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Summary 21 

Genetic diversity provides the raw material for populations to respond to changing 22 

environmental conditions. The evolution of diversity within populations is based on the 23 

accumulation of mutations and their retention or loss through selection and genetic drift, while 24 

migration can also introduce new variation. However, the extent to which population growth and 25 

sustained large population size can lead to rapid and significant increases in diversity has not 26 

been widely investigated. Here we assess this empirically by applying Approximate Bayesian 27 

Computation to a novel ancient DNA dataset that spans the life of a southern elephant seal 28 

(Mirounga leonina) population, from initial founding ~7000 years ago, to eventual extinction 29 

within the past millenium. We find that rapid population growth and sustained large population 30 

size can explain substantial increases in population genetic diversity over a period of several 31 

hundred generations, subsequently lost when the population went to extinction. Results suggest 32 

that the impact of diversity introduced through migration was relatively minor. We thus 33 

demonstrate, by examining genetic diversity across the life of a population, that environmental 34 

change could generate the raw material for adaptive evolution over a very short evolutionary 35 

time scale through rapid establishment of a large, stable population. 36 

 37 

Key words (3-6): ancient DNA, approximate Bayesian computation, extinction, founder event, 38 

genetic diversity, population growth.  39 
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Introduction 40 

Understanding how micro-evolutionary processes lead to changes in evolutionary 41 

potential in the form of genetic diversity is a fundamental goal of population genetics. Population 42 

genetic diversity can be gained either in situ through mutation, through immigration, or some 43 

combination of the two (Maruyama 1970, Nei & Feldman 1972). Variation in the form of new 44 

mutations is expected to enter a population at a rate of 2 Ne u, where Ne is the effective 45 

population size and u the neutral mutation rate per generation, while genetic drift decays 46 

variation at the rate of 1/2 Ne (Kimura 1983). New mutations within a population can either be 47 

fixed, or more commonly lost (Kimura and Ohta 1969, Crow and Kimura 1970). Fixation time of 48 

new unlinked neutral mutations within a randomly mating population is strongly reliant on Ne, 49 

taking some 4Ne generations when Ne is constant (Kimura and Ohta 1969, 1973). However, 50 

change in population size, a fundamental characteristic of many wild populations, can 51 

significantly impact on this timeframe (Kimura and Ohta 1969, 1973). Changes in genetic 52 

diversity can also result from the movement of individuals (migration) and their genes (gene 53 

flow) into or out of a population. Thus, rapid changes in population genetic diversity may result 54 

from demographic processes such as immigration, or in situ processes such as mutation and 55 

genetic drift. These processes will also be influenced by changes in Ne, which may result from 56 

varying physical conditions, resource availability, habitat availability, predator density, human 57 

impacts (Otto & Whitlock 1997), or skewed effective breeding ratios. 58 

While theoretical models predict changes in levels of genetic diversity within a 59 

population over time, it is uncommon to be able to track such changes in vertebrate populations 60 

empirically, particularly over timeframes longer than that of pedigree studies. However, 61 

molecular analyses of ancient DNA allow these processes to be assessed more fully, especially 62 



 4 

when ancient DNA samples span the life of the population. Here we investigate such a dataset, 63 

provided by the founding and subsequent extinction of a colony of southern elephant seals. This 64 

population existed along the Victoria Land Coast (VLC), Antarctica for much of the Holocene, 65 

resulting from the expansion of suitable habitat due to altered environmental conditions (Hall et 66 

al. 2006, de Bruyn et al. 2009). Our study is inspired by the observation that this short-lived 67 

population had apparently accumulated extensive novel variation, most of which was lost when 68 

the population went to extinction (de Bruyn et al. 2009), but the relative contribution of 69 

migration and in situ mutation to this increase in genetic diversity remains unknown. 70 

Radiocarbon dates from 223 individual seal remains provided upper- and lower-bound 71 

age estimates on the population of 7,200 – 270 years before present (YBP; Hall et al. 2006, de 72 

Bruyn et al. 2009). Subsequent analyses utilizing a southern elephant seal-specific substitution 73 

rate estimated from these dated samples supported the notion of an accelerated short-term time-74 

dependent rate (Ho et al. 2005), and agreed with estimates obtained from various other aDNA 75 

datasets (e.g. Ho et al. 2007, Burridge et al. 2008), and the mean human mitochondrial control 76 

region pedigree rate estimate (Howell et al. 2003). Importantly, population genetic analyses of 77 

VLC founder dynamics conducted using this substitution rate fitted well the timeframe recovered 78 

from geological dating of Holocene raised beaches along the VLC, and the fate of the Ross Sea 79 

Ice Sheet, which indicated that this coastline would have been inhospitable to southern elephant 80 

seals prior to around 8,000 YBP (Conway et al. 1999, Hall et al. 2006). Elephant seals require 81 

breeding habitat with access to open water, and the VLC coastline was beneath the Ross Sea Ice 82 

Sheet prior to this time (Hall et al. 2006). The retreat of the ice shelf was followed by a period of 83 

relative warmth when the seal colony apparently thrived and expanded, before more recent 84 
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cooling around 1,000 YBP lead to an increase in land-fast sea-ice - a likely cause of the demise 85 

and eventual extinction of this population (Hall et al. 2006, de Bruyn et al. 2009). 86 

 Molecular analyses of these ancient DNA samples from the VLC, and from 87 

contemporary samples from seven putative populations, representing all four major extant 88 

southern elephant seal breeding stocks (Leboeuf & Laws 1994), have provided considerable 89 

insight into the origin and demographic history of the VLC seals (de Bruyn et al. 2009). Our 90 

earlier research demonstrated that the VLC seals were an independent breeding colony - most 91 

likely founded by seals from Macquarie Island (MQ) - which grew in size through the mid-92 

Holocene, before declining drastically around 1,000 YBP, resulting in eventual extinction and 93 

the possible return of some VLC animals to the source population at MQ (de Bruyn et al. 2009). 94 

Inferred timings of these demographic events derived from molecular data are consistent with 95 

inferences based on fossil radiocarbon dates and geological data. However, it was not clear if this 96 

scenario was sufficient to explain the very high levels of diversity of the VLC population, or the 97 

relative importance of migration compared to in situ mutation.  98 

We therefore applied Approximate Bayesian Computation (ABC) methods to the VLC 99 

and MQ dataset to test hypotheses about the timing and relative importance of different 100 

processes, thereby testing hypotheses about life history and behavior (such as the likelihood of 101 

the VLC being a breeding, as opposed to a molting population, and the degree of insularity of the 102 

newly founded population). ABC enables the joint assessment of a large number of increasingly 103 

complex demographic models, and allowed us to examine in detail processes leading to 104 

significant changes in genetic diversity, from initial founding to the eventual extinction of a 105 

population. 106 

 107 
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Materials and Methods 108 

Data 109 

The VLC and MQ dataset analyzed here comprised 223 ancient VLC samples, ranging in 110 

age from ±7,200 – 270 YBP, and 49 contemporary samples from MQ (Table S1; Genbank 111 

accession numbers: FJ168073–FJ168343). Details of laboratory DNA methodology (including 112 

extractions, PCR, sequencing of a 325 bp fragment of the HVR1 section of the mitochondrial 113 

control region, cloning, ‘independent replication’ and other strict aDNA protocols), as well as 114 

calculation of aDNA calendar dates from radiocarbon dating that incorporated a time-dependent 115 

Southern Ocean marine reservoir effect, are presented elsewhere (de Bruyn et al. 2009).  116 

 117 

Coalescent models and summary statistics 118 

Based on earlier population genetic results, including Isolation-with-Migration analyses 119 

(de Bruyn et al. 2009), a series of increasingly complex models were examined within an ABC 120 

framework. These ranged from a simplified one population (Model 1) or model with two 121 

populations that diverged 12,000 ybp (Model 2), to those incorporating exponential population 122 

growth and bi-directional migration (e.g. Model 7) (Fig. 1). Models of intermediate complexity 123 

examined colonization from VLC to MQ (Model 3, the opposite of what we believe occurred), 124 

colonization from MQ to VLC (Model 4), ongoing migration from MQ to VLC after 125 

colonization (Model 5), and a single migration event from VLC to MQ when the VLC 126 

population was extirpated (Model 6). We also added alternative versions of Models 4-7 that 127 

included exponential growth (consistent with known demographic potential) in VLC for the first 128 

500 years after colonization, followed by a stable population (Models 4b-7b). For models with 129 

colonization, we specified that the timing of colonization was 8000 ybp, consistent with the 130 
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retreat of ice from VLC and the first available breeding habitat. This was a conservative choice 131 

given that a more recent colonization would require more rapid population growth. 132 

 We used serial coalescent theory, as implemented in Bayesian Serial Simcoal (Anderson 133 

et al. 2005), to simulate 1 million datasets from each of our eleven models. We set the mutation 134 

rate to 9.8x10-7 mutations site-1 yr-1, as estimated from dated aDNA samples, with a 135 

transition/transversion ratio of 0.8564 and a mutation rate gamma distribution shape parameter of 136 

0.2003 (de Bruyn et al. 2009). The sample sizes, sample dates, and length of the locus (325bp) 137 

matched our collected data (Table S1). We used uniform priors on population size and migration 138 

rates (Tables 1 & S2) so as to specify little prior knowledge about these quantities. Uniform 139 

priors for population size and migration rates have been commonly recommended or used in 140 

ABC (Bertorelle et al. 2010, Li & Jakobsson 2012, Robinson et al. 2013). The prior on back-141 

migration in Models 6 and 7 was also uniform 0-100% (Table S2). For both on-going migration 142 

from MQ to VLC and the back-migration event from VLC to MQ, 100% migration corresponded 143 

to full replacement of the sink population with genes from the source population, while 50% 144 

migration corresponded to replacement of only half the sink population. In addition, we 145 

evaluated the sensitivity of our conclusions to alternative priors by generating 333,333 146 

simulations from each of the 11 models with 1) log uniform migration rates from e-9 to e0; or 147 

with 2) wider priors on the size of the colonizing population (uniform 0 to 10,000). Colonizing 148 

populations up to 10,000 in a single generation are highly unlikely given that MQ only has 149 

10,000 females.  150 

From the real data and from the simulations, we then calculated a series of summary 151 

statistics on each of three statistical groups: MQ (n=49), VLC 3000-7100 ybp (n=64), and VLC 152 

0-3000 ybp (n=159). Statistical groups were chosen to examine temporal dynamics in VLC while 153 
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maintaining a sufficiently large sample size for the ancient group. However, we also conducted a 154 

sensitivity analysis after adding an additional statistical group for the earliest VLC years (6000-155 

7100 ybp) and trimming the other ancient VLC statistical group to 3000-6000 ybp. The 156 

sensitivity analysis was conducted with 333,333 simulations from each of our 11 models.  157 

We used the number of haplotypes (H), number of segregating sites (S), and average 158 

number of pairwise differences within each of the statistical groups () as summary statistics 159 

(Tables 2 and S3). We also used FST values calculated between MQ and each of the two VLC 160 

statistical groups. We chose these summary statistics because they reflect the demographic 161 

changes in which we were interested (Bertorelle et al. 2010), namely changes in population size 162 

(H, S and  at two time points) (Nei & Takahta 1993, Tajima 1989) and the exchange of 163 

migrants through time between MQ and VLC (FSTs) (Slatkin 1985) (Table S3). Preliminary 164 

simulations also suggested that they were sufficient to distinguish among our competing 165 

hypotheses. 166 

 167 

Approximate Bayesian Computation (ABC) 168 

 After simulating the models and calculating the summary statistics, we conducted our 169 

ABC analysis in three steps: model selection, parameter estimation, and quality control. For 170 

model selection, we used a weighted multinomial logistic regression to calculate the relative 171 

support for each model (Beaumont 2008) from the 5% of all 11 million simulations for which  172 

(the Euclidean distance between the observed and simulated summary statistics) was smallest. 173 

Parameter estimation followed a similar process. From the 0.5% of simulations from each model 174 

for which  was smallest, we used weighted local linear regression to estimate the posterior 175 

distributions of each parameter (Beaumont et al. 2002). Before the parameter calculations, we 176 
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log-transformed MQ and final VLC population sizes, and logit-transformed migration rates and 177 

the size of the VLC colonizing population. Both transformations were applied to facilitate 178 

parameter estimation and projection back onto untransformed axes. We report the median, mode, 179 

and 95% highest probability density (HPD) for each parameter. Calculations were done in R 180 

2.15.3 with the abc package (Csillery et al. 2012). 181 

 For quality control, we followed the recommendations of Bertorelle et al. (2010) and 182 

generated pseudo-observed datasets (PODs). We sampled 1000 parameter sets from the posterior 183 

distributions of each model and used these to simulate PODs. By sampling from the posteriors, 184 

we account for our full knowledge and uncertainty about the true model parameters. Previous 185 

authors have used only the best parameter estimates (Bertorelle et al. 2010) or the full prior 186 

distributions (Fagundes et al. 2007). We re-ran our model selection calculation on each of 100 187 

PODs from each model (1100 total PODs) to evaluate our model selection procedure when the 188 

true model was known. This process allowed us to calculate model choice error rates. In addition, 189 

these results also allowed us to calculate a corrected relative support for each model following 190 

the procedure of Fagundes et al. (2007)  191 

 192 

 Pr(𝑀𝑜𝑑𝑒𝑙 = 𝑋 | 𝑃𝑀𝑜𝑑𝑒𝑙 𝐴 = 𝑎) =  
Pr(𝑃𝑀𝑜𝑑𝑒𝑙 𝐴=𝑎 |𝑀𝑜𝑑𝑒𝑙=𝑋)

∑ Pr(𝑃𝑀𝑜𝑑𝑒𝑙 𝐴=𝑎|𝑀𝑜𝑑𝑒𝑙=𝑖)𝑖 ∈ 𝑀𝑜𝑑𝑒𝑙𝑠
  193 

 194 

 for each potential model X, the originally identified best model A, and the originally 195 

observed relative support a for Model A. The procedure calculates the probability that X is the 196 

correct model given our initial (uncorrected) observation that Model A was chosen as the best 197 

model with relative support a. The procedure accounts for difficulties differentiating between the 198 

models while also accounting for the fact that Model A might have been chosen with strong 199 
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support (a close to 1). We implemented the procedure by calculating the relative support for 200 

Model A from each of the 100 PODs produced by each of our eleven models. For each model, 201 

we then calculated a probability density across the range of relative supports (0 to 1). We 202 

expected that models that were rarely confused with Model A would have densities centered near 203 

zero relative support, while models similar to Model A (including Model A itself) would have 204 

densities centered closer to 1. We then evaluated these densities at the observed value (a) of 205 

relative support for Model A (e.g., Pr(𝑃𝑀𝑜𝑑𝑒𝑙 𝐴 = 𝑎 | 𝑀𝑜𝑑𝑒𝑙 = 𝑋) to evaluate the above equation.  206 

We also assessed model fit against our observed data using tail-area probability, or p-207 

value, tests for each summary statistic (Cornuet et al. 2010). We used false discovery rate (FDR) 208 

corrections on the statistics within each model (Benjamini & Hochberg 1995), as well as the 209 

method of Ghirotto et al. (2010) to combine p-values across statistics. When combining p-values, 210 

we assigned 0.001 to those p-values at the edge of the empirical distribution in order to avoid 211 

infinite values in the calculation. Low p-values indicated that the observed data were unlikely 212 

given a particular model. Finally, we performed a principal components analysis (PCA) on the 213 

summary statistics and plotted the observed data along with simulated datasets from the prior and 214 

from the posterior (Cornuet et al. 2010). Ideally, the observed data would fall within the posterior 215 

for the selected model.  216 

 To test the accuracy of our parameter estimation procedure, we estimated model 217 

parameter (𝜃𝑖) for each POD i and compared the estimates against the known, true parameters 218 

(𝜃𝑖) used to simulate each POD. We then calculated the bias and root mean square error (RMSE) 219 

for each parameter across all n PODs: 220 

 221 

 𝑏𝑖𝑎𝑠 =
1

𝑛
∑

𝜃̂𝑖−𝜃𝑖

𝜃𝑖

𝑛
𝑖−1  222 
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 𝑅𝑀𝑆𝐸 =  
1

𝜃
√

1

𝑛
∑ (𝜃𝑖 − 𝜃𝑖)

2𝑛
𝑖=1  224 

 225 

We also calculated the Factor 2 statistic, which is the proportion of estimated values that 226 

fall between 50% and 200% of the true value (Neuenschwander et al. 2008). We used coverage 227 

to assess the accuracy of our confidence intervals, defined as the proportion of simulations that 228 

fall within the 50% or 90% HPD around the estimated parameter. Finally, we calculated the 229 

coefficient of determination (r2) for each parameter, which is the proportion of parameter 230 

variance that can be explained by the summary statistics (Bertorelle et al. 2010).  231 

 232 

Results 233 

Model Selection 234 

 The raw posterior probabilities from our ABC analysis suggested the highest support 235 

(0.70) for Model 4b (Table 3), the scenario that involved rapid growth of the VLC population 236 

after colonization from MQ, but that did not include ongoing migration from MQ or back-237 

migration to MQ. We found lower support for Model 6b (0.24), which did include migration 238 

back to MQ near the collapse of VLC.  There was very little support for scenarios in which VLC 239 

and MQ were panmictic, where they were completely independent, where MQ was colonized by 240 

VLC, or where VLC grew slowly. 241 

 However, when we simulated datasets to validate our model choice results, we found that 242 

distinguishing between certain models could be difficult, at least after such models had been fit 243 

to the observed data (a more stringent test than used in many previous studies) (Table S3). In 244 

particular, Models 1, 3, 5, 6, 7, 5b, and 7b were misidentified as a different model more than 245 
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50% of the time (Table S3). Model 4b was the most accurately identified scenario, with 90% of 246 

simulations correctly chosen as Model 4b. Most of the remaining Model 4b simulations were 247 

mistaken for Model 6b, a model that included 4b as a limiting case when back-migration was 248 

low. Encouragingly, however, and of particular relevance to our study, few scenarios were 249 

misidentified as Model 4b with high support (e.g., 0.70) (Fig. S1). The exception to this general 250 

rule was Model 5b, which, like 6b, included 4b as a limiting case when the migration rate was 251 

low. We corrected for the possibility of misidentification by calculating Pr(Model X | PModel 4a = 252 

0.70) for each model (Table 3, Fig. S1). We found that most of the posterior support, once 253 

corrected for errors in model choice, was split between Models 4b and 5b, with lower support for 254 

Models 6b and 7b. This result suggested that rapid growth soon after VLC colonization was 255 

highly likely, but determining whether or not migration continued after colonization could be 256 

more difficult. Back-migration to MQ near the collapse of VLC was less well supported 257 

(probability of 0.27 that the true scenario was Models 6b or 7b).  258 

 Further model checking with tail probabilities indicated that at least one summary 259 

statistic failed the test (p < 0.05) for each of Models 1-7, but none of the statistics failed for 260 

Models 4b-7b (those with rapid growth) (Table S4). The combined p-value statistic indicated 261 

particularly poor fits for Models 1 and 2 (p < 0.001), but did not reject any of the other models. 262 

The PCA analysis on the summary statistics indicated poor fits for Models 1-4, with the observed 263 

data clearly falling outside the simulations from the posterior (Fig. S3). The other models 264 

provided better fits to the data, according to this test. 265 

 Under alternative model priors or alternative statistical group definitions, Model 4b 266 

continued to be selected as the best model (Table 3). However, under log normal priors for 267 

migration rate, the model choice procedure indicated lower support for Model 4b than before, 268 



 13 

with the remaining support distributed primarily among Models 5b, 6b, and 7b. This result is to 269 

be expected because very low values of migration rates (close to 0) were commonly selected 270 

under log normal priors, and so the functional differences among Models 4b, 5b, 6b, and 7b were 271 

smaller. Under wider priors for the size of the colonizing population, support for Model 4b 272 

remained high (68%). Support also remained substantially higher for Model 4b (51%) than for 273 

alternative models (≤18%) with four statistical groups. 274 

 275 

Parameter estimation 276 

 We then estimated the posterior distributions for both of the well-supported models (4b 277 

and 5b) and found similar parameter estimates from both (Table 1, Fig. 2). In particular, we 278 

found that MQ was about two orders of magnitude smaller than VLC, consistent with the lower 279 

genetic diversity in this population (Table 1, Fig. 2). Posterior parameter estimates for the 280 

migration rate between MQ and VLC also clarified why Model 5b received similar support to 281 

Model 4b: the migration rate posterior for Model 5b was nearly 0 (95% HPD of 0 to 0.003; Table 282 

1, Fig. 2). With a very low to zero migration rate, Model 5b was functionally similar to Model 4b, 283 

and the two were therefore difficult to distinguish. From the width of the posterior, it was clear 284 

that we did not have much power to detect the effective number of females that colonized VLC, 285 

though a founding size <200 seals was unlikely (Fig. 2). 286 

 In testing the accuracy of our parameter estimates, we found that the relative bias and 287 

RMSE error were quite low for the MQ and ancient VLC effective size (<50%), but substantially 288 

higher for the final VLC effective size with a positive bias of up to 100% (Table 4). Our 289 

estimates of final VLC size, however, were in the right order of magnitude. This accuracy was 290 

also reflected in the factor 2 calculations, which were highest for MQ size and lowest for final 291 
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VLC size. The coverage of our 50% and 90% HPDs were quite accurate, with mean values 292 

across parameters of 44% and 88%. The high values for our coefficients of determination 293 

suggested that our choices of summary statistics were informative. We concluded that our 294 

estimates of MQ and ancient VLC population sizes were most accurate, but we could only 295 

approximate the final VLC size to within an order of magnitude. 296 

 When we compared the fit of simulated datasets based on our posterior distributions, we 297 

found that they were a substantially better fit to the observed data than were the prior 298 

distributions (Fig. 3). However, the best model continued to predict haplotype diversity in the 299 

ancient VLC population (HVLC1) that was somewhat too low, while the predicted number of 300 

segregating sites in the recent VLC population remained somewhat too high (SVLC2).  On the 301 

other hand, the key prediction of final haplotype number in the VLC was a strong match. The fit 302 

for Model 4b was also substantially better than for a similar model that did not include rapid 303 

initial population growth in VLC (Model 4). The latter model substantially under-predicted 304 

haplotype diversity in VLC (HVLC1 and HVLC2), suggesting that rapid growth was important for 305 

the generation and maintenance of genetic diversity (Fig. S2). 306 

 307 

Discussion 308 

Our analysis indicated that the high levels of genetic diversity attained within the VLC 309 

southern elephant seal colony (Table 2) most likely arose largely by rapid mitochondrial control 310 

region in situ mutation as a function of early rapid population growth to a large effective 311 

population size, which effectively reduces the probability of extinction for new (single-copy) 312 

alleles (Crow and Kimura 1970). This followed the release of a large expanse of suitable 313 

breeding habitat along the Victoria Land Coast, after the retreat of the Ross Sea Ice Sheet in the 314 



 15 

early- to mid-Holocene (Hall et al. 2006). Approximate Bayesian Computation provides strong 315 

support for the idea that Macquarie Island was the source of founders of the VLC colony, 316 

consistent with previous findings (de Bruyn et al. 2009; though the mtDNA marker provides 317 

long-term inference only about the movement of females). Further, our analysis did not support 318 

the idea that seals from VLC were purely a non-breeding moulting colony, that VLC was the 319 

source of the MQ population, or that seals from the two locations were panmictic. We could also 320 

rule out any of the other major extant southern elephant seal breeding colonies as sources of 321 

either founders, or observable levels of gene flow (de Bruyn et al. 2009). Thus, the significant 322 

levels of genetic diversity observed in the VLC population likely resulted from a combination of 323 

rapid substitution rate at the mitochondrial control region, and rapid population growth to a large 324 

effective population size, soon after colonization of newly-available habitat resulting from 325 

Holocene climate change.  326 

 The model with the highest posterior probability is one of initial founding of VLC by a 327 

cohort of MQ seals (95% HPDs of female effective size: 157 – 953), followed by rapid 328 

population growth and a lack of gene flow between the two locations until final extinction of the 329 

VLC colony, some 7000 years later (de Bruyn et al. 2009). Interestingly, inclusion of an initial 330 

rapid growth phase would appear critical to fitting the models to our data (Table 3, Fig. 3, Fig. 331 

S2). The next best-fit model is otherwise the same, also including a rapid growth phase, but 332 

distinguished by very low levels of ongoing migration from MQ to VLC (95% HPDs of 333 

migration rate 0 – 0.003). Although immigration from an unsampled ‘ghost’ population cannot 334 

be fully excluded, there are no apparent candidate populations not already directly or indirectly 335 

sampled, and data from de Bruyn et al. (2009), which sampled all major extant populations, 336 

illustrate a clear connection between VLC and MQ in the mtDNA networks. One other possible 337 
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interpretation is that migrants to VLC were from other now-extinct colonies, not from Macquarie. 338 

The most likely candidate, based on geographic proximity, is the population from the north-339 

western coast of Tasmania, extinct since prehistoric times (Bryden et al. 1999), though 1500 km 340 

further from VLC than MQ. In this context, it seems unlikely that the VLC population would be 341 

founded by the Tasmanian (or the even more distant historical colony in New Zealand) rather 342 

than by the MQ population. The colonies on Juan Fernandez and St. Helena were likely small 343 

and exterminated by hunting in the 19th and 20th centuries. Both were very distant from VLC, 344 

over 4,000km to Juan Fernandez and over 6,000 km to St. Helena (the northern most record for 345 

this species; Fraser 1935). The chance that either of these would form a useful/relevant reference 346 

sample for this study seems very remote.   347 

 Simulated datasets based on posterior distributions fitted the observed data far better than 348 

the prior distributions (Fig. S2), including a strong fit between observed recent VLC haplotypic 349 

diversity and that predicted (Fig. 3). There were two exceptions, with the model prediction for 350 

haplotype diversity being low for the older VLC sample, and high for the number of segregating 351 

sites in the more recent VLC sample. The lower than expected observed number of segregating 352 

sites may simply reflect higher than expected variance of substitution rate among sites. While the 353 

best-supported model was one of no post-founder gene flow, one possible explanation for higher 354 

than expected haplotypic diversity early on is a post-founder ‘connection event(s)’ (see Alcala et 355 

al. 2013). Although this may be consistent with our second (Model 5b) and third (Model 6b) 356 

best-fitting models (Table 3), the level of migration indicated in those models is very small.  357 

Other possible explanations include stochastic sampling effects, and sequence error in the older 358 

samples due to post-mortem damage. The latter is unlikely given the controls and replication 359 

undertaken to ensure accurate genotyping, including multiple replicate extractions-through-to-360 
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sequencing, and cloning (see de Bruyn et al. 2009 for further details).   361 

The key result remains the match between the very high haplotype diversity at VLC, 362 

including extensive novel diversity compared to the source population MQ (de Bruyn et al. 363 

2009), and model expectations derived using ABC and ancient DNA. While the generation of 364 

genetic diversity in this case is presumed to be neutral and the mutation rate relatively high 365 

(mitochondrial control region), our results suggest that given the right conditions, environmental 366 

change could generate the raw material for adaptive evolution (affecting multi-genic phenotypic 367 

traits) through rapid population growth over a very short evolutionary time scale.   368 
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Figure Captions 457 

Figure 1. Diagram of hypotheses about migration and colonization between MQ and VLC over 458 

the period in which VLC was extant (8000 to 1000 ybp). The width of the arrows indicates 459 

population size through time, while horizontal arrows indicate migration. Alternate versions of 460 

Models 4 to 7 (Models 4b to 7b, not shown) specified rapid growth in VLC over the first 500 461 

years (83 generations) to a plateau in population size.  462 

 463 

Figure 2. Posterior densities for parameters from Model 4b (top row) and Model 5b (bottom 464 

row). Migration rate from MQ to VLC is only present in Model 5b. 465 

 466 

Figure 3. Comparison between the posterior distributions (black curve) and the prior 467 

distributions (dashed curve) for Model 4b. The summary statistics are from Macquarie (MQ), 468 

ancient Victoria Land Coast (VLC1) and more recent Victoria Land Coast (VLC2) and include 469 

the number of haplotypes (H), the number of segregating sites (S), the number of pairwise 470 

differences (), and pairwise FST values. The observed value of each summary statistic is shown 471 

as a vertical line. 472 

473 
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Tables and Figures 474 

Table 1: Prior and posterior parameter estimates for the MQ and VLC colonization history. 475 

Parameter Description Prior Median Mode 95% HPD 

 

Model 4b 

     

NMQ MQ female effective size 0 to 105 2,050 2,000 1,290 - 3,290 

NVLC1 VLC founding female 

effective size 

0 to 103 
627 719 157 - 953 

NVLC2 VLC final female  

effective size 

0 to 106 
158,000 120,000 

65,700 - 

395,000 

      

Model 5b      

NMQ MQ female effective size 0 to 105 2610 2410 1220 – 4650 

NVLC1 VLC founding female 

effective size 

0 to 103 
527 664 33 – 998 

NVLC2 VLC final female  

effective size 

0 to 106 
474,000 110,000 

21,300 – 

986,000 

mMQ-VLC MQ to VLC migration 0 to 100% 0.0001 0.0004 0 – 0.003 

 476 

  477 
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Table 2: Summary statistics for southern elephant seal populations from Macquarie Island (MQ) 478 

and from Victoria Land Coast (VLC) during the 3000-7100 ybp period (VLC1) or the 0-3000 479 

ybp period (VLC2) (from de Bruyn et al. 2009). The statistics include the number of haplotypes 480 

(H), the number of segregating sites (S), the number of pairwise differences (), and pairwise FST 481 

values. 482 

 483 
summary statistic value 

MQ (n=48)  

HMQ 15 

SMQ 23 

MQ 6.58 

  

VLC1 3000-7100 (n=64)  

HVLC1 58 

SVLC1 49 

VLC1 7.97 

  

VLC2 0-3000 (n=159)  

HVLC2 128 

SVLC2 79 

VLC2 7.69 

  

FST  

MQ to VLC1 0.20298 

MQ to VLC2 0.16809 

 484 

485 
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Table 3: Posterior probabilities for each model. Values in bold sum to 90% of posterior model 486 

probability within a column. Corrected probabilities account for errors in scenario identification. 487 

Posterior probabilities under alternative priors and statistical group definitions are also shown, 488 

including log normal migration rate priors (Priors 2), wider priors on the size of the colonizing 489 

population (Priors 3), and four statistical groups (4 Groups).  490 

 491 
 Standard priors Priors 2 Priors 3 4 Groups 

Model 
posterior 

probability 

corrected 

probability 

posterior 

probability 

posterior 

probability 

posterior 

probability 

1. One population <0.01 <0.01 <0.01 <0.01 <0.01 

2. Separate populations <0.01 <0.01 <0.01 0.01 0.04 

3. Colonization from 

VLC 

<0.01 0.06 <0.01 0.01 <0.01 

4. Colonization from 

MQ 

<0.01 <0.01 <0.01 0.07 0.09 

4b. with rapid 

growth 
0.70 0.35 0.34 0.68 0.51 

5. Ongoing migration <0.01 0.01 <0.01 <0.01 0.02 

5b. with rapid 

growth 

<0.01 0.31 0.24 <0.01 0.02 

6. Back-migration <0.01 <0.01 <0.01 0.03 0.08 

6b. with rapid 

growth 
0.24 0.18 0.25 0.18 0.18 

7. Ongoing and back-

migration 

0.04 <0.01 <0.01 <0.01 0.02 

7b. with rapid 

growth 

<0.01 0.09 0.16 <0.01 0.03 

 492 

493 



 26 

Table 4: Accuracy of parameter estimation under Model 4b using 1000 simulated datasets. 494 

Parameter True 

Median 

Estimated 

Median 
Bias RMSE Factor 2 50% 90% R2 

NMQ 2,050 2,180 0.035 0.23 0.983 0.47 0.88 99% 

NVLC1 627 454 -0.087 0.44 0.763 0.52 0.92 99% 

NVLC2 158,000 330,000 0.95 1.0 0.578 0.33 0.84 99% 

 495 

496 
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Figure 1: 497 

498 
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Figure 2: 499 
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Figure 3: 501 
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