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On The Critical Casimir Interaction Between
Anisotropic Inclusions On A Membrane

Jorge Benet,a Fabien Paillusson,?b and Halim Kusumaatmaja†a

Using a lattice model and a versatile thermodynamic integration scheme, we study the critical
Casimir interactions between inclusions embedded in a two-dimensional critical binary mixtures.
For single-domain inclusions we demonstrate that the interactions are very long range, and their
magnitudes strongly depend on the affinity of the inclusions with the species in the binary mix-
tures, ranging from repulsive when two inclusions have opposing affinities to attractive when
they have the same affinities. When one of the inclusions has no preference for either of the
species, we find negligible critical Casimir interactions. For multiple-domain inclusions, mimicking
the observations that membrane proteins often have several domains with varying affinities to the
surrounding lipid species, the presence of domains with opposing affinities does not cancel the
interactions altogether. Instead we can observe both attractive and repulsive interactions depend-
ing on their relative orientations. With increasing number of domains per inclusion, the range
and magnitude of the effective interactions decrease in a similar fashion to those of electrostatic
multipoles. Finally, clusters formed by multiple-domain inclusions can result in an effective affinity
patterning due to the anisotropic character of the Casimir interactions between the building blocks.

1 Introduction
Originally, the cell membrane was considered just as a physical
barrier that kept cell components together. However, in the last
decades, advances in experimental techniques, including atomic
force and fluorescence microscopies, have enabled the probing of
membranes’ inner structure and composition to such extents that
it has been necessary to rethink our understanding of its physics,
chemistry and its role in biology1. Far from being a simple barrier,
cell membranes are in fact very complex mixtures in which lipids
and proteins meet, interact and self-assemble. A number of stud-
ies have shown that lipids are organized in the lateral dimension2

and that most membrane proteins organize in clusters3–6. Fur-
ther, there is now a growing consensus that such lateral organiza-
tion and compartmentalisation play important roles in biological
processes, such as in cell signalling and membrane trafficking7–9;
and it has also been suggested to be involved in a number of dis-
eases from HIV10 to liver11 and prion diseases like Alzheimer12.

Biologically-motivated scenarios, such as the fence and pickets
model13 or the lipid raft hypothesis14, have been put forward to
explain lateral membrane organizations. However, to date it re-
mains unclear whether such scenarios are feasible from a chem-
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ical physics standpoint and, if possible, to what extent they are
harnessed by biological processes in vivo. In this context, our
aim here is to contribute towards understanding how inclusions
(e.g. membrane proteins) may assemble into clusters within a cell
membrane. Assuming the aggregation process occurs in thermo-
dynamic equilibrium conditions, two possibilities come to mind.
Firstly, it may occur by the free diffusion, collision and irreversible
chemical bonding of the inclusions in a process reminiscent of a
Diffusion Limited Aggregation15–17. Secondly, the inclusions may
instead self-organise into metastable clusters, with a given equi-
librium size distribution, in order to minimise the overall free en-
ergy. In this work we will concentrate on the latter.

There are various candidate mechanisms for interactions be-
tween somewhat large protein-like inclusions surrounded by
smaller lipid species. They range from direct, specific interactions
between the inclusions, such as via van der Waals or electrostatic
forces18,19, to indirect interactions mediated by the lipid mem-
branes. For the latter, one possible mechanism arises from min-
imising membrane deformations. Both theory and experiments
have demonstrated that, by inducing curvature, proteins and col-
loidal particles can self-assemble into complex structures such
as lines, rings and lattices20–23. More recently, ideas for a new
class of indirect mechanisms have emerged, namely Casimir-like
forces24–32, which could arise both from shape and composition
fluctuations of the membrane. Here we will focus on composi-
tion fluctuations. Initially envisioned for bulk critical mixtures in
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three dimensions33, Casimir-like forces are expected to arise be-
tween any inclusions embedded in a fluctuating fluid when sep-
arated by a distance shorter than the correlation length of the
fluid; and for fluid mixtures near a critical point, this correlation
length diverges as we approach the critical temperature. Interest-
ingly, close to room temperature, lipid membranes with critical
composition pass through a miscibility critical point whose na-
ture closely follows that of the two-dimensional Ising universality
class34. This behaviour has been observed in giant plasma mem-
brane vesicles isolated directly from living cells35, as well as in
synthetic lipid mixtures36. It thus becomes plausible that Critical
Casimir (CC) interactions between membrane proteins embedded
in critical lipid mixtures could pave ways for their aggregation.

Machta et al.24 recently demonstrated that two “like” inclu-
sions immersed in a 2-dimensional critical binary lipid mixture
have an attractive interaction, while “unlike” ones have a repul-
sive interaction. In their model each protein inclusion has a set
uniform affinity with one of the lipid components. These find-
ings are in line with those previously reported both theoretically
and experimentally for CC interactions in 3 dimensions37–41. Re-
cent extensive simulations of colloids immersed in a critical sol-
vent further suggest strong similarities between the 2 and 3-
dimensional cases whereby the observed variations in the phase
behaviour appear to be accountable to differences in critical ex-
ponent and dimension of the solvent-inclusion interface42,43.

Besides uniform inclusions, inhomogeneities and anisotropies
at the fluid-inclusion interface have been theoretically shown to
affect substantially CC interactions in 3 dimensions40,44–46 to the
extent that patterning can now be tuned and exploited for tar-
geted colloidal self-assembly46,47. This observation is particu-
larly interesting and relevant for CC forces between membrane
proteins as proteins often have multiple domains with varying
affinities with respect to the lipid species48–50. Thus, if CC inter-
actions are to play a role in membrane protein aggregations, it is
key to understand how their sign and magnitude can be tailored
by heterogeneities in the protein domains and different affinities
between the inclusions and the lipid species.

To address this issue, in this work we employ Monte Carlo (MC)
simulations in a square lattice to simulate a binary mixture of
lipids with two inclusions embedded in it. The free energy cor-
responding to the CC interactions between these inclusions is ex-
plicitly computed by using a thermodynamic integration scheme.
The flexibility of our scheme allows us to (i) explore the effect of
gradually modifying the inclusion boundary conditions, and (ii)
study how the presence of different domains (anisotropy) can af-
fect the interactions.

2 Methods
The Critical Casimir (CC) interaction is characterised by the free
energy FCC(d) of a critical fluid mixture within which lie two in-
clusions separated by a fixed distance d 33. There are two com-
mon approaches to compute this CC free energy. Firstly, the free
energy can be defined as minus the work done by the ensemble
average of the mechanical force exerted by the fluid on the in-
clusions when brought from infinity to a finite separation d 24,51.
The equilibrium fluctuations of this mechanical force also inform

experiments relying on mechanical probes to evidence CC interac-
tions; however, some care must be taken when interpreting these
fluctuations, depending on how the inclusions interact with the
fluid mixtures26,52.

Secondly, from an equilibrium statistical thermodynamics view-
point, the statistics of configurations will be governed by a Boltz-
mann weight that depends on FCC(d). Thus, a fruitful strategy is
to compute the probability weights for inclusions at varying dis-
tances, which are readily available from simulations, and invert
them to recover the CC free energy as a function of distance42.

However, both the force and relative probability approaches
usually need to be supplemented by a theoretical estimate at a
reference distance because 2D CC interactions are very long range
and it can be impractical to extend the calculations to get an ef-
fectively zero interaction at large distances24,42. In this work, we
devise a non-distance-based thermodynamic integration scheme
precisely to avoid the need for a reference point, which can be
difficult to obtain for complex inclusion geometries. We will de-
tail our approach in the following subsections.

2.1 The Model

Our system consists of a critical lipid binary mixture in which
two proteins are embedded. We use a lattice gas model of this
system with a square lattice of N=150x150 cells. Each cell is
occupied either by a species of the binary mixture or part of a
protein. This lattice size is chosen as it gives a good trade-off
between reducing computational costs and finite size effects. By
this we mean that up to N =500x500, larger lattice sizes yield
results whose difference with our N=150x150 lattice size are not
statistically significant.

We simulate the lipid mixture by making use of a two-
dimensional Ising model, notorious for its critical behaviour, in
which the spin variables can take values s =±1 corresponding to
lipid species A and B. The protein inclusions are modelled as two
blocky patches occupying np = 12 cells each, whose size is deter-
mined by their effective radius, r, as shown in Fig. 1. For the
inclusions, the average value of their spin variable is set to a tar-
get value st which can be different for the two proteins. To avoid
a large standard deviation from this mean, spins belonging to a
protein region are modelled with Potts-like spin variables s = k/2,
with k an integer such that k ∈ [−2,2].

To get the free energy of the system with two protein inclusions
we make use of the 4 states represented in Fig. 1. The distance
between proteins, d, is measured as the distance between their
centers. These states are the following:

• State α comprising only the binary mixture at criticality (top
left of Fig. 1) with hamiltonian:

Hα = J
N

∑
i=1

∑
〈i〉
|si− s j|. (1)

• State β comprising the critical mixture and protein 1 (top
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Fig. 1 Representation of the various stages of the model. Top-left
figure: state α is a binary mixture at the critical point Tc. Top-right figure:
state β with protein 1, alone, embedded within a critical mixture.
Bottom-left figure: state γ with protein 2, alone, embedded within a
critical mixture. Bottom-right: state δ with proteins 1 and 2 embedded in
a critical mixture. The proteins’ effective radius, r, is determined by the
distance from the center of the patch to the furthest vertex.

right of Fig. 1) with hamiltonian:

Hβ = J
N

∑
i=1

∑
〈i〉
|si− s j|+h

np1

∑
i=1

(si− st1)
2. (2)

• State γ comprising the critical mixture and protein 2 (bottom
left of Fig. 1) with hamiltonian:

Hγ = J
N

∑
i=1

∑
〈i〉
|si− s j|+h

np2

∑
i=1

(si− st2)
2. (3)

• State δ comprising the two proteins 1 and 2 separated by a
distance d/r within the critical mixture (bottom right of Fig.
1) and with hamiltonian:

Hδ (d/r) = J
N

∑
i=1

∑
〈i〉
|si− s j|+h

np1

∑
i=1

(si− st1)
2 +h

np2

∑
i=1

(si− st2)
2.

(4)

The first term in Eqs. (1)–(4) is equivalent to a 2D Ising model,
while the second and third terms are quadratic terms whose role
is to impose the average spin values inside the regions where the
proteins are. Here J > 0 is the coupling parameter which char-
acterises the energy cost for having two different species next to
each other, ∑〈i〉 stands for a sum over the 4 closest neighbours of
cell i, h is a parameter setting the strength of the external poten-
tial imposing the average spin values inside the proteins, and st1

and st2 are the spin target values for proteins 1 and 2, respectively.

2.2 Thermodynamic Integration

Thermodynamic integration is a versatile method to compute free
energy differences between two thermodynamic states. Let us
consider an initial state with hamiltonian Hini, a final state with
hamiltonian Hfin, and a parameter-dependent hamiltonian H(λ )

such that H(λ = 0) = Hini and H(λ = 1) = Hfin. It can be shown
that the free energy difference between the final and initial states

can be computed by51:

∆Ffin/ini ≡ Ffin−Fini =
∫ 1

0

〈
∂H(λ )

∂λ

〉
λ

dλ . (5)

The equilibrium averages
〈

∂H(λ )
∂λ

〉
λ

can readily be obtained from

standard MC methods. It is important to note that, as a thermody-
namic quantity, the free energy difference is only a function of the
final and initial states, but not the path we have taken between
them. Thus, for simplicity, we have taken a linear interpolation
with crossover Hamiltonian

H(λ ) = Hini +λ (Hfin−Hini). (6)

This then yields

∆Ffin/ini =
∫ 1

0
〈Hfin−Hini〉λ dλ . (7)

Specific to the problem at hand, here we have four thermody-
namic states α, β , γ and δ (see Fig. 1), and we denote their free
energies as Fα , Fβ , Fγ and Fδ (d/r). We finally denote FCC(d/r)
as the CC free energy and define it as the work done to bring the
two proteins to within a distance d/r from infinity. It follows from
this definition that:

FCC(d/r) = Fδ (d/r)− (Fβ +Fγ )+Fα , (8)

where (Fβ +Fγ )−Fα represents the free energy of the system with
the two proteins being infinitely far apart in the critical mixture.
From Eq. (7), FCC(d/r) can then be expressed as a function of
thermodynamic integrals only:

FCC(d/r)=∆Fγ/δ −∆Fα/β =
∫ 1

0

〈
Hδ −Hγ

〉
λ

dλ−
∫ 1

0

〈
Hβ −Hα

〉
λ

dλ

(9)
which can be readily estimated from our MC simulations. We
note that, for a given set of protein inclusions, the second ther-
modynamic integral only needs to be computed once, while the
first integral has to be repeated for various values of d/r. The ad-
vantage of Eq. (9), which resemble to some extent the parameter
variation method used in Ref.44, is that it avoids the problem of
having to supply a theoretical estimate of the reference free en-
ergy, which tends to be very much system-dependent and difficult
to compute analytically.

2.3 Simulation Details

We perform standard Metropolis Monte Carlo simulations at the
critical temperature of the Ising model with non-conserved order
parameter. In our simulations, it corresponds to J/kBT = 2.27, in
agreement with analytical predictions by Onsager and previous
simulation results53,54. For each system we employ three ran-
dom different initial configurations, which are equilibrated for
5×105 cycles, and sampled for 5×106 cycles. Each cycle consists
of N random single spin flips, which ensures that all particles in
the system can be selected in each cycle, and configurations are
saved every 1000 cycles. In order to determine the error in our
calculations we use block analysis55 to determine the number of
independent measurements of the free energy. The error is ob-
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tained from the standard deviation with a confidence interval of
95%.

When performing the thermodynamic integration, there are
two technical aspects worth commenting. The first aspect is the
choice for the parameter h in Eqs. (1)–(4). On the one hand,
its value must be large enough to effectively pin the spin val-
ues inside an inclusion such that the associated energy variation
〈Hfin−Hini〉λ → 0 as λ→ 1. On the other hand, the accuracy of our
estimate of the CC free energy, FCC, is better when we have more
points substantially contributing to the numerical integration in
Eq. (7). As a consequence, h must be in a window of values guar-
anteeing both fidelity to the model we want to implement and
reliability of the integration method.

We further illustrate this issue in Fig. 2, where we show a
typical result of our thermodynamic integration method for three
values of h = 50kBT , 250kBT and 500kBT . In this example, we
compute the CC free energy difference between states γ and δ .
For the largest value of h, the contribution to the integral in Eq.
(7) primarily comes from a small window of λ close to λ → 0 and
only involves a couple of integration points, leading to a poor
estimate of the integral. From this perspective, smaller values of
h are better. However, for small values of h, we notice that the
integrand in Eq. (7) does not converge to zero as λ → 1 (see the
inset of Fig. 2). Physically this means the spin value of protein
inclusions is not correctly set to the target value st . In this work,
we find that we obtain equivalent results for the Critical Casimir
free energy if we use h = 100−250kBT . For the rest of this paper,
we use h = 250kBT .

Fig. 2 Average values of the integrand in Eq. 7 as a function of λ for
different values of the external field: h = 50kBT (red circles), h = 250kBT
(green squares) and h = 500kBT (blue diamonds). The initial state
corresponds to state γ with st =−1, and the final state corresponds to
state δ with st =−1 for the first inclusion and st = 0 for the second
inclusion. The distance between the two inclusions is d/r = 2.24. Inset:
magnification in the region of high values of λ . The lines for h = 250kBT
(green squares) and h = 500kBT (blue diamonds) are indistinguishable.

The second aspect concerns the difference in degrees of free-
dom when a given lattice point represents a lipid species or part
of a protein inclusion. For instance, when computing ∆Fα/β , the

protein sites in state β have five possible spin values (Potts model
with s = k/2, k ∈ [−2,2]), whereas the equivalent sites in state
α only have two possible spin values (Ising model with s = ±1),
because in state α they represent lipid species. Since we are com-
puting the CC free energy at varying distances between the pro-
tein inclusions, in principle we must account for corrections due
to variations in degrees of freedom explicitly in the computations
for FCC(d/r). To do this, we carry out two sets of thermodynamic
integration calculations. In the first set, see sketch in Fig. 3(b),
the initial state corresponds to the case where there is no inter-
action neither between the cells where the inclusions are located
nor with their surrounding cells. The final state is where all cells
are interacting and they all have two possible spin values (Ising
model). We denote this free energy difference as ∆FIsing(d/r),
where d once again is the separation between the two inclusions
and r is the radius of the inclusions. For the second set of cal-
culations, see sketch in Fig. 3(b), the initial state is the same as
before. However, for the final state, the cells where the inclu-
sions are located can now have five possible spin values (Potts
model). The surrounding sites still have s =±1. The free energy
difference for this case is denoted as ∆FPotts(d/r). The difference
∆FIsing(d/r)−∆FPotts(d/r) is therefore the correction in the CC free
energy due to changes in the spin degrees of freedom as a func-
tion of the normalised separation d/r, and the typical results are
shown in Fig. 2(a) for a 150x150 square lattice. In practise, these
corrections are small and, in fact, within the uncertainty of our
typical thermodynamic integration results.

3 Results and Discussion
We study the effective interaction between two protein inclusions
embedded in a lipid membrane depending on the binding affin-
ity that the proteins have for the lipid species A and B present in
the membrane. For instance, a protein (or domain in a protein)
labelled as -1 strongly prefers being surrounded by lipid species
A, while a protein (or domain in a protein) labelled as 1 strongly
prefers lipid species B. A value of 0 means that it has no prefer-
ence for either of the species.

3.1 Single-domain proteins

We first illustrate the approach to the critical temperature Tc

by plotting two-dimensional maps of the ensemble average spin
value denoted ϕ for various temperatures in the neighbourhood
of Tc. The presence of uniform inclusions with set spin value
st = −1 introduces inhomogeneities into the spin system which
persist over a distance of the order of the correlation length.
Plotting the ϕ−maps enables us to have a direct visualisation of
the correlation length. Indeed, the divergence of the correlation
length at Tc gives rise to long-range CC forces to exist. As shown
in Fig. 4, approaching Tc from above, the distance over which the
inclusions influence the rest of the spins in the system is initially
rather short (panel (a)), but increases more and more (panels (b)
and (c)) until the correlation length covers the whole box at Tc.

We next test our thermodynamic integration scheme by com-
puting the CC free energy for proteins that consist of one sin-
gle domain. We explore the variations of the protein-protein in-
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Fig. 3 (a) ∆FIsing(d/r)−∆FPotts(d/r) is the correction in the CC free energy due to variations in the spin degrees of freedom between lattice points
representing lipid species and the protein inclusions, as a function of the normalised separation d/r. The corrections are negligible. (b) Sketch of the
systems simulated. In the middle, the inclusion cells (inside the circles) do not interact with their surrounding cells or with each other. On the top right,
all lattice points, including the inclusion cells, interact via standard Ising model. On the bottom right, the inclusion cells are modelled with Potts-like
spin variables, while the other lattice sites have Ising spin variables.

Fig. 4 Visualising the approach to Tc. 2D maps of the average spin value
ϕ in the vicinity of 2 inclusions (disks) with target spin value set at −1
(corresponding to a dark colour in the map). (a) T = 1.33 Tc, (b)
T = 1.06 Tc and (c) T = Tc.

teractions as a function of their separation for different protein
binding affinities to the lipid species. In our approach, we gradu-
ally change the binding affinity of one of the proteins to the lipid
species, while keeping the other one constant. More specifically,
we consider systems in which protein 1 has a spin target value of
-1, while protein 2 can get spin target values of 1, 0.5, 0, -0.5 or
-1 (see Fig. 5 for a description). The results for these systems are
summarised in Fig. 5.

We start by looking at the limit in which both proteins have op-
posite binding affinities for the two lipid species, system (−1,1).
Here, protein 1 has strong preference for lipid A and protein 2
has strong preference for lipid B, which we call the "unlike" limit.
In this limit the effective interaction is clearly repulsive (orange
diamonds in Fig. 5) and can be quite strong with a free energy
barrier rising up to 3.5kBT . Then, as the binding affinity of protein
2 is gradually varied, and its preference becomes weaker for lipid
species B and stronger for A, the strength of the repulsive inter-
action decreases (blue triangles in Fig. 5). At the point in which
protein 2 has no preference for either of the lipid species, system
(−1,0), we find a crossover between the two regimes, and CC in-
teractions become negligible with respect to kBT (green stars in

Fig. 5). Finally, as protein 2 keeps on increasing its affinity for
lipid A we get into the attractive regime (red squares in Fig. 5).
In the "like" limit in which both proteins have the same strong
affinity to one of the lipid species, system (−1,−1), we find that
the magnitude of attraction is the strongest with a well depth of
about 1kBT (black circles in Fig. 5). However, this attraction is
much weaker than the magnitude of the repulsion in the "unlike"
limit, by more than a 3 fold difference. That like proteins attract
supports the idea that proteins of the same kind tend to coalesce
in critical lipid mixtures in order to minimise the total free energy
of the system.

We note that the free energy curves in Fig. 5 appear to have
an offset with respect to the zero free energy baseline. However,
this apparent offset is just a consequence of the very slow decay
of these curves to zero as d/r→∞ and thus of the very long range
nature of CC interactions in two dimensions. We further find that
the free energy dependence with distance can be well fitted to a
power law FCC(d/r)/kBT = ζ (d/r)−ν , shown as plain lines in Fig.
5. The values for ζ and ν are tabulated in panel (c) in Fig. 5.
Smaller values of ν signify longer-range of interactions.

Our results for the like (black circles) and unlike (orange dia-
monds) limits in Fig. 5 corroborate the findings of Machta et al.24

where we find excellent agreement without any fitting parameter.
In their simulation work using Bennett algorithm56,57, they take
advantage of asymptotic results from conformal field theory for
the reference free energy at large distances. Our thermodynamic
integration approach here circumvents the need for supplying the
reference free energy at large distances, and thus it allows more
complex scenarios to be computed readily, as we shall show in the
next section for inclusions with multiple domains. Our results are
also in good qualitative agreement with the experimental find-
ings of Ref.41, where the CC forces between colloids and a wall
were tuned by varying the preferential absorption properties of
the wall for the critical mixture’s components.

Focusing on the attractive regime which is the strongest for like
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System (-1,1) (-1,0.5) (-1,0) (-1,-0.5) (-1,-1)
ζ 5.2(2) 2.8(1) 0.06(4) -0.80(4) -0.87(5)
ν 0.56(3) 0.38(2) 0.5(4) 0.20(3) 0.15(3)

Fig. 5 CC interactions for single-domain inclusions. (a) From top to
bottom: 2D maps of the average spin value ϕ for cases (−1,+1),
(−1,+0.5), (−1,0), (−1,−0.5) and (−1,−1). (b) Effective interactions as
a function of distance for varying affinities of the 2nd inclusion: System
(−1,1) (orange diamonds), system (−1,0.5) (blue triangles) , system
(−1,0) (green stars), system (−1,−0.5) (red squares) and system
(−1,−1) (black circles). (c) Fitting parameters to
FCC(d/r)/kBT = ζ (d/r)−ν for the systems shown in (b).

inclusions, we next look at the magnitude of the CC interactions
between like proteins, as we vary their binding affinity with the
surrounding matrix from strong preference for lipid A (system
(−1,−1)) to no preference for either lipid (system (0,0)). Note
that we do not investigate explicitly the case where the two pro-
teins prefer lipid B since it is equivalent to the system (−1,−1).
Our results are summarised in Fig. 5(b). It is found that the
greater the affinity of the two proteins for one of the lipid species,
the greater the magnitude of the resulting CC interactions. In
fact, for system (0,0) where the inclusions have no preference for
either of the lipid species, we cannot measure any net interac-
tion within the limits of our computational accuracy. For system
(−0.5,−0.5) we clearly observe an attractive interaction (nega-
tive free energy). However, the CC force (the slope of the free
energy with distance) is very small. It is akin to the case where
the system sits in an effective negative square well potential.

3.2 Multiple-domain proteins
In the previous section we noted the absence of CC interaction at
any distance when one or both of the proteins do not have any
preference for either of the lipid species. In this section we in-
vestigate whether this still remains the case for identical proteins
with multiple domains each of which being given a target affin-
ity of either -1 or 1 — i.e. with strong binding affinity for either
lipids A or B — but such that the overall net affinity of each pro-
tein is zero. To some extent, this approach with multiple-domain

�
�1 +1+0.6+0.2�0.2�0.6

(a)

(b)

Fig. 6 CC interactions for single-domain inclusions. (a) From top to
bottom systems: (0,0), (−0.5,−0.5) and (−1,−1). (b) Effective
interactions as a function of distance for the different systems in (a):
system (0,0) (green diamonds), system (−0.5,−0.5) (red squares) and
system (−1,−1) (black circles).

proteins represents a more realistic model of proteins which usu-
ally comprise several domains with different binding affinities to
the surrounding lipids48–50, thus making the present study more
relevant to biological systems.

We start by studying interactions between two proteins with
two different domains each. These proteins can have different
relative orientations depending on which domains of the proteins
are facing each other (see Fig. 7(a) for a description). Our aim
is to study how orientation can affect these interactions and if
there are preferential orientations that could lead to patterning
in protein clusters. Given that these proteins do not have a net
preference for any lipid type, one could naively expect no inter-
action between them as in the cases of the (0,0) and the (−1,0)
pairs of single-domain proteins. However, our results as shown in
Fig. 7(b) show again the presence of two different regimes and
a crossover between them. We find that systems 1 and 2 appear
in the repulsive regime while systems 4 and 5 fall in the attrac-
tive one. System 3, corresponding to a 90o relative orientation, is
slightly attractive, though its magnitude is very small compared
to the other systems.

A closer look at systems 1 and 2 shows that, in both cases, pro-
teins are facing each other with domains that have opposite pref-
erences for the lipid species, giving rise to predominantly "unlike"
interactions. Therefore, this situation is qualitatively analogous
to the system (−1,1) for single-domain proteins. On the other
hand, systems 4 and 5 are confronting domains of the same kind,
leading to predominantly "like" interactions as in system (−1,−1)
for single-domain proteins. Lastly, in system 3, proteins are ori-
entated in such a way that half of protein 1 has "like" interactions
with protein 2, while the other half has "unlike" interactions. This
case is a good example of the non-additive nature of CC interac-
tions. If they were simply additive, taking advantage of the results
in Fig. 5, we would have expected the net interaction to be re-
pulsive. The magnitude of repulsive interactions between unlike
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System 1 2 3 4 5
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Fig. 7 CC interactions for two-domain inclusions. (a) 2D maps of the
average spin field ϕ for different relative orientations of the affinity
dipoles. From top to bottom: system 1, system 2, system 3, system 4
and system 5. The black domains are set with st =−1, while the white
domains have st = 1. (b) Effective interactions as a function of distance
for the different systems in (a): system 1 (black circles), system 2
(orange diamonds), system 3 (green stars), system 4 (red squares), and
system 5 (blue triangles). (c) Fitting parameters to
FCC(d/r)/kBT = ζ (d/r)−ν for the systems shown in (b).

uniform inclusions is stronger than attractions between like ones.
However, as shown in Fig. 7, for system 3, we observe a very
weak attractive interaction instead.

When compared with single-domain proteins, the range of the
emerging CC interaction is clearly shorter in all cases, getting
close to zero at distances of about ten times the radius of the
protein; we interpret this as being a partial screening effect analo-
gous to electrostatic screening in dielectric systems and owing to
proteins comprising domains with opposing affinities. Panel (c)
in Fig. 7 tabulates the power law fit of the CC free energy with
distance, FCC(d/r)/kBT = ζ (d/r)−ν . Here, the exponents ν are
clearly larger for the values for single-domain inclusions in Fig.
5.

In order to further investigate the effect of the domains we next
turn to proteins with four distinct domains. In this case only two
possible orientations are of interest, see Fig. 8(a). We present
our results in Fig. 8(b). Again, in spite of having no net pref-
erence for either of the species, proteins show either attractive
or repulsive interactions. A similar analysis to that done with
two-domain proteins show that system 6 confronts domains with
opposite preferences for the lipid species, falling, therefore, in
the repulsive regime. On the other hand system 7 has domains
with the same preference facing each other, leading to attractive
interactions. It is worth pointing out that, in these cases, both
the range and the magnitude of the interactions are smaller than
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ζ 50(50) -18(5)
ν 5(1) 3.7(3)

Fig. 8 CC interactions between four-domain inclusions. (a) 2D maps of
the average spin value ϕ for two different orientations of the affinity
quadrupoles. From top to bottom: system 6, system 7. The black
domains are set with st =−1, while the white domains have st = 1. (b)
Effective interactions as a function of distance for the different systems
in (a): system 6 (black circles), system 7 (red squares). (c) Fitting
parameters to FCC(d/r)/kBT = ζ (d/r)−ν for the systems shown in (b).

those observed for single- or two-domain inclusions. Fig. 8(c)
tabulates the power law fit for the CC free energy with distance
between two four-domain inclusions. Eventually in the limit of
the domain size going to zero, we expect to recover the uniform
case of st = 0. Comparing the results in Figs. 5, 7 and 8, we
also observe that the magnitude of the repulsive interactions falls
faster than attraction interactions with increasing number of do-
mains.

The observed behaviours for multiple-domain inclusions are in
good qualitative agreement with the findings of Toldin et al. for
CC forces between chemically striped surfaces immersed in criti-
cal liquid mixtures44. In their study, they confront a surface with
a strong preference for one component of the binary liquid mix-
tures with a striped surface in which the preference of the stripes
for the liquid components is alternating. They observe a crossover
between a regime with noticeable CC interaction and one with no
noticeable CC interaction (similar to our (0,0) and (−1,0) cases
for single-domain proteins) as the strip width is decreased from
large values to zero.

Finally, we note that the range and strength of the CC interac-
tions depend only on the lattice points which are at the boundary
of the inclusions, and not the inner ones. This is as expected
because we only have nearest neighbour interactions, and thus
the inner sites do not interact directly with the surrounding cells
representing the lipid mixtures.
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4 Conclusions and Future Work
In this work, we have numerically computed the CC free energy
between inclusions in two-dimensional critical binary mixtures.
To this end, we have introduced a versatile thermodynamic inte-
gration scheme whose calculations for single-domain inclusions
compare very favourably with the existing literature on the sub-
ject24. This has enabled us to identify repulsive and attractive CC
regimes respectively for unlike inclusions — with opposing affini-
ties for the surrounding species comprising the binary mixture —
or like inclusions — with the same affinity for the surrounding
species. We noted that the CC interactions for single-domain in-
clusions are very long range and their magnitude is increasing
with the strength of the affinity of the domain with either of the
surrounding species.

A key advantage of our thermodynamic integration approach is
that we do not need to supply a reference free energy at large dis-
tances, which can be notoriously difficult to compute analytically
for complex scenarios. In turn this allows us to study inclusions
comprising multiple domains such that, overall, they do not have
any net preference for either of the surrounding species in the
mixture.

The presence of domains with opposing affinities does not can-
cel the CC interactions altogether but instead leads to a decrease
in the range and magnitude of the effective interactions in a man-
ner reminiscent of electrostatic multipoles. For such multiple-
domain inclusions, both repulsive and attractive CC interactions
were observed depending on their relative orientations.

If biologically relevant lipid membranes are close to criticality
as suggested by some studies34,35, then these findings may prove
useful to better understand lateral spatial organisation within cel-
lular membranes. As a matter of fact, attractive CC interactions
between the single-domain inclusions of the same kind provide
both sufficient magnitude and range for protein clustering to oc-
cur in equilibrium conditions42,47. Utilising multiple-domain in-
clusions as more realistic models of membrane proteins lead us to
the conclusion that the emerging CC interactions between them
also suffice for them to aggregate, even where there is no overall
net affinity to the surrounding species in the mixture.

(a) Stability (a) Aggregation and patterning

Fig. 9 Stability, aggregation and patterning for two-domain proteins.

There are several avenues for future work. Firstly, it would be
interesting to study the clustering, and more generally the phase
diagram, of the multiple-domain inclusions. For instance, in Fig.

9(a) we show the relative stability of the different orientations
for two-domain proteins. Since some orientations are energeti-
cally favourable, we would expect proteins to rotate in order to
minimise the overall free energy of the system. Our preliminary
results suggest that, as these inclusions start to cluster, they will
form an alternating patterning in affinities with respect to the sur-
rounding species (Fig. 9(b)). In this context, it would be exciting
to explore how CC interactions could be tailored to allow com-
ponents in biological membranes achieve specificity as suggested
in Ref.58. Such strategies could also be exploited for the self-
assembly of anisotropic (e.g. Janus) colloidal particles46,59. Sec-
ondly, Casimir interaction due to shape fluctuations of the mem-
brane has also been proposed as a non-specific mechanism for
membrane proteins to interact28–32. Here it will be instructive to
compare the strengths of the two possible Casimir interactions,
and map regions in parameter space (temperature, composition
and bending rigidity) where one mechanism dominates over the
other, and where they interfere either constructively or destruc-
tively. For instance, Dean et al.60 suggests that taking into ac-
count membrane shape fluctuations can result in a shift in the
critical temperature at which phase separation occurs for the lipid
mixtures. Stress tensor-based methods following Ref.61 could
help inform on these competing effects.
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