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In the context of representation theory of finite dimensional 
algebras, string algebras have been extensively studied and 
most aspects of their representation theory are well-under-
stood. One exception to this is the classification of extensions 
between indecomposable modules. In this paper we explicitly 
describe such extensions for a class of string algebras, namely 
gentle algebras associated to surface triangulations. These 
algebras arise as Jacobian algebras of unpunctured surfaces. 
We relate the extension spaces of indecomposable modules to 
crossings of generalised arcs in the surface and give explicit 
bases of the extension spaces for indecomposable modules 
in almost all cases. We show that the dimensions of these 
extension spaces are given in terms of crossing arcs in the 
surface.
Our approach is new and consists of interpreting snake graphs 
as indecomposable modules. In order to show that our basis 
is a spanning set, we need to work in the associated cluster 
category where we explicitly calculate the middle terms of 
extensions and give bases of their extension spaces. We note 
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that not all extensions in the cluster category give rise to 
extensions for the Jacobian algebra.

© 2017 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in 2002 in [18] in order to 
give an algebraic framework for the study of the (dual) canonical bases in Lie theory. This 
work was further developed in [3,19,20]. Cluster algebras are commutative algebras given 
by generators, the cluster variables, and relations. The construction of the generators is 
a recursive process from an initial set of data. In general, even in small cases, this is 
a complex process. However, there is a class of cluster algebras coming from surfaces 
[16,17] (see also [14,15]) where this process is encoded in the combinatorial geometry of 
surface triangulations. Surface cluster algebras are an important part of the classification 
of (skew-symmetric) cluster algebras in terms of mutation type, namely almost all cluster 
algebras of finite mutation type are surface cluster algebras [13].

Cluster algebras from surfaces have been widely studied via the combinatorial geome-
try of the corresponding surfaces [13,16,17,32,33]. The same holds true for the associated 
cluster categories and Jacobian algebras. An important example of this is the crossing 
of two arcs in a surface. In the case of cluster algebras this gives rise to a multiplication 
formula for the corresponding cluster variables [34]. In the cluster category, the number 
of crossings of two arcs gives the dimension of the extension space between the associ-
ated indecomposable objects [42,38]. For Jacobian algebras of surfaces where all marked 
points lie in the boundary, in [6], building on [5] and [2], Auslander–Reiten sequences 
have been given in terms of arcs in the surface. In general, however, there has so far been 
no link between arbitrary crossings of arcs in the surface and the extensions between 
indecomposable modules in the Jacobian algebra.

The Jacobian algebras under consideration are gentle algebras and their indecompos-
able modules, given by strings and bands, correspond to curves and closed curves in the 
surface [2] (see [26,27,10,28] for a more general definition of Jacobian algebras via quiver 
with potential and [21] for classification of their representation type). Gentle algebras 
form a special class of algebras, for example, this class is closed under tilting and derived 
equivalence [40] and [41]. They are part of the larger family of string algebras which 
are an important family of algebras of tame representation type whose representation 
theory is well-understood. For example, their Auslander–Reiten structure has been deter-
mined [5] and in [11,25] the morphisms between indecomposable modules are completely 
described. However, a complete description of the extensions between indecomposable 
modules is not known.

In the present paper, we describe extension spaces of string modules over gentle Jaco-
bian algebras. Furthermore, we show that in analogy with the cluster category, in most 
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cases, the number of crossings of two arcs still gives rise to a dimension formula of the 
extension space between the corresponding indecomposable modules in the Jacobian al-
gebra by explicitly constructing a basis. However, not every crossing contributes to this 
dimension. We characterise exactly which crossings contribute and which do not. We do 
this by introducing a new approach, consisting of using the snake graph calculus devel-
oped in [7] to explicitly construct extensions resulting from crossing arcs. This gives a 
lower bound on the dimensions of the extensions spaces in the Jacobian algebra. In order 
to obtain an upper bound, we work in the cluster category. There we show explicitly how, 
in many cases, the four arcs in the surface, resulting from the smoothing of a crossing of 
two not necessarily distinct arcs, give rise to two extensions in the cluster category.

For a surface cluster algebra, the cluster variables are in bijection with arcs in the 
surface [16]. Moreover, in a given triangulation, each arc corresponds to a combinatorial 
object called a snake graph [31,32,37]. Snake graphs have proven to be an important ele-
ment in the understanding of surface cluster algebras, for example, in [33] snake graphs 
(and band graphs) were used to show that certain collections of loops and (generalised) 
arcs comprise vector space bases for surface cluster algebras. Snake graphs have also been 
instrumental in the proof of the positivity conjecture for surface cluster algebras [32]. 
Note that the conjecture has since been proved for all skew-symmetric cluster alge-
bras [29].

If two (generalised) arcs γ1 and γ2 in a marked surface (S, M) cross then the geometric 
operation of smoothing the crossing is given by locally replacing the crossing ×with the 
pair of segments �� or with the pair of segments ⊃⊂. This gives rise to four new arcs 
γ3, γ4 and γ5, γ6 corresponding to the two different ways of smoothing the crossing. 
The corresponding elements xγ1 , . . . , xγ6 in the cluster algebra satisfy the so-called skein 
relations given by xγ1xγ2 = y−xγ3xγ4 +y+xγ5xγ6 where y−, y+ are some coefficients [34].

Suppose from now on that (S, M) is a marked surface such that all marked points 
are in the boundary of S and let T be a triangulation of (S, M). All arcs are consid-
ered to be generalised, that is they might have self-crossings. The abstract snake graph 
calculus developed in [7] applies in this setting and gives a combinatorial interpretation 
in terms of snake graphs of the arcs resulting from the smoothing of two crossing arcs. 
We remark that we never actually smooth self-crossings as in [8], but instead in the case 
of a self-crossing we consider two copies of the same arc. We then use the combinato-
rial description in [7] to study the extension space over the associated Jacobian algebra 
J(Q, W ) and over the cluster category C(S, M) defined in [1] by giving explicit bases for 
these spaces in almost all cases. As mentioned above, the string modules over J(Q, W )
are in bijection with the arcs in the surface [2] not contained in T , and the arcs in the 
surface correspond in turn to snake graphs [32]. Therefore there is a correspondence 
associating a snake graph corresponding to an arc in (S, M, T ) to the string module 
corresponding to the same arc and this defines a sign function on the snake graph, see 
Proposition 2.16.

Based on the snake graph calculus developed in [7], given two string modules, we 
define three types of crossings of modules corresponding to the three different types of 
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crossings of the associated snake graphs. Namely, if, in the language of [8], the snake 
graphs cross with an overlap then we say that the corresponding string modules cross 
in a module. If the snake graphs cross with grafting and s = d (see Section 2.4 for the 
definition of s and d) then we say that the corresponding string modules cross in an 
arrow and finally if the snake graphs cross with grafting and s �= d where s and d are 
parameters associated to the snake graphs then the corresponding string modules cross 
in a 3-cycle. Our first result is then to determine when two crossing string modules M1
and M2 give rise to a non-zero element in Ext1J(Q,W )(M1, M2).

Theorem 3.7. Let M1 and M2 be two string modules (not necessarily distinct) over 
J(Q, W ) corresponding to arcs γ1 and γ2 in (S, M). Then for a given crossing of M1
and M2 corresponding to a crossing of γ1 and γ2, there are string modules M3 and M4
obtained by ‘smoothing the crossing’ of γ1 and γ2 such that there exists an extension of 
M1 by M2

(1) with two non-zero middle terms given by M3 and M4 if and only if M1 crosses M2
in a module at this crossing,

(2) with one non-zero middle term given by M3 if and only if M1 crosses M2 in an arrow 
at this crossing.

When M1 crosses M2 in a 3-cycle, M3 and M4 do not give an extension of M1 by M2
corresponding to this crossing.

A geometric interpretation of the three different types of crossings in Theorem 3.7 is 
given in Remark 3.8.

Note that there is a direction in the crossing of modules, that is ‘M1 crosses M2’ is 
different from ‘M2 crosses M1’ and that this distinction does not appear in terms of 
crossings of the corresponding arcs, see Section 3.

We remark that Theorem 3.7 can be interpreted as skein relations for string modules 
and such skein relations have been announced by Geiss, Labardini and Schröer in the 
setting of Caldero–Chapoton algebras.

In the cluster category C(S, M), the indecomposable objects correspond to arcs and 
(non-contractible) closed loops in (S, M) and therefore they are referred to as string and 
band objects, respectively, see [6]. It follows from the results on AR-triangles in [6] that 
all triangles between indecomposable objects in C(S, M) have at most two middle terms. 
In [42] it is shown that the dimension of the extension space of two string objects in 
the cluster category is equal to the number of crossings of the corresponding arcs. This 
suggests a close connection between the geometric crossing of arcs and the extension 
spaces.

Indeed, we show in Theorem 4.1 (see below) that the middle terms of triangles in 
the cluster category arise from smoothing the crossings of arcs in the surface in almost 
all cases. More precisely, consider the two pairs of arcs γ3, γ4 and γ5, γ6 obtained from 
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smoothing a crossing of two arcs γ1 and γ2 (with a suitable orientation). We show that 
the pair γ3, γ4 always gives rise to an element in ExtC(γ1, γ2). We show that the other 
pair of arcs γ5, γ6 gives rise to an element in ExtC(γ2, γ1) if the crossing of γ1 and γ2 itself 
does not have a self-crossing (such a self-crossing is given by a self-crossing overlap in 
terms of the corresponding snake graphs. See Section 2, Definition 2.11 and Theorem 2.12
for the definition of a self-crossing overlap of snake graphs and the correspondence with 
crossings of arcs). We remark that an important factor in the proof of Theorem 4.1 is 
the geometric interpretation of Iyama–Yoshino reduction [22] given by Marsh–Palu [30].

Theorem 4.1. Let γ1 and γ2 be two string objects (not necessarily distinct) in C(S, M)
such that their corresponding arcs cross in (S, M). Let γ3, γ4, γ5, γ6 be the string objects 
corresponding to the smoothing of a particular crossing of a suitable orientation of the 
corresponding arcs γ1 and γ2. Then there is a non-split triangle in C(S, M) given by 

γ2 −→ γ3 ⊕ γ4 −→ γ1 −→ γ2[1] (1)

and if the crossing of γ1 and γ2 is not in a self-crossing overlap in some triangulation 
of (S, M) then we obtain a non-split triangle given by 

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1]. (2)

If any of γ3, γ4, γ5, γ6 are boundary arcs, the corresponding objects C(S, M) are zero 
objects.

We raise the question (Question 4.3) of what the middle terms are of those triangles 
in (2) above corresponding to the crossings of γ1 and γ2 that is a self-crossing overlap. 
That there must also be a non-zero extension ExtC(γ2, γ1) corresponding in some way 
to this crossing follows from the 2-Calabi Yau property of C(S, M) and from the result 
in [42] giving the dimension of the extension space in terms of the number of crossing of 
the arcs.

Theorem 3.8 together with Theorem 4.1 and the dimension formula in [42], give the 
following result for extensions in the Jacobian algebra. Here Int(γ, δ) is the minimal num-
ber of intersections of two arcs γ and δ. We remark that we use the following convention: 
if γ = δ then Int(γ, γ) = 2m where m is the minimal number of self-crossings of γ.

Corollary 4.2. Let M, N be two string modules over J(Q, W ) and let γM and γN be the 
corresponding arcs in (S, M) such that γM and γN have no crossing with self-crossing 
overlap.

(1) A basis of Ext1J(Q,W )(M, N) is given by all short exact sequences arising from M
crossing N in a module or an arrow and where the middle terms are as described in 
Theorem 3.7;
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(2) We have 

dim Ext1J(Q,W )(M,N) + dim Ext1J(Q,W )(N,M) = Int(γM , γN ) − k − k′

where k (resp. k′) is the number of times that M crosses N (resp. N crosses M) in 
a 3-cycle. In particular, if M = N we have 

2 dim Ext1J(Q,W )(M,M) = Int(γM , γM ) − 2k.

Acknowledgments: We would like to thank Ralf Schiffler for helpful conversations. We 
also would like to thank the referee for pointing out a gap in an earlier version of the 
proof of Theorem 4.1 and for the helpful comments and suggestions that they make.

2. Background on Jacobian algebras, cluster categories and snake graphs

Throughout let k be an algebraically closed field.

2.1. Bordered marked surfaces

In this section we follow [7,32] in our exposition. Let S be a connected oriented 
2-dimensional Riemann surface with non-empty boundary. Let M be a finite set of 
marked points on S such that all marked points lie in the boundary of S and each 
boundary component contains at least one marked point. Call the pair (S, M) a (bor-
dered) marked surface. If S is a disc then let |M| ≥ 4.

Definition 2.1. A generalised arc in (S, M) is a curve γ in S, considered up to homotopy, 
such that

(1) the endpoints of γ are in M,
(2) except for the endpoints γ is disjoint from the boundary of S,
(3) γ does not cut out a monogon or a bigon.

The curve γ is called an arc, considered up to homotopy, if it satisfies (1), (2), (3), 
and

(4) γ does not cross itself, except that its endpoints might coincide.

A generalised arc may cross itself a finite number of times.
A boundary segment is the homotopy class of a curve that lies in the boundary and 

connects two (not necessarily distinct) neighbouring marked points on the same boundary 
component. Note that a boundary segment is not considered to be an arc. However, we 
sometimes do refer to it as a boundary arc.
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Definition 2.2. For two arcs γ, γ′ in (S, M), let Int(γ, γ′) be the minimal number of 
crossings of curves α, α′ where α and α′ range over the homotopy classes of γ and γ′, 
respectively. We say that arcs γ, γ′ are compatible if Int(γ, γ′) = 0.

Definition 2.3. A triangulation of (S, M) is a maximal collection of pairwise compatible 
arcs. A flip of an arc γ in a triangulation T of (S, M) replaces the arc γ with the unique 
arc γ′ such that T \ {γ} ∪ {γ′} is a triangulation of (S, M).

All triangulations of (S, M) are connected by a series of flips.

Definition 2.4. Let γ1 and γ2 be generalised arcs such that γ1 and γ2 cross at a point x. 
We define the smoothing of the crossing of γ1 and γ2 at the point x to be the pairs of 
arcs {α1, α2} and {β1, β2} where

– {α1, α2} is the same as {γ1, γ2} except locally where the crossing × is replaced with 
the pair of segments �� ,

– {β1, β2} is the same as {γ1, γ2} except locally where the crossing × is replaced with 
the pair of segments ⊃⊂.

We remark that if we consider oriented arcs then the orientation of γ1 and γ2 permits 
to distinguish the set of arcs {α1, α2} from the set of arcs {β1, β2}.

From now on we will not make a distinction between arcs and generalised arcs and 
we will simply call them arcs unless otherwise specified.

2.2. Gentle algebras from surface triangulations

In this section we recall the definition of gentle algebras and introduce some related 
notation which we will be using throughout the paper.

Let Q = (Q0, Q1) be a quiver, denote by kQ its path algebra and for an admissible 
ideal I, let (Q, I) be the associated bound quiver. Denote by mod A the module category 
of finitely generated right A-modules of an algebra A.

Definition 2.5. An algebra A is gentle if it is Morita equivalent to an algebra kQ/I such 
that

(S1) each vertex of Q is the starting point of at most two arrows and is the end point 
of at most two arrows;

(S2) for each arrow α in Q1 there is at most one arrow β in Q1 such that αβ is not in 
I and there is at most one arrow γ in Q1 such that γα is not in I;

(S3) I is generated by paths of length 2;
(S4) for each arrow α in Q1 there is at most one arrow δ in Q1 such that αδ is in I and 

there is at most one arrow ε in Q1 such that εα is in I.
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For α ∈ Q1, let s(α) be the start of α and t(α) be the end of α.
For each arrow α in Q1 we define the formal inverse α−1 such that s(α−1) = t(α) and 

t(α−1) = s(α). A word w = ε1ε2 . . . εn is a string if either εi or ε−1
i is an arrow in Q1, if 

s(εi+1) = t(εi), if εi+1 �= ε−1
i for all 1 ≤ i ≤ n − 1 and if no subword of w or its inverse 

is in I. Let s(w) = s(ε1) and t(w) = t(εn). Denote by S the set of strings modulo the 
equivalence relation w ∼ w−1, where w is a string.

A string w is a direct string if w = α1α2 . . . αn and αi ∈ Q1 for all 1 ≤ i ≤ n and w
is an inverse string if w−1 is a direct string.

The terminology of string modules, in particular, the notions of hooks and cohooks 
were defined in [5]. However, the definitions of hooks and cohooks we give here differ 
slightly from the usual definitions. More precisely, our hooks and cohooks do not nec-
essarily satisfy the maximality conditions on direct and inverse strings appearing in the 
standard literature.

Given a string w, define four substrings hw, wh, cw, wc of w as follows:
We say hw is obtained from w by deleting a hook on s(w) where

hw =

⎧⎪⎨⎪⎩
0 if w is an inverse string,
hw where hw is obtained from w by deleting the first direct arrow in w

and the inverse string preceding it.

We say cw is obtained from w by deleting a cohook on s(w) where

cw =

⎧⎪⎨⎪⎩
0 if w is a direct string,
cw where cw is obtained from w by deleting the first inverse arrow in w

and the direct string preceding it.

We say wh is obtained from w by deleting a hook on t(w) where

wh =

⎧⎪⎨⎪⎩
0 if w is a direct string,
wh where wh is obtained from w by deleting the last inverse arrow in w

and the direct string succeeding it.

We say wc is obtained from w by deleting a cohook on t(w) where

wc =

⎧⎪⎨⎪⎩
0 if w is an inverse string,
wc where wc is obtained from w by deleting the last direct arrow in w

and the inverse string succeeding it.

Let T be a triangulation of (S, M) with associated quiver with potential (Q, W ) and 
let J(Q, W ) be the associated Jacobian algebra as defined in [26]. As recalled in the 
introduction, given a marked surface where all marked points lie in the boundary, this 
algebra coincides with the gentle algebra defined in [2]. Let S be the set of all strings in 
J(Q, W ). Given a string w ∈ S we denote by M(w) the corresponding string module in 
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Fig. 1. Denoting the vertices in the quiver corresponding to an arc τi of the triangulation also by τi z, the 
string corresponding to the arc γ is given by w(γ) = τ1

α1← τ2
α2→ τ3

α3→ τ4
α4← τ5 · · · τd−2

αd−2→ τd−1
αd−1← τd.

J(Q, W ). Note that M(w) � M(w−1), for a string w. Conversely, given a string module 
M we can associate to it a string (or its inverse). That is, there exists a string wM such 
that M � M(wM ) in which case we also have M � M(w−1

M ). The string corresponding 
to a simple module at vertex i of Q is denoted by i, that is, it is given by the single 
vertex i. Given an arc γ in the surface in [2] a string wγ is associated to an orientation 
of γ. We denote M(wγ) the associated string module. The opposite orientation of γ gives 
rise to the inverse string (wγ)−1 and we have that M(wγ) � M((wγ)−1). Conversely, by 
[2] any string module M is associated to an arc γM in (S, M, T ).

For the convenience of the reader we briefly recall in Fig. 1 the construction of a string 
given an orientated arc in a triangulated surface as defined in [2], see also [6].

2.3. Cluster categories of marked surfaces

Cluster categories were first introduced in [4] for acyclic quivers and independently 
in [9] for type A. Generalised cluster categories were defined in [1]. Namely, given a 
quiver with potential (Q, W ) such that the Jacobian algebra J(Q, W ) is finite dimen-
sional, denote by Γ := Γ(Q, W ) the associated Ginzburg dg-algebra. Consider the perfect 
derived category per Γ which is the smallest triangulated subcategory of the derived cat-
egory D(Γ) containing Γ which is stable under taking direct summands and consider 
the bounded derived category D�(Γ) of Γ. The generalised cluster category C(Q, W ) is 
the quotient per Γ/D�(Γ). It is shown in [1] that C(Q, W ) is Hom-finite, 2-Calabi–Yau, 
the image of Γ in C(Q, W ) is a cluster tilting object TΓ, and the endomorphism alge-
bra of TΓ is isomorphic to the Jacobian algebra J(Q, W ). Furthermore, the categories 
C(Q, W )/TΓ and mod J(Q, W ) are equivalent and the functor HomC(Q,W )(TΓ[−1], −) is 
the projection functor from C(Q, W ) to mod J(Q, W ) [24].

Now let (S, M) be a marked surface, T, T ′ triangulations of (S, M), and let (Q, W )
and (Q′, W ′) be the quivers with potential associated with T and T ′, respectively. It 
follows from [16,23,26] that C(Q, W ) and C(Q′, W ′) are triangle equivalent and hence 
the cluster category is independent of the triangulation of (S, M). We will thus denote 
the cluster category by C(S, M) or C.

In [6] the cluster category C(S,M) associated to a surface with marked points on the 
boundary is explicitly described. In particular, a parametrization of the indecomposable 
objects of C(S, M) is given in terms of string objects and band objects. The string objects 
correspond bijectively to the homotopy classes of non-contractible curves in (S, M) that 
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are not homotopic to a boundary segment of (S, M) and subject to the equivalence 
relations γ ∼ γ−1. The band objects correspond bijectively to the elements of k∗ ×
Π∗

1(S, M)/ ∼ where Π∗
1(S, M) are the invertible elements of the fundamental group 

of (S, M) and where ∼ is the equivalence relation generated by γ ∼ γ−1 and cyclic 
permutation of γ.

Furthermore, it is shown in [6] that the AR-translation of an indecomposable object 
γ corresponds to simultaneously rotating the start and end points of γ in the orientation 
of (S, M).

Unless otherwise stated we will not distinguish between arcs and the corresponding 
indecomposable objects in C(S, M).

The following theorem plays a crucial role in our results.

Theorem 2.6. [42, Theorem 3.4] Let γ and δ be two (not necessarily distinct) arcs in 
(S, M). Then 

dimk Ext1C(γ, δ) = Int(γ, δ).

2.4. Snake graphs

In this section we state and prove two results relating to snake graphs, namely Propo-
sitions 2.13 and 2.16. These results form the basis of many of the proofs in sections 3
and 4. For the convenience of the reader we recall in this section all relevant results on 
snake graphs that we refer to in later sections. We define snake graphs associated to 
triangulations of surfaces as in [32] and [7,8]. Below, we closely follow the exposition in 
[8] adapting it to snake graphs associated to surface triangulations.

Let T be a triangulation of (S, M) and γ be an arc in (S, M) which is not in T . 
Choose an orientation of γ. We choose γ to be a representative in its homotopy class 
which transversally intersects the arcs of T such that no arc of T is crossed twice in 
succession. Let τi1 , . . . , τid be the arcs of T crossed by γ in the order given by the 
orientation of γ. Note that we choose γ to be a representative in its homotopy class such 
that γ has a minimal number of intersections with τi1 , . . . , τid . It is however possible that 
τij = τik for j �= k. For an arc τij , let Δj−1 and Δj be the two triangles in (S, M, T )
that share the arc τij and such that γ first crosses Δj−1 and then Δj . Note that each Δj

always has three distinct sides, but that two or all three of the vertices of Δj might be 
identified. Let Gj be the graph with 4 vertices and 5 edges, having the shape of a square 
(with a fixed side length) with a diagonal that satisfies the following property: there is 
a bijection of the edges of Gj and the 5 distinct arcs in the triangles Δj−1 and Δj and 
such that the diagonal in Gj corresponds to the arc τij . That is, Gj corresponds to the 
quadrilateral with diagonal τij formed by Δj−1 and Δj in (S, M, T ).

Given a planar embedding G̃j of Gj , we define the relative orientation rel(G̃j , T ) of 
G̃j with respect to T to be 1 or −1 depending on whether the triangles in G̃j agree or 
disagree with the (common) orientation of the triangles Δj−1 and Δj in (S, M, T ).
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Fig. 2. Snake graph associated to the arc γ.

Using the notation above, the arcs τij and τij+1 form two edges of the triangle Δj. Let 
σj be the third arc in this triangle. We now recursively glue together the tiles G1, . . . , Gd

one by one from 1 to d in the following way: choose planar embeddings of the Gj such 
that rel(G̃j , T ) �= rel(G̃j+1, T ). Then glue G̃j+1 to G̃j along the edge labelled σj .

After gluing together the d tiles G1, . . . , Gd, we obtain a graph (embedded in the 
plane) which we denote by GΔ

γ .

Definition 2.7. The snake graph Gγ associated to γ is obtained from GΔ
γ by removing the 

diagonal in each tile. If τ ∈ T then we define the associated snake graph Gτ to be the 
graph consisting of one single edge with two distinct vertices (regardless of whether the 
endpoints of τ are distinct or not).

The labels on the edges of a snake graph, given by the corresponding arcs in the 
triangulation, are called weights. Sometimes snake graphs with weights are referred to 
as labelled snake graphs. See Fig. 2 for an example of a labelled snake graph associated 
to an arc.

The d − 1 edges corresponding to the arcs σ1, . . . , σd−1 which are contained in two 
tiles are called interior edges of Gγ . Denote this set by Int(Gγ). The edges of Gγ not in 
Int(Gγ) are called boundary edges. We define a subgraph Gγ[i, i + t], for 1 ≤ i ≤ d and 
for 0 ≤ t ≤ d − i, to be the subgraph of Gγ consisting of the tiles (Gi, . . . , Gi+t).

Let SWGγ (resp. GNE
γ ) be the set containing the 2 elements corresponding to the 

south and west edge of G1 (resp. the north and east edge of Gd). Define Gγ \Pred(σi) =
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Fig. 3. The leftmost figure corresponds to an overlap crossing in terms of snake graphs and a module crossing 
in terms of string modules, the middle figure corresponds to grafting with s = d in terms of snake graphs 
and an arrow crossing in terms of string modules, and the rightmost figure corresponds to grafting with 
s �= d in terms of snake graphs and a 3-cycle crossing in terms of string modules.

Gγ [i +1, d]. If e is an edge in GNE
γ then Gγ\Pred(e) = {e}. Analogously, let Gγ\Succ(σi) =

Gγ [1, i]. If e is an edge in SWGγ then Gγ \ Succ(e) = {e}.
If all tiles of a snake graph Gγ are in a row or a column, we call Gγ straight and we 

call it zigzag if no three consecutive tiles are straight.
Note that there is a notion of abstract snake graphs as combinatorial objects intro-

duced in [7]. However, all snake graphs we consider here are snake graphs associated to 
arcs in triangulated surfaces as introduced above. In general, we will use the notation G
if we do not need to refer to the associated arc or if the arc is clear from the context.

Definition 2.8. A sign function on a snake graph G is a function f from the set of interior 
edges {σ1, . . . , σd−1} to the set {+, −} such that

(1) if three consecutive tiles Gi−1, Gi, Gi+1 form a straight piece then f(σi−1) = −f(σi),
(2) if three consecutive tiles Gi−1, Gi, Gi+1 form a zigzag piece then f(σi−1) = f(σi).

Extend the sign function to all edges of G by the following rule: opposite edges have 
opposite signs and the south side and east side of each tile have the same sign as do the 
north and west side of each tile.

Note that for every snake graph there are two sign functions, f and f ′ such that 
f(σi) = −f ′(σi), for each 1 ≤ i ≤ d − 1.

A crossing of two arcs γ1, γ2 has an interpretation in terms of the associated snake 
graphs as given in [7] and as further explored in [8]. Depending on the triangulation and 
the arcs, there are three different ways in which the two arcs can cross, see Fig. 3. In 
the first case, the arcs cross in what we refer to as an overlap since both arcs γ1 and 
γ2 cross at least one common arc in the triangulation and the crossing can be moved 
up to homotopy to any triangle adjoining an arc of the triangulation crossed by both 
γ1 and γ2. In the last two cases the crossing occurs in a single triangle and cannot be 
moved outside of this triangle by homotopy. We say that the arcs cross in a triangle.

In terms of snake graphs and using the terminology of [8] these crossings correspond 
to a crossing overlap, grafting with s = d and grafting with s �= d. Note that the integer 
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d corresponds to the number of tiles of the snake graph G1 corresponding to γ1 and s is 
some integer 1 ≤ s ≤ d as defined in [8, Section 3.3] denoting the position at which the 
‘grafting’ takes place. We will later see in Section 3 that these correspond to three types 
of module crossings, namely crossing in a module, arrow crossing, and 3-cycle crossing, 
respectively.

We start by defining an overlap of two snake graphs and a self-overlap of a snake 
graph.

Definition 2.9. [8, Section 2.5] Let G1 = (G1, G2, . . . , Gd) and G2 = (G′
1, G

′
2, . . . , G

′
d′)

be two snake graphs such that there exists two embeddings of graphs i′1 : G → G1 and 
i′2 : G → G2 such that, for j = 1, 2, the image ij(G) is either identical to G, a 180◦ rotation 
of G, or a reflection of G at one of the lines y = x or y = x. In particular, the south west 
vertex of the first tile of G has to be mapped to the south west vertex of the first tile in 
ij(G) or to the north west vertex of the last tile in ij(G). Moreover, we require that i1
and i2 are maximal in the following sense:

(1) If G has at least two tiles and if there exists a snake graph G′ with two embeddings 
i′1 : G′ → G1, i′2 : G′ → G2 such that i1(G) ⊆ i′1(G′) and i2(G) ⊆ i′2(G′) then 
i1(G) = i′1(G′) and i2(G) = i′2(G′).

(2) G is a snake graph consisting of at least one tile.

If the above the hold then we say that G1 and G2 have an overlap at G.

In the case of a self-overlap we might have i1(G) ∩ i2(G) �= ∅.
Two snake graphs might have several overlaps with respect to the same and different 

snake sub-graphs.

Definition 2.10. [8, Definition 2.4] Let G1 = (G1, . . . , Gd) and G2 = (G′
1, . . . , G

′
d′) be two 

snake graphs with overlap G and embeddings i1(G) = G1[s, t] and i2(G) = G2[s′, t′]. Let 
(σ1, . . . , σd−1) (respectively (σ′

1, . . . , σ
′
d′−1)) be the interior edges of G1 (respectively G2) 

and let f be a sign function on G. Then f induces sign functions f1 on G1 and f2 on G2. 
We say that G1 and G2 cross in G if one of the following conditions hold.

(1) f1(σs−1) = −f1(σt) if s > 1 and t < d or f2(σ′
s′−1) = −f2(σ′

t′) if s′ > 1 and t′ < d′,
(2) f1(σt) = f2(σ′

s′−1) if s = 1, t < d, s′ > 1, and t′ = d′ or f1(σs−1) = f2(σ′
t′) if s > 1, 

t = d, s′ = 1, and t′ < d′.

We call such an overlap a crossing.

We have a similar definition of a self-crossing overlap.

Definition 2.11. [8, Definition 2.6] Let G1 = (G1, . . . , Gd) be a snake graph with self-
overlap G and embeddings i1(G) = G1[s, t] and i2(G) = G1[s′, t′]. Let (σ1, . . . , σd−1)
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be the interior edges of G1 and let f be a sign function on G1. We say that G1 has a 
self-crossing in G if one of the following conditions hold.

(1) f(σs−1) = −f(σt) or f(σs′−1) = −f(σt′) if t′ < d,
(2) f(σt) = f(σs′−1).

We call such an overlap a self-crossing overlap.

We will now see that a crossing or self-crossing overlap corresponds to a crossing or a 
self-crossing of arcs.

Theorem 2.12. [8, Theorem 6.1] Let γ1, γ2 be (generalised) arcs and G1, G2 their corre-
sponding snake graphs.

(1) γ1, γ2 cross with a nonempty local overlap (τis , · · · , τit) = (τi′
s′
, · · · , τi′

t′
) if and only 

if G1, G2 cross in G1[s, t] ∼= G2[s′, t′].
(2) γ1 crosses itself with a non-empty local overlap (τis , · · · , τit) = (τi′

s′
, · · · , τi′

t′
) if and 

only if G1 has a self-crossing overlap G1[s, t] ∼= G1[s′, t′].

In the proof of Theorem 4.1 we consider self-crossings of an arc. However, the way 
we treat a self-crossing of an arc is by replacing the one arc by two copies of the same 
arc. We then smooth crossings of the ‘two’ arcs as opposed to [8] where self-crossings 
of the single arc are smoothed. This can be done because of the following more general 
statement.

Proposition 2.13. Let Gγ be a snake graph with a self-overlap G. Then G is a self-crossing 
overlap of Gγ if and only if G is a crossing overlap of two copies of Gγ.

We note that here we consider the two copies of Gγ as ‘distinct’ snake graphs.

Proof. Suppose f is a sign function on Gγ = (G1, . . . , Gs, . . . , Gs′ , . . . , Gd) and that 
Gγ has a self-crossing overlap G. Denote by (σ1, . . . , σd−1) the interior edges of Gγ . 
Then by Definition 2.11 there exist two embeddings i1(G) = (Gs, . . . , Gt) and i2(G) =
(Gs′ , . . . , Gt′) where s < s′ and f(σt) = f(σs′−1). Now consider two copies of Gγ , denote 
them by Gγ , G′

γ . Then we can canonically embed (Gs, . . . , Gt) into Gγ and (Gs′ , . . . , Gt′)
into G′

γ . Then by [7] this is an overlap for Gγ and G′
γ and the sign conditions for a crossing 

in the overlap G is satisfied by the sign function f on Gγ and on G′
γ .

The converse immediately follows from a similar argument. �
It is clear that reversing the roles of Gγ and G′

γ gives a similar result for the second 
crossing of Gγ and G′

γ and it immediately implies that the number of self-crossings of an 
arc γ with itself times two is equal to the number of crossings of two copies of γ.
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The smoothing of a crossing of two arcs γ1 and γ2 such that the associated snake 
graphs G1 and G2 cross in an overlap is called, in terms of snake graphs, the resolution of 
the overlap [8]. It immediately follows from the definitions above and below that given a 
self-crossing of an arc γ with associated snake graph Gγ , the two corresponding crossings 
of two copies of Gγ coincide and give rise to the same resolution.

We now define four snake graphs G3, G4, G5 and G6. For G[i, j] = (Gi, . . . , Gj), define 
G[j, i] = (Gj , . . . , Gi). In order to define G5 and G6, we introduce the notation G′

5 =
G1[1, s − 1] ∪ G2[s′ − 1, 1] where we glue the two subgraphs along the edge with weight 
σs and G′

6 = G2[d′, t′ + 1] ∪ G1[t + 1, d] where we glue the two subgraphs along the edge 
with weight σt.

Let f5 be a sign function on G′
5 and f6 a sign function on G′

6.
We then define four snake graphs as follows.
G3 = G1[1, t] ∪ G2[t′ + 1, d′] where the gluing of the two subgraphs is induced by the 

embedding i2 of G in G2;
G4 = G2[1, t′] ∪ G1[t + 1, d] where the gluing of the two subgraphs is induced by the 

embedding i1 of G in G1;

G5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G′
5 if s > 1, s′ > 1 ;

G′
5 \ Succ(σ) if s′ = 1 where σ is the last edge in Int(G′

5) ∪ SWG′
5 such that

f5(σ) = f5(σs−1);
G′

5 \ Pred(σ) if s = 1 where σ is the first edge in Int(G′
5) ∪ G′NE

5 such that
f5(σ) = f5(σ′

s−1);

G6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G′
6 if t < d, t′ < d′;

G′
6 \ Succ(σ) if t = d, where σ is the last edge in Int(G′

6) ∪ SWG′
6 such that

f6(σ) = f6(σ′
t′);

G′
6 \ Pred(σ) if t′ = d′, where σ is the first edge in Int(G′

6) ∪ G′NE
6 such that

f6(σ) = f6(σt).

In the above definition we write ResG(G1, G2) = (G3 � G4, G5 � G6) for the resolution 
of the crossing of G1 and G2.

Theorem 2.14. [8, Theorem 6.2] Let γ1, γ2 be (generalised) arcs and G1, G2 their cor-
responding snake graphs. The snake graphs of the four arcs obtained by smoothing the 
crossing of γ1 and γ2 in the overlap are given by the resolution Res G(G1, G2) of the 
crossing of the snake graphs G1 and G2 at the overlap G.

We now consider a particular crossing of two arcs γ1 and γ2 such that this crossing 
does not correspond to a crossing overlap in the associated snake graphs G1 and G2. This 
situation occurs exactly if the crossing of γ1 and γ2 occurs in what we call in section 3
a crossing in an arrow or in a 3-cycle in (S, M, T ). In particular, one (or both) of the 
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arcs will have at least one endpoint coinciding with a vertex in that triangle. Following 
[8] there are two cases to consider.

Let G1 = (G1, G2, . . . , Gd) and G2 = (G′
1, G

′
2, . . . , G

′
d′) be two snake graphs such that 

Gs �= G′
1 for some 1 ≤ s ≤ d and let f1 be a sign function on G1. Let δ be the unique 

common edge in GNE
s and SWG′

1 if it exists. Let f2 be a sign function on G2 such that 
f2(δ) = f1(δ). Then define four snake graphs as follows.

Case 1. Suppose s = d. 

G3 = G1 ∪ G2 where the two subgraphs are glued along the edge δ;

G4 = {δ};

G5 = G1 \ Succ(σ), where σ ∈SW G1 ∪ Int(G1) is the last edge such that f1(σ) = f1(δ);

G6 = G2 \ Pred(σ), where σ ∈ Int(G2) ∪ GNE
2 is the first edge such that f2(σ) = f2(δ).

Case 2. Suppose that s �= d. 

G3 = G1[1, s] ∪ G2, where the two subgraphs are glued along the edge δ;

G4 = G1 \ Pred(σ), where σ ∈ Int(G1[s + 1, d]) ∪ GNE
1 is the first edge such that

f1(σ) = f1(δ);

G5 = G1 \ Succ(σ), where σ ∈SW G1 ∪ Int(G1[1, s]) is the last edge such that

f1(σ) = f1(δ);

G6 = G2[d′, 1] ∪ G1[s + 1, d], where the two subgraphs are glued along the edge σs.

In the above definitions we write Graft s,δ(G1, G2) = (G3 � G4, G5 � G6) and we call it 
grafting of G2 on G1 at s.

Similarly, we consider a particular self-crossing of an arc γ such that this crossing does 
not correspond to a crossing in an overlap in the associated snake graph Gγ. As in the 
case of two distinct arcs this situation occurs exactly if the self-crossing of γ does not 
have any overlap. It is immediate that in terms of snake graphs detecting a self-crossing 
corresponding to a self-crossing of γ in a triangle is equivalent to considering the arc as 
two distinct arcs and two distinct snake graphs and detecting a crossing of two arcs in a 
triangle in terms of the two snake graphs.

Theorem 2.15. [8, Theorem 6.4] Let γ1 and γ2 be two arcs which cross in a triangle Δ
with an empty overlap, and let G1 and G2 be the corresponding snake graphs. Assume 
the orientation of γ2 is such that Δ is the first triangle γ2 meets. Then the snake graphs 
of the four arcs obtained by smoothing the crossing of γ1 and γ2 in Δ are given by the 
resolution Graft s,δ(G1, G2) of the grafting of G2 on G1 at s, where 0 ≤ s ≤ d is such that 
Δs = Δ and if s = 0 or s = d then δ is the unique side of Δ that is not crossed by either 
γ1 or γ2.
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Given a triangulation of (S, M), we now establish a one-to-one correspondence be-
tween the set of snake graphs with a sign function (excluding snake graphs consisting of 
a single edge) and the set of string modules of the associated Jacobian algebra J(Q, W ). 
Let M(wγ) be the string module corresponding to an arc γ and let Gγ be the associated 
snake graph. Then the arrows and their formal inverses uniquely define a sign function 
fγ on Gγ . Namely, let wγ = ε1 . . . εd−1 and let (σ1, . . . , σd−1) be the interior edges of Gγ . 
Define a sign function fγ on Gγ by setting fγ(σi) = φ(εi) where φ(εi) = + if εi ∈ Q1

and φ(εi) = − if ε−1
i ∈ Q1, for 1 ≤ i ≤ d − 1.

Set R = { (Gγ , fγ) | γ an arc in (S, M, T ) and such that γ is not in T }. The follow-
ing result is immediate.

Proposition 2.16. There is a bijection between the set of strings S over J(Q, W ) and 
the set R given by the map that associates (Gγ , fγ) to the string wγ for every arc γ in 
(S, M, T ), γ /∈ T .

Such a correspondence in the setting of a triangulation of the once-punctured torus 
has also been noted in [39].

3. Extensions for the Jacobian algebra

Let J(Q, W ) be the Jacobian algebra associated to a triangulation of a marked surface 
(S, M) with all marked points in the boundary and such that every boundary component 
contains at least one marked point.

In this section we interpret the crossing of arcs in terms of the corresponding string 
modules over J(Q, W ). We do this by using the characterization of crossing arcs in 
terms of snake graphs introduced in Section 2.4 and the snake graph and string module 
correspondence given in Proposition 2.16.

3.1. Crossing string modules

Given two (not necessarily distinct) arcs in a surface (S, M), recall that there are 
three types of configurations in which these arcs can cross, see Fig. 3.

Each of these crossings gives rise to a different structure of the corresponding string 
modules which leads to Definition 3.1.

We use the notation Pred(α) for the substring preceding an arrow or an inverse arrow 
α in a string w and similarly we use the notation Succ(α) for the substring succeeding 
an arrow or an inverse arrow α in a string w.

Definition 3.1. We say that a string module M crosses a string module N if there exist 
strings wM and wN such that M � M(wM ) and N � M(wN ) and if one of the following 
three conditions hold
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(1) there exists a string w ∈ S, possibly consisting of a single vertex only, and such that 
wM and wN do not both start at s(w) or do not both end at t(w) and if

wM = Pred(α) α−→ w
β←− Succ(β) and wN = Pred(ε) ε←− w

δ−→ Succ(δ)

where α, β, ε, δ are arrows in Q1. If α (resp. ε) doesn’t exist then wM (resp. wN ) 
starts with w and if β (resp. δ) doesn’t exist then wM (resp. wM ) ends with w;

(2) there exists an arrow α in Q1 such that wM
α−→ wN ∈ S;

(3) if there exists a 3-cycle a α b

δ

c

β

in Q with αδ, δβ, βα ∈ I and such that α is in 

wM and s(wN ) = c and wN does not start or end with δ or β nor their inverses. 

Moreover, if (1) holds we say that M crosses N in a module, if (2) holds we say that M
crosses N in an arrow and if (3) holds we say that M crosses N in a 3-cycle. Moreover, if 
M = N , we say M has a self-crossing in a module, an arrow, and a 3-cycle, respectively.

Furthermore, if in (1) the arc γM(w) is a self-crossing arc, we say M1 crosses M2
in a self-crossing module M(w), and if M = N , we say that M has a self-crossing in 
a self-crossing module M(w). In accordance with the terminology of snake graphs, we 
say that the corresponding arcs γ1 and γ2 have a crossing in a self-crossing overlap. 
If the arc γM(w) has no self-crossing then we say that the respective crossing is in a 
non-self-crossing module M(w).

Remark 3.2. 
(1) We note that there is a direction in the crossings of modules. Namely, for a fixed 

crossing, we say that M crosses N or N crosses M . We will see in Theorem 3.7 that 
for a particular crossing, M crossing N will give rise to an element in Ext1J (M, N)
if the crossing is in a module or in an arrow whereas there will be no element in 
Ext1J (N, M) corresponding to this crossing.

(2) It is possible for a string module M to cross a string module N simultaneously in a 
module, in an arrow and in a 3-cycle. In Section 5 we give an example of all three 
types of crossings of modules as defined above.

(3) Crossings in modules as described in 3.1(1) have also been considered in [6,42]. It 
also immediately follows from [11] that there is a non-zero homomorphism from N
to M in that case.

(4) It is possible for M to cross N several times in modules, arrows and 3-cycles. For an 
example, see Section 5.

(5) It is possible for M to cross N and for N to cross M , see Section 5 for an example.

Proposition 3.3. Let M and N be two string modules over J(Q, W ) with corresponding 
arcs γM and γN in (S, M). Then γM and γN cross if and only if M crosses N or N
crosses M .
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Fig. 4. Overlap crossing where both the arcs γM and γN might self-cross multiple times.

Fig. 5. Local configurations of crossings of γM and γN induced by the module M crossing the module N , 
corresponding in (a) to a crossing as in Definition 3.1 (2) and in (b) to Definition 3.1 (3).

Fig. 6. The five possible ways two arcs can cross in any given triangle.

Proof. First assume, without loss of generality, that M crosses N , that is, Definition 3.1
(1), (2) or (3) holds. First suppose that M crosses N in a module. Let wM and wN be 
the associated strings as defined in 3.1 (1). Then if the arrows α, β, δ, ε all exist, we have 
a local configuration as in Fig. 4.

The endpoints A, B, C, A′, B′ and C ′ in Fig. 4 might (all) coincide. If α does not exists 
then in the orientation given in Fig. 4, the arc γM starts at C and by definition the arrow 
ε must exist since, by definition, the strings wM and wN do not start at the same vertex. 
Similarly for the end points hence either δ or ε exists and thus γM and γN cross.

If M and N cross as in Definition 3.1 (2), then with the induced orientation on γM
and γN , we have a local configuration as in Fig. 5 (a) and thus γM and γN cross.

If M and N cross as in Definition 3.1 (3), then with the induced orientation on γM , γN , 
we have a local configuration as in Fig. 5 (b) and γM and γN cross.

Conversely, suppose that γM and γN cross. Then there are 5 possible local configura-
tions of a crossing of γM and γN as in Fig. 6.

By homotopy, configuration (1) can always be reduced to either configuration (2) 
or (3). So suppose that γM and γN are as in configuration (2) or (3) of Fig. 6. Then 
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Fig. 7. Crossing of γM and γN where γM and γN both successively cross τ1, . . . , τn.

locally the crossing takes place in a configuration as in Fig. 7 where γM might start or 
end at C or C ′ and γN might start or end at C or C ′ but not both γM and γN start 
or end simultaneously at either point. Let wM and wN be the strings associated to the 
orientation of γM or γN in Fig. 7. We could also have chosen the inverse orientation for 
both γM and γN and then have worked with w−1

M and w−1
N . Given the chosen orientation, 

let γAB be the first arc of T both arcs γM and γN cross with respect to the crossing 
under consideration and suppose that γM and γN then both successively cross the arcs 
γAB = τ1, τ2, · · · , τn of the triangulation T (where possibly τi = τj for some i, j).

In order for γM and γN to cross as in Fig. 7 we must have either γM crossing τCB

and γN crossing τAC or γN starting at C or if γM starts at C then γN must cross τAC .
If γM crosses τCB then wM = uMαwβ−1vM and wN = uNε−1wδvN or wN = wδvN for 

some strings w, uM , uN , vM and vN . If we set Pred(α) = uM , Pred(ε) = uN , Succ(β) =
vM and Succ(δ) = vn then wM and wN are exactly as in Definition 3.1 (1) and thus M
crosses N in a module.

If γM starts at C then wM = wβ−1vM and wN = uNε−1wδvN for some strings 
w, uM , uN , vM and vN . Again the result follows if we set Pred(α) = uM , Pred(ε) = uN , 
Succ(β) = vM and Succ(δ) = vn.

Similarly, if γM and γN end at D then the strings wM and wN are again exactly as 
in Definition 3.1 (1) and M crosses N in a module.

Suppose γM and γN cross locally as in configuration (4) in Fig. 6. Then there is an 
orientation of γM and γN such that we have a local configuration as in Fig. 5 (a).

Hence the crossing cannot be moved outside the triangle ABC by homotopy without 
increasing the number of intersections of γM or γN with the arcs of the triangulation. 
Therefore e(wM ) = vτAB

and s(wN ) = vτAC
and thus we can form the string wMαwN

and M crosses N in an arrow.
Suppose γM and γN cross locally as in configuration (5) in Fig. 6 which corresponds 

to a crossing of oriented arcs as in Fig. 5 (b). Again the crossing cannot be moved outside 
the triangle ABC by homotopy without increasing the number of intersection of γM and 
γN with the arcs of the triangulation.

Then a α b

γ

c

σ

is a 3-cycle such that αγ, γσ, σα are in I. Furthermore, α is in wM , 
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Fig. 8. Existence of the arrow σ in the case of a crossing in a module.

s(wN ) = c and wN does not start with α or γ nor their inverses. Hence M crosses N in 
a 3-cycle. �

We now show the existence of some arrows that occur if M crosses N in a module. 
These arrows will be needed in Definition 3.5 (1) below.

Lemma 3.4. Let Q be a quiver associated to a triangulation of (S, M). Suppose two 

strings w and v are of the form w = Pred(α) α−→ u 
β←− Succ(β) and v = Pred(γ) γ←−

u δ−→ Succ(δ) where u ∈ S and α, β, γ, δ are arrows in Q1. Then if the arrows α and γ
exist with αγ ∈ I then there exists an arrow σ in Q such that a α b

γ

c

σ

is a 3-cycle in 

Q and γσ ∈ I and σα ∈ I and b = s(u).
Similarly, if the arrows β and δ exist with βδ ∈ I then there exists an arrow ρ in Q

such that d

δ

eβ

f

ρ

is a 3-cycle in Q and βρ ∈ I and ρδ ∈ I and d = t(u). 

Proof. Let u = u1
μ1

u2
μ2

u3 · · · ur

μr

ur+1 . Then αμ1 ∈ S and γ−1μ1 ∈
S and αγ is a non-zero path in Q. Since either μ1 ∈ Q1 or μ−1

1 ∈ Q1 we have either 
αμ1 ∈ kQ and αμ1 /∈ I or μ−1

1 γ ∈ kQ and μ−1
1 γ /∈ I. Since J(Q, W ) is gentle, by (S2) 

we have αγ ∈ I. Since J(Q, W ) is a gentle algebra coming from a surface triangulation 
this implies that there exists an arrow σ such that αγσ is a 3-cycle in Q and that γσ ∈ I

and σα ∈ I, see Fig. 8.
A similar argument proves the existence of the 3-cycle containing ρ. �

3.2. Smoothing of crossings for string modules

Given two arcs in (S, M) that cross, the smoothing of a crossing gives rise to four 
new arcs as in Fig. 9. We interpret these arcs in terms of string modules.

Given two string modules M1 = M(w1) and M2 = M(w2) in mod J(Q, W ) such that 
the associated arcs γ1 and γ2 cross in (S, M), we define four new modules M3 = M(w3), 
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Fig. 9. Smoothing a crossing of γ1 and γ2.

M4 = M(w4), M5 = M(w5) and M6 = M(w6). By possibly relabelling M1 and M2 we 
can always assume that M1 crosses M2.

Definition 3.5. Let M1 and M2 be two string modules over J(Q, W ) with strings w1
and w2, respectively.

(1) Suppose M1 crosses M2 in a module M(w). That is 

w1 = Pred(α) α−→ w
β←− Succ(β) and w2 = Pred(γ) γ←− w

δ−→ Succ(δ)

where α, β, γ, δ are arrows in Q1. Define
w3 = Pred(α) α−→ w

δ−→ Succ(δ)
w4 = Pred(γ) γ←− w

β←− Succ(β)

w5 =

⎧⎪⎨⎪⎩
Pred(α) σ←− Pred−1(γ) if s(w1) �= s(w) and s(w2) �= s(w)
Pred(α)c if s(w2) = s(w)
Pred(γ)h if s(w1) = s(w)

w6 =

⎧⎪⎨⎪⎩
Succ−1(β) ρ←− Succ(δ) if t(w1) �= t(w) and t(w2) �= t(w)
cSucc(β) if t(w2) = t(w)
hSucc(δ) if t(w1) = t(w)

where σ, ρ ∈ Q1 are as in Lemma 3.4.
(2) Suppose M1 crosses M2 in an arrow α. Suppose without loss of generality that 

s(α) = t(w1) and t(α) = s(w2). Define
w3 = w1

α−→ w2
w4 = 0
w5 = (w1)c
w6 = hw2.

(3) Suppose M1 crosses M2 in the 3-cycle s(w2) γ s(α)

α

t(α)

β

where (modulo invert-

ing w1) w1 = Pred(α) α−→ Succ(α). Define
w3 = Pred(α) γ←− w2
w4 = c(s(α) α−→ Succ(α))
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w5 = (Pred(α) α−→ t(α))h
w6 = w−1

2
β←− Succ(α).

Just as is the case for snake graphs, if M1 = M2 then one self-crossing gives rise to 
two crossings of modules when we consider two copies of the same module. However, the 
smoothing of either of the two crossings results in the same four modules. Therefore it 
is enough to consider only one of the crossings in each case.

Proposition 3.6. Let γ1 and γ2 be two crossing arcs in (S, M, T ) with strings w1 and 
w2 respectively. Consider a given crossing of γ1 and γ2. Then the arcs γ3, γ4, γ5 and γ6
defined by the strings in Definition 3.5 correspond to the arcs obtained by smoothing the 
given crossing of γ1 and γ2 as in Definition 2.4.

Proof. This follows directly from the resolution and grafting of snake graphs in [7] which 
for the convenience of the reader we have recalled in Section 2.4 in Theorems 2.14
and 2.15. �

We show that this enables us for any crossing to characterise whether it gives rise 
to a short exact sequence in J(Q, W ) or not and if there is a short exact sequence we 
describe the middle terms in terms of the arcs obtained from smoothing the crossing.

Theorem 3.7. Let M1 and M2 be string modules in mod J(Q, W ).

(1) If M1 crosses M2 in a module then the modules M3 and M4 defined in Defini-
tion 3.5(1) above give a non-split short exact sequence in mod J(Q, W ) of the form 

0 −→ M2 −→ M3 ⊕M4 −→ M1 −→ 0.

(2) If M1 crosses M2 in an arrow then the module M3 defined in Definition 3.5(2) above 
gives a non-split short exact sequence in mod J(Q, W ) of the form 

0 −→ M2 −→ M3 −→ M1 −→ 0.

(3) If M1 crosses M2 in a 3-cycle then the modules M3 and M4 defined in Defini-
tion 3.5(3) above do not give rise to an element in Ext1J(Q,W )(M1, M2).

Proof. We use the notation of Definition 3.5.
(1) Set w1 = P1wS1 where P1 = Pred(α) α−→ and S1 = β←−Succ(β) and set 

w2 = P2wS2 where P2 = Pred(γ) γ←− and S2 = δ−→Succ(δ). By definition we do 
not simultaneously have P1 = 0 and P2 = 0 or S1 = 0 and S2 = 0. Thus by [40] the 
sequence 0 −→ M2 −→ M3 ⊕M4 −→ M1 −→ 0 is a non-split short exact sequence.

(2) This follows directly from the canonical embedding M(w2) −→ M(w1
α−→ w2)

and the canonical projection M(w1
α−→ w2) −→ M(w1), see [5].
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Fig. 10. Geometric interpretation of Theorem 3.7.

(3) Since dimM(c(
α−→ Succ(α)) < dimM( α−→ Succ(α)) it is immediate by comparing 

the dimensions of M1 ⊕M2 and M3 ⊕M4 that these four modules cannot give rise to a 
short exact sequence in mod J(Q, W ). �
Remark 3.8. 
(1) The geometric interpretation of the module crossings in Theorem 3.7 is as follows:

For Theorem 3.7 (1), the module M1 crossing the module M2 corresponds to a 
crossing of the corresponding arcs γ1 and γ2 as in Fig. 10 (1) and the modules M3

and M4 correspond to the arcs γ3 and γ4.
If M1 crosses M2 as in Theorem 3.7 (2), in the geometric set-up this corresponds to 
a crossing of arcs as in Fig. 10 (2). In this case γ4 is either a boundary arc or an arc 
in the triangulation and the corresponding module M4 is the zero module.
For modules crossings as in Theorem 3.7 (3), the geometric picture is as in Fig. 10 (3).

(2) In general, M5 and M6 as defined above never give rise to an element in 
Ext1J(Q,W )(M1, M2) nor in Ext1J(Q,W )(M2, M1) since dim(M5 ⊕ M6) ≤ dim(M1 ⊕
M2) − 1.

(3) If M2 = M(γ) and M1 = M(sγe) for an arc γ in (S, M) where sγe is the arc rotated 
by the elementary pivot moves as defined in [6] then in Theorem 3.7(i) and (ii) above 
we recover the AR-sequences described in [6].

4. Extensions in the cluster category and dimension formula for Jacobian algebras

In this section let C(S, M) be the cluster category of a marked surface (S, M) where 
all marked points lie in the boundary of S and each boundary component has at least 
one marked point.

In Theorem 4.1 we explicitly describe the middle terms of triangles in C(S, M). 
Namely, we show that any crossing of two arcs gives rise to at least one triangle in 
the cluster category where the middle terms of the triangle are given by one of the pairs 
of arcs obtained by smoothing the crossing. In almost all cases, except if the crossing has 
a self-overlap as defined in Definition 3.1, the middle terms of the triangle in the opposite 
direction are given by the other pair of arcs obtained by smoothing the crossing.
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Let M1 = M(γ1) and M2 = M(γ2) be two string J(Q, W )-modules corresponding 
to the string objects γ1 and γ2 in C(S, M). It follows immediately from [35] (see also 
[23, Lemma 4.4]) that every short exact sequence in mod J(Q, W ) lifts to a triangle in 
C(S, M) such that the image under the canonical projection functor from C(S, M) to 
mod J(Q, W ) is isomorphic to the short exact sequence. Since both the indecomposable 
objects in the cluster category and as well as the indecomposable modules over the 
Jacobian algebra correspond to arcs in the surface (where the canonicity of this bijection 
follows from the Appendix to this paper), we can use the associated string to explicitly 
check whether we have a short exact sequence in the module category. It then follows 
that this short exact sequence comes from the triangle corresponding to the same set of 
arcs in the associated cluster category. Therefore by Theorem 3.7, we have that

(*) if M1 crosses M2 in a module and if M3 = M(γ3) and M4 = M(γ4) are defined as in 
Definition 3.5(1) then by there is a non-split triangle in C(S, M) given by 

γ2 −→ γ3 ⊕ γ4 −→ γ1 −→ γ2[1].

Note that in this situation, even if the module crossing is self-crossing, we obtain this 
triangle in C(S, M).
(**) if M1 crosses M2 in an arrow α and if M3 = M(γ3) is defined as in Definition 3.5(2) 
then there is a non-split triangle in C(S, M) given by 

γ2 −→ γ3 ⊕ γ4 −→ γ1 −→ γ2[1]

where γ4 �= 0 if and only if γ4 is not a boundary arc.

Theorem 4.1. Let γ1 and γ2 be two string objects (not necessarily distinct) in C(S, M)
such that their corresponding arcs cross in (S, M). Let γ3, γ4, γ5, γ6 be the string objects 
corresponding to the smoothing of a crossing of a suitable orientation of the corresponding 
arcs γ1 and γ2. Then there is a non-split triangle in C(S, M) given by 

γ2 −→ γ3 ⊕ γ4 −→ γ1 −→ γ2[1] (3)

and if the crossing of γ1 and γ2 is not in a self-crossing overlap in some triangulation 
of (S, M) then we obtain a non-split triangle given by 

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1] (4)

where γ3, γ4, γ5, γ6 are zero objects in C(S, M) if they correspond to boundary arcs.

Before we give a proof of Theorem 4.1 in Section 4.1, we explore some consequences.

Remark 4.2. Keeping the notations of Theorem 4.1, suppose that we are given a par-
ticular triangulation of (S, M). Then we have the following two facts:
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(i) For every crossing of γ1 and γ2 that corresponds to either an arrow crossing or 
a 3-cycle crossing of the associated string modules, we always obtain exactly two 
triangles in the cluster category with middle terms given by γ3 ⊕ γ4 and by γ5 ⊕ γ6, 
respectively.

(ii) For every crossing of γ1 and γ2 that corresponds to a non-selfcrossing module cross-
ing of the associated string modules we obtain exactly two triangles in the cluster 
category with middle terms given by γ3 ⊕ γ4 and by γ5 ⊕ γ6. If the module crossing 
is self-crossing, we only obtain one of the two triangles in the cluster category and 
the middle terms of that triangle are given by one of the two pairs of arcs obtained 
from smoothing the crossing. In Theorem 4.1 we have denoted this pair of arcs by 
γ3 ⊕ γ4. By the 2-Calabi Yau property of the cluster category and by [42] we know 
that this crossing must also give rise to a second triangle.

Question 4.3. It is an open question whether, in the self-crossing module crossing case, 
the middle terms of the second triangle in Remark 4.2 (ii) are also induced by the ‘other’ 
pair of arcs, which in the notation of Theorem 4.1 are γ5 and γ6.

Combining Theorem 3.7 with Theorem 4.1 and [42, Theorem 3.4] we obtain a formula 
for the dimensions of the first extension space over the Jacobian algebra in the case 
where the arcs do not create a self-crossing overlap.

Corollary 4.4. Let M, N be two string modules over J(Q, W ) and let γM and γN be the 
corresponding arcs in (S, M) such that γM and γN have no crossing with self-crossing 
overlap.

(1) A basis of Ext1J(Q,W )(M, N) is given by all short exact sequences arising from M
crossing N in a module or an arrow and where the middle terms are as described in 
Theorem 3.7;

(2) We have 

dim Ext1J(Q,W )(M,N) + dim Ext1J(Q,W )(N,M) = Int(γM , γN ) − k − k′

where k (resp. k′) is the number of times that M crosses N (resp. N crosses M) in 
a 3-cycle. In particular, if M = N we have 

2 dim Ext1J(Q,W )(M,M) = Int(γM , γM ) − 2k.

Proof. (1) Fix a crossing p of γM and γN and suppose without loss of generality that 
this crossing yields M crosses N in mod J(Q, W ). Then M crosses N either in a non-
self-crossing module, in an arrow, or in a 3-cycle. Let γ3, . . . , γ6 be the arcs obtained 
by smoothing the crossing p. By view of Theorem 4.1, it is sufficient to check whether 
M(γ3), M(γ4) or M(γ5), M(γ6) appear as middle terms of a non-split short exact se-
quence from N to M . If M crosses N in a non-self-crossing module or in an arrow at p, 
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then by Theorem 3.7 there exists a non-split short exact sequence with middle terms 
given by M(γ3) and M(γ4). If M crosses N in a 3-cycle, then by Theorem 3.7 this does 
not result in a short exact sequence from N to M with middle terms M(γ3) and M(γ4). 
The modules M(γ5) and M(γ6) never induce an element in Ext1J(Q,W )(M, N).

(2) From the proof of (1) we see that a dimension formula for Ext1J(Q,W )(M, N) ac-
counts only for the number of times M crosses N in a (non-self-crossing) module or in an 
arrow. The result then follows from the dimension formula in [42] and Theorem 3.7. �
4.1. Proof of Theorem 4.1

Our general strategy for the proof of Theorem 4.1 is as follows.
We consider each type of crossing separately. That is, given a fixed triangulation T of 

(S, M) and two string objects γ1 and γ2 in C(S, M) corresponding to two crossing arcs in 
(S, M), we treat the different crossings of the corresponding string modules M1 = M(w1)
and M2 = M(w2) one by one.

If the crossing under consideration is a crossing in a module then by (*) above we 
obtain one triangle with two middle terms given by the string objects γ3 and γ4. The 
other triangle is obtained by possibly flipping the overlap to an orthogonal overlap (see 
proof of Theorem 4.1, Section 4.1.1, Case 1 below for the definition. However, sometimes 
this is not possible. In this case we adapt a strategy similar to the one in [42]. That is, 
we increase the number of marked points in the surface by one or two points to obtain a 
surface (S, M′) where M ⊂ M′. We triangulate (S, M′) by adding one or two arcs and 
flip the—now bigger—overlap to an orthogonal overlap. This gives rise to a triangle from 
γ1 to γ2 with middle terms γ5 and γ6 in C(S, M′) where here γ1 and γ2 are considered 
as arcs in (S, M′). Then by flipping the new (orthogonal) arc and using the cutting 
procedure described in [30] which is compatible with Iyama–Yoshino reduction [22], we 
obtain the triangle involving the arcs γ5 and γ6 in C(S, M).

If the crossing under consideration is an arrow crossing then by (**) above we obtain a 
triangle with middle terms corresponding to the arcs γ3 and γ4. The other triangle is then 
obtained by either flipping an arc in the triangulation and thus creating an overlap (i.e. 
a module crossing) which we can flip to an orthogonal overlap or, if this is not possible, 
by adding a marked point to obtain a surface (S, M′) with M ⊂ M′ and completing it 
to a triangulation of (S, M′). In which case we obtain an overlap which we can flip to 
an orthogonal overlap. This gives rise to a triangle in C(S, M′). By cutting according 
to [30], we obtain the corresponding triangle from γ1 to γ2 in C(S, M) with middle terms 
γ5 and γ6.

If the crossing is a crossing in a 3-cycle then none of the triangles in C(S, M) are 
obtained from non-split short exact sequences in the Jacobian algebra corresponding to 
the given triangulation T . Instead we change the triangulation to create a crossing in 
a module—by possibly adding a marked point. Once we are in the case of a module 
crossing we can adapt the described strategy for module crossings above.
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Fig. 11. Case 1 : Local configuration of γ1 and γ2 crossing in a module where A and B might coincide.

4.1.1. Module crossing
Here we consider the case that M1 = M(w1) crosses M2 = M(w2) in a module. In 

terms of snake graphs a crossing in a module corresponds to a crossing in an overlap G. 
Therefore as explained above, by Theorem 3.7 there always is a non-split triangle in 
C(S, M) given by 

γ2 −→ γ3 ⊕ γ4 −→ γ1 −→ γ2[1].

When we give an orientation to an arc γ, we call s(γ), the marked point at which γ
starts and t(γ) the marked point at which γ ends. In order to prove the existence of the 
triangle involving γ5 and γ6, there are several cases to consider depending on where the 
arcs γ1 and γ2 start and end with respect to the overlap.

Let w1 = P1wS1 and w2 = P2wS2 where w corresponds to the overlap G. Let 
τ1, τ2, . . . , τn be the arcs corresponding to the overlap G, that is s(w) = τ1 and t(w) = τn.

Case 1: P1 �= 0, S1 �= 0, P2 �= 0, S2 �= 0.

In (S, M) this corresponds to the local configuration as in Fig. 11.
In particular, M1 crosses M2 such that t(P1) = i and t(P2) = j and s(S1) = l and 

s(S2) = k.
Since the crossing is not a self-crossing overlap, there exists an arc τAB from A to B

crossing the arcs τ1, . . . , τn. Let T ′ be the triangulation containing τAB and such that 
the flips of τ1, . . . , τn in T ′ are connected to A and do not cross the arc τAB. Locally τAB

lies in T ′ as in Fig. 12.
We denote by J(Q′, W ′) the Jacobian algebra with respect to the new triangulation T ′. 

Let M ′
1 and M ′

2 be the string modules over J(Q′, W ′) corresponding to the arcs γ1 and γ2. 
Now M ′

2 crosses M ′
1 in a new overlap corresponding to τAB. We call this new overlap an 

orthogonal flip of the overlap G.
More explicitly, let w′

1 (resp. w′
2) be the string of γ1 (resp. γ2) in (S, M, T ′). Then 

w′
1 contains the subword b ←− a −→ d and (w′

2)−1 contains the subword e −→ a ←− c
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Fig. 12. Triangulation T ′ where a denotes the arc τAB .

Fig. 13. Case 2 (i) a): Local configuration of γ1 and γ2 where A, s(γ1) and s(γ2) may coincide.

where, as in Fig. 12, a denotes the arc τAB. This gives rise to M ′
2 = M(w′

2) crossing 
M ′

1 = M(w′
1) in the simple module M(a).

By Theorem 3.7(i) this gives rise to a non-split short exact sequence 

0 −→ M ′
1 −→ M ′

3 ⊕M ′
4 −→ M ′

2 −→ 0

where M ′
3 (resp. M ′

4) is the string module over J(Q′, W ′) corresponding to the arc γ5
(resp. γ6) with respect to T ′. Thus in C(S, M) there is a triangle 

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1].

Case 2 (i): P1 = 0, S1 �= 0, P2 �= 0, S2 �= 0.

(a) Suppose P2 is not a direct string. In this case we have the local configuration as in 
Fig. 13.

Since P2 is not a direct string, there must exist a marked point A and an arc k and a 
maximal fan f1, . . . , fn such that γ2 crosses k and f1, . . . , fn, as in Fig. 13. Let B be the 
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Fig. 14. Case 2 (i) b): Left figure: local configuration in (S, M, T ) where the boundary component has 
several marked points. Right figure: local configuration in (S, M, T ) where s(γ1) is the only marked point 
on the boundary component.

marked point in the triangle Bs(τn)t(τn) where γ2 crosses the arc from s(τn) to B, as in 
Fig. 13. Then there exists a triangulation T ′ of (S, M) containing the arc τAB starting 
at A, ending at B, crossing both γ1 and γ2 and such that locally no other arc in T ′

crosses both γ1 and γ2.
Therefore by Theorem 3.7(i) we obtain a non-split short exact sequence 

0 −→ M ′
1 −→ M ′

3 ⊕M ′
4 −→ M ′

2 −→ 0

where M ′
3 (resp. M ′

4) is the string module over J(Q′, W ′) corresponding to the arc γ5
(resp. γ6) with respect to T ′. Thus in C(S, M) there is a triangle 

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1].

(b) Suppose now that P2 is a direct string, see Fig. 14.
Our argument is based on the boundary component B containing s(γ1).

(I) Suppose that B contains another marked point A which is not equal to s(γ1) and 
s(γ2) is not in B. Then there is an arc τAB from A to B crossing γ1 and γ2, see left hand 
side of Fig. 14 and we conclude as in part (a).
(II) Suppose s(γ1) is the only marked point on B and that s(γ1) �= s(γ2). Then consider 
instead the surface (S, M′) where M′ ⊃ M has exactly one more marked point A than 
M lying on the boundary component B, see right hand side of Fig. 14. Complete T to 
a triangulation T ′ on (S, M′) by adding one new arc τ from A to X, where X is as 
in Fig. 14. Therefore the same method as in part (a) can be applied and we obtain a 
triangle in C(S,M′)

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1].
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Note that since M ⊂ M′, whenever we have an arc in (S, M′) between marked points 
a, b ∈ M′ such that a, b ∈ M, by a slight abuse of notation we use the same notation for 
this arc as an arc in (S, M) and as an arc in (S, M′).

Now flip the triangulation T ′ to a triangulation T ′′ such that T ′′ contains the arc τ ′

around the boundary component B from s(γ1) to s(γ1), see right hand side of Fig. 14. 
Then there is a triangle s(γ1)s(γ1)A in T ′′. Cutting τ ′ as defined in [30] gives a surface 
isotopic to (S, M) since we delete any component homeomorphic to a triangle after the 
cut.

Note that by [30] the arcs in (S, M′) not crossing τ ′ are in bijection with the arcs in 
(S, M). Since τ ′ is a boundary segment in (S, M) the corresponding object in C(S, M)
is the zero object. Thus by Proposition 5 in [30] we obtain a triangle in C(S, M)

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1].

(III) Suppose that s(γ2) is in B and that there is a marked point A in B between s(γ1)
and s(γ2) such that the arcs f1 and s(γ1)A are two sides of a triangle, where f1, . . . , fn
is a fan as in left hand side of Fig. 14. Then we conclude as in part (a). If no such 
point A exists then s(γ1)s(γ2) is a boundary segment. We add a marked point A on this 
boundary arc and argue as in case (II).
(IV) Suppose that s(γ1) = s(γ2). Then there is a triangulation T ′ containing an arc from 
some point A on B (we add the point A if it does not already exist) to B crossing γ1
and γ2 and such that locally no other arc in T ′ crosses both γ1 and γ2 and we conclude 
as above.

Case 2 (ii): P1 �= 0, S1 = 0 and P2 �= 0, S2 �= 0 follows from Case 2(i) by changing the 
orientation of γ1 and γ2. 

Case 2 (iii) and (iv): The case P2 = 0 and P1, S1, S2 non-zero and the case S2 = 0 and 
P1, S1, P2 non-zero follow by similar arguments as above. 

Case 3 (i): P1 = 0 and S2 = 0 and S1 and P2 non-zero.
(a) Suppose that neither P2 nor S1 is a direct string. By a similar argument as in Case 
2(i)(a) there are marked points A and B such that there is a triangulation T ′ of (S, M)
containing an arc corresponding to the arc τAB and we obtain a triangle in C(S, M)

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1].

(b) Suppose that P2 is a direct string and that S1 is not a direct string or that P2 is 
not a direct string and that S1 is a direct string. Then we use a similar argument as in 
case 2(i)(b) above to obtain a triangle in C(S, M)

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1].

(c) Suppose both P2 and S1 are direct strings. Then if s(γ1)s(γ2) and t(γ1)t(γ2) are not 
both boundary segments then the argument is a combination of the above arguments.
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Note that if s(γ1)s(γ2) and t(γ1)t(γ2) are boundary segments then we obtain a trivial 
triangle. Namely, consider a surface (S, M′) where M′ contains 2 more marked points 
than M, one in each of the boundary segments s(γ1)s(γ2) and t(γ1)(γ2). As before this 
gives rise to a triangle in C(S,M′)

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1].

Applying the construction in [30] and cutting twice, we obtain the trivial triangle in 
C(S, M)

γ1 −→ γ1 −→ 0 −→ γ2.

Case 3 (ii): P1 = 0 and P2 = 0 and S1 and S2 non-zero, follows from the above by 
changing the orientation of γ1 and γ2. 

Case 3 (iii) and (iv): The case P1 = 0 and P2 = 0 and S2 and P2 non-zero, and the case 
P2 = 0 and S2 = 0 and P1 and S1 non-zero, follow by similar arguments to the above.

4.1.2. Arrow crossing
Here we consider the case that M1 crosses M2 in an arrow.

Case 1: Suppose the crossing occurs in an inner triangle of T . Let τ be the arc corre-
sponding to the segment s(γ2)t(γ1) = BC, see Fig. 15 (a).

Flipping τ to τ ′ in its quadrilateral gives rise to an overlap given by τ ′ and we use 
the module crossing methods above to obtain a triangle in C(S, M)

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1].

We remark that the points A, B and C are not necessarily distinct.

Case 2: Suppose the crossing occurs in a triangle of T where the segment s(γ2)t(γ1) = BC

is a boundary segment, see Fig. 15 (b).
Consider the surface (S, M′) where M′ = M ∪ {X} and X lies on the boundary 

segment BC, see Fig. 15 (b). We complete T to a triangulation of (S, M′) by adding an 
arc τ corresponding to the segment AX. This gives rise to an overlap given by τ . Again 
we use the module crossing methods above to obtain a triangle in C(S, M′)

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1].

We apply the construction in [30] and cut along τ ′. Then γ6 corresponds to a boundary 
segment and as above we obtain a triangle in C(S, M)

γ1 −→ γ5 −→ γ2 −→ γ1[1].

Note that the points B and C may coincide.
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Fig. 15. (a) Arrow crossing in an inner triangle, (b) arrow crossing in a triangle where BC is a boundary 
segment.

Fig. 16. Case 1: 3-cycle crossing.

4.1.3. 3-cycle crossing
Here we consider the case that M1 crosses M2 in a 3-cycle.

Case 1: Suppose that s(γ1) �= s(γ2), see Fig. 16.

Remark that s(γ1) and s(γ2) may or may not lie in the same boundary component of 
(S, M). In either case we can add a marked point X to obtain a surface (S, M′) such that 
the segment XC lies between the segments AC and BC. We flip the arc corresponding 
to the segment AB. This gives rise to a crossing of γ1 and γ2 with overlap corresponding 
to XC. Applying the module crossing methods described above, we obtain two triangles 
in C(S, M′). By [30] we obtain the corresponding triangles in C(S, M).

Case 2: Suppose that s(γ1) = s(γ2).

Denote by P = γ1(t0) for some t0 ∈ [0, 1] the intersection of γ1 and γ2 corresponding 
to the crossing of γ1 and γ2 under consideration. Without loss of generality, assume that 
P is also equal to γ2(t0). Consider the closed curve σ = σ[0, 1] which is a union of the 
segments σ[0, t0] and σ[t0, 1] such that σ[0] = σ[1] and where σ[0, t0] = γ1[0, t0] and 
σ[t0, 1] = γ−1

2 [t0, 0]. Then σ cannot be homotopic to a point, since otherwise there would 
not be a 3-cycle crossing. Therefore the local configuration in this case corresponds to 
one of the two cases illustrated in Fig. 17.
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Fig. 17. Possible 3-cycle crossing: A = s(γ1) = s(γ2).

Consider now a curve τ = τ [0, 1] which is a union of the segments τ [0, t0], τ [t0, t1]
and τ [t1, 1] where τ [0, t0] = CP , τ [t0, t1] is a non-contractible non-selfcrossing curve 
such that τ [t0] = P = τ [t1] and τ [t1, 1] = CP . Note that we choose CP to be a curve 
with no self-intersection. Then τ [0, 1] is homotopic to a closed curve on S without any 
self-intersection in its interior, see Fig. 17.

There exists a triangulation T ′ containing the arc corresponding to σ. Thus γ1 and 
γ2 cross in a non-self-crossing overlap containing at least σ. The rest follows as in Case 
1 for module crossings.

The points A, B and C may coincide two by two.
This completes the proof of Theorem 4.1. �

5. Example

Let J be the Jacobian algebra corresponding to the triangulation in Fig. 18. We see 
that the example contains two crossing arcs γ1 and γ2 such that the corresponding string 
modules M1 and M2 cross four times and such that M1 has one self-crossing. Each type 
of crossing (in a module, see crossings 1 , 2 and 5 , in an arrow, see crossing 4 , in a 
3-cycle, see crossing 3 ) occurs at least once. We remark that there is a module crossing 
in both directions, that is M1 crosses M2 in a module, see crossing 1 , and M2 crosses 
M1 in a module, see crossing 2 .

The arc γ1 corresponds to the string module M1 = M(w1) and γ2 corresponds to 
M2 = M(w2) where

w1 = 1
2

3
4

5
6

2 and w2 = 6
3

4
8

7 .

For each of the five crossings 1 - 5 , we now explicitly give the modules M3 =
M(w3), M4 = M(w4), M5 = M(w5) and M6 = M(w6) corresponding to the smooth-
ing of each of the given crossings as defined in Definition 3.5(1). Note that M3, . . . , M6
depend on (and therefore change with) the given crossing whereas M1 and M2 do not. 
Similarly, in terms of the corresponding arcs γ1 = γ(w1), . . . , γ6 = γ(w6), the arcs γ1
and γ2 are fixed whereas γ3, . . . , γ6 depend on the crossing under consideration.
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Fig. 18. Triangulation of a surface with two arcs crossing each other 4 times and with one arc with one 
self-crossing.

Crossing 1 : M1 crosses M2 in the simple module 6 and

w3 = 1
2

3
4

5
6

3
4

8
7 w4 = 6

2 w5 = 1
2

3
4

w6 =
2

3
4

8
7

Crossing 2 : M2 crosses M1 in the module 3
4 and

w3 = 6
3
4

5
6

2 w4 = 1
2
3
4

8
7 w5 =

6
2

1
w6 =

7
8

5
6

2

Crossing 3 : M1 crosses M(w−1
2 ) � M2 in the 3-cycle 1 α→ 2→→

7

and

w3 =
1

7
8

4
3

6 w4 = 3
4

5
6

2 w5 = 0 w6 =
6

3
4

8
7

2
3

4
5

6
2

Crossing 4 : M1 crosses M(w−1
2 ) � M2 in the arrow 2 α→ 7 and

w3 = 1
2

3
4

5
6

2
7

8
4

3
6 w4 = 0 w5 = 1

2
3

4
5 w6 = 4

3
6
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Crossing 5 : M1 crosses itself, that is M1 crosses M(w−1
1 ) � M1, in the simple module 

2 and

w3 = 1
2

6
5

4
3

2
1 w4 =

2
3

4
5

6
2 w5 = 0 w6 =

2
6

5
4

3
6

5
4

3
2

1

Smoothing crossings 1 , 3 and 4 gives rise to two triangles in the cluster category

γ2 −→ γ3 ⊕ γ4 −→ γ1 −→ γ2[1],

γ1 −→ γ5 ⊕ γ6 −→ γ2 −→ γ1[1],

where in the case of crossing 3 the indecomposable object in the cluster category cor-
responding to γ5 is the zero object and where in the case of crossing 4 the arc γ4
corresponds to the arc labelled ‘1’ in the triangulation.

Smoothing crossing 2 gives rise to two triangles in the cluster category

γ1 −→ γ3 ⊕ γ4 −→ γ2 −→ γ1[1],

γ2 −→ γ5 ⊕ γ6 −→ γ1 −→ γ2[1].

Smoothing crossing 5 gives rise to two triangles in the cluster category

γ1 −→ γ3 ⊕ γ4 −→ γ1 −→ γ1[1],

γ1 −→ γ6 −→ γ1 −→ γ1[1].

In the Jacobian algebra, smoothing crossings 1 and 4 gives rise to the following short 
exact sequences

0 −→ 6
3

4
8

7 −→ 1
2

3
4

5
6

3
4

8
7 ⊕ 6

2 −→ 1
2

3
4

5
6

2 −→ 0,

0 −→ 7
8

4
3

6 −→ 1
2

3
4

5
6

2
7

8
4

3
6 −→ 1

2
3

4
5

6
2 −→ 0,

respectively. However, crossings 2 and 3 do not give short exact sequences from M2
to M1. Therefore, as stated in Corollary 4.4, dim Ext1J(M1, M2) = 2.

Crossing 2 is the only crossing that gives a short exact sequence from M1 to M2

0 −→ 1
2
3
4

5
6

2 −→ 1
2
3
4

8
7

⊕ 6
3
4

5
6

2 −→ 6
3

4
8

7 −→ 0.

Therefore dim Ext1J(M2, M1) = 1. And finally, we have 
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dim Ext1J (M1,M2) + dim Ext1J(M2,M1) = 3 = Int(γ1, γ2) − k

where Int(γ1, γ2) = 4 and k = 1 corresponds to the only 3-cycle crossing corresponding 
to crossing 3 .

Crossing 5 gives a short exact sequence from M1 to M1

0 −→ 2
6

5
4

3
2

1 −→ 1
2

6
5

4
3

2
1 ⊕ 2

3
4

5
6

2 −→ 1
2

3
4

5
6

2 −→ 0.

Since crossing 5 is the only self-crossing of γ1, we have dim Ext1J(M1, M1) = 1.
Since γ2 has no self-crossings, we have dim Ext1J(M2, M2) = 0.

Appendix A. On the canonicity of the generalised cluster category associated with a 
surface

Claire Amiot 
Let k be an algebraically closed field and (S, M) be a marked surface (such that 

all marked points are in the boundary of S). The cluster category C(S, M) associated 
to the marked surface (S, M) is defined to be the generalised cluster category CT :=
C(Q(T ), W (T )) (as defined in [1]) where T is a triangulation of (S, M) and (Q(T ), W (T ))
is the quiver with potential associated to T by [26]. This category is well defined in the 
following sense: if T ′ is another triangulation of (S, M), then combining the main results 
of [26] and [23] one gets an equivalence of triangulated categories CT � CT ′ . This implies 
that C(S, M) is only well-defined up to equivalence of categories. Indeed, a priori given 
T and T ′ there is no canonical equivalence CT � CT ′ . The aim of this appendix is to 
exhibit some questions and problems this non-canonicity may pose.

More precisely let us recall the following result due to Brüstle and Zhang.

Theorem A.1. [6, Thm 1.1] Let (S, M) be a marked surface such that all marked points 
are on the boundary of S. A parametrization of the isoclasses of indecomposable objects 
in C(S, M) is given by string objects and band objects, where

(1) the string objects are indexed by the homotopy classes of non-contractible curves in 
(S, M) with end points in M which are not homotopic to a boundary segment of 
(S, M), subject to the equivalence relation γ ∼ γ−1;

(2) the band objects are indexed by k∗×π∗
1(S)/ ∼ where π∗

1(S)/ ∼ is given by the nonzero 
elements of the fundamental group of S subject to the equivalence relation generated 
by cyclic permutation and γ ∼ γ−1.

Regarding this result one could first think that we get a description of the objects 
of C(S, M) independent of the choice of a triangulation. However the parametrization 
depends on the choice of a triangulation. So given a triangulation T let us denote by 
sT (resp. bT ) the above bijections that send a curve (resp. a curve with a scalar) to 
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an indecomposable object in CT . The different facts shown in this appendix can be 
summarized as the following:

Proposition A.2. Let (S, M) be a marked surface such that all marked points are on the 
boundary of S.

(1) There exist triangulations T and T ′, and an equivalence Φ : CT → CT ′ of triangulated 
categories that sends a string object to a band object.

(2) For any triangulations T and T ′, there exists an equivalence Φ : CT → CT ′ of trian-
gulated categories such that Φ ◦ sT = sT

′ .
(3) For the equivalences Φ of (2), we may have Φ ◦ bT �= bT

′ .

As a consequence of (2) we obtain a bijection between string objects in C(S, M)
and homotopy classes of curves in (S, M) that does not depend on the choice of a 
triangulation.

Remark A.3. A generalisation of the bijection sT has been constructed in [38] in the case 
where (S, M) is a marked surface with punctures and T is an admissible triangulation 
(see [38, Def 5]). In the same paper, the authors state a more general analogue of (2) 
in the case where T and T ′ are admissible [38, Thm 3.10]. The proof given there is 
not fully detailed. First, the fact that there exists a canonical equivalence between CT
and CT ′ [38, (3.3) in subsection 3.1] is used without being proved. Indeed the equivalence 
constructed in [23] is not canonical since it depends of a choice of a right equivalence (see 
next subsection for more details). Secondly the proof in [38, Appendix C] does not stress 
the importance of signs in the computation of the mutation of decorated representations 
in the sense of [12]. Point (3) of Proposition A.2 above and subsection A.3.2 below show 
that the manipulation of signs is actually a subtle issue in the computation. Though 
the results presented here are not strictly speaking original, I have thought it would be 
useful to the community to clarify the aforementioned issues.

A.1. The problem on reduction

A.1.1. Construction of the equivalence CT → CT ′

Let T and T ′ be triangulations of (S, M), and s be a sequence of flips such that 
T ′ = fs(T ). Then Labardini constructed in [26] a right equivalence between the associated 
quivers with potentials: 

ϕs : (Q(T ′),W (T ′)) → μs(Q(T ),W (T )),

where μs is the mutation of the quiver with potential defined by Derksen, Weyman 
and Zelevinsky in [12]. Then by [23], there exists an equivalence Φs : CT → CT ′ . This 
equivalence depends not only on the choice of the sequence of flips s but it also depends 
on the choice of a right equivalence at each flip.
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Let us concentrate on this second dependence and assume that s = i, that is T and T ′

differ only by one flip of an arc i. Denote by (Q, W ) := (Q(T ), W (T )) the QP associated 
with T and by (Q̃′, W̃ ′) := μ̃i(Q, W )) the unreduced mutation of (Q, W ) at vertex i. Now 
fix the right equivalence ϕ : (Q̃′, W̃ ′) → (Q′, W ′) = (Q(T ′), W (T ′)) corresponding to a 
reduction of the quiver with potential (Q̃′, W̃ ′). The functor Φi constructed by Keller 
and Yang is the composition of two equivalences: 

CT
Φ̃i C(Q̃′,W̃ ′)

Rϕ

CT ′ ,

where Rϕ is induced by ϕ∗ on the corresponding Ginzburg DG algebras (see [23, 
Lemma 2.9]).

A.1.2. Link with mutations of (decorated) representations
The authors in [12] define a notion of mutation of decorated representations of 

a (nondegenerate) quiver with potential: for a module M ∈ mod J(Q, W ) and a 
vertex i of Q, they define a module μ̃i(M) ∈ mod J(Q̃′, W̃ ′). Then any reduction 
ϕ : (Q̃′, W̃ ′) → (Q′, W ′) induces an isomorphism of algebras ϕ : J(Q̃′, W̃ ′) → J(Q′, W ′)
by [12, Prop. 3.7], and so an equivalence 

mod J(Q̃′, W̃ ′)
ϕ∗ mod J(Q′,W ′) .

Note that in [12, Def. 10.4] the equivalence is defined to be the restriction functor (ϕ−1)∗
but since ϕ is an isomorphism of algebras we have (ϕ−1)∗ = ϕ∗.

The mutation μi(M) of M at i is then defined to be ϕ∗(μ̃i(M)). This implies that 
μi(M) is only defined up to right equivalence of representation (cf. Remark 10.3 in [12]) 
and not up to isomorphism of module.

By construction the cluster category CT comes with a canonical cluster-tilting ob-
ject that we denote by X, with the property EndCT

(X) � J(Q, W ). The functor 
F := HomCT

(X[−1], −) : CT → mod J(Q, W ) is dense and sends any indecompos-
able object not isomorphic to a summand of X to an indecomposable module. Similarly 
we denote by X̃ ′ (resp. X ′) the canonical cluster-tilting objects in C(Q̃′,W̃ ′) (resp. in CT ′). 
Then we have the following: 

CT
Φ̃i

F

C(Q̃′,W̃ ′)
Rϕ

F̃ ′

CT ′

F ′

mod J(Q,W )
μ̃i mod J(Q̃′, W̃ ′)

ϕ∗ mod J(Q′,W ′)

. (5)

In this diagram, the right hand square is clearly commutative, since Rϕ(X̃ ′) is isomorphic 
to X ′ in the category CT ′ . Moreover Plamondon showed in [36, Prop 4.1] that if M is an 
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object of CT , then μ̃i(F (M)) and F̃ ′(Φ̃i(M)) are isomorphic in mod J(Q̃′, W̃ ′). Hence 
the left square also commutes.

Since for any reduction ϕ, if we compose ϕ with an automorphism of the algebra 
J(Q′, W ′) that fixes each vertex we obtain another reduction, it is easy to construct an 
equivalence Φi : CT → CT ′ sending certain string objects to band objects (see Remark 
10.3 in [12]). For instance if (S, M) is the annulus with two marked points then for any 
triangulation T , (QT , WT ) is the Kronecker quiver with the zero potential. Denote by a
and b its arrows, the automorphism sending a to a and b to a + b sends the string a to 
a band of type ab−1. The automorphism exchanging a and b sends the string a to the 
string b. 

A.2. Canonical bijection for strings

In this subsection, we prove that the bijection sT constructed in [6] is independent of 
T as soon as we only allow certain reductions.

A.2.1. Canonical reduction
One way to handle this problem is to allow only certain kind of reductions when 

constructing the triangle equivalences Φi. This can be done easily in the case where 
(S, M) is a marked surface with all marked points are on the boundary. Indeed in this 
case the quiver with potential is especially simple.

Let T be a triangulation, i be an arc of T and T ′ := fi(T ) be the flip of T at i. Denote 
by Δ1 and Δ2 the triangles in T having i as a side. Then Δ1 and Δ2 are distinct. If Δ1
and Δ2 are internal triangles then locally the quiver with potential (QT , WT ) associated 
to T looks as follows: 

j1

k2

j2

k1 i c2c1

a1

a2

b1

b2
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with W = c1b1a1 + c2b2a2. Note that we may have j1 = j2 (or k1 = k2), but in that 
case, there is a way to distinguish the arrow b1 from the arrow b2 since each arrow is 
canonically associated to a triangle of the triangulation. By [12] we obtain the following 
quiver with potential μ̃i(Q, W ) = (Q̃′, W̃ ′) after ‘unreduced’ mutation at i. 

Q̃′ =

j1

k2

j2

k1 i c∗2c∗1

a1

[c1b1]

a2

[c2b2]

b∗1

b∗2[c1b2]

[c2b1]

W̃ ′ = [c1b1]a1 + [c2b2]a2 + [c1b1]b∗1c∗1 + [c2b2]b∗2c∗2 + [c2b1]b∗1c∗2 + [c1b2]b∗2c∗1.

Let ϕT
i : kQ̃′ → kQ̃′ be the map defined by {

ϕT
i (α) = α if α �= a1, a2

ϕT
i (a�) = a� − b∗�c

∗
� for � = 1, 2.

It is immediate to see that ϕT
i is a right equivalence between the quiver with potential 

(Q̃′, W̃ ′) and the direct sum of the quiver with potential (Q′, W ′) with a trivial quiver 
with potential, where (Q′, W ′) is the quiver with potential associated with the triangu-
lation T ′ = fi(T ). Note that if Δ1 or Δ2 have boundary sides, then the arcs j1, j2, k1 and 
k2 may not exist, so the quiver with potential (QT , WT ) is simpler and the definition 
of the reduction ϕT

i is similar. Moreover in the case where (Q̃′, W̃ ′) does not have any 
2-cycle, then ϕT

i is the identity map. This leads to introduce the following.

Definition A.4. For any arc i in T , the map ϕT
i is called the canonical reduction at i.

A.2.2. The bijection sT

Before proving the main result, let us recall the construction of the map sT , and some 
properties on string modules that will be used in the proof.

By [2] the Jacobian algebra J(Q, W ) is a string algebra. In such an algebra, a word 
w = α1 . . . αn of arrows or formal inverse of arrows of Qop is called a string if αi+1 �= α−1

i

and no subword nor its inverse belongs to the Jacobian ideal.
Let w = αn . . . α1 be a string and λ1, . . . , λn be in k∗. Define a module MT (w :

λ1, . . . , λn) in mod J(Q, W ) = Rep(Qop, ∂W ) as follows: For any � = 0 . . . , n let M� be 
a 1-dimensional k-vector space. Then for any vertex i in Q0 set 

MT
i =

{⊕
�,t(α�)=i M� ⊕M0 if s(α1) = i⊕

M� else
�,t(α�)=i
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For any arrow α : i → j in Qop
1 , if there exists � such that α = α� (resp. α−1 = α�) then 

M�−1 is a direct summand of MT
i (resp. MT

j ) and M� a summand of MT
j (resp. MT

i ) 
and the restriction of MT

α to M�−1 (resp. M�) is the multiplication by λ� from M�−1 to 
M� (resp. the multiplication by λ−1

� from M� to M�−1).

Definition A.5. The string module associated to w is defined to be MT (w) := MT (w :
1, . . . , 1). 

The following isomorphisms are easy to check and classical [5].

Lemma A.6. We have the following isomorphisms in mod J(Q, W ):

MT (w : λ1, . . . , λn) = MT (w−1 : λ−1
n , . . . , λ−1

1 )
� MT (w : 1, λ2, . . . , λn)
� MT (w : λ1, . . . , λ�−1λ�, 1, λ�+1, . . . , λn) ∀�

Corollary A.7. The module MT (w : λ1, . . . , λn) is isomorphic to the string module 
MT (w) = MT (w−1).

Now let γ be an oriented curve on S with endpoints in M which is not homotopic to 
a boundary segment or to an arc of T . Up to homotopy, we may assume that γ intersects 
each arc of T transversally and does not cut an arc of T twice in succession. Then one 
can associate to γ a sequence w of arrows or inverse arrows in Qop

1 corresponding to the 
angles of T intersected by γ. The map γ → w(γ) is shown to be a bijection between 
nontrivial homotopy classes of such oriented curves in (S, M) and strings in J(Q, W )
in [2]. Moreover, the string associated to γ−1 is clearly w(γ)−1.

The bijection sT is defined in [6] as follows: if γ = i is an arc of T , then sT (γ) is defined 
to be the object Xi which is the indecomposable summand of the canonical cluster-tilting 
object X in CT corresponding to the vertex i of Q; if γ is not an arc of T , then sT (γ)
is the indecomposable object X(γ) such that F (X(γ)) � MT (w(γ)) in mod J(Q, W ). 
This indecomposable object is unique up to isomorphism.

A.2.3. Compatibility for strings
The following result is the main result of this appendix.

Theorem A.8. Let T and T ′ be triangulations of a marked surface with marked points on 
the boundary, and sT and sT

′ be the bijections described above. For a sequence of flips s
such that fs(T ) = T ′, denote by Φs : CT → CT ′ the equivalence defined in [23] where at 
each mutation we apply the canonical reduction. Then for any such sequence s we have 

Φs ◦ sT = sT
′
.

Proof. Let T be a triangulation of (S, M) and i be an arc of T . Denote by T ′ the 
triangulation fi(T ). Denote by ϕ the canonical reduction (Q̃′, W̃ ′) → (Q′, W ′) defined 
above. It is enough to show that Rϕ ◦ Φ̃i ◦ sT = sT

′ .
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Let γ be a curve on S with endpoints in M. We consider the following cases.

Case 1: γ = j is an arc of T and T ′. Then we have sT (j) = Xj and from the definition of 
Φ̃i we have Φ̃i(Xj) � X̃ ′j and Rψ ◦ Φ̃i(Xj) � X ′

j = sT
′(j) for any choice of reduction ψ. 

Case 2: γ = i. Then sT (i) = Xi. Denote by i′ the arc of T ′ which is not in T . By 
definition, for any choice of reduction ψ, the object Rψ ◦ Φ̃i(Xi) is the cone of the map 

X ′
i′ →

⊕
i′→k∈Q′

1

X ′
k

which is isomorphic to the cocone of the map ⊕
j→i′∈Q′

1

X ′
j → X ′

i′

by the properties of exchange triangles in a 2-Calabi–Yau category with cluster-tilting 
objects. Applying the functor F ′ = HomCT ′ (X ′[−1], −) we obtain that F ′(Φi(Xi)) is 
isomorphic to the cokernel of the map ⊕

j→i′∈Q′
1

P ′
j → P ′

i′

where P ′
� is the projective associated to the vertex � in J(Q′, W ′). Therefore F ′(Φi(Xi))

is isomorphic to the simple module Si′ of J(Q′, W ′) associated to the vertex i′, which is 
the module MT ′(i). 

Case 3: γ = i′. This case is similar to the previous case. 

Case 4: γ is not an arc of T and not an arc of T ′. Denote by w (resp. w′) the string 
in J(Q, W ) (resp. J(Q′, W )) corresponding to γ. Then by the commutative diagram (5)
and the definition of the bijections sT and sT

′ , it is enough to show that ϕ∗(μ̃iM
T (w))

is isomorphic to MT ′(w′) in mod J(Q′, W ′).
As in the previous section, we denote by Δ1 and Δ2 the triangles of T sharing i. There 

is exactly 14 ways for γ to cross Δ1 ∪Δ2, which are described in the following pictures: 
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Denote by n�, � = 1, . . . , 14 the number of times γ intersects Δ1 ∪ Δ2 in the way �
(in both directions), and define V� = kn� . Note that 

∑14
�=7 n� ≤ 2 since these crossings 

correspond to endpoints of γ.
Then the restriction of the representation MT (w) to the quiver QΔ1∪Δ2 is the follow-

ing: 

MT (w) =

V1 ⊕ V2 ⊕ V6
⊕V7 ⊕ V11

V2 ⊕ V3 ⊕ V5
⊕V8 ⊕ V12

⊕V9 ⊕ V13

V3 ⊕ V4 ⊕ V6

⊕V10 ⊕ V14

V1 ⊕ V4 ⊕ V5 V2 ⊕ V4 ⊕ V5 ⊕ V6
V7 ⊕ V8 ⊕ V9 ⊕ V10

1V2 ⊕ 1V5 ⊕ 1V8
1V4 ⊕ 1V5 ⊕ 1V10

1V1

1V3

1V2 ⊕ 1V6 ⊕ 1V7

1V4 ⊕ 1V6 ⊕ 1V9

Then a direct calculation gives the following representation for μ̃i(MT (w)): 

V1 ⊕ V2 ⊕ V6
⊕V7 ⊕ V14

V2 ⊕ V3 ⊕ V5
⊕V8 ⊕ V12

⊕V7 ⊕ V14

V3 ⊕ V4 ⊕ V6

⊕V10 ⊕ V14

V1 ⊕ V4 ⊕ V5 V1 ⊕ V3 ⊕ V5 ⊕ V6
V11 ⊕ V12 ⊕ V13 ⊕ V14

1V3 ⊕ (−1)V5 ⊕ 1V12
(−1)V1 ⊕ 1V5 ⊕ 1V14

1V1

1V3

1V1 ⊕ 1V6 ⊕ 1V14

(−1)V3 ⊕ (−1)V6 ⊕ 1V13

1V4

1V2
0

0
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Note that in the computation of μ̃i(MT (w)), the splitting data (10.8) and (10.9) of 
[12] are always 0 or identity, hence the representation does not depend on the choice of 
these data.

Applying the canonical reduction we obtain the same representation except that the 
action of the arrows a1 and a2 are 0 instead of 1V3 and 1V2 . This representation is of 
the form MT ′(w′ : λ1, . . . , λn) with λ� = ±1 so using Corollary A.7 we obtain the 
isomorphism 

ϕ∗(μ̃i(MT (w)) � MT ′
(w′) in mod J(Q′,W ′)

which ends Case 4 and the proof. �
Remark A.9. The same kind of questions can be asked in the case where (S, M) is a 
surface with punctures. As mentioned above in Remark A.3, if T and T ′ are admissible 
triangulations (that are triangulations where every puncture is in a self-folded triangle), 
then a similar result has been stated in [38]. But an analogue of the canonical reduction 
needs to be defined in the case where T and T ′ are linked by a �-flip.

More generally, if T is any triangulation, T ′ = fi(T ) and γ is an arc (thus without 
selfcrossings) which is not in T and T ′, then Labardini defined in [27] an indecomposable 
module MT (γ) ∈ mod J(Q, W ) and shows that μi(MT (γ)) is right equivalent to MT ′(γ). 
A priori, this does not entirely prove that there is a bijection compatible with any 
triangulation between arcs and direct summands of cluster-tilting objects in C(S, M)
since μi(MT (γ)) is only defined up to right equivalence and not up to isomorphism. In 
this case, the right equivalence μi(Q, W ) → (Q′, W ′) constructed by Labardini in [26]
is much more complicated to describe and so it is not so clear that an analogue of the 
‘canonical’ reduction described in the present work does exist.

A.3. The problem with bands

The aim of this subsection is to show that the situation is not as nice for bands. Before 
exhibiting counter-examples, let us redefine the bijection bT in a more precise way than 
in [2] and [6].

A.3.1. Band modules and the bijection bT

In a string algebra, a string b = α1 . . . αn is called a band if s(α1) = t(αn), if any 
power bm of b is a string and if b is not a power of any string.

Let b = α1 . . . αn be a band in J(Q, W ) and λ1, . . . , λn be in k∗. We define a module 
BT (b : λ1, . . . , λn) in mod J(Q, W ): For any � ∈ Z/nZ let B� be a 1-dimensional k-vector 
space. Then for any vertex i in Q0 set 

(BT )i :=
⊕

B�.

�,t(α�)=i
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For any arrow α : i → j in Qop
1 , if there exists � such that α = α� (resp. α−1 = α�) then 

B�−1 is a direct summand of (BT )i (resp. (BT )j) and B� a summand of (BT )j (resp. 
(BT )i); the restriction of (BT )α to B�−1 (resp. B�) is defined to be the multiplication 
by λ� from B�−1 to B� (resp. the multiplication by λ−1

� from B� to B�−1).

Definition A.10. Let b be a band and λ ∈ k∗. The (regular simple) band module associated 
with (b; λ) is defined to be BT (b; λ) := BT (b : λ, 1, . . . , 1).

The following is classical and easy to check [5].

Lemma A.11. Let b = α1 . . . αn be a band and denote by b′ := α2 . . . αnα1. Then for any 
λ1, . . . , λn we have isomorphisms 

BT (b : λ1, . . . , λn) � BT (b′ : λ2, . . . , λn, λ1)
� BT (b−1 : λ−1

n , . . . , λ−1
1 )

� BT (b : 1, λ1λ2, . . . , λn).

Corollary A.12. The module BT (b : λ1, . . . , λn) is isomorphic to BT (b; 
∏

� λ�) and we 
have 

BT (b;λ) � BT (b−1;λ−1) � BT (b′;λ)

for any b′ cyclic permutation of b.

Denote by πfree,∗
1 (S) the set of nontrivial conjugacy classes of the fundamental group 

π1(S). This set coincides with the set of non-contractible oriented closed curves on S
up to free homotopy. Consider the subset πfree,irred,∗

1 (S) ⊂ πfree
1 (S) of non-contractible

irreducible closed curves γ, that are conjugacy classes of closed curves which are not 
conjugate to a power of a closed curve. A natural bijection bT between πfree,irred,∗

1 (S)
and the set of bands in (Q, W ) up to cyclic permutation is described in [2], which 
sends a curve (transversal to T ) to the sequence of arrows (and inverse arrows) of Qop

1
corresponding to the sequence of angles of T intersected by γ.

Combining this bijection with the definition of BT and the construction of all the 
band modules in [5] (associated with power of bands) we obtain a natural bijection 

bT : (πfree
1 (S) × k∗)/ ∼ {band modules in J(Q,W )}/iso ,

where the equivalence relation in πfree
1 (S) × k∗ is generated by (γ, λ) ∼ (γ−1, λ−1).

Note that this bijection is not exactly the one described in [2,6]. The one in [2,6] needs 
to make a choice of an orientation for each element in the set πfree,irred

1 (S)/γ ∼ γ−1, choice 
which is not canonical.
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A.3.2. Example
Let (S, M) be the annulus with 3 marked points, and consider the following triangu-

lation T on (S, M) corresponding to the following quiver Qop
T . 

Let γ be the following simple generator of π1(S), and λ be in k∗. The module BT (γ, λ)
is isomorphic to the following representation: 

k

k

k

1 λ

1

BT (γ, λ) �

Define the triangulations T 1 := f1(T ) and T 2 := f2(T ). Then a direct computation 
gives the isomorphisms: 

k

k

k

−1 λ

1

μ1(BT (γ, λ)) � � BT1(γ,−λ).

Note that here, since 1 is a sink in Qop, μ̃1(Qop, W ) is already reduced and so the 
canonical reduction is the identity morphism.

Other direct computations give the following isomorphisms: 

k

0

k
1

λ

μ2(BT (γ, λ)) � � BT2(γ, λ).
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k

k

k

−λ 1

1

μ2(BT2(γ, λ)) � � BT (γ,−λ)

This implies that μ2 (with the canonical reduction) is not an involution, and therefore 
the autoequivalence Φ2

2 (defined with the canonical reduction) of CT is not isomorphic 
to the identity functor. This was already noticed in [12, Thm 10.13, (10.23)].
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