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Abstract

We provide a respecification of an integer programming character-
ization of Arrovian social welfare functions introduced by Sethuraman
et al. (2003). By exploiting this respecification, we give a new and
simpler proof of Theorem 2 in Kalai and Muller (1977).
Journal of Economic Literature Classification Number: D71.

1 Introduction

In a pathbreaking paper, Sethuraman et al. (2003) proposed a characteri-
zation of Arrovian social welfare functions in terms of integer programs (for
a further development of this research program, see also Sethuraman et al.
(2006), Vohra (2011), and Busetto et al. (2015), among others). As re-
marked by these authors, integer programming is a powerful analytical tool,
which makes it possible to derive in a systematic and simple way many of the
already known theorems on Arrovian social welfare functions and to prove
new results. In particular, it permits one to reconsider the fundamental
issues concerning the characterization of domains admitting nondictatorial
Arrovian social welfare functions.
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Kalai and Muller (1977) provided the first complete characterization of
these domains. In their Theorem 1, they showed that there exists a n-person
nondictatorial Arrovian social welfare function for a given domain if and only
if there exists a 2-person nondictatorial Arrovian social welfare function for
the same domain. In their Theorem 2, Kalai and Muller (1977) provided
a characterization of the domains admitting nondictatorial Arrovian social
welfare functions “without ties,” i.e., which do not allow for indifference
between distinct alternatives in their range.

Taking inspiration from Kalai and Muller (1977), Sethuraman et al.
(2003) built up an integer program which incorporates a reformulation of
the condition of decisiveness implication. By using this integer program,
they provided a simplified version of Theorem 1 in Kalai and Muller (1977).

We propose an amended version of the integer program they used to re-
formulate Theorem 1 in Kalai and Muller (1977), as we show that it contains
logically redundant constraints. Then, by exploiting our integer program,
we give a new and simpler proof of Theorem 2 in Kalai and Muller (1977).
We do this in two steps. We first propose a simpler definition of decompos-
ability which eliminates the logical redundancies contained in the condition
of decisiveness implication proposed by Kalai and Muller (1977). This en-
ables us to prove that decomposable domains admit nondictatorial solutions
to our simplified integer program. Then, Theorem 2 in Kalai and Muller
(1977) can be straightforwardly obtained as a corollary of this theorem.

Busetto et al. (2015) proceeded along the way opened by Kalai and
Muller (1977) and Sethuraman et al. (2003). Using integer programming,
they provided a characterization of the domains admitting Arrovian social
welfare functions “with ties,” i.e., which allow for indifference between dis-
tinct alternatives in their range. In this paper, when referring to Arrovian
social welfare functions, we consider implicitly Arrovian social welfare func-
tions “without ties.”

2 Notation and definitions

Let E be any initial finite subset of the natural numbers with at least
two elements and let |E| be the cardinality of E, denoted by n. Elements of
E are called agents.

Let E be the collection of all subsets of E. Given a set S ∈ E , let
Sc = E \ S.

Let A be a set such that |A| ≥ 3. Elements of A are called alternatives.
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Let A2 denote the set of all ordered pairs of alternatives.
Let Σ be the set of all the complete, transitive, and antisymmetric binary

relations on A, called preference orderings.
Let Ω denote a subset of Σ such that |Ω| ≥ 2. An element of Ω is called

admissible preference ordering and is denoted by p. We write xpy if x is
ranked above y under p.

A pair (x, y) ∈ A2 is called trivial if there are not p,q ∈ Ω such that xpy
and yqx. Let TR denote the set of trivial pairs. We adopt the convention
that all pairs (x, x) ∈ A2 are trivial.

A pair (x, y) ∈ A2 is nontrivial if it is not trivial. Let NTR denote the
set of nontrivial pairs.

Let Ωn denote the n-fold Cartesian product of Ω. An element of Ωn is
called a preference profile and is denoted by P = (p1,p2, . . . ,pn), where pi

is the antisymmetric preference ordering of agent i ∈ E.
A Social Welfare Function (SWF) on Ω is a function f : Ωn → Σ.
A SWF on Ω, f , satisfies Pareto Optimality (PO) if, for all (x, y) ∈ A2

and for all P ∈ Ωn, xpiy, for all i ∈ E, implies xf(P)y.
A SWF on Ω, f , satisfies Independence of Irrelevant Alternatives (IIA)

if, for all (x, y) ∈ NTR and for all P,P′ ∈ Ωn, xpiy if and only if xp′
iy, for

all i ∈ E, implies, xf(P)y if and only if xf(P′)y, and, yf(P)x if and only if
yf(P′)x.

An Arrovian Social Welfare Function (ASWF) on Ω is a SWF on Ω, f ,
which satisfies PO and IIA.

An ASWF on Ω, f , is dictatorial if there exists j ∈ E such that, for all
(x, y) ∈ NTR and for all P ∈ Ωn, xpjy implies xf(P)y.

An ASWF on Ω, f , is nondictatorial if it is not dictatorial.
Given (x, y) ∈ A2 and S ∈ E , let dS(x, y) denote a variable such that

dS(x, y) ∈ {0, 1}.
An Integer Program (IP) on Ω consists of a set of linear constraints,

related to the preference orderings in Ω, on variables dS(x, y), for all (x, y) ∈
NTR and for all S ∈ E , and of the further conventional constraints that
dE(x, y) = 1 and d∅(y, x) = 0, for all (x, y) ∈ TR.

Let d denote a feasible solution (henceforth, for simplicity, only “solu-
tion”) to an IP on Ω.

A solution d is dictatorial if there exists j ∈ E such that dS(x, y) = 1,
for all (x, y) ∈ NTR and for all S ∈ E , with j ∈ S.

A solution d is nondictatorial if it is not dictatorial.
An ASWF on Ω, f , and a solution to an IP on the same Ω, d, are said

to correspond if, for each (x, y) ∈ NTR and for each S ∈ E , xf(P)y if and
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only if dS(x, y) = 1, yf(P)x if and only if dS(x, y) = 0, for all P ∈ Ωn such
that xpiy, for all i ∈ S, and ypix, for all i ∈ Sc.

3 Arrovian social welfare functions and integer pro-
gramming

The first formulation of an IP on Ω was proposed by Sethuraman et al.
(2003). Their IP, which we will call IP1, consists of the following set of
constraints:

dE(x, y) = 1, (1)

for all (x, y) ∈ NTR;
dS(x, y) + dSc(y, x) = 1, (2)

for all (x, y) ∈ NTR and for all S ∈ E ;

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2, (3)

for all triples of alternatives x, y, z and for all disjoint and possibly empty
sets A,B,C,U, V,W ∈ E whose union includes all agents and which satisfy
the following conditions (hereafter referred to as Conditions (∗)):

A 6= ∅ only if there exists p ∈ Ω such that xpzpy,

B 6= ∅ only if there exists p ∈ Ω such that ypxpz,

C 6= ∅ only if there exists p ∈ Ω such that zpypx,

U 6= ∅ only if there exists p ∈ Ω such that xpypz,

V 6= ∅ only if there exists p ∈ Ω such that zpxpy,

W 6= ∅ only if there exists p ∈ Ω such that ypzpx.

By introducing integer programming, Sethuraman et al. (2003) were able
to provide a new representation of ASWFs with respect to the axiomatic
one previously used in the Arrow’s tradition. In particular they showed, in
their Theorem 1, that there exists a one-to-one correspondence between the
set of the solutions to IP1 on Ω and the set of the ASWFs on the same Ω.

Sethuraman et al. (2003) also built up a second IP on Ω, for many
respects related to the work of Kalai and Muller (1977) on nondictatorial
ASWFs.

Kalai and Muller (1977) introduced the following condition of decom-
posability to characterize the domains of antisymmetric preference orderings
admitting nondictatorial ASWFs.
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Ω is said to be decomposable (henceforth, KM decomposable) if there
exists a set R, with TR $ R $ A2, satisfying the following conditions.

Condition I. For every two pairs (x, y), (x, z) ∈ NTR, if there exist p,q ∈ Ω
for which xpypz and yqzqx, then (x, y) ∈ R implies that (x, z) ∈ R.

Condition II. For every two pairs (x, y), (x, z) ∈ NTR, if there exist p,q ∈ Ω
for which xpypz and yqzqx, then (z, x) ∈ R implies that (y, x) ∈ R.

Condition III. For every two pairs (x, y), (x, z) ∈ NTR, if there exists p ∈ Ω
for which xpypz, then (x, y) ∈ R and (y, z) ∈ R imply that (x, z) ∈ R.

Condition IV. For every two pairs (x, y), (x, z) ∈ NTR, if there exists p ∈ Ω
for which xpypz, then (z, x) ∈ R implies that (y, x) ∈ R or (z, y) ∈ R.

In the second IP introduced by Sethuraman et al. (2003), which we will
call IP1′, constraint (3) is replaced by the following set of constraints:

dS(x, y) ≤ dS(x, z), (4)

dS(z, x) ≤ dS(y, x), (5)

for all triples x, y, z such that there exist p,q ∈ Ω satisfying xpypz and
yqzqx, and for all S ∈ E ;

dS(x, y) + dS(y, z) ≤ 1 + dS(x, z), (6)

dS(z, y) + dS(y, x) ≥ dS(z, x), (7)

for all triples x, y, z such that there exists p ∈ Ω satisfying xpypz, and for
all S ∈ E .

Constraints (4) and (5) translate, in terms of variables dS(x, y), Condi-
tions I and II of Kalai and Muller (1977). In their Claim 1, Sethuraman et
al. (2003) showed that these constraints are special cases of (3). Constraints
(6) and (7) translate Conditions III and IV of Kalai and Muller (1977). In
their Claim 2, Sethuraman et al. (2003) showed that also these constraints
are special cases of (3). Their analysis established that any solution d to
IP1 on Ω is a solution to IP1′ on the same domain and that IP1 and IP1′

are equivalent in the case where n = 2.
We now prove that the set of constraints (4)-(7) exhibits problems of log-

ical dependence. The following proposition shows that one of the constraints
(4) and (5) is redundant.
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Proposition 1. d satisfies (1), (2), and (4) if and only if it satisfies (1),
(2), and (5).

Proof. Suppose that d satisfies (1), (2), and (4). Consider a triple x, y, z.
Suppose that there exist p,q ∈ Ω satisfying xpypz and yqzqx, and that

dS(z, x) > dS(y, x),

for some S ∈ E . Then, dS(z, x) = 1, dS(y, x) = 0. But then, dSc(x, z) = 0,
dSc(x, y) = 1. This implies that

dSc(x, y) > dSc(x, z),

contradicting (4). Therefore, d satisfies (1), (2), and (5). Suppose that d
satisfies (1), (2), and (5). Consider a triple x, y, z. Suppose that there exist
p,q ∈ Ω satisfying xpypz and yqzqx, and that

dS(x, y) > dS(x, z),

for some S ∈ E . Then, dS(x, y) = 1, dS(x, z) = 0. But then, dSc(y, x) = 0,
dSc(z, x) = 1. This implies that

dSc(z, x) > dSc(y, x),

contradicting (5). Therefore, d satisfies (1), (2), and (4).

The following proposition shows that one of the constraints (6) and (7)
is redundant.

Proposition 2. d satisfies (1), (2), and (6) if and only if it satisfies (1),
(2), and (7).

Proof. Suppose that d satisfies (1), (2), and (6). Consider a triple x, y, z.
Suppose that there exists p ∈ Ω satisfying xpypz, and that

dS(z, y) + dS(y, x) < dS(z, x),

for some S ∈ E . Thus, dS(z, y) = 0, dS(y, x) = 0, and dS(z, x) = 1. But
then, dSc(y, z) = 1, dSc(x, y) = 1, and dSc(x, z) = 0. This implies that

dSc(x, y) + dSc(y, z) > 1 + dSc(x, z),

contradicting (6). Therefore, d satisfies (1), (2), and (7). Suppose that d
satisfies (1), (2), and (7). Consider a triple x, y, z. Suppose that there exists
p ∈ Ω satisfying xpypz, and that

dS(x, y) + dS(y, z) > 1 + dS(x, z),

6



for some S ∈ E . Then, dS(x, y) = 1, dS(y, z) = 1, and dS(x, z) = 0. But
then, dSc(y, x) = 0, dSc(z, y) = 0, and dSc(z, x) = 1. This implies that

dSc(z, y) + dSc(y, x) < dSc(z, x),

contradicting (7). Therefore, d satisfies (1), (2), and (6).

Busetto et al. (2015) considered a “ternary” version of IP1, i.e., gen-
eralized IP1 to the case where dS(x, y) = 1

2 , for some (x, y) ∈ NTR and
for some S ∈ E . They also introduced a second “ternary” IP on Ω, which
incorporates, like IP1′ proposed by Sethuraman et al. (2003), a reformula-
tion of Conditions I-IV of Kalai and Muller (1977). In constructing it, they
eliminated the redundancies inherent in IP1′, we have exhibited in Propo-
sitions 1 and 2. The “binary” version of that program, which we will call
IP2, consists of constraints (1), (2), (4), and the following reformulation of
constraint (6).

dS(x, y) + dS(y, z) ≤ 1 + dS(x, z), (6 bis),

for all triples x, y, z such that there exist p,q ∈ Ω satisfying xpypz and
zqyqx, and for all S ∈ E .

We will consider now the relationship between IP1 and IP2. The fol-
lowing result is a straightforward consequence of Claims 1 and 2 proved by
Sethuraman at. al. (2003), mentioned above.

Proposition 3. If d is a solution to IP1 on Ω, then it is a solution to IP2
on the same Ω.

The following result shows that the converse of Proposition 3 holds, and IP1
and IP2 coincide, when n = 2. An analogous equivalence result between IP1
and IP1′ for n = 2 was provided, without an explicit proof, by Sethuraman et
al. (2003). We provide here a “binary” version of the proof of Proposition
2 in Busetto et al. (2015) which states the equivalence result for their
“ternary” version of the program.

Proposition 4. Let n = 2. If d is a solution to IP2 on Ω, then it is a
solution to IP1 on the same Ω.

Proof. Let n = 2. Let d be a solution to IP2 on Ω. Consider a triple
x, y, z and disjoint and possibly empty sets A,B,C,U, V,W ∈ E whose union
includes all agents and which satisfy Conditions (∗). Suppose that

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) > 2.
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Consider the case where A 6= ∅ and W 6= ∅. Then, there exist p,q ∈ Ω
satisfying xpzpy and yqzqx. Suppose that A = {1} and W = {2}. Then,

d{2}(y, z) + d{2}(z, x) > 1 + d{2}(y, x),

contradicting (6 bis). The cases where B 6= ∅, V 6= ∅, and C 6= ∅, U 6= ∅
lead, mutatis mutandis, to the same contradiction. Consider the case where
U 6= ∅ and V 6= ∅. Then, there exist p,q ∈ Ω satisfying xpypz and zqxqy.
Suppose that U = {1} and V = {2}. Then,

d{2}(z, x) > d{2}(z, y),

contradicting (4). The cases where V 6= ∅, W 6= ∅, and U 6= ∅, W 6= ∅,
lead, mutatis mutandis, to the same contradiction. Therefore, d satisfies
(3). Hence, d is a solution to IP1 on Ω.

4 A simplified version of Kalai and Muller’s pos-
sibility theorem

Kalai and Muller (1977) were the first who provided a complete character-
ization of the domains of antisymmetric preference orderings which admit
nondictatorial ASWFs. They did this by means of two theorems. In their
Theorem 1, they showed that, for a given domain Ω, there exists a non-
dictatorial ASWF for n = 2 if and only if, for the same Ω, there exists a
nondictatorial ASWF for n > 2. In their Theorem 2, they showed that there
exists a nondictatorial ASWF on Ω for n ≥ 2 if and only if Ω satisfies the
conditions of KM decomposability introduced in Section 3.

Sethuraman et al. (2003) opened the way to an analysis of the problem of
dictatorship in terms of integer programming. More precisely, they showed,
in their Theorem 8, a result establishing a one-to-one correspondence be-
tween the nondictatorial solutions of IP1 for n = 2 and its nondictatorial
solutions for n > 2.

We go forward along the line opened by Sethuraman et al. (2003), pro-
viding a characterization of domains admitting nondictatorial solutions to
IP1. This result is the heart of a new and simpler proof of Theorem 2
in Kalai and Muller (1977) for nondictatorial ASWFs in terms of integer
programming.

In order to obtain our characterization theorem, we need to use the
reformulation of the concept of KM decomposability suitable to be applied
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within the analytical context of IP2. This reformulation is based on the
existence of two sets, R1, R2 ∈ A2, instead of only one, which satisfy the
two conditions introduced below.

Given a set R ⊂ A2, consider the following conditions on R.

Condition 1. For all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and yqzqx, then (x, y) ∈ R implies that (x, z) ∈ R.

Condition 2. For all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and zqyqx, then (x, y) ∈ R and (y, z) ∈ R imply that (x, z) ∈ R.

A domain Ω is said to be decomposable if and only if there exist two sets
R1 and R2, with ∅ $ Ri $ NTR, i = 1, 2, such that, for all (x, y) ∈ NTR,
we have (x, y) ∈ R1 if and only if (y, x) /∈ R2; moreover, Ri, i = 1, 2, satisfies
Conditions 1 and 2.

With regard to this definition of a decomposable domain, let us remind
the main differences with the original notion of KM decomposability already
noticed by Busetto et al. (2015). Conditions 1 and 2 differ from the cor-
responding Conditions I and III as the former refer to triples, rather than
pairs, of alternatives. Moreover, Condition 2 is reformulated in terms of a
pair of preference orderings, instead of only one. This is consistent with
the formulation of constraint (6 bis), which is in fact a reinterpretation of
Condition 2 in terms of integer programming. Also, this new definition of a
decomposable domain does not require that R1 and R2 contain TR, whereas
KM decomposability requires that R contains TR. Finally, our new defini-
tion imposes that R1 and R2 satisfy only two conditions, instead of four, as
required by KM decomposability. As Proposition 5 below makes it clear, this
implies a redundancy of Conditions II and IV of KM decomposability, which
parallels the redundancy of constraints (5) and (7) proved in Propositions 1
and 2.1

On the basis of the reformulation of the concept of decomposability, we
now state and prove the characterization theorem.

Theorem. There exists a nondictatorial solution to IP2 on Ω, d, for n = 2,
if and only if Ω is decomposable.

Proof. Let d be a nondictatorial binary solution to IP2 on Ω, for n = 2.
Let R1 = {(x, y) ∈ NTR : d{1}(x, y) = 1} and R2 = {(x, y) ∈ NTR :
d{2}(x, y) = 1}. Then, for all (x, y) ∈ NTR, (x, y) ∈ R1 if and only if

1Busetto et al. (2015), in their Proposition 3, provided a direct proof of the equivalence
between the new notion of decomposability and KM decomposability.
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(y, x) /∈ R2, as d satisfies (2). Moreover, ∅ $ Ri $ NTR, i = 1, 2, as
d is nondictatorial. Consider a triple x, y, z and suppose that there exist
p,q ∈ Ω satisfying xpypz and yqzqx. Moreover, suppose that (x, y) ∈ R1

and (x, z) /∈ R1 Then, d{1}(x, y) = 1 and

d{1}(x, y) > d{1}(x, z),

contradicting (4). Hence, Ri, i = 1, 2, satisfies Condition 1. Consider a
triple x, y, z and suppose that there exist p,q ∈ Ω satisfying xpypz and
zqyqx. Moreover, suppose that (x, y), (y, z) ∈ R1, and (x, z) /∈ R1. Then,
d{1}(x, y) = 1, d{1}(y, z) = 1, and

d{1}(x, y) + d{1}(y, z) > 1 + d{1}(x, z),

contradicting (6 bis). Hence, Ri, i = 1, 2, satisfies Condition 2. We have
proved that Ω is decomposable. Conversely, suppose that Ω is decomposable.
Then, there exist two sets R1 and R2, with ∅ $ Ri $ NTR, i = 1, 2, such
that, for all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (y, x) /∈
R2; moreover, Ri, i = 1, 2, satisfies Conditions 1 and 2. Determine d as
follows. For each (x, y) ∈ NTR, let d∅(x, y) = 0, dE(x, y) = 1; moreover,
let d{i}(x, y) = 1 if and only if (x, y) ∈ Ri; d{i}(x, y) = 0 if and only if
(x, y) /∈ Ri, for i = 1, 2. Then, d satisfies (1) and (2) as, for all (x, y) ∈ NTR,
we have (x, y) ∈ R1 if and only if (y, x) /∈ R2. Consider a triple x, y, z and
suppose that there exist p,q ∈ Ω satisfying xpypz and yqzqx. Moreover,
suppose that

d{1}(x, y) > d{1}(x, z).

Then, we have (x, y) ∈ R1 and (x, z) /∈ R1, contradicting Condition 1.
Therefore, d satisfies (4). Consider a triple x, y, z and suppose that there
exist p,q ∈ Ω satisfying xpypz and zqyqx. Moreover, suppose that

d{1}(x, y) + d{1}(y, z) > 1 + d{1}(x, z).

Then, we have (x, y), (y, z) ∈ R1 and (x, z) /∈ R1, contradicting Condition 2.
Therefore, d satisfies (6 bis). d is nondictatorial as ∅ $ Ri $ NTR, i = 1, 2.
Hence, d is a nondictatorial binary solution to IP2 on Ω.

Theorem 2 in Kalai and Muller (1977) can be obtained as a corollary of
the previous result.

Corollary. There exists a nondictatorial ASWF on Ω, f , for n ≥ 2, if and
only if Ω is decomposable.

Proof. It is a consequence of the Theorem, Theorems 1 and 8 in Sethuraman
et al. (2003), and Propositions 3 and 4.
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From the previous corollary, we obtain a result, which, as anticipated
above, establishes the equivalence between the new notion of decomposabil-
ity and KM decomposability, and implies that Conditions II and IV are
redundant.

Proposition 5. Ω is KM decomposable if and only if it is decomposable.

Proof. It is an immediate consequence of Theorem 2 in Kalai and Muller
(1977) and the Corollary.
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