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Abstract

The apicomplexan protozoan parasites include the causative agents of animal and human dis-
eases ranging from malaria (Plasmodium spp.) to toxoplasmosis (Toxoplasma gondii). The
complex life cycle of T. gondii is regulated by a unique family of calcium-dependent protein
kinases (CDPKs) that have become the target of intensive efforts to develop new therapeutics.
In this review, we will summarize structure-based strategies, recent successes and future direc-
tions in the pursuit of specific and selective inhibitors of T. gondii CDPK1.

Introduction

The phylum of Apicomplexa contains approximately 6000 unicellular, eukaryotic parasites
including Plasmodium spp., the causative agent of Malaria, and Toxoplasma gondii, respon-
sible for toxoplasmosis in many important farm animals and humans (Sato, 2011).
Morphologically, all members of the apicomplexan family share a distinctive apical complex,
together with species dependent apical-localized organelles. (McFadden and Yeh, 2017). These
parasites employ complex life cycles including both sexual and asexual reproduction.
Furthermore, in many cases their life cycles involve multiple hosts. T. gondii, first described
in 1908 and often regarded as one of the most successful apicomplexan parasites, represents
the key model organism of the phylum (Dubey, 2008; Weiss and Dubey, 2009; Szabo and
Finney, 2017). Its primary hosts are members of the Felidae (cats) family while all other warm-
blooded animals, including humans, are intermediate hosts. It is estimated that up to one third
of the human population is infected with T. gondii and thus are potential carriers. Although
the infection is usually asymptotic in healthy individuals it can cause severe congenital disease
during pregnancy (Kaye, 2011), and lead to life-threatening infections in immuno-
compromised patients including those suffering from HIV, receiving an organ transplant or
undergoing cancer chemotherapy treatment (Flegr et al. 2014). Current toxoplasmosis treat-
ment options are limited to a handful of antimicrobials such as sulphonamides, folic acid deri-
vatives and certain macrolide antibiotics. However, these drugs often show limited efficacy and
are associated with significant side effects (Alday and Doggett, 2017). Furthermore, there are
no treatments available to target tissue cysts, the persistent form in which the parasite evades
the host immune system, and to eradicate persistent T. gondii infections (Opsteegh et al. 2015).
Therefore, new drug targets and novel therapies are urgently needed. In addition to high-
throughput screening approaches (Norcliffe et al. 2014), structure-based methods in close
combination with medicinal chemistry and biophysical and biological validation have become
powerful tools in the search of new drugs and treatments (Hunter, 2009; Verlinde et al. 2009;
Groftehauge et al. 2015; Hol, 2015; Muller, 2017).

The role of calcium-dependent protein kinases (CDPKs)

In T. gondii Ca2+-ions play key roles in cell signalling and in pathogen–host interactions
including cell invasion, motility of the parasite within the host and differentiation during
the parasites complex life cycle (Irvine, 1986; Nagamune et al. 2008; Lourido and Moreno,
2015). CDPKs are a family of serine/threonine kinases that are only found in plants and pro-
tists including ciliates and apicomplexan parasites. Importantly, these kinases provide the
mechanistic link between calcium signalling and motility, differentiation and invasion (Tzen
et al. 2007; Billker et al. 2009). These crucial roles of CDPKs have been proven through a
range of knock-out studies in various species and underline the potential of CDPKs as targets
for novel therapeutics (Long et al. 2016). CDPKs are members of the Calmodulin/Calcium
kinase (CaM) family. They all share an N-terminal kinase domain (KD) linked via a junctional
domain to a series of C-terminal Calcium-binding motifs. In T. gondii at least 12 different
CDPKs have been putatively identified ranging in size from 507 (CDPK1) to more than
2000 amino acids (CDPK7, CDPK80) (Morlon-Guyot et al. 2014). Although there is probably
overlap in functionalities, different sub-cellular locations and varying expression levels during
the parasites’ life cycle is likely to lead to different biological functions within the CDPK family
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(Hui et al. 2015). The shared sequence identities range from 51%
(CDPK1 and CDPK3) (Treeck et al. 2014) to lower than 10%
(Table 1). These variations in length and sequence support the
notion that members of the CDPK family act upon a range of sub-
strates and fulfil different functions in T. gondii biology. Recent
knock-out studies using CRISPR-Cas9 indicate that CDPK4,
CDPK5, CDPK6, CDPK8 and CDPK9, respectively, have no effect
on virulence and on normal growth (Wang et al. 2016), however,
knock-down studies have shown that CDPK7 is crucial for sur-
vival due to a critical role in parasite division (Morlon-Guyot
et al. 2014). More detailed studies have been performed on the
smaller family members. CDPK3 with 537 amino acids has
been implicated in motility and host cell egress (McCoy et al.
2017). CDPK2 (711 amino acids) has been shown to act as key
regulator of amylopectin metabolism (Uboldi et al. 2015). The
loss of CDPK2 results in the build-up of amylum with fatal con-
sequences for T. gondii in its chronic stage. Importantly, this fam-
ily member contains an N-terminal carbohydrate-binding domain
that may offer new opportunities for drug design (Uboldi et al.
2015). CDPK1, which is mainly located in the cytosol, has been
shown to be required for the microneme secretion at the apical
complex and parasite proliferation. The molecular mechanism,
however, remains elusive (Lourido et al. 2010; Child et al.
2017). Here we will review strategies and recent results in the dis-
covery, design and potency of inhibitors targeting the KD of
CDPK1 from T. gondii (TgCDPK1).

Activation of TgCDPK1 by calcium

The mechanism of activation and inhibition was unravelled in
2010 when the crystal structures of both the auto-inhibited and
the Ca2+-activated forms of TgCDPK1 were published (Ojo
et al. 2010; Wernimont et al. 2010). These structures revealed
the expected KD in similar overall conformations, however, the
Ca2+-binding domain (also designated CPDK activating domain
or CAD) adopted two vastly different conformations and orienta-
tions (Fig. 1). In its inactive state the CAD (shown in rasberry red)
adopts an elongated form reminiscent of apo-calmodulin starting
with a long helix followed by the first Ca2+-binding motifs
(EF-hands), which is connected via another long helix to the
second pair of C-terminal EF-hands (Fig. 1a). The first long
helix has been suggested to be responsible for the auto-inhibitory
effect by blocking the substrate binding site and providing a basic
lysine residue to bind a cluster of conserved acidic residues.
However, this may not be the only mechanism of deactivation
as it has more recently been shown that removal of the regulatory
domain alone does not lead to an active KD (Ingram et al. 2015).
The CAD domain activated by Ca2+-binding appears to be
required to maintain the KD in its active conformation.
Calcium binding leads to a dramatic rearrangement and refolding
of the protein chain (Fig. 1b) (Wernimont et al. 2010). The entire
regulatory domain is shifted to the other side of the protein hence
liberating the active site of the KD as shown in Fig. 1c. In add-
ition, the regulatory calcium-binding domain is collapsed so
that the two long helices are no longer arranged in an anti-parallel
fashion but are partially unwound and interwoven to form a more
globular overall shape. These structural changes are reminiscent to
the calcium-bound structure of calmodulin (Kursula, 2014).

Comparison with human kinases

Historically, characterising (protozoan) kinases as potential drug
targets and developing selective inhibitors has been considered
challenging due to the fact that the overall protein fold and the
active sites of all kinases are structurally well conserved (Scapin,
2002). The structural similarities of the KD are obvious when Ta
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comparing the crystal structures of the KD of TgCDPK1 with the
Calcium/Calmodulin (CaM) dependent-kinase II from H. sapiens
(HsCaMKII) (Fig. 2a) (Rellos et al. 2010). These two proteins,
which share a sequence identity of approximately 42% over 264
residues of the KD, display the same canonical kinase fold and
superimpose with an overall root mean square deviation (rmsd)
of approximately 1·5 Å. Note that the loop over the adenosine tri-
phosphate (ATP) binding site adopts a very different conform-
ation presumably due to an induced fit of binding of two very
different ligands. TgCDPK1 is bound to the ATP analogue ANP
(Fig. 2a) while HsCaMKII is bound to a comparatively small
inhibitor. More importantly there are significant differences in
the ATP binding site, specifically a residue with no side chain
(glycine) close to the adenine binding position. This residue,
Gly128 is also termed the gatekeeper residue. Almost all mamma-
lian kinases possess a large residue, a phenylalanine in HsCaMKII
for example, in this position. Hence, CDPK1 feature an enlarged
ATP binding site with a hydrophobic pocket that can be exploited

for structure-based drug design. This key structural difference
in the binding pocket is shown in the surface representation where
the ATP-analogue is shown as stick representation (Fig. 2b). The
additional space at the end of the pocket below the surface of the
gatekeeper residue Gly 128 in magenta is clearly visible.

Development of specific TgCDPK1 inhibitors

Soon after the structural differences between TgCDPK1 and the
mammalian homologues were identified, two groups started to
develop selective TgCDPK1 inhibitors (Ojo et al. 2010;
Wernimont et al. 2010). Initial compounds were based on
known inhibitors previously developed for yeast kinases featuring
amino acids with small side chains at the gatekeeper position.
Importantly, these known kinase inhibitors, termed bumped
kinase inhibitors (BKI) have been shown to be inactive against
mammalian kinases (Hanke et al. 1996). Generally, BKIs are
based on the planar pyrazolo[3,4-d]pyrimidin-4-amine

Fig. 1. Ribbon representation of the crystal structure of CDPK1 from T. gondii with the kinase domain depicted in cyan, the regulatory domain in raspberry red. (a)
CDPK1 in its inactive auto-inhibited state (PDB code: 3KU2) (Wernimont et al. 2010). (b) CDPK1 in its calcium-bound, activated state with the Ca2+-ions shown as
green spheres and the non-hydrolysable ligand ANP in stick representation (PDB code: 3HX4) (Wernimont et al. 2010). (c) Ribbon diagram of the least-squares
superposition of the inactive and active forms of TgCDPK1 with the kinase domains shown in cyan (active) and blue (inactive), the regulatory domain in shades
of red, respectively. Only the kinase domain was used to calculate the transformation matrix, which was then applied to the entire protein chain. CDPKs, calcium-
dependent protein kinases.
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substituted with a bulky hydrophobic group on the C3 position
(Bishop et al. 1998). The first example of a BKI with a sub-
μmolar IC50 is 1-(1-methylethyl)-3-(naphthalen-1-ylmethyl)-
1H-pyrazolo[3,4-d] pyrimidin-4-amine. The co-crystal structure
of TgCDPK1 shows that the naphtalen-1-ylmethyl- moiety fills
the hydrophobic pocket created by the small gatekeeper residue
Gly128 and lined by methionine and leucine residues, and one
lysine residue (Fig. 3a and b). The chemically closely related
1-tert-butyl-3-naphthalen-2-yl-1H-pyrazolo[3,4-d]pyrimidin-4-
amine (Fig. 3c and d) adopts a similar conformation with the
bulky aromatic substituent at the C3 position occupying the
space next to the gatekeeper residue. Critically for the subsequent
drug development was the fact that these and related BKIs
reduced T. gondii proliferation significantly (Ojo et al. 2010;
Sugi et al. 2010). These results sparked extensive medicinal chem-
istry efforts where a large number of compounds based on
the BKI scaffold (4-amino-1H-pyrazole[3,4-d]pyrimidine) were
synthesized and tested. A number of compounds exhibited sub-
or low-nanomolar IC50 values and high activity in parasite growth
models (EC50 in the low- and sub-μmolar range) while retaining
specificity when compared with mammalian kinases (Lourido
et al. 2013; Zhang et al. 2014; Moine et al. 2015). In addition
to the pyrazolopyrimidine (PP) scaffolds, acylbenzimidazole and
5-aminopyrzazole-4-carboxamide-based compounds have been
shown to have similar properties (Fig. 4) (Zhang et al. 2012;
Zhang et al. 2014; Huang et al. 2015). While the initial BKIs
showed excellent potency in vitro and in vivo they also exhibited
significant hERG (human Ether-Related Gene) inhibition thus
posing potential cardiotoxicity (Doggett et al. 2014). Further
extensive medicinal chemistry efforts finally led to the current
lead TgCDPK1 inhibitor, (1-{4-amino-3-[2-(cyclopropyloxy)qui-
nolin-6-yl]-1H-pyrazolo[3,4-d]pyrimidin-1-yl}-2-methylpropan-
2-ol) that combines high activity and selectivity with favourable
pharmacokinetic properties and low hERG activity (Vidadala
et al. 2016). Note that the compound is bound to the protein
via H-bonds of the pyrimidin ring to the main chain, while the
hydrophobic cyclopropyloxy-quinoline moiety forms a large

number of hydrophobic interactions (Fig. 5). Taken together,
the structure-based approaches of drug development applied to
TgCDPK1 has led to three different series of compounds with
high inhibitory activity, good pharmacokinetic parameters and
promising efficacy in murine models.

CDPK1 inhibitors for related parasites

Based on the success of developing specific TgCDPK1 inhibitors,
recent work has branched out towards related apicomplexan para-
sites. For example, Neospora caninum, a cyst-forming parasite
closely related to T. gondii represents the leading cause of abortion
in cattle. This parasite expresses a CDPK1 with 96% sequence
identity to TgCDPK1 where all residues in the active side are con-
served, bar one conservative variation from phenylalanine to tyro-
sine (Ojo et al. 2014). Consequently, the crystal structures of
TgCDPK1 and NcCDPK1 show very similar overall structures
(root mean square deviations (rmsd) on C-alpha atoms 0·5 Å)
and the same binding mode of a BKI. Importantly, a number of
BKIs display comparable in-vivo activities (Ojo et al. 2014;
Winzer et al. 2015). Members of the Cryptosporidium genus are
the causative agent of cryptosporidiosis in immune-compromised
patients and malnourished children (Shoultz et al. 2016). CDPK1
from C. parvum Iowa II (CpCDPK1) shares a sequence identity of
approximately 41% with TgCDPK1, however, the active site resi-
dues including the gatekeeper residue are highly conserved. The
screening of BKI libraries resulted in highly active CpCDPK1 inhi-
bitors based on the 5-aminopyrazole-4-carboxamide scaffold with
clear potential for drug development (Castellanos-Gonzalez et al.
2016). High-throughput screening for Plasmodium falciparum
CDPK1 (PfCDPK1) inhibitors resulted in five chemical series,
including the PP scaffold (Fig. 4a). PfCDPK1 shares a sequence
identity of approximately 47% with TgCDPK1 and the gatekeeper
residue threonine harbours a slightly larger side chain comparted
to glycine. However, this side chain is still relatively small and
mutational studies clearly indicated that these inhibitors bind at
the same site (Ansell et al. 2014). More recent studies with

Fig. 2. (a) Least squares superposition of the kinase domain of TgCDPK1 (depicted in cyan) in its active form with HsCaMKII bound to an inhibitor (PDB: 2VZ6)
(shown in orange) (Rellos et al. 2010). The non-hydrolysable ATP analogue bound in TgCDPK1 is presented as ball-and-stick representation to highlight the sub-
strate binding site. (b) Surface representation of TgCDPK1 viewing into the binding pocket with colour coding according to atom type (oxygen in red, nitrogen in
blue, carbon in grey). The surface of Gly128 (gatekeeper residue) is shown in magenta at the top of the figure highlighting the additional space in the binding
pocket. ATP, adenosine triphosphate; CDPKs, calcium-dependent protein kinases.
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PfCDPK1 inhibitors based on the chemically very similar
Imidazopyridazine scaffold appear to show that these compounds
also target cyclic GMP dependent kinases as well as Heat Shock
Protein 90. These findings question the prospect of PfCDPK1 inhi-
bitors for further drug development (Green et al. 2015). Taken
together, these recent results show the potential of BKIs for future
drug development in Toxoplasma and related parasites but they
also illustrate the limitations of transferring detailed structural
data to more distantly related proteins.

Future challenges

Over the last 5 years there has been significant progress in the
development of selective inhibitors of one of the key CDPKs
from T. gondii achieved by taking advantage of a series of high-
resolution crystal structures. While most of the previous research
has focused on T. gondii, further efforts are currently underway to
investigate inhibitors of CDPK1 from Cryptosporidium and
Plasmodium spp. (Gaji et al. 2014; Green et al. 2015; Crowther

et al. 2016). However, further research is required to unravel the
biological roles of PfCDPKs and their potential as future drug tar-
gets (Kumar et al. 2017).

Although the most promising TgCDPK1 inhibitors show high
efficacy in murine models, future research is required to increase
solubility and bio-availability in order to proceed to clinical trials.
Furthermore, current lead compounds only target the ATP bind-
ing site of TgCDPK1. However, allosteric kinase inhibitors and
modulators have shown enormous potential to target specific
kinases and could be further exploited (Fang et al. 2013).
Additional binding sites in less conserved regions such as the
carbohydrate binding site recently discovered in TgCDPK2 can
serve as starting points for the development of new inhibitors
(Uboldi et al. 2015). Clearly, more works needs to be done to
understand the role of the other members of the Apicomplexan
CDPK family. In this regard, the recent development of
CRISPR/Cas9 technology to modify the genes of members of
the Apicomplexan family (Shen et al. 2014; Vinayak et al. 2015)
will greatly facilitate the detailed analysis of the biological

Fig. 3. Close-up of BKIs bound to TgCDPK1 in the ATP binding site. The gatekeeper residue Gly128 is depicted in magenta, key hydrophobic residue of the binding
site are labelled and shown in grey (a) 1-(1-methylethyl)-3-(naphthalen-1-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine shown in ball-and-stick representation
(PDB: 3i7b), (b) chemical structure of the ligand, (c) 1-tert-butyl-3-naphthalen-2-yl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PDB:3i7c) (Ojo et al. 2010) and (d) chemical
structure of the ligand. ATP, adenosine triphosphate; CDPKs, calcium-dependent protein kinases.
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function of CDPK family members (Long et al. 2016; Wang et al.
2016).
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