RESULT 1: Controlling for individual characteristics, and zs and zr

leading to α and β, a server will put more effort into his/her serve

speed when behind in score than when ahead in score.

In (2), we considered simplified, linear value functions that contained a loss

aversion parameter, λ, only. Let Ts denote the score of the server (in terms

of points or games or sets) and Tr denote the score of the returner. Equation

(5) below extends value functions to incorporate both a loss aversion parameter,

λ, as before, as well as separate risk preference parameters for the gain and loss

domains (i.e., to consider the reflection effect as well): Let V (w) = (Ts−Tr)γ with

Ts > Tr, V (l) = −λ(Tr − Ts)
δ, with Tr > Ts and V (t) = 0, where 1 > δ ≥ γ > 0

are parameters that allow for “diminishing sensitivity” in score difference such

that incremental gains in (Ts − Tr) above the reference point, i.e., the tied score,

result in progressively smaller utility improvements and, conversely, incremental

reductions in (Ts−Tr) which are below the tied score result in progressively smaller

declines in utility. In addition, also let ∆s = (Ts−Tr) and −∆r = (Tr−Ts) where
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∆s = −∆r = ∆ if and only if Ts − Tr = −(Tr − Ts).

Then, we will have

(5) (i) V (w) = (∆s)
γ , (ii) V (l) = −λ(−∆s)

δ and (iii) V (t) = 0

The curvature of these utility functions induces a server to exert less effort when

he/she is much more ahead (e.g., 40-0 in his/her serve game or 4-0 in games) than

when he/she is slightly ahead (e.g., 40-30 in his/her serve game or 4-3), and less

effort when he/she is much more behind (e.g., 0-40 in his/her serve game or 0-4

in games) than he/she when is slightly behind (e.g., 30-40 in his/her serve game

or 3-4 in games).

Maximizing the utility functions in equation (3a) and (3b) based on equation

(5) will take risk aversion coefficients into consideration (i.e., the effort choice

for the serve will depend on those coefficients as well) and yields the following

first-order conditions

c′s
f ′s

= (∆s)
γ when the state is W(6)

c′s
f ′s

= λ(∆s)
δ when the state is L(7)

Observe that when ∆s = ∆r = ∆, the first-order conditions still clearly imply

that a server chooses higher effort level in the loss domain than he/she does in the

gain domain for the same score differential. In addition, c′s/f
′
s = (∆s)

γ implies

that a server will put more effort into his/her serve speed when slightly ahead in

score than significantly ahead in score, while c′s/f
′
s = λ · (∆s)

δ implies a server

will put less effort into his/her serve speed when significantly behind in score than

when slightly behind in score.

Further, note that, with λ > 1 and δ ≥ γ, first-order conditions also allow that
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a more loss averse server with γ and δ will put more effort into his/her serve in

terms of speed at a more disparate losing score than a less loss averse server with

γ′ < γ and δ′ < δ will at the same or more disparate losing score.

Thus, we have the following result, which essentially states that players’ ef-

fort levels and thus serve speeds get less sensitive to losses or gains when score

difference gets too large:

RESULT 2: Controlling for individual characteristics, and z s and z r

leading to α and β, a server will put less effort into his/her serve speed

when significantly behind in score than when slightly behind in score

and, likewise, when significantly ahead in score than slightly ahead in

score.

As a result of both the loss aversion and the reflection effect (i.e., diminishing

sensitivity) components of prospect theory (i.e., by both λ > 1 and 1 > δ ≥ γ >

0), servers in the domain of gains will choose a more risk averse serve with a given

score ∆ = (Ts − Tr) > 0 than servers in the domain of losses facing the opposite

score −∆ = (Ts − Tr) < 0. This leads to our final result:

RESULT 3: Controlling for individual characteristics, and zs and zr

leading to α and β, a server will be more risk averse in his/her serve

speed when ahead with a particular score ∆ than when behind with the

opposite score −∆. Thus, overall, servers will be more risk averse in

the domain of gains than in the domain of losses.

V. Data and Empirical Framework

The data used in our paper consists of 32 matches (19 matches for male and

13 matches for female players, and as such thousands of first and second serves

by both genders) of the Dubai Duty Free Tennis Championships in 2013 for

which Hawk-Eye Technology was available. Since its inauguration in 1993, the

tournament has been hosted in the Dubai Duty Free Tennis Stadium. It is a $2
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million WTA (“Women’s Tennis Association”) Premier Event, and a $2 million

ATP (“Association of Tennis Players”) 500 tournament. The tournament attracts

the best players in the world. In 2013, the number 1 players in the world, Novak

Djokovic from Serbia and Victoria Azarenka from Belarus were the top seeds in

the tournament for males and females respectively.5

Our dependent variable, the serve speed, was obtained from Hawk-Eye Inno-

vations, which uses a ball tracking technology to measure it. The Hawk-Eye

technology has been used at all ATP, WTA and ITF tournaments since 2002.6

During the 2013 Dubai Duty Free Tennis Championships, it recorded all matches

played on the center court. Only serves that were counted “In” were included

in the dataset, simply because the Hawk-Eye Technology does not measure the

serve speed for serves that are ruled “Out.” Data was unavailable for two of the

female matches (Putintseva vs. Robson and Stosur vs. Makarova), although the

Hawk-Eye technology was installed for those matches.

The player characteristics, such as age, height, weight, and rank were obtained

from ATP and WTA official sites for male and female players respectively. The

age is measured in months, the height is measured in centimeters, and the weight

is measured in kilograms. The variable definitions are presented in Table 1, while

summary statistics for male and female players are presented in Table 2.

Our theoretical framework implies that a server will be more risk averse in

his/her serve speed when ahead in score than when behind in score. In some

specifications, in addition to set difference, we control for game difference and

point difference to see whether being ahead or behind in a set or a game has any

effect on serve speed.

We next outline the empirical strategy in our baseline specification to test our

hypotheses. We estimate the following equation:

5Victoria Azarenka withdrew with injury, making world number 2 Serena Williams from the United
States the top seed.

6For more information, see http://www.hawkeyeinnovations.co.uk/page/sports-officiating/
tennis.
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Table 1—Variable Definitions

Variable Definition

Serve Speed The serve speed, measured for every serve in the match, by Hawk-Eye technology,

measured in mph

Round The stage of the tournament, 1 being the lowest possible value (first round of
matches), and 6 being the highest possible value (the final)

Tie-Break
Dummy

The dummy variable which takes the value of 1 if the serve takes place during a
Tie-Break, 0 otherwise

Second Serve

Dummy

The dummy variable which takes the value of 1 if the serve is “second serve”, which

implies that the player made an error during the first-serve and this particular

serve is his/her last chance before he/she is penalized by a point.

Rank The ATP or WTA World-Rank of the player, 1 week prior to the start of the
tournament (obtained from ATP or WTA website)

Age The age of the player, measured in months, 1 week prior to the start of the
tournament (obtained from ATP or WTA website)

Height The height of the players, measured in centimetres (obtained from ATP or WTA

website)

Weight The weight of the player, measured in kilograms

D1 Dummy variable that equals 1 if the set score is tied at 0,0

D2 Dummy variable that equals 1 if the set score is 0,1 where the serving player is

behind.

D3 Dummy variable that equals 1 if the set score is 1,0 where the serving player is

ahead.

D4 Dummy variable that equals 1 if the set score is 1,1.

Game Differ-

ence

The number of games won by the player currently serving- the number of games

won by the receiver in the current set, prior to the serve.

Point Differ-

ence

The number of points won by the player currently serving- the number of points

won by the receiver in the current set, prior to the serve.

Sij = α2D2ij + α3D3ij + α4D4ij + βηij + γtij + δµi + εij

where Sij is the serve speed of player i in serve j. Since a player has to win

two sets to win a match, there are four possible outcomes during a match that

can be represented as (0,0), (0,1), (1,0) and (1,1) where the first number in each

bracket indicates a player’s own score and the second number is his opponent’s

score. Hence, we construct four dummy variables based on these four possible

outcomes. Dummy variable D1ij is equal to 1 if set score is (0,0), dummy variable

D2ij is equal to 1 if set score is (0,1), dummy variable D3ij is equal 1 if set score

is (1,0) and dummy variable D4ij is equal to 1 if set score is (1,1). D1 is the

omitted dummy in the regression.

Dummy variable ηij indicates whether the serve is the player’s second serve,
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dummy variable tij indicates whether the serve is the player’s tie-breaking serve

and µi is a player fixed effect. In alternative specifications, we include a set

of player characteristics such as age, rank, height and weight of the player and

cluster errors at the player level. εij is the random error term with mean zero

conditional on explanatory variables. In some specifications, we will control for

player characteristics such as age, rank, height and weight and model the player

effects as random.

VI. Results

A. Descriptive Analysis

Table 2A and 2B present descriptive statistics by differences in sets for male

and female players.

Comparing simple averages for males, we fail to reject that average speed when

ahead or behind is significantly different than average speed when tied at (0,0)

in set score. However, for females, we find that average speed when behind is

significantly higher than average speed when tied at (0,0) in a t-test. Furthermore,

average speed when ahead is significantly lower than average speed when tied at

(0,0) in set score. Hence descriptive statistics for female players are consistent

with loss aversion theory. Of course, testing the equality of simple averages does

not give us the whole picture. We next turn to regression analysis to examine the

effect of set score and game score differences on serve speed.

B. Regression Results

Main Effects. — Table 3 presents results where we control for dummy variables

for each possible set score, a second serve dummy variable and a tie break dummy

variable in a player fixed effect specification. Columns 1 through 3 present results

for male players and 4 through 6 for female players.
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As we explained in the methodology section, there are four possible set score

outcomes during a match that can be represented as (0,0), (0,1), (1,0) and (1,1),

where the first number in each bracket indicates the serving player’s own score

and the second number is his opponent’s score. Hence, we construct four dummy

variables based on these four possible outcomes. Again, dummy variable D1 is

equal to 1 if set score is (0,0), dummy variable D2 is equal to 1 if set score is

(0,1) and hence the serving player is behind, dummy variable D3 is equal to 1 if

set score is (1,0) and hence the serving player is ahead and dummy variable is

D4 is equal to 1 if set score is (1,1). D1 is the omitted dummy variable in the

regression.

In column 1, we observe that D2 is positive and significant implying that a

male player serves faster when behind than when he is tied at (0,0) with his

opponent. This result is consistent with loss aversion theory: a player is more

risk seeking when he is in the loss domain. Whereas when he is ahead, his speed

is not significantly different from when he is tied at (0,0). We also observe that

serve speed decreases for the second serve. This clearly indicates that a player is

risk averse and hence reduces serve speed when losing a point if a double fault

is at stake. We should also emphasize that the set difference is a solid reference

point, and is not affected by which player served first.

A sense of being behind or ahead can also occur when a player is behind or

ahead in game score within a given set. Game score difference ranges from -5 to 5.

In column 2, we include game score difference and game score difference square as

additional controls to examine how players respond to differences in game score.

The coefficients on set score dummy variables remain mostly unchanged when

variables for game score are included.

We observe that the coefficient on game score difference is negative and signif-

icant. This suggests that a male player’s serve speed is faster when behind than

when ahead consistent with loss aversion theory and the results in our Theoretical

Framework. We then check whether players’ serve speeds are indeed less sensitive



20

to losses or gains when game score differences get too large in absolute terms.

Hence to control for this effect, we include the square of game score difference in

column 2 in addition to game score difference. We observe that both the game-

score difference and the squared term is negative and significant. Hence, while

serve speed is higher when behind than when ahead, falling far behind in the

game score lowers serve speed and so does pulling far ahead in the game score

as well. This is fully in line with Result 2 in our Theoretical Framework section.

Nevertheless, due to loss aversion, the relationship is not fully symmetric since a

player serves harder when he is behind by, say, z games than when he is ahead by

z games. This asymmetry is fully in line with Results 1 and 3 in our Theoretical

Framework section. This asymmetric non-monotonic relationship between game

score difference is shown in Figure 1. The x-axis increases with game score dif-

ference where positive numbers indicate a server who is ahead in games vis-a-vis

the server’s opponent. The y-axis reports the serve speed in miles per hour.

In column 3 we also control for point score difference and point score difference

square to further examine when exactly behavior consistent with loss aversion

kicks in. We do not find variables for point score to be significant determinants of

serve speed. Hence, we find that being behind in set score increases male players’

serve speed - and thus effort - in the order of 1.64 mph or one tenth of a standard

deviation.

We next consider results for female players. Column 4 is a fixed-effects specifica-

tion with set score dummy variables, second serve dummy and tie break dummy as

controls. This specification estimated for females is identical to the specification

in column 1 that was estimated for males. In this regression, D2 is insignificant

indicating that a female player does not change her serve speed when behind

compared to when she is tied at 0,0. This result is sharply different from that for

male players. On the other hand, we observe that D3 is negative and significant

compared to the omitted variable D1 implying that a female player serves slower

when ahead than when she is tied at 0,0 with her opponent. Females are more
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risk averse in the gain domain but they are not necessarily more risk seeking in

the loss domain. Nevertheless, this is still in line with Result 3 in our Theoretical

Framework since, overall, female servers too are more risk averse in the domain

of gains than in the domain of losses.

It is interesting to note that, female players’ serve speed is lower when tied at

(1,1) compared to (0,0). It might simply be a conditioning issue or it might be the

case that female players decrease serve speed when competitive pressure becomes

high. Similar behavior is observed for female players’ second serves. In column 5,

we include game score difference and game score difference square as additional

controls. We do not find these variables to be significant for females. Hence, while

we find strong evidence for loss aversion for males, results so far are somewhat

less conclusive for females. In column 6, we include point score difference and

point score difference square as additional controls. The coefficient on point score

difference is not significant while the coefficient on point score difference square is

positive and significant. The latter is fully in line with Result 2 in our Theoretical

Framework. Hence, being ahead in set score decreases female players’ serve speed

- and thus effort in the order of 2.65 mph or one fifth of a standard deviation.

Figure 1. Example of a parametric plot
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Table 3—Benchmark Regressions

(1)

Males

(2)

Males

(3)

Males

(4)

Females

(5)

Females

(6)

Females

D2
1.549***
(3.01)

1.639***
(3.18)

1.635***
(3.18)

0.709
(1.27)

0.675
(1.19)

0.757
(1.34)

D3
0.681

(1.29)

0.626

(1.19)

0.625

(1.19)

-2.667***

(-4.60)

-2.691***

(-4.61)

-2.653***

(-4.55)

D4
0.055

(0.08)

-0.262

(-0.38)

-0.255

(0.37)

-1.588**

(-2.50)

-1.525**

(-2.38)

-1.433**

(-2.24)

Game

Diff
-

-0.503***

(-3.70)

-0.500***

(-3.67)
-

0.001

(0.01)

-0.005

(-0.04)

Game
Diff2 -

-0.127***
(-2.76)

-0.127***
(-2.75)

-
0.042
(0.88)

0.046
(0.97)

Point
Diff

-
0.011
(0.07)

- -
-0.167
(-1.00)

Point

Diff 2 -
-0.023

(-0.26)
- -

0.261***

(2.72)

Tie-

Break
Dummy

0.037

(0.03)

-0.160

(-0.14)

-0.134

(-0.12)
NA NA NA

Second
Serve

Dummy

-21.598***

(-57.85)

-21.641***

(-58.08)

-21.642***

(-58.04)

-14.584***

(-35.19)

-14.586***

(-35.18)

-14.593***

(-35.27)

Constant
114.023***

(359.60)

114.248***

(331.99)

114.280***

(311.18)

91.696***

(274.98)

91.578***

(245.42)

91.173***

(234.96)

Player
Fixed

Effects

Yes Yes Yes Yes Yes Yes

F-Stat 627.77*** 486.31*** 377.91*** 311.65*** 207.70*** 157.53***

Note: *significant at 10 percent level, **significant at the 5 percent level, ***significant at the 1 percent
level

Alternative Explanations. — We find that male players are more risk seeking

in the loss domain and female players are more risk averse in the gain domain.

We next consider a number of alternative explanations that might help explain

our results.

Differences in player ability – We control for player-level fixed effects to con-

trol for unobserved ability of each player. However, in order to examine whether

ability and serve speed are correlated, we estimate a linear regression including

player characteristics such as age, rank, height and weight and model player ef-

fects as random. Age and rank can be proxies for experience and ability. In these

result shown in Table 4, we observe that the statistical significance of coefficients

remains similar to the baseline regressions presented in Table 3. Neither age nor
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rank is associated with serve speed.

Table 4—Controlling For Player Characteristics

(1)

Males

(2)

Males

(3)

Males

(4)

Females

(5)

Females

(6)

Females

D2
1.503***
(2.94)

1.581***
(3.89)

1.575***
(3.08)

0.739
(1.32)

0.706
(1.25)

0.790
(1.40)

D3
0.707
(1.35)

0.671
(1.29)

0.672
(1.29)

-2.641***
(-4.57)

-2.660***
(-4.56)

-2.620***
(-4.56)

D4
0.137

(0.20)

-0.163

(-0.24)

-0.147

(-0.22)

-1.498**

(-2.37)

-1.427**

(-2.23)

-1.330**

(-2.08)

Game

Diff
-

-0.486***

(-3.62)

-0.484***

(-3.59)
-

0.005

(0.04)

-0.001

(-0.01)

Game

Diff2 -
-0.127***

(-2.78)

-0.127***

(-2.76)
-

0.040

(0.85)

0.044

(0.94)

Point
Diff

- -
0.023
(0.14)

- -
-0.168
(-1.00)

Point

Diff 2 - -
-0.024

(-0.27)
- -

0.264***

(2.75)

Tie-Break

Dummy

0.066

(0.06)

-0.137

(-0.12)

-0.101

(-0.09)
NA NA NA

Second

Serve
Dummy

-21.598***

(-57.91)

-21.641***

(-58.56)

-21.643***

(-58.12)

-14.567***

(-35.15)

-14.567***

(-35.13)

-14.573***

(-35.22)

Rank
-0.000

(-0.03)

-0.000

(-0.01)

-0.000

(-0.00)

0.043

(0.49)

0.045

(0.53)

0.046

(0.56)

Age
0.023

(0.83)

0.024

(0.78)

0.024

(0.80)

0.003

(0.07)

0.003

(0.07)

0.003

(0.09)

Height
0.354*

(1.92)

0.353*

(1.78)

0.352*

(1.83)

0.275

(0.91)

0.276

(0.95)

0.281

(0.99)

Weight
0.274*
(1.73)

0.269
(1.58)

0.269
(1.62)

0.681*
(1.94)

0.678
(2.02)

0.676**
(2.07)

Constant
16.679
(0.51)

17.480
(0.50)

17.528
(0.52)

2.154
(0.04)

1.968
(0.04)

0.619
(0.01)

Player

Fixed

Effects

No No No No No No

Wald-Stat 3389.89*** 3436.93*** 3434.27*** NA NA NA

R-Square 0.61 0.61 0.61 0.47 0.47 0.48

Number

of Obs
2191 2191 2191 1312 1312 1312

Estimation

Method

Random
Effects
(GLS)

Random
Effects
(GLS)

Random
Effects
(GLS)

Random
Effects
(GLS)

Random
Effects
(GLS)

Random
Effects
(GLS)

Note: *significant at 10 percent level, **significant at the 5 percent level, ***significant at the 1 percent
level

Nervousness – Psychological factors can influence performance (Beilock and

Carr, 2001; Beilock et al., 2004). Dubai Tennis Tournament is a high stakes com-

petition with large financial consequences, and prior work has found that people
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often feel nervous or anxious when they face high stakes (McCarthy and Gof-

fin, 2004; Beilock, 2008; Ariely et al., 2009). Feelings of nervousness can harm

performance by disrupting task-focused thinking (Sarason, 1984) and by motivat-

ing people to make expedient choices to exit their current situation (Brooks and

Schweitzer, 2011). To account for this possibility, we include the player’s rank on

the professional tennis tour as proxy. Our results, shown in 4, are essentially the

same as in our baseline fixed effects specification. Arguably, more experienced

players may suffer from less nervousness than less experienced ones. We control

for rank as well as age, which is a proxy for experience, in order to test for this

possibility and find that rank and age are not significant determinants of serve

speed.

Köszegi-Rabin Reference Points – In our conceptual framework and in our

analyses, we have assumed that players make reference-dependent choices adopt-

ing in score (par) as their point of reference. In recent theoretical work, Kőszegi

and Rabin (2006) suggest that rational expectations might serve as the point of

reference for reference-dependent choices. Farber (2008) allows reference points

to be different across people but treats the income reference points as latent vari-

ables (as opposed to assigning reference points based on rational expectations).

Professional tennis players may develop expectations for their performance that

are different from ‘par’, i.e., from the “tied score”. For example, average game

score in a set or average set score in a match for each player may be the unique

reference point for that player. In order to test for this possibility, we have tried

a number of different reference points, like the number of points or the number

of games won in a match, all of which were insignificant.7

Heterogeneity in Loss Aversion – We next consider heterogeneity across play-

ers. We consider individual differences, and we explore the possibility that the

most experienced players exhibit less loss aversion than less experienced players.

We established that a player serves slower when ahead than when behind in set

7These results are available upon request
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score. That is, due to loss aversion a player serves faster when behind than when

ahead. In order to test how experience plays out in this relationship between serve

speed and set score, we include an interaction term of rank with set difference in

our baseline specification. If experienced players are less prone to loss aversion,

we expect the coefficient on the interaction term to be positive and significant

meaning that experience decreases the effect of set score difference on serve speed.

In other words, an experienced player is less risk averse (less risk seeking) in the

gain domain (loss domain) than an inexperienced player. The inclusion of the

aforementioned interaction term, however, did not yield any significant results.8

Risk Behavior in Tournaments – Looking at risk taking in tournaments, as

alluded to before, Bronars (1986) finds that leading players in sequential tour-

naments prefer a low-risk strategy to a “lock in” in their gains, whereas their

opponents choose a riskier strategy and Nieken and Sliwka (2010) find that risk-

taking behavior crucially depends on the correlation between the outcomes of the

risky strategy as well as on the size of a potential lead of one of the participants.

This strategy, described in Bronars (1986), is indeed analogous to the reflection

effect, and the implications of his model appear fully consistent with our results.

VII. Conclusion

In our theoretical analysis, we have found that (i) a server will put more effort

into his/her serve speed when behind in score than when ahead in score, (ii)

players’ effort levels and thus serve speeds get less sensitive to losses or gains

when score difference gets too large, and (iii) overall servers will be more risk

averse in the domain of gains than in the domain of losses. We have then used

serve speed at different points of matches in the high-stakes, professional Dubai

Tennis Tournament to test our theoretical predictions and whether overall players

exhibited the fundamental bias of loss aversion.

Many recent studies have questioned whether the experimental results finding

8These results too are available upon request.
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evidence of loss aversion would decline as agents moved into higher stakes or be-

came more experienced. Similar to Pope and Schweitzer (2011)’s results for male

players in golf, our results show that in the high-stakes, professionalized context

of tennis too, experienced professionals, especially male players, exhibit strong

behavioral biases. In other words, given that our data comes from professional

tennis, which is a very different competitive endeavor than golf (due to golf’s

open play format vs tennis’ match play format, as mentioned before), our results

provide evidence that their findings of loss aversion for male golfers in high-stakes

settings extend beyond golf. Specifically, we find that professional male tennis

players, when behind in score, serve faster than when they are ahead in score.

Furthermore, we control for a number of competing explanations that are con-

sistent with loss averse behavior, and like Pope and Schweitzer (2011), we find

none can accurately explain why serve speed falls as a player’s relative score im-

proves. An advantage of our data is that it allows us to test for whether the

genders differ in the degree to which they suffer from this behavioral bias. We

find that male players are more risk seeking in the loss domain as they increase

serve speed when behind in set score while female players are more risk averse in

the gain domain since they decrease serve speed when ahead in set score. Hence,

although we find evidence for behavior consistent with loss aversion for both males

and females, its manifestation differs significantly between the two sexes.

Our empirical results also indicate that, while male players have a higher serve

speed and thus exhibit more effort when behind in score than when ahead in score

compared to when the score is even, falling far behind in the game score lowers

their serve speed and so does pulling far ahead in the game score as well; thus,

their serve speeds get less sensitive to losses or gains when the score difference

gets too large. Further, due to loss aversion, this latter relationship is not fully

symmetric since a player serves harder when he is behind than when he is ahead.

These are fully in line with our theoretical results and as predicted by prospect

theory overall (Kahneman and Tversky, 1979). A female player, on the other
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hand, does not change her serve speed and thus her effort when behind compared

to when the score is tied, while she serves slower when ahead than when the

score is tied. Further, falling far behind in the point score lowers serve speed

for females and so does pulling far ahead in the point score as well. These are

partially in line with our theoretical results and thus with prospect theory. Thus,

our results, which are robust to controlling for player fixed effects as well as

controlling for player characteristics in a random-effects specification, show that

there are important gender differences in the manifestation of loss aversion in that

overall male players exhibit more loss aversion.

Like Pope and Schweitzer (2011), however, we cannot say whether our findings

extend to many other different high-stake environments or not. Yet demonstrating

this in an alternative competitive setting provides further evidence that agents do

systematically suffer from loss aversion and reflection effect. Our study further

suggests that it affects both genders, albeit differently.
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