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ABSTRACT
The atmospheric turbulence profile plays a very important role for performance evaluation of
wide-field adaptive optic systems. Since the atmospheric turbulence is evolving, the turbulence
profile will change with time. To better model the temporal variation of turbulence profile, in
this paper, we propose to use the extensive stereo-SCIDAR turbulence profile dataset from
one observation site to train a Gaussian mixture model. The trained Gaussian mixture model
can describe the structure of the turbulence profile in that particular site with several multi-
dimensional Gaussian distributions. We cluster the turbulence profile data with the Gaussian
mixture model and analyse the temporal variation properties of the clusters. We define the
characteristic time as the time that the measured turbulence profile remains in a given profile.
We find that normally the characteristic time is around 2 to 20 min and will change at different
sites and in different seasons. With the statistical results of the characteristic time and the
trained Gaussian mixture model, we can generate synthetic artificial turbulence profiles with
realistic temporal variation to better test the performance of adaptive optics systems.

Key words: atmospheric effects – instrumentation: adaptive optics – methods: data analysis –
site testing.

1 IN T RO D U C T I O N

The Earth’s atmospheric turbulence limits the observation ability of
ground-based optical telescopes. Adaptive optic (AO) systems are
able to compensate the atmospheric-turbulence-induced aberrations
in real-time (Babcock 1953). However, due to the isoplanatic angle
of the atmospheric turbulence, the correction is effective only in a
very small field of view. To obtain a wider field of view with AO
correction, several wide-field AO concepts are proposed, such as
the multiconjugate adaptive optics (MCAO), ground-layer adaptive
optics (GLAO), multi-object adaptive optics (MOAO), and laser-
tomography adaptive optics (LTAO). These wide-field AO systems
are designed with the assumption that the atmospheric turbulence is
a continuous and random media and can be measured and modelled
as multiple discrete layers (Tyson 2010).

Measurements of atmospheric turbulence along the vertical di-
rection are expressed as turbulence profiles (TPs). The TP is de-
composed into several layers where each layer contains some or all
of the following parameters: the height, the magnitude (quantified
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with the refractive index structure function C2
n), the wind speed, and

the wind direction of the atmospheric turbulence.
The TP is very important for AO modelling and performance

analysis (Tokovinin et al. 2005; Tokovinin & Travouillon 2006;
Schöck et al. 2010). Depending on the specific wavefront mea-
surement, reconstruction, and deformable mirror control methods
in wide-field AO systems, the requirements of TP information are
different. However, a basic description of the TP is necessary for
both design and performance evaluation of wide-field AO systems.

Generally, the TPs used by the AO community are specific TPs
generated directly from measurement data through statistical meth-
ods. This model is static and cannot reveal the temporal variation
of TPs. With a statistic model, it is hard to evaluate AO system per-
formance in the time domain (such as in different seasons, days. or
different hours in one night). The static model also brings difficulties
in modelling wide-field AO system through Monte Carlo simulation
to test, for example new reconstructor or controller design (Wang,
Gilles & Ellerbroek 2011; Costille & Fusco 2012; Kulcsár et al.
2012; Martin et al. 2012; Gilles et al. 2013; Correia et al. 2014;
Gendron et al. 2014; Osborn et al. 2014; Ono et al. 2016).

Evaluation AO system with detailed TP temporal variation is very
important both for scientific observation strategy plan and post-
processing algorithm design. For example, a detailed point spread
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function reconstruction algorithm can provide point spread function
model for each ‘epoch’ of AO observation (Tuan et al. 2018) as PSF
model for WFC3/IR in HST (Anderson 2016). Besides, we can also
evaluate AO performance with a more realistic model. Although
direct evaluation of the AO performance with all measurement data
is possible, but it is time-consuming even for the simplest wide-field
AO systems (Tokovinin 2004). As more and more TP measurements
are carried out at different sites, huge amount of TP data are obtained
(Schöck et al. 2009; Sarazin et al. 2013; Liu et al. 2015; Osborn
et al. 2016). For example, the recent Stereo-SCIDAR Campaign of
Paranal (2018A release) has produced over 10 000 profiles covering
83 nights of operation (Osborn et al. 2018). The large amount of TP
data makes it possible to describe the real distribution of TPs in the
time domain with a probabilistic model.

In this paper, we propose to use a Gaussian Mixture Model
(GMM) to describe TP temporal variation. Using the GMM, we
can describe the temporal variation of the TPs. Then, we are able to
generate synthetic TPs with specific temporal variation for Monte
Carlo simulation of AO systems. The method proposed in this pa-
per, along with realistic atmospheric turbulence phase screen gen-
eration (Jia et al. 2015a,b; Buscher 2016) and observation real-time
simulation methods (Wang 2012), can be used to get high-fidelity
simulation of AO (Carbillet et al. 2004; Basden et al. 2007; Le
Louarn et al. 2012; Conan & Correia 2014; Basden et al. 2018). We
can also use this method for AO concept testing (Zhang, Guo & Rao
2017), observation strategy design (Jia, Basden & Osborn 2018),
even modelling (Peterson et al. 2015) and analysing point spread
function (PSF) temporal variation in sky surveying telescopes (York
et al. 2000; Ivezic et al. 2008; Dark Energy Survey Collaboration
et al. 2016), such as SDSS PSF study carried out by Xin et al. (2018).
The GMM model as a description method can be used with other
methods (Chen et al. 2016) to help us better analyse the properties
of the TP. This paper contains the following parts. In Section 2, we
will discuss the theory of the GMM for TPs with temporal varia-
tion. In Section 3, we will show how to simulate the TP temporal
variation with GMM and in Section 4, we will give our conclusions
and anticipate future work.

2 D ESCRIPTION O F THE TEMPORAL
PROPERTY OF TP WITH GMM

2.1 Gaussian mixture model

The GMM is a type of statistical model which is used to describe
an overall population with several sub-populations of data. It is
an unsupervised machine learning algorithm and is widely used for
data analysis, such as clustering analysis of exoplanet transits, white
dwarfs, stellar populations, pulsar, gamma-ray bursts, and spectrum
of the interstellar medium (Hao et al. 2009; Shin, Sekora & Byun
2009; Lee et al. 2012; Shang & Oh 2012; Shin et al. 2012; Andrews,
Price-Whelan & Agüeros 2014; Zhang et al. 2016; Chattopadhyay &
Maitra 2017). The GMM assumes any distribution can be modelled
with several Gaussian distributions N(x|uk, �k) with different mean
value, uk, and variance, �k, as shown in equation (1):

P (x) =
m∑

k=1

PkN (x|uk, �k), (1)

where P(x) is the distribution to be modelled and Pk is the weight of
the Gaussian distribution N(x|uk, �k) within the whole distribution.
For a multidimensional distribution, where x is a vector with length

of L, the GMM can be described as equation (2):

P (x) =
m∑

k=1

PkN (x|uk, �k). (2)

Here, N (x|uk, �k) is a multidimensional Gaussian distribution and
uk is the mean vector with size of L and �k is the covariance matrix
with size of L × L as shown in equation (3):

N (x|uk, �k) = 1

(2π)n/2
√|�k|

exp[−1

2
(x − uk) · �k

−1 · (x − uk)],

(3)

where n is the dimension number of the multidimensional Gaussian
distribution. Although the GMM is solely based on the Gaussian
distribution, it can also model the distribution that is not a mixture of
Gaussian distributions (Kelly 2007). This property makes it suitable
to describe the whole data set of TPs, since there are not any prior
assumptions in the distribution of TPs.

Given a set of TP data x and the GMM model, we can fit the
parameters (Pk, uk, and �k) through many different methods. The
expectation maximization (EM) is commonly used. EM uses two
estimation steps iteratively to obtain the final parameters as shown in
Algorithm 1. In this algorithm, the EM algorithm fits a distribution
through two steps: first, it fits the distribution with several Gaussian
distributions and then adjusts the parameters of these Gaussian
distributions to maximize the estimation.

Algorithm 1 Framework of EM Algorithm for GMM
Require:

The training TP data set x and the number of the Gaussian
distributions (m) in the GMM

Ensure:
Pk , uk and �k of each Gaussian distributions in the GMM

1: Initialization the GMM with random value of Pk , uk and �k

2: E-step (expectation-step): calculate P (x) and N (x|uk, �k) with
equations 2 and 3

3: M-step (maximization-step): update the parameters Pk , uk and
�k with:

uk =
∑L

i=1 xiPkN(xi |uk,�k)/N(xi )
∑L

i=1 PkN(xi |uk,�k)/N(xi )

�k =
∑L

i=1 (xi−uk)⊗(xi−uk)PkN(xi|uk,�k)/N(xi )
∑L

i=1 PkN(xi|uk,�k)/N(xi)

Pk = 1
N

∑L

i=1 PkN (xi |uk, �k)/N (xi)
where ⊗ is the outer product

4: while The likelihood function γ (x) is not converge do
5: Repeat step 2 and step 3
6: end while

Through minimizing the likelihood function defined by equa-
tion (4), GMM is able to model the whole distribution by several
Gaussian distributions with different parameters

γ (x) =
L∑

i=1

log

{
m∑

k=1

PkN (xk|uk, �k)

}
. (4)

Before we obtain a particular GMM from the TP data, the number
of Gaussian distributions (m) is defined manually. Like all the other
model-fitting problems, when m is small, the model will face the
underfitting problem. As m increases, we will get better fitting re-
sults and will more likely get an overfitting model. To reduce the
risk of underfitting and overfitting, we fit the TP data with a GMM
of several different Gaussian distributions and use the theoretic-
information criteria to select the best number.
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Table 1. TP measurements data summary.

Site Observation Month Number of Observation Days

Paranal Jan. 10
Mar. 3
Apr. 13
May. 5
Jun. 3
Jul. 12

Aug. 6
Nov. 12
Dec. 19

La Palma Jun. 6
Jul. 7
Sep. 2
Oct. 12

Because the true statistical model of TP distribution is unknown
right now, to reduce the risk of selecting a very bad model, we will
choose Akaike information criterion (AIC) defined in equation (5)
for model selection as discussed in Vrieze (2012).

AIC(Model) = −2 log γ (x, Model) + m (5)

where Model is the GMM model with m Gaussian distributions, x
is the data set, and γ (x, Model) is the likelihood function defined
in equation (4). It should be mentioned here that other theoretic-
information criteria can also be considered, if further analysis of TP
statistical distribution can place other regularization conditions to
the GMM.

2.2 Training GMM with TP data

Two sets of TP data are used in this paper: La Palma TP data (Osborn
et al. 2015) and Paranal TP data (Osborn et al. 2018). They are both
obtained by Stereo-SCIDAR (Shepherd et al. 2014) and the time
gap between two adjacent measurements in these data sets is around
1 min. The La Palma TP data set is 15 d of observation data and
the Paranal TP data set is 83 d of observation data as listed in Table
1. The total number of TPs is 2880 for La Palma and 10 715 for
Paranal.

One measurement of TP data can be seen as a 3D data set with
dimension of 4 × M × T. The four dimensions of each TP measure-
ment are height (h), integrated magnitude of the refractive index
structure function (C2

ndh), wind speed (v), and wind direction (θ ).
M is the number of measurement grids in the vertical direction (100
for all TPs used in this paper) and T is the total number of measure-
ments. The properties of these four dimensions are listed as follows:

(1) the height increases from the observatory altitude to the max-
imal height (25 000 metre for our data set);

(2) the C2
ndh is primarily between 10−14 and 10−13m1/3;

(3) the wind speed is distributed from several to several dozens
metres per second;

(4) the wind direction is distributed between 0 to 360 deg.

We normalize the integrated magnitude of C2
ndh with equation (6):

C2
n(h)dh = C2

n(h)dh∑
C2

n(h)dh
, (6)

because the C2
ndh can better reflect the structure of the TP with

finite numerical accuracy. The wind speed and direction are hard to
measure (Laidlaw et.al. 2018 submitted). Only layers with strong
wind speed have effective values of wind speed and direction. Due
to this reason, we only use wind speed in this paper and interpo-
late the wind speed between effective measurements. We will be
able to obtain better model, when there are other measurements
from balloon-borne radiosonde or weather forecast. An example
TP before and after interpolation is shown in Fig. 1.

To model the temporal variation of the whole data set, we will
use three dimensions of the TP data for model fitting. Since one
measurement x used in this paper is a vector with size of 300
(3 × 100), the size of data matrix is 300 × 2880 for La Palma
and 300 × 10715 for Paranal. Although clustering analysis of one
dimension in the TP is more useful for some other applications,
such as clustering analysis of C2

n (Farley et al. submitted), we will
transform one measurement from a 3 × M matrix into a vector x of
size L as shown in equation (7):

x =
[
h1, h2, ..., C2

n1
dh,C2

n2
dh, ..., v1, v2, ...

]
, (7)

where hi..., C2
ni

dh... and vi, ... are values of one TP measurements
and they are listed with the height increment order.

As we discussed in Section 2.1, the number of Gaussian distri-
butions needs to be carefully selected to prevent underfitting and
overfitting problems. Since the number of Gaussian distributions is
an integer and lies between 1 and the maximal dimension (300 for
our data), it is possible to find the optimal number through one-
dimensional search with AIC as evaluation function. As shown in
Fig. 2, the optimal number of Gaussian distributions is 9 for the La
Palma data set and 12 for the Paranal data set. With the optimum
number of Gaussian distributions, we can train the GMMs using the
EM algorithm discussed in Section 2.1.

2.3 TP temporal variation description with GMM

We can get the parameters of the Gaussian distributions in the
GMM, after training with the whole data set. Each of these Gaussian
distributions can be viewed as a description of a particular cluster
and we are able to classify our original TP data set into these
different clusters. We labels to these clusters and all the TPs that
belong to one of these clusters will be given the same label. Because
we have a very high sampling rate of TP in the time domain, it is
possible to analyse the temporal variation of TP with its label and
observation time.

To obtain the TP temporal variation properties, we first fit each of
the TP data, x, with Gaussian distributions to the trained GMM as
shown in equation (3) and set the label of x as the label of Gaussian
distribution with which x has the maximal value. Then, we use
equation (8) to calculate the time length within which all the TPs
have the same label,

δtk = tk+n − tk, (8)

where tk and tk + n are the time of the first and the last consecutive
measurement of TP with the same label, and δtk is the character-
istic time of the TP. The characteristic time is very important for
evaluating the temporal variation of TP, it reflects how long the TP
can be stable in the space described by the GMM. To reduce the
impact brought by non-continuous measurements, we need at least
two continuous measurements to calculate the characteristic time.
We also delete the characteristic time where the time gap between
two adjacent measurements is more than 5 min.
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Figure 1. The left-hand panel stands for a TP before interpolation of wind speed and the right-hand panel stands for the same TP after interpolation. The grey
line stands for the C2

ndh in logarithmic scale and the black line stands for the wind speed. In this paper, wind speed from the layers with strong wind speed are
used and in several layers there are no wind speed measurements. We use interpolation to solve this problem and the values of wind speed are continuous after
interpolation.

Figure 2. The relation between AIC and the number of Gaussian distribu-
tions in GMM for La Palma data set and Paranal data set. The x- axis stands
for the number of Gaussian distributions and the y- axis stands for the nor-
malized information criterion, which is the AIC values normalized by their
maximal value, respectively. For La Palma data set, the AIC has its minimal
value when the number of Gaussian distributions is 9; for Paranal data set,
the AIC has its minimal value when the number of Gaussian distributions
is 12. We use 9 and 12 Gaussian distributions for La Palma and Paranal
data, respectively. We only show the results of GMM with maximal of 90
Gaussian distributions here for better illustration.

Figure 3. Temporal variation of the TP measurements within the first
420 min from La Palma 2016-06-28. The x- axis is the measurement time
and the y- axis is the label of TP. We can find that the TP will change after
several dozens of minutes. The labels of TPs are distributed mainly in 1, 3,
4, and 7 within these 420 min. It indicates that the TP is stable.
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Figure 4. Temporal variation of the TP measurements within the first
300 min from Paranal 2017-04-13. The x-axis is the measurement time
and the y-axis is the label of TP. We find that the TP will change after several
minutes. In comparison to Fig.3, the TP changes frequently from 100 to 200
min and becomes stable after that. This phenomenon is common and should
be considered for AO performance evaluation.

Figure 5. Normalized histogram of characteristic time for La Palma and
Paranal. We can find that the characteristic time in Paranal is shorter than
that in La Palma.

Table 2. Characteristic time δt (in min) of TP from La Palma and Paranal
in min.

Different Site Mean δt 1st quartile δt 3rd quartile δt

La Palma 21.24 6.01 26.37
Paranal 10.78 2.33 10.80

Table 3. Characteristic time δt (in min) of TP from La Palma in different
months.

Month Mean δt 1st quartile δt 3rd quartile δt

Jun. 27.62 10.43 36.18
Jul. 15.83 5.62 23.01
Sep. 24.38 4.94 28.35
Oct. 25.59 4.50 35.69

Table 4. Characteristic time δt (in min) of TP from Paranal in different
months.

Month Mean δt 1st quartile δt 3rd quartile δt

Jan. 11.17 4.79 11.22
Mar. 9.46 3.52 11.80
Apr. 8.37 2.39 9.67
May. 8.43 4.55 9.30
Jun. 10.92 3.55 8.76
Jul. 10.79 1.89 9.10
Aug. 24.07 3.89 17.92
Oct. 16.20 6.48 11.82
Nov. 7.44 4.48 8.95
Dec. 10.60 6.84 11.62

Two sequences of TPs with temporal variation are shown in Figs.3
and 4. We can find that the TP can vary rapidly on time scales of
minutes or more slowly with no changes for several hours.

3 G E N E R AT I O N O F TP W I T H T E M P O R A L
VA RI ATI ON W I TH GMM

3.1 Statistical results of TP temporal variation

To better simulate and evaluate AO performance with the GMM TP
model, we need to carry out statistical analysis of the characteristic
time of different sites and different seasons. The histogram of the
characteristic time in La Palma and Paranel is shown in Fig. 5 and
some of the statistical results of the characteristic time are shown
in Table 2. Because the statistical distribution is not a Gaussian
distribution and there are TPs with very long characteristic time, we
propose to use the first quartile for the shortest characteristic time
estimate and the third quartile for the average characteristic time
estimate. We find that, on average, the TP will change within 2–20
min. The temporal variation of TP is almost within the same scale
of the temporal variation of PSF in sky surveying telescopes (5-30
min for SDSS as discussed by Xin et al. (2018)). This raises the
importance of modelling and analysing the impact of the temporal
variation TP to scientific observations.

The temporal variation of the TP can be further analysed to pro-
vide a reference for modelling and simulation of the TP in different
seasons. The statistical results of the characteristic time in different
seasons are shown in Tables 3 and 4. Since there is limited data
from these sites, the statistical results reflect limited information.
We can glimpse that the TP is more stable in La Palma than that in
Paranal.

We can suggest the following conclusions about the TP temporal
variation for AO modelling according to the statistical data above:
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Figure 6. Typical TPs with different labels (from 1 to 4) generated by GMM trained from La Palma Data. The plot in grey is the C2
ni

dh in logarithmic scale
and the plot in black is the wind speed. These TPs are listed according to their labels in ascending order from left to right and from top to bottom.
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Figure 7. Typical TPs with different labels (from 1 to 4) generated by GMM trained from Paranal Data. The plot in grey is the normalized C2
ni

dh in logarithmic
scale and the plot in black is the wind speed. These TPs are listed according to their labels in ascending order from left to right and from top to bottom.
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(1) The characteristic time is different for different sites and
different seasons. More TP data from different seasons are required
to model the TP temporal variation for AO at a particular site.

(2) The characteristic time is around 2–20 min and can be longer
than 30 min in some extraordinary conditions. When there is not
enough TP data, we recommend to use characteristic time of 2
min for highly variable conditions and 20 min for stable conditions
modelling.

(3) Due to the limited sampling rate of the TP measurement in
the time domain, shorter characteristic time cannot be measured.
However, as shown in Fig.5, the TP have abrupt variation over an
extended period of time (200 min). These variations should be paid
special attention during robustness tests of new reconstruction or
control methods.

3.2 Generation of TP with temporal variation

After training with a particular TP data set, the GMM comprises
several Gaussian distributions and each of them can be viewed
as a generating function of TPs with a particular label. Given a
random state, these Gaussian distributions can generate TPs with
their labels. With the statistical results of characteristic time we
obtained in Section3.1, we can generate TPs with temporal variation
according to our requirements as shown in Algorithm 2.

Algorithm 2 Generation of TP with GMM
Require: :

The characteristic time δt and the total simulation time T

Ensure:
TP list x and the corresponding time coordinate t for each TP

1: Initialization of the random state n

2: Calculate the required number of TPs with different labels N =
� T

δt
�

3: Generate N TPs sx and with their corresponding labels through
different Gaussian distributions with random state n

4: Process each of the generated sx with the following rules:
Move the minimal value of height to zero: hi = hi − min(h)
Normalize the C2

n: C2
ni

= (C2
ni

− min(C2
n))/

∑
(C2

ni
−

min(C2
n))

Calculate the absolute value of wind speed vi : vi = |vi |
Sort all the values according to the ascending order of height
and out put the TP

5: Use sxi and their characteristic time δt to generate TP with
temporal variation.

6: for ti ≤ T do
7: xi = sxi, ti = ti−1 + δt

8: i = i + 1
9: end for

Several artificial TPs generated by TP data from different sites
are shown below: artificial La Palama TPs in Fig. 6 and artificial
Paranal TPs in Fig. 7. We find that there are some TPs with strong
ground layer turbulence such as TP 3 in Fig. 6 and TP 4 in Fig. 7.
There are also TPs with strong turbulence in higher layers such
as TP 2 in Fig. 6 and TP 1 in Fig. 7. The maximal height will
change between different TPs, as shown in TP 3 of Fig. 6 with
maximal height of 15 km. The wind speed reaches its maximum
value around 10 km. There are some TPs with low wind speeds in
the high layer, such as TP 4 in Fig. 6. In general, the TPs generated
by our method have great diversity and reflect the properties of the
data from Stereo-SCIDAR.

4 C O N C L U S I O N S

In this paper, we propose a GMM-based method that can be used to
model the temporal variation of the turbulence profile. This method
first uses stereo-SCIDAR turbulence profile data to train the GMM,
and then obtains the characteristic time (around 2–20 minutes) of
the turbulence profile through clustering by the GMM. The trained
GMM can generate turbulence profile with temporal variation in
accordance with the characteristic time measured on-sky.
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