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Abstract: We obtain lower bounds for the number of nodal domains of Hecke
eigenfunctions on the sphere. Assuming the generalized Lindelöf hypothesis we
prove that the number of nodal domains of any Hecke eigenfunction grows with
the eigenvalue of the Laplacian. By a very different method, we show uncondi-
tionally that the average number of nodal domains of degree l Hecke eigenfunc-
tions grows significantly faster than the uniform growth obtained under Lindelöf.

1. Introduction

Let S2 denote the 2-dimensional unit sphere with the round metric and associ-
ated measure. The Hilbert space L2(S2) splits into a completed tensor sum

L2(S2) =
⊕

l
Hl (1)

whereHl is the (2l+1)-dimensional space of functions on S2 obtained by restrict-
ing degree l homogenenous harmonic polynomials on R3. The space Hl coincides
with the eigenspace of the spherical Laplacian ∆ = ∆S2 with eigenvalue l(l+ 1).
For f ∈ Hl the nodal set of f is defined to be

Z(f) = {v ∈ S2 : f(v) = 0} = f−1(0). (2)

A nodal domain of f is a connected component of S2−Z(f). We write N (f) for
the number of nodal domains of f , we are interested in estimating N (f) as f
varies. The nodal domain theorem of Courant [8, pg. 452] gives the upper bound

N (f) ≤ (l + 1)2 (3)
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for any f ∈ Hl. Nontrivial lower bounds for arbitrary spherical harmonics are
not possible: a result of Lewy [19] states that there are infinitely many l and
f ∈ Hl such that N (f) ≤ 3. Therefore to obtain growth of N (f), one has to take
f from proper subsets of Hl. We will take f to be eigenfunctions of certain Hecke
operators arising from a maximal order in the Hamilton quaternions which we
explain now.

Let B be the normed involutive Q-algebra of Hamilton quaternions and O a
particular maximal order in B(Q) given by

O =

{
α+ βi + γj + δk

2
: α, β, γ, δ ∈ Z, α ≡ β ≡ γ ≡ δ mod 2

}
. (4)

We write for the units of O

O× = 〈1, i, j, 1

2
(1 + i + j + k)〉 (5)

which forms a group of order 24. One can view the sphere S2 as the elements
of B(R) with trace zero and norm one, and there is a corresponding action of
B(R) on S2 given by

γ.x ≡ γxγ̄/n(γ), γ ∈ B(R), x ∈ S2. (6)

The algebra B gives rise to self-adjoint Hecke operators on L2(S2). Letting

O(m) ≡ {γ ∈ O : n(γ) = m} (7)

we define
Tm : L2(S2)→ L2(S2), [Tmf ](x) =

∑
γ∈O(m)

f(γ.x). (8)

The action of these operators was originally described by Eichler in terms of
Brandt matrices in [11]. Throughout this paper we make the assumption that
any m appearing as the parameter of a Hecke operator Tm is odd to avoid
complications at 2, the discriminant of the Hamilton quaternions. It is a classical
fact of number theory that the Hecke operators Tm commute and satisfy the
recursion

TmTn = |O×|
∑

d|(m,n)

d Tmn/d2 . (9)

The Laplacian ∆ commutes with all rotations in SO(3), and as the Hecke op-
erators Tm are constituted by such rotations, all the Tm commute with ∆. It
follows that the Tm preserve each of the finite dimensional vector spaces Hl. As
such, the spaces Hl each have a basis of simultaneous eigenfunctions ϕ for the
Hecke operators Tm and the spherical Laplacian ∆. The real valued functions
on S2 are ∆ and Tm invariant, so the ϕ can be taken to be real valued. These
ϕ are the Hecke eigenfunctions in question and were considered also in [4] in
connection with mass equidistribution conjectures.

Such ϕ are important objects in the theory of automorphic forms: they param-
eterize classical holomorphic cuspidal newforms of level 2. The correspondence
is via lifting and theta series with harmonic polynomial on R4 and concretely
given by

ϕ ∈ HO
×

l 7→ fϕ ≡
1

24

∑
γ∈O
〈ϕ(x), ϕ(γxγ̄)〉L2(S2) exp(2πin(γ)z), (10)
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where ϕ(γxγ̄) is evaluated by extension of ϕ to a polynomial on R3.
The resulting fϕ is a holomorphic cusp form of weight k(l) = 2l+2 for Γ0(2).

The cusp form fϕ is a Hecke eigenform when ϕ is, and fϕ is Hecke normalized
if ‖ϕ‖L2(S2) = 1. Eichler shows in [11] that all newforms are obtained in this
manner, or by linear combinations, and more generally what is being discussed
is a concrete realization of the Jacquet-Langlands correspondence. If Tmϕ =

λϕ(m)ϕ and ϕ ∈ HO×l is L2-normalized then

fϕ =
1

24

∑
n≥1

λϕ(n)nl exp(2πinz) (11)

links the eigenvalues of the Hecke operators on HO×l to the coefficients of Hecke
eigenforms in Snew

2l+2(Γ0(2)). Via the previously outlined correspondence and
known estimates for the dimension of the space of cuspidal newforms one has

dim(HO
×

l ) =
l

6
+O(1). (12)

A central heuristic of modern number theory is that automorphic data should
be simulated by random processes. The comparison random model in our setting
is the Random Wave Model (RWM). In the RWM, the L2-normalized random
spherical harmonic in Hl is given by∑2l

i=0 ηiφi√∑2l
i=0 η

2
i

, (13)

where the φi form an orthonormal basis for Hl and the ηi are i.i.d. mean zero
Gaussian random variables. This random variable does not depend on the choice
of φi and we omit the event ηi ≡ 0 so that the above ratio makes sense. Via a
Waldspurger type period formula which we explain in Section 8, it is compatible
with the conjectures made by Conrey and Farmer in [7] that the RWM shares
statistics with Hecke eigenfunctions. The conjectures in [7] are part of a program
initiated by Katz and Sarnak in [18], which associates symmetry types to families
of L-functions and makes predictions about the statistics of the L-functions
based on their symmetry type and possibly also data coming from the functional
equation of the L-function. The Conrey-Farmer conjectures predict asymptotics
for the moments of central values of automorphic L-functions as the automorphic
representation runs through a family - the period formula we will use translates
the Conrey-Farmer conjectures into predictions about the moments of Fourier
coefficients of Hecke eigenfunctions.

One has then the following two rough, conjectural heuristics:
Ensemble behavior: In the limit as l → ∞, the statistics of the measure-

ment N (f) on the ensemble

{f ∈ Hl : ‖f‖L2(S2) = 1, f a Hecke eigenfunction} (14)

tends to that of N (f) sampled on random waves in Hl.
Uniform behavior: All the Hecke eigenfunctions f in Hl should have N (f)

like that of ‘typical’ random waves.
Blum, Gnutzmann and Smilansky have argued in [2] with numerical evidence

that the nodal domain statistics of wavefunctions can identify quantum chaos
when present. Around the same time, using a Potts model for a random per-
colation process, Bogomolny and Schmit [3] made precise predictions about the
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nodal domain statistics of both chaotic and random wavefunctions. Bogomolny
and Schmit conjecture that for random/chaotic waves in Hl the expectation and
variance of N (f) are

EN (f) = (a+ ol→∞(1))l2, (15)

VarN (f) = (b+ ol→∞(1))l2, (16)

for some positive a, b. In [24], Nazarov and Sodin verify the prediction (15)
for the RWM and further show that the distribution of N (f)/l2 concentrates
exponentially around a. One can therefore reasonably conjecture that the nodal
domain statistics of Hecke eigenfunctions are as in equations (15) and (16).

It bears mentioning at this point that one must take some caution with the
heuristics we have outlined. While everything mentioned so far is expected to
be true, one can not push conjectures about Hecke eigenfunctions behaving uni-
formly like typical random waves too far. By adapting a method of Soundarara-
jan from [28], Milićević has shown in [22] that on arithmetic Riemann surfaces
the Hecke eigenfunctions take on values significantly larger than predicted by the
RWM for these surfaces. It is likely that this proof goes through on the sphere
to give a similar result.

Having briefly mentioned the connection with randomness we turn to the
connection with Quantum chaos. There are direct connections between random-
ness and Quantum chaos which we will not dwell on, simply referring the reader
to the paper of Berry [1], where it is argued that wave functions of classically
chaotic systems are well described by Gaussian random waves.

We focus instead on the connection between Hecke eigenfunctions and Quan-
tum chaos. The operator

S =
~2

2
∆ (17)

is the Schrödinger operator for free mass one dynamics on the sphere. The sta-
tionary Schrödinger equation for a wavefunction ψ with energy E is then

~2

2
∆ψ = Eψ, (18)

which can be rewritten

∆ψ =
2E

~2
ψ. (19)

Wavefunctions in the semiclassical limit (~ → 0) having energies in some band
bounded away from 0 therefore correspond to eigenfunctions of the spherical
Laplacian ∆ in Hl with eigenvalues l(l + 1) → ∞. It is important to bear in
mind that the classical free (geodesic) dynamics on the sphere is integrable -
this is a major difference between other arithmetic considerations of Quantum
chaos, for example on Shimura curves where the geodesic flow is Anosov. Indeed,
there are highest weight vectors φ ∈ Hl with l → ∞ which concentrate their
mass on geodesics, so one sees the integrability and periodic orbits of the classical
system in the semiclassical limit.

For each proposed signature of Quantum chaos, there is a corresponding fam-
ily of problems in number theory where one tries to establish the signature
behaviour for various automorphic forms. For an overview of the subject we
refer the reader to lecture notes of Sarnak [25]. We will not give any overview
here, but will mention the result of VanderKam [31] on the L∞ norms of Hecke
eigenfunctions on the sphere as we will use it later. For reference, eigenfunctions
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φ with ∆φ = λφ corresponding to classically chaotic systems (for example, on
Riemann surfaces) are expected to have

‖φ‖∞
‖φ‖2

�ε λ
ε, (20)

which is much stronger than the well known bound appearing in [27] which says
that for any eigenfunction of the Laplacian with eigenvalue λ on a compact
manifold of dimension n

‖φ‖∞
‖φ‖2

� λ(n−1)/4. (21)

In [13], Iwaniec and Sarnak obtained an improvement in the exponent over (21)
when φ is an eigenfunction of the Laplacian and all the Hecke operators on
certain arithmetic Riemann surfaces. By adapting their method to the sphere,
VanderKam obtained the same improvement in the exponent for Hecke eigen-
functions on the sphere in [31]. VanderKam considers slightly different Hecke
operators from ours, but the proof goes through mutatis mutandis in our setting
and gives

Theorem 1 (VanderKam). For any ε > 0

‖ϕ‖L∞(S2)

‖ϕ‖L2(S2)
�ε l

5/12+ε (22)

when ϕ ∈ HO×l is a Hecke eigenfunction.

In [12], Ghosh, Reznikov and Sarnak give a lower bound for the number of
nodal domains of a Maass form on the modular curve. The bound is conditional
on the Lindelöf hypothesis for the L-function associated to a Maass form and
relies crucially on the L∞ bound from [13].

Theorem 2 (Ghosh, Reznikov, Sarnak). Let φ denote a Maass form for the
modular curve X = SL2(Z)\H, i.e. a real valued function on X satisfying

∆Xφ = λφ, λ > 0. (23)

Assuming the Lindelöf hypothesis for L(1/2 + it, φ), for any fixed ε > 0 and any
such φ

N (φ)�ε λ
1/24−ε. (24)

We will say more about the proof of Theorem 2 shortly as our Theorem 4 is
completely analogous and both our results share ideas with the paper [12].

Recalling that N (ϕ) is the number of nodal domains of a spherical harmonic
ϕ, we now state the main Theorems of this paper.

Theorem 3. Let l be even and Bl denote an orthonormal basis for HO×l con-
sisting of Hecke eigenfunctions. Then for any ε > 0 we have the lower bound for
the total number of nodal domains amongst members of Bl∑

ϕ∈Bl

N (ϕ)�ε l
5/4−ε. (25)
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Corollary 1 (The number of nodal domains grows on average). With
everything as in Theorem 3 we have for the expected number of nodal domains
amongst members of Bl, for any ε > 0

EBl(N (ϕ)) =

∑
ϕ∈Bl N (ϕ)

|Bl|
�ε l

1/4−ε. (26)

Theorem 4 (The number of nodal domains grows uniformly, assuming
Lindelöf). Assuming the generalized Lindelöf hypothesis, for any ε > 0 we have

N (ϕ)�ε l
1/12−ε (27)

when l is even and ϕ ∈ HO×l is a Hecke eigenfunction.

Before sketching the proofs of these Theorems, let us make some general re-
marks. The proofs of Theorem 3 and Theorem 4 use the same topological method
to find nodal domains. This idea appears in [12] and enables one, by use of Eu-
ler’s formula, to obtain nodal domains of eigenfunctions from isolated zeros on
certain geodesic segments. This is the reason for the requirement that l be even.
The restriction of a spherical harmonic in Hl to an equator is a polynomial of
degree l. The group of elements in O(3) that commute with the Hecke operators
is larger than O×, and when l is even this forces the polynomial to be not iden-
tically zero on certain convenient geodesics. The details of this argument appear
in Section 2. In fact, it should possible to remove the requirement that l is even,
following the argument of [12, Appendix C], but for simplicity we deal only with
even l.

This approach has some interesting consequences. In the best case scenario,

one obtains for ϕ ∈ HO×l only linearly as many nodal domains as zeros of a
degree l polynomial, in particular � l nodal domains. This means that if one
expects the prediction of Bogomolny and Schmit (15) to hold, then one misses
most of the nodal domains with this approach; it will not yield a nodal domain
whose boundary does not meet the geodesic in question. On the other hand, in
establishing (15) for the RWM, the nodal domains which Nazarov and Sodin
[24] found were those which were contained in balls of radius � 1/l - in some
sense the opposite type. We propose the following question:

Is there some C > 0 and a sequence of Hecke eigenfunctions ϕ ∈ HO×l ,
l → ∞ so that each ϕ has a nodal domain contained in a ball of radius
≤ C/l?

The proofs of Theorems 3 and 4 boil down to counting the number of real
zeros of real polynomials. Returning for a moment to randomness heuristics, the
problem of estimating the number of zeros of random polynomials is a classical
problem and has been studied by many authors. Here we only have room to
mention the classic paper of Kac [17] and the more recent paper of Edelman and
Kostlan [10].

Now we sketch the proof of Theorems 3 and 4, beginning with Theorem 3.
At the centre of the proof of Theorem 3 is the pre-trace formula for the sphere
applied to a basis of Hecke eigenfunctions. For any linear combination of Hecke
operators specified by a vector α one obtains a twist of this formula. On one side
one has sums of the form ∑

φ∈Bl

Aα(φ)2φ(x)φ(y) (28)
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where x, y are in S2 with d(x, y) � 1/l and the Aα(φ) are coefficients depending
on the vector α and φ. On the other side one obtains a bilinear form in α where
the coefficients are given by summing a kernel over elements of O. The main term
of this bilinear form is negative definite. Supposing there are few φ changing sign
between x and y, so that few of the φ(x)φ(y) are negative, we aim to

1. Choose α to kill off all the negative contributions to (28).
2. Make the error term of the bilinear form small at α so that the value of (28)

remains negative.

This leads to a contradiction unless there are enough sign changes.

Success depends on the ability to control the ‘error’ bilinear form which is
done by bounding the coefficients. This requires a lattice point count due to
VanderKam [31, Lemma 2.1] and some dynamical observations appearing in
Section 3. The first of these observations (Lemma 3) is that if a point x ∈ S2

is such that
√
hx has integer coordinates for some small integer h, then γ ∈ O

having small norm either fix x or significantly, depending on h and n(γ), move x.
This is similar in nature to an observation made by Bourgain and Lindenstrauss
[5, Lemma 3.3]. The underlying argument is simply that if the distance between
two integers is less than 1, they are the same. In Lemma 4 we observe that if√
hx is integral as before then the size of the stabilizer of x in O(pq) is uniformly

bounded through x and primes p, q. This depends on a uniform bound for the
size of the unit group of imaginary quadratic number fields. To get good bounds
for the error term it remains to restrict the support of α. Finally we choose α
so as to kill off terms in (28).

In other settings, apt choice of α has been called the amplification method
(when Aα is to be made big versus the other side of the twisted pre-trace formula)
or resonator method (when Aα is to be made small). Amplification usually takes
place while establishing subconvexity bounds, appearing for example in [13], [31]
and [21] to name but a few applications which are relevant to this paper. The
resonator method is employed to give Ω type results for the values in a family as
in [28] and [22]. Our method could reasonably be called the annihilator method.

Now we turn to the proof of Theorem 4. This is entirely analogous to the proof
of Theorem 2 appearing in [12], although some of the analogies bear explaining.
One of the key ingredients is a L2 lower bound for the restriction of a Hecke
eigenfunction to a special geodesic. This appears as Lemma 10 here, and is
much simpler to obtain than the corresponding statement [12, Theorem 6.1] on
the modular curve. The subconvex L∞ bound for the eigenfunctions also plays:
we use VanderKam’s result (Theorem 1) while Ghosh, Reznikov and Sarnak use
the L∞ bound from [13].

The most interesting modification we make is as follows. In the setting of [12]
it is important to control the Fourier coefficients of the restriction of a Hecke
eigenform f to a geodesic connecting a pair of cusps. It is straightforward that
these Fourier coefficients are roughly given by the values L(1/2 + it, f) of the
L-function associated to f on the critical line. The analogous formula is less
straightforward in our setting and can be deduced from work of Waldspurger
[32], Jacquet and Chen [14] and Martin and Whitehouse [20]. The formula we
use is given in Lemma 8. To get there we adelize the sphere in Section 7 and give
an account of the period formula in Section 8. In short, the Fourier coefficients
of Hecke eigenfunctions on the sphere around the CM-point i are roughly given
by the central values of GL2×GL1 L-functions for automorphic representations
over Q(

√
−1). The analogy is more apparent when one writes for f a Maass
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Hecke eigenform and πf the associated automorphic representation

L(1/2 + it, f) = L(1/2, πf ⊗ | • |it). (29)

The reader is encouraged to see the letter from Sarnak to Reznikov [26, Appendix
2] for more on the subject of restriction problems and L-functions. The rest of
the proof of Theorem 4 is a straightforward adaptation of methods from the
paper [12].

We also mention that in the setting of Theorem 2, Jung [15] has been able get
a slightly better exponent (1/16 versus 1/24) without any Lindelöf hypothesis,
but at the large expense that his results only hold true for ‘almost all’ forms in a
sufficiently large range. In this regard his result is in the same spirit as Corollary
1. However the exponent obtained by Jung is not as large as in Corollary 1
(1/8 versus 1/4) and his range of spectral parameter is wider. Jung’s method is
essentially to apply estimates for averaged quantities to the argument of Ghosh,
Reznikov and Sarnak from [12] whereas ours, as previously outlined, relies on
Diophantine analysis and sieving. It has also come to our attention since this
paper was written that essentially the same argument concerning Euler’s formula
in Section 2 has appeared in work of Jung and Zelditch [16]. We have retained
the argument here for completeness.

2. Topology of O×\S2 and Euler’s formula

In this section we give an argument which reduces the counting of nodal domains
to counting zeros on certain geodesic arcs.

The fixed points of elements of O× are given by plus or minus their imaginary
parts (rescaled so as to have norm 1). A fundamental domain for the action of
O× is given by the union of the spherical triangles T1 and T2 as illustrated in
Figure 1. The triangle T1 has vertices i, k and (i+ j+k)/

√
3 and T2 has vertices

i, k and (i− j + k)/
√

3.

In the case that f ∈ HO×l with l even, which will be our focus, the function
f is actually invariant under a larger group of symmetries which we will call Γ .
It turns out that Γ is generated by the projectivization of O× and reflection in
the origin. The group Γ contains O×/Z(O×) as an index 2 subgroup, so Γ has
size 24. For us, the most important feature of Γ is that it contains the elements

Rx : (x, y, z) 7→ (−x, y, z),
Ry : (x, y, z) 7→ (x,−y, z),
Rz : (x, y, z) 7→ (x, y,−z).

In particular, the Γ -invariance of f implies that one can view f as a function
on T1 ∪ T2 which has matching values on glued boundary pieces and which is
invariant under the reflection mapping T1 to T2. Now it should be clear that
the difference between l even and odd here is like the difference between the
even and odd Maass forms in [12]. We will crucially use the invariant arc of this
reflection in what follows, however firstly we must give the necessary properties
of nodal sets.

Recall that the nodal set of f is the set

Z(f) = {v ∈ S2 : f(v) = 0} = f−1(0). (30)
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j

i

k

i+j+k√
3

i−j+k√
3

T1T2

Fig. 1. The fundamental domain for O× is T1 ∪ T2 (up to a measure zero set).

A nodal domain is a connected component of S2−Z(f). We write N (f) for the
number of nodal domains of f .

The proofs of the following results appear in the paper of Cheng [6].

Theorem 5 (Cheng). For any eigenfunction f of ∆S2

1. The nodal set of f is a union of C2-immersed circles.
2. When branches of the nodal set of f cross, the tangent vectors at the crossing

point form an equiangular system. In particular, finitely many branches cross
at a given point.

Now we prove that, given invariance of a spherical harmonic f under a reflection
R, finding zeros of f on the fixed equator of R provides roughly as many nodal
domains of f . Our argument is essentially the same as that of Ghosh, Reznikov
and Sarnak in the proof of [12, Theorem 2.1].

Lemma 1. Suppose that l is even and f ∈ HO
×

l has N zeros on one of the
geodesics {x = 0}, {y = 0} or {z = 0}, and does not vanish identically on the
geodesic. Then

N (f) ≥ 1 +N/2. (31)

Proof. We consider the hemispheres H+ = {x ≥ 0} and H− = {x ≤ 0}. Assume
f has N zeros on δH+ = {x = 0} (f actually has the same number of zeros on
each of the geodesics mentioned in the Lemma). Let V consist of all the zeros of
f on δH+. Now add to V all the points in Z(f) ∩H+ which are crossing points
(i.e. the nodal set does not look like (0, 1) in any neighbourhood of that point).
We define a multigraph G which has vertex set V and an edge set E with an
edge between v1 and v2 each time

1. There is a nonbacktracking path in Z(f)∩H+ between v1 and v2 which does
not pass through any other vertex. In this case we identify the edge with the
underlying set of the path (which is homeomorphic to an interval).
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2. The vertices v1 and v2 both lie on δH+ and are adjacent on δH+. In this case
we identify the edge with the geodesic arc on δH+ along which v1 and v2 are
adjacent.

Thus G comes with a planar embedding into H+. We will write F for the faces
associated to this embedding. For a face S ∈ F either S does not meet δH+

along any edge, in which case S ∪ RxS consists of two disjoint nodal domains
of f , or S meets δH+ along an edge, in which case S ∪ RxS yields one nodal
domain of f . As f is Rx-invariant it is clear that distinct faces cannot lie in the
same nodal domain. Therefore

N (f) ≥ |F |. (32)

We will count vertices and edges and use Euler’s formula |V | − |E| + |F | = 1
(throwing out the face exterior to H+ viewed as a disc in R2). Every vertex in
the multigraph G has least 3 incident edges as follows. If the vertex lies on δH+

then it has two incident arcs on δH+ and at least one other incident edge going
into H+ due to the invariance of the nodal set under the reflection Rx and that f
is not identically zero on δH+. If the vertex is in the interior of H+ then it arose
from a crossing point in which case it has more than 2 incident edges. Therefore

|E| ≥ 3

2
|V | (33)

so by Euler’s formula
|F | ≥ 1 + |V |/2 ≥ 1 +N/2 (34)

as |V | ≥ N . Together with (32) this gives the desired

N (f) ≥ 1 +N/2. (35)

3. Diophantine estimates

In this section we present Diophantine estimates which will be key in finding
sign changes amongst the values of the Hecke eigenfunctions on S2. Recall that
the spherical distance between points x, y ∈ S2 is given by

d(x, y) = cos−1(〈x, y〉R3). (36)

The first Lemma is a direct result of Lemma 2.1 in the paper of VanderKam
[31].

Lemma 2 (VanderKam). For x ∈ S2 let N(x,m, δ) denote the number of
elements γ ∈ O whose norm is m and d(x, γ.x) ≤ δ or d(x, γ.x) ≥ π − δ. Then

N(x,m, δ)�ε

{
mε(δ1/2m+ 1) if δ < 1/m

mε(m1/2 + δ2/3m) else .
(37)

Remark 1. Lemma 2.1 in [31] applies to any point x ∈ S2. We will apply Lemma

2 to points (a, b, 0)/
√
a2 + b2 in which case the proof can be made slightly simpler

than the one which VanderKam gives.

As remarked the preceding estimate does not care about any algebraic properties
of x ∈ S2. To proceed we define the height h(x) of x ∈ S2 to be the least positive

integer h such that
√
hx has integer coordinates (if it exists). The next Lemma

says that if a point has small height, the elements of O with small norm and
which do not fix the point or map it to its antipode move the point (and not
close to its antipode).
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Lemma 3. Let x in S2 have height h(x) ∈ Z. Then for γ ∈ O, if γ.x /∈ {x,−x}
then

π − 1√
n(γ)h(x)

≥ d(γ.x, x) ≥ 1√
n(γ)h(x)

. (38)

Proof. Note that
√
h(x)x has integer coefficients in R3, therefore for γ ∈ O(m)

an easy calculation gives that γ
√
h(x)xγ̄ has half integer coefficients in R3. If

γ.x /∈ {x,−x} then

−n(γ)h(x) < 〈γ
√
h(x)xγ̄,

√
h(x)x〉 = n(γ)h(x)〈γ.x, x〉 < n(γ)h(x) (39)

and the expression in the middle is a half integer. This gives

−n(γ)h(x) + 1/2 ≤ n(γ)h(x)〈γ.x, x〉 ≤ n(γ)h(x)− 1/2

which yields the needed inequalities after noting

1− d(γ.x, x)2/2 ≤ 〈γ.x, x〉 ≤ 1− 1

2n(γ)h(x)
, (40)

−1 + (π − d(γ.x, x))2/2 ≥ 〈γ.x, x〉 ≥ −1 +
1

2n(γ)h(x)
. (41)

It remains in this section to control the number of γ ∈ O of given norm and
with γ.x ∈ {x,−x}, with a uniform bound through all x ∈ S2 having any height
and the norm of γ having a bounded number of prime divisors - for our purposes
2 prime divisors suffices.

Lemma 4. There is an absolute constant N0 such that for any x ∈ S2 with
existent height h(x) and p, q (not necessarily distinct) primes the number of
γ ∈ O with n(γ) = pq and γ.x ∈ {x,−x} is bounded by N0. In other words for
x having any height h(x) <∞

N(x, pq, 0)� 1. (42)

Proof. With everything as in Lemma 4, the point
√
h(x)x is contained in the

image of an embedding of normed Q-algebras ι : F = Q(
√
−h(x)) ↪→ B(Q),

with ι(
√
−h(x)) =

√
h(x)x. The rotations in B(Q) fixing x are precisely those

in ι(F ). Let OF denote the maximal order in F .
The result will follow quickly from the fact that for any quadratic imaginary

number field there is an absolute constant Ω such that the number of elements of
OF of norm either 4pq or 4p2q2 is bounded by Ω. Consider the case of counting
elements of norm 4p2q2. Any element x ∈ OF of norm 4p2q2 generates an ideal
(x) of the same norm. We have then uniquely

(x) =
∏
i

Pi (43)

with each Pi lying over 2, p or q and at most 2 of the Pi lying over each of 2, p, q.
There are therefore at most 33 = 27 choices (if p = q there are even less choices)
for the principal ideal (x) and each principal ideal corresponds to at most |O×F |
elements. As |O×F | has a universal bound for quadratic imaginary number fields
F these arguments give a universal bound for the number of elements of OF of
norm 4p2q2. The case of norm 4pq is similar.
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If γ ∈ O(pq) and γ.x = x then 2γ ∈ ι(OF ) with norm 4pq, so there are at
most Ω possibilities for such γ.

Suppose there is some γ0 ∈ O(pq) such that γ0.x = −x (or else we are done).
Then for any γ1 ∈ O(pq) with γ1.x = −x we have γ1.γ0.x = x and hence
2γ1γ0 ∈ ι(OF ) with norm 4p2q2. Moreover as γ1 ranges while γ0 is fixed the
elements of OF produced are distinct. Hence there are at most Ω possibilities
for γ ∈ O(pq) with γx = −x. This concludes the proof.

4. Kernel estimates

Recall the decomposition

L2(S2) =
⊕

l
Hl (44)

and denote by Pl the projection onto the space Hl. It is well known that Pl is a
integral operator with kernel given by the formula

[Plφ](x) =
2l + 1

4π

∫
S2

pl(〈x, y〉)φ(y)dS2(y), φ ∈ L2(S2) (45)

where pl is the lth Legendre polynomial. We will look for estimates for sums∑
γ∈O(m)

pl(〈γ.x, y〉) (46)

for x close to y in anticipation of the upcoming annihilator method. We need
some facts about pl to get started. Firstly

pl(1) = (−1)lpl(−1) = 1 (47)

gives the value of pl(〈x, y〉) when y = x,−x.
In what follows, we will restrict to l even.
In particular for us pl(1) = pl(−1) = 1. In general pl satisfies the bound

pl(cos(θ))� min
(

1, (l sin θ)−1/2
)

(48)

which follows from [29, p. 165 Theorem 7.3.3] together with pl(cos(θ)) ≤ 1 [29,
p. 164 Theorem 7.3.1]. It can be deduced from ‘Hilb’s asymptotics’ [29, p. 195
Theorem 8.21.6] that

pl

(
cos

(
3π

2l + 1

))
� J0

(
3π

2

)
≈ −0.26 (49)

as in the B.A. Thesis of Nastasescu [23] (following Nazarov and Sodin [24]). Here
J0 denotes the zeroth Bessel function. As the value will be repeatedly used we
introduce notation

Wl =
3π

2l + 1
, (50)

which can be thought of as the first wavelength of the spherical eigenfunction of
energy l(l + 1).

Some of the estimates in this section depend on ‘integration by parts’ argu-
ments. It will therefore be convenient for purely technical reasons to prepare the
next Lemma which follows straightforwardly from Lemma 2 and applications of
the spherical triangle inequality; the proof is omitted.
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Lemma 5. When l � m with sufficiently large implied constant, x, y ∈ S2 and
d(x, y) ≤Wl = 3π

2l+1 the quantity

N(x, y,m, δ) ≡ |{γ ∈ O : n(γ) = m, d(γ.x, y) ≤ δ or d(γ.x, y) ≥ π − δ }| (51)

satisfies

N(x, y,m, δ)�ε


mε if δ < 1/l

mε(δ1/2m+ 1) if 1/l ≤ δ < 1/m−Wl

mε(m1/2 + δ2/3m) if 1/m−Wl ≤ δ.
(52)

We can now give estimates for sums of the kernel pl over Hecke elements.

Lemma 6. There exist C1 and C2 absolute such that for even l and x, y ∈ S2,
if the following hold:

1. d(x, y) ≤Wl = 3π
2l+1 ,

2. l ≥ C1m,
3. The height of x, h(x) exists and l ≥ C2

√
mh(x),

then∑
γ∈O(m)

pl(〈γ.x, y〉) = pl(〈x, y〉)N(x,m, 0) +Oε(m
εl−1/2(mhε +m1/4h(x)1/4)).

(53)

Proof. With everything as above, Lemma 3 implies that if γ ∈ O(m) and γ.x /∈
{x,−x} then

1√
mh(x)

≤ d(γ.x, x) ≤ π − 1√
mh(x)

(54)

so that by the triangle inequality

1√
mh(x)

−Wl ≤ d(γ.x, y) ≤ π − 1√
mh(x)

+Wl. (55)

If l ≥ C2

√
mh(x) with C2 large enough then

1√
mh(x)

−Wl >
1

l
, (56)

we pick such a C2. Consequently, aside from γ with γ.x ∈ {x,−x}, summation
in (53) begins late enough to get a good bound. The previous discussion gives∑

γ∈O(m)

pl(〈γ.x, y〉) =
∑

γ∈O(m)
γ.x∈{x,−x}

pl(〈γ.x, y〉)+ (57)

∑
γ∈O(m)

1√
mh(x)

−Wl≤d(γ.x,y)≤π− 1√
mh(x)

+Wl

pl(〈γ.x, y〉).

The first term on the right hand side can be written∑
γ∈O(m)

γ.x∈{x,−x}

pl(〈γ.x, y〉) = pl(〈x, y〉)N(x,m, 0) (58)
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because l is even. The remainder is estimated in size by the triangle inequality
and the known bound (48) for pl:∣∣∣∣∣∣∣∣∣∣

∑
γ∈O(m)

1√
mh(x)

−Wl≤d(γ.x,y)≤π− 1√
mh(x)

+Wl

pl(〈γ.x, y〉)

∣∣∣∣∣∣∣∣∣∣
� l−1/2

∑
δ≥ 1√

mh(x)
−Wl

δ−1/2dN(x, y,m, δ),

(59)
where

dN(x, y,m, δ) ≡ |{γ ∈ O : n(γ) = m, d(γ.x, y) = δ or d(γ.x, y) = π − δ }| (60)

and the summation of δ values is over a finite set containing all attained values
of d(γ.x, y) or π−d(γ.x, y) for γ ∈ O(m). We split up summation into the ranges
appearing in Lemma 5, and specify C1 so that the results from Lemma 5 apply.
Then ∑
δ≥ 1√

mh(x)
−Wl

δ−1/2dN(x, y,m, δ) =
∑

1√
mh(x)

−Wl≤δ< 1
m−Wl

δ−1/2dN(x, y,m, δ)

(61)

+
∑

1
m−Wl≤δ

δ−1/2dN(x, y,m, δ)

�ε m
ε(mhε +m1/4h(x)1/4)

by an ‘integration by parts’ argument making use of (56) and the estimates of
Lemma 5. We remark that if h(x) ≤ m then the range 1√

mh(x)
− Wl ≤ δ <

1
m −Wl is empty and the above calculation is still valid, but simpler. Putting
our estimates (57), (58), (59) and (61) together we get the desired∑
γ∈O(m)

pl(〈γ.x, y〉) = pl(〈x, y〉)N(x,m, 0) +Oε(m
εl−1/2(mhε +m1/4h(x)1/4)).

(62)

5. The spectral annihilator

The kernel of the orthogonal projection Pl : L2(S2) → Hl can be written in
two ways. Firstly we extend the orthonormal basis Bl of Hecke eigenfunctions in

HO×l to an orthonormal basis B̂l of Hl. Then the kernel of Pl is implicitly given
by the formula

[Plϕ](x) =

∫
S2

∑
φ∈B̂l

φ(x)φ(y)

ϕ(y)dS2(y), ϕ ∈ L2(S2). (63)

On the other hand we have the expression for the kernel from equation (45)
which when taken together with (63) gives the following special form of the
pre-trace formula on S2:

4π

2l + 1

∑
φ∈B̂l

φ(x)φ(y) = pl(〈x, y〉). (64)
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The basis Bl consists of φ which are eigenfunctions of all the Tm for m odd, with
Tmφ = λφ(m)φ. We introduce a new normalized variable ηφ(m) ≡ λφ(m)/m1/2.
The ηφ(m) are real valued and Deligne’s bound [9] on the coefficients of modular
forms1 gives

ηφ(m)�ε m
ε. (65)

For any function α : N → R of sufficient decay (in what follows α will be of
finite support) we can form the operator(∑

n odd

α(n)Tn√
n

)2

and apply it to the x variable on both sides of (64) to obtain

4π

2l + 1

∑
φ∈Bl

(∑
n

α(n)ηφ(n)

)2

φ(x)φ(y) =
∑
n,m

α(n)α(m)√
nm

[TnTmpl(〈•, y〉)](x).

(66)
Note that the sum on the left hand side of (66) is over Bl as the Tm annihilate

the orthogonal complement of HO×l in Hl when m is odd. From now on we will
write, for φ ∈ Bl,

Aα(φ) ≡
∑
n

α(n)ηφ(n) (67)

which when squared gives the coefficient of φ(x)φ(y) in (66). Using the Hecke
recursion (9) we can write

4π

2l + 1

∑
φ∈Bl

Aα(φ)2φ(x)φ(y) = |O×|
∑
n,m

α(n)α(m)
∑

d|(n,m)

d√
nm

[Tnm/d2pl(〈•, y〉)](x),

(68)
and recalling the definition of the Hecke operator Tnm/d2 from (8) we obtain our
main spectral equation:

4π

|O×|(2l + 1)

∑
φ∈Bl

Aα(φ)2φ(x)φ(y) =
∑
n,m

α(n)α(m)
∑

d|(n,m)

d√
nm

∑
γ∈O(nm

d2
)

pl(〈γ.x, y〉).

(69)
The Hecke summation estimates which we have prepared in Section 4 are

precisely for the purpose of controlling the right hand side of (69). In what
follows we aim to find large subspaces of l2 on which the quadratic form in (69)
is negative definite. This will enable us to find enough negative contributions
from the left hand side, hence sign changes of eigenfunctions between x and y.
As a technical aside, in what follows we will take the approach of confining ε
considerations to the support of α.

Lemma 7 (Key Lemma for ‘on average’ result). There exists an absolute
K > 1 such that for any ε > 0 there exists L = L(ε) with∑

φ∈Bl

Aα(φ)2φ(x)φ(y) < 0 (70)

whenever

1 This is included to orient the reader, we do not use it.
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1. l is even and l > L(ε)
2. x, y ∈ S2 with d(x, y) = Wl and h(x) ≤ l3/2
3. ‖α‖l2 = 1 and supp(α) ⊆ [l(1/4−2ε)/K , l1/4−2ε] ∩ {primes}.

Proof. Let C ≡ −J0(3π/2) > 0 throughout this proof. We will take α : N → R
as in the Lemma and denote by S the primes in [l(1/4−2ε)/K , l1/4−2ε] for K to
be chosen later. We split the right hand side of the spectral equation (69) into
summands with d = 1 (which appear for all pairs p, q ∈ S and are the only
contribution when p 6= q) and summands where d = p = q. This gives

4π

|O×|(2l + 1)

∑
φ∈Bl

Aα(φ)2φ(x)φ(y) =
∑
p∈S

α(p)2
∑

γ∈O(1)=O×
pl(〈γ.x, y〉) (71)

+
∑
p,q∈S

α(p)α(q)
1
√
pq

∑
γ∈O(pq)

pl(〈γ.x, y〉).

The first term on the right hand side can be estimated by using Lemma 6 with
m = 1 (which is valid given the assumptions of the Lemma) and h(x) ≤ l3/2

giving ∑
γ∈O(1)=O×

pl(〈γ.x, y〉) = pl(〈x, y〉)N(x, 1, 0) +O(l−1/8). (72)

As ‖α‖l2 = 1 it follows from the above that∑
p∈S

α(p)2
∑

γ∈O(1)=O×
pl(〈γ.x, y〉) = pl(〈x, y〉)N(x, 1, 0) +O(l−1/8). (73)

Noting that N(x, 1, 0) ≥ 2 (contributions coming from ±1 ∈ O×) and using the
asymptotic value from (49) implies that for any δ > 0 there is L large enough
so that when l > L∑

p∈S
α(p)2

∑
γ∈O(1)=O×

pl(〈γ.x, y〉) ≤ −2C + δ. (74)

We choose δ = C/2 and L(ε) large enough so that∑
p∈S

α(p)2
∑

γ∈O(1)=O×
pl(〈γ.x, y〉) ≤ −3C/2 (75)

which will be the known negative contribution from (71). The remainder will
be treated as an error term. Indeed, considering the second term on the right
hand side of (71), under the assumptions of the Lemma it is easy to check that
the requisites of Lemma 6 are satisfied when l is large enough. Using Lemma 6
together with the triangle inequality gives the following bound:∣∣∣∣∣∣
∑
p,q∈S

α(p)α(q)
1
√
pq

∑
γ∈O(pq)

pl(〈γ.x, y〉)

∣∣∣∣∣∣ ≤ (76)

∑
p,q∈S

|α(p)||α(q)| 1
√
pq

(
|pl(〈x, y〉)N(x, pq, 0)|+Oε

(
(pq)εl−1/2(pqhε + (pq)1/4h(x)1/4)

))
.



Arithmetic, zeros, and nodal domains on the sphere 17

Now we use the estimateN(x, pq, 0) ≤ N0 from Lemma 4 together with |pl(〈x, y〉)| ≤
1 to continue, writing h = h(x),∑
p,q∈S

|α(p)||α(q)| 1
√
pq

(
|pl(〈x, y〉)N(x, pq, 0)|+Oε

(
(pq)εl−1/2(pqhε + (pq)1/4h1/4)

))
≤
∑
p,q∈S

|α(p)||α(q)|
(
N0(pq)−1/2 +Oε

(
(pq)1/2+εhεl−1/2 + (pq)−1/4+εh1/4l−1/2

))

= N0

∑
p∈S
|α(p)|p−1/2

2

+Oε

l−1/2hε
∑
p∈S
|α(p)|p1/2+ε

2


+Oε

l−1/2h1/4
∑
p∈S
|α(p)|p−1/4+ε

2


≤ N0

∑
p∈S

1

p

+Oε

l−1/2hε
∑
p∈S

p1+2ε

+ l−1/2h1/4

∑
p∈S

p−1/2+2ε


where we used Cauchy-Schwarz and ‖α‖l2 = 1 for the last inequality. We will
now bound the sums in the last line one by one. Mertens’ second Theorem gives∑

p∈S

1

p
=

∑
l(1/4−2ε)/K≤p≤l1/4−2ε

1

p
= logK + o(1), (77)

and we choose K = eC/(2N0) > 1 so that N0 logK = C/2. The other sums are
estimated more coarsely by∑

p∈S
p1+2ε ≤

∑
0<n≤l1/4−2ε

n1+2ε �ε l
(1/4−2ε)(2+2ε) � l1/2−3ε (78)

and ∑
p∈S

p−1/2+2ε ≤
∑

0<n≤l1/4−2ε

n−1/2+2ε �ε l
(1/4−2ε)(1/2+2ε) ≤ l1/8−ε/2. (79)

Using that h ≤ l3/2 and incorporating our estimates gives for the error

N0

∑
p∈S

1

p

+Oε

l−1/2hε
∑
p∈S

p1+2ε

+ l−1/2h1/4

∑
p∈S

p−1/2+2ε

 = C/2+oε(1)

(80)
so that in total (tracing the previous series of bounds back to (76) and recalling
(71) and (75))

4π

|O×|(2l + 1)

∑
φ∈Bl

Aα(φ)2φ(x)φ(y) ≤ −C + oε(1) (81)

which concludes the proof.

The next Proposition uses the previous estimates to find sign changes over
the wavelength Wl amongst the Hecke eigenfunctions.
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Proposition 1 (Sign changes at algebraic points). As even l varies for
fixed ε

|{φ ∈ HO
×

l : φ a normalized Hecke eigenfunction, φ(x)φ(y) < 0}| �ε l
1/4−ε

(82)
uniformly through x ∈ S2 with h(x) ≤ l3/2 and y ∈ S2 with d(x, y) = Wl.

Proof. Fix ε > 0 and let K,L(ε) be the constants from Lemma 7 so that when
l > L(ε) the quadratic form in α

∑
φ∈Bl

Aα(φ)2φ(x)φ(y) (83)

is negative when x, y are as in the Proposition and α is supported on primes in
[l(1/4−2ε)/K , l1/4−2ε]. The dimension of the space of such α is �δ l

1/4−2ε−δ after
a calculation with the prime number theorem. In particular there is c = c(ε) and
L = L(ε) such that when l > L(ε)

dim{α : supp(α) ⊂ [l(1/4−2ε)/K , l1/4−2ε] ∩ {primes}} ≥ cl1/4−3ε. (84)

If there are fewer than cl1/4−3ε of the φ ∈ Bl such that φl,i(x)φl,i(y) < 0 then

we can find α with support in [l(1/4−2ε)/K , l1/4−2ε] and such that

Aα(φ) =
∑
n

α(n)ηφ(n) = 0 (85)

whenever φ(x)φ(y) < 0; this is just the observation that in a vector space with
inner product of dimension N one can find a vector orthogonal to any N − 1
vectors. For this orthogonal α all the summands in (83) are nonnegative giving
the required contradiction, so that at least cl1/4−3ε of the φ ∈ Bl sign change
between x and y.

Remark 2. Theorem 1, which is the L∞ bound of VanderKam

‖φ‖∞ �ε l
5/12+ε, φ ∈ Bl (86)

implies a weaker version of Proposition 1 with the lower bound l1/4−ε replaced by
l1/6−ε. Indeed, in the setting of Proposition 1 the pre-trace formula (64) together
with the previously calculated (72) gives

4π|O×|
2l + 1

∑
φ∈Bl

φ(x)φ(y) = pl(〈x, y〉)N(x, 1, 0) +O(l−1/8). (87)

Taking into account that N(x, 1, 0) ≥ 2 and the value of pl(〈x, y〉) is asymptot-
ically a negative constant, the bound (86) for φ(x) and φ(y) implies that (87)
can hold for large l only if at least c(ε)l1/6−2ε of the φ ∈ Bl give a negative
contribution to the left hand side of (87), i.e. have different signs at x and y.
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6. Proof of Theorem 3 and Corollary 1

By use of Lemma 1, Theorem 3 will follow from the following Proposition 2.
Corollary 1 follows directly from Theorem 3 along with the dimension estimate

for HO×l given in (12).

Proposition 2. Let l be even and Bl denote an orthonormal basis for HO×l
consisting of Hecke eigenfunctions. Fix one of the equators Ej ≡ {(x1, x2, x3) ∈
S2 : xj = 0}, j = 1, 2, 3. Any ϕ ∈ Bl has finitely many zeros on Ej and the
members of Bl have a total number of zeros on Ej which, for any ε > 0, is
bounded below by the formula∑

ϕ∈Bl

|ϕ−1({0}) ∩ Ej | �ε l
5/4−ε. (88)

To prove Proposition 2 we will convert Proposition 1 into an estimate for the
total number of zeros of Hecke eigenfunctions on equators Ej ≡ {(x1, x2, x3) ∈
S2 : xj = 0}. This is done by finding sufficiently many disjoint intervals in
the equator where sign changes are provided by Proposition 1. We will prove
Proposition 2 in the case when the equator is E3. Recall that l is even and Bl
denotes an orthonormal basis of Hecke eigenfunctions for HO×l .

Proof (Proof of Proposition 2). Since any ϕ ∈ Bl is invariant under reflection
in Ej and hence has zero normal derivative on Ej , it follows from the unique
continuation property of Laplacian eigenfunctions that ϕ cannot vanish identi-
cally on Ej . This can also be seen more simply as a consequence of our proof
of Lemma 10. Since ϕ|Ej is a non zero polynomial it therefore has finitely many
zeros.

Let κ > 0 be an absolute constant (to be chosen small enough) and consider
the set of points

Sl ≡
{

(a, b, 0)√
a2 + b2

: a, b ∈ Z, (a, b) = 1, 0 < a, b <
√
κl/2

}
⊂ E3. (89)

For each x ∈ Sl choose z(x) to be one of the points of distance Wl from x. For
any x ∈ Sl it is clear that h(x) ≤ a2 + b2 < κl. In particular h(x) is eventually
≤ l3/2 so Proposition 1 gives that �ε l

1/4−ε of the elements of Bl sign change
between x and z(x).

We can ensure the intervals [x, z(x)] and [y, z(y)] are disjoint for x 6= y ∈ Sl
as follows. If x = (a,b,0)√

a2+b2
and y = (c,d,0)√

c2+d2
are distinct points in Sl then 〈x, y〉 6= 1

and so

〈x, y〉2 ≤ 1− 1

(a2 + b2)(c2 + d2)
(90)

giving

d(x, y)� 1√
a2 + b2

√
c2 + d2

>
1

κl
. (91)

We now choose κ small enough so that

d(x, y) ≥ 3Wl (92)

and the intervals [x, z(x)] and [y, z(y)] are disjoint for any distinct x, y ∈ Sl. We
have the estimate for the size of Sl

|Sl| =
6

π2

κl

2
+ o(l)� l. (93)
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Applying the intermediate value theorem to each of the intervals [x, z(x)] we
count per interval �ε l

1/4−ε zeros in [x, z(x)] of members of Bl. There are � l
such disjoint intervals so in total we count �ε l

5/4−ε zeros of members of Bl on
E3.

This concludes the proof of our ‘on average’ result.

7. Adelization

Let A denote the Q-algebra of adeles, Af the finite adeles. Write B for the
Hamilton quaternions defined over Q so that for any Q-algebra R we define

B(R) ≡ B(Q)⊗Q R. (94)

We view B× as a algebraic group over Q, and will consider in particular the
adele group B×(A). Let O denote the particular maximal order in B(Q) defined

in (4), which has class number h(O) = 1. By Ô we mean the closure of O in
B(Af ). There is an isomorphism

B×(Q)\B×(A)/Ô× ∼= O×\B×(R). (95)

The inverse of this map can be given explicitly by

L : O×\B×(R)→ B×(Q)\B×(AQ)/Ô×,

L : O×x∞ 7→ B×(Q)(1, 1, 1, . . . , x∞)Ô×.

We choose k ∈ S2 as our north pole. The group B×(R) acts on S2 by

g.(xi + yj + zk) = g(xi + yj + zk)ḡ/n(g), x2 + y2 + z2 = 1. (96)

Let K∞ = StabB×(R)(k) ∩ n−1(1) consist of the norm 1 elements in B×(R)

which fix k. We can lift Laplacian eigenfunctions ϕ from O×\S2 to Casimir
eigenfunctions on O×\B×(R) by

ϕ̂(g) = ϕ(g.k). (97)

If ϕ is an eigenfunction for all the Hecke operators on L2(S2) then L∗ϕ̂, as
a function on B×(Q)\B×(A), generates an irreducible cuspidal automorphic
representation of B×(A) which has trivial central character. The representation

associated to ϕ in this way is denoted ρ = ρϕ and L∗ϕ̂ is the unique Ô×K∞
invariant vector in ρ. We have the restricted tensor product decomposition for
ρ over places ν of Q

ρ ∼=
⊗
ν

ρν . (98)

The local representation ρν is ramified only at 2 and ∞. We know that ρ2 is the
trivial representation or a character, and ρ∞ is the lth irreducible representation
of B×(R)/R ∼= SO(3).

Now let E = Q(i), OE = Z[i] the maximal order of E, and consider the
embedding of normed Q-algebras

ι : Q(i)→ B(Q), i 7→ i. (99)

We have then the optimality condition

ι(OE) = ι(E) ∩ O. (100)
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Analogously to before there is an adelic isomorphism

E×\A×E/ÔE
× ∼= O×E\C

× (101)

which follows from E having class number h(E) = 1. The inclusion

E× ↪→ B×(Q) (102)

induces an embedding

E×\A×E → B×(Q)\B×(A) (103)

and because of the optimality condition (100) an embedding

E×\A×E/ÔE
×
→ B×(Q)\B×(A)/Ô×. (104)

By using our previous adelic isomorphisms this gives an embedding

O×E\C
× ∼= E×\A×E/ÔE

×
→ B×(Q)\B×(A)/Ô× ∼= O×\B×(R), (105)

and this map agrees exactly with

O×E\C
× → O×\B×(R) (106)

induced directly from optimality (100) and the inclusion E ⊗R→ B(R) at the
archimedean place, without any adelization.

We have discussed lifting in the quaternion setting, now we discuss lifting in
the abelian case. It will be sufficient for us to consider functions on C

ωn(z) = (z/z̄)n, n ∈ 1

2
Z. (107)

In the special case when n is an even integer, ωn is invariant under O×E and can

be viewed as a character of O×E\C. It can therefore be lifted to a character Ωn

of the idele class group E×\A×E which is trivial on ÔE
×

via the isomorphism
(101). As Q has class number h(Q) = 1 it follows that the restriction of Ωn to
A× is trivial. It is clear that the Hecke character Ωn constructed in this way is
unramified at all the finite places of E and of infinite order when n 6= 0.

8. Period formulae

Now we recall important work of Waldspurger [32], Jacquet and Chen [14] and
Martin and Whitehouse [20] which will allow us to calculate the Fourier coef-
ficients of automorphic forms in terms of central values of Rankin-Selberg L-
functions. Our discussion and notation follow [14] and [20].

Let E = Q(i) as before and π denote a cuspidal automorphic representation of
GL2(A) which has trivial central character. Let Ω be a unitary Hecke character
of A×E/E× whose restriction to A× is trivial. For our application we need to
assume that Ω and π have disjoint ramification.

We will deal with an irreducible unitary automorphic representation πB of
B×(A) associated to π by the Jacquet-Langlands correspondence. In our case,
πB = ρϕ for ϕ an automorphic form on O×\S2, and Ω = Ωn. As Ωn is ramified
nowhere the ramification of Ωn and π is trivially disjoint. The central characters
of Ωn and ρϕ are both trivial.
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The object of study in this section is the period integral

PB(φ) ≡
∫
E×A×\A×E

φ(t)Ω−1(t)dt (108)

defined for all φ ∈ πB via the identification of E×\A×E with a subset ofB×(Q)\B×(A)
and the matching of central characters. Let us motivate the study of PB . Take
φ to be the spherical vector in ρϕ, which corresonds to the lift of the spherical
harmonic ϕ. Up to choice of normalization for Haar measures, by using the adelic
isomorphisms of Section 7 we have, modulo positive constants,

PB(φ) =

∫
θ∈[0,2π)

ϕ((cos(θ) + sin(θ)i).k)e−i2nθdθ (109)

=

∫
θ∈[0,2π)

ϕ(ei2θk)e−i2nθdθ =

∫
θ∈[0,2π)

ϕ(eiθk)e−inθdθ (110)

so that PB(φ) is a multiple (not depending on ϕ) of the nth Fourier coefficient
of the classical automorphic form ϕ restricted to the geodesic {eiθk}.

Now write Π = BCE/Q(π) for the base change of π to an automorphic
representation of GL2(AE), which is cuspidal unless π is dihedral. In [32], Wald-
spurger proved the existence of a formula relating |PB(φ)|2 to the central value
L(1/2, Π⊗Ω). Certain factors in this formula are not as explicit as we would like
for our application, although they could undoubtedly be calculated. A formula
of the same flavor, which does have explicit factors, was proven by Jacquet and
Chen [14] in the case when π is not dihedral, and by Martin and Whitehouse [20]
in the dihedral case. The work of Jacquet and Chen utilizes the relative trace
formula and the factorization of a certain distribution which we will describe
now. We note that in all the formulae we are aware of, only the square of the
period integral is obtained. It would be nice to have the phase, but we do not
know how to get it at present.

The distribution we need to consider is

JπB : C∞c (B×(A))→ C, f 7→
∑
φ

∫
[πB(f)φ](t)Ω(t)−1dt

∫
φ(t)Ω(t)−1dt,

(111)
where summation is over an orthonormal basis of πB and

πB(f)φ =

∫
B×(A)

f(g)[πB(g)φ]dg. (112)

Let S0 be a finite set of places of Q containing the infinite place and all places
where πB or Ω is ramified, which for us will be S0 = {2,∞}. Denote by S
all the places of E lying over S0. For any f =

(∏
ν∈S0

fν
)
fS0 , where fS0 is

the characteristic function of a maximal compact subgroup of B×(AS0), the
distribution JπB factorizes at f . We will take f such that πB(f) is orthogonal
projection onto the span of the L2(B×(A))-normalized spherical vector ϕ in πB .
By abuse of notation ϕ is the lift of a Hecke eigenfunction ϕ on S2. Then

JπB (f) = |PB(ϕ)|2. (113)
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On the other hand we have the factorization ([14, Theorem 2], [20, Appendix])

JπB (f) =
1

2

∏
ν∈S0

J̃πB (fν)×

 ∏
ν∈S0,
inert

ε(1, ην , ψν)2L(0, ην)

×LS0
(1, η)LS(1/2, Π ⊗Ω)

LS0(1, π,Ad)
,

(114)
where η is the quadratic Hecke character of A× associated to E. The terms in the
central parenthesis have not been defined (see [14]), but they are positive and
depend only on the ramification of the representations and E. The same is true
for LS0

(1, η) (see our notation index for conventions regarding L-functions). The

terms J̃πB (fν) are local factors of the distribution which need to be calculated per
ramification scenario as in [14]. With these observations and the two expressions
(113) and (114) for JπB (f) we can write

|PB(ϕ)|2 = Cram(Ω),ram(π),E

∏
ν∈S0

J̃πB (fν)× LS(1/2, Π ⊗Ω)

LS0(1, π,Ad)
. (115)

When we apply this equation we will want it to be in terms of the finite L-
functions L(1/2, Π ⊗ Ω) and L(1, π,Ad), and we will want to know the local

factors J̃πB (fν) modulo positive values which are bounded above and away from
zero. In the next Lemma we obtain the desired relation.

Lemma 8. Let ϕ ∈ HO×l be an eigenfunction of the Hecke operators and the
spherical Laplacian with ‖ϕ‖L2(S2) = 1. With the previous notation, let π be
the Jacquet-Langlands transfer of ρ = ρϕ to an automorphic representation of
GL2(A) and Π = BCE/Q(π). Then we have∣∣∣∣∣

∫
θ∈[0,2π)

ϕ(eiθk)e−inθdθ

∣∣∣∣∣
2

� Y nl (0)2

2l + 1

L(1/2, Π ⊗Ωn)

L(1, π,Ad)
, (116)

where Y nl is the associated Legendre polynomial Pnl normalized so as to have
‖Y nl (〈•,k〉)‖L2(S2) = 1.

Proof. Given that ‖ϕ‖L2(S2) = 1,∣∣∣∣∣
∫
θ∈[0,2π)

ϕ(eiθk)e−inθdθ

∣∣∣∣∣
2

�
∏
ν∈S0

J̃ρ(fν)× LS(1/2, Π ⊗Ωn)

LS0(1, π,Ad)
(117)

follows from the previous discussion, particularly equation (115). Here S0 =

{2,∞} so it remains to calculate J̃ρ(fν) at these places as well as the Euler
factor at 2 for L(1, π,Ad) and the factor at (1 + i) for L(1/2, Π ⊗ Ωn). Our f
agrees with that of Martin and Whitehouse [20] at 2 and they calculate that in
our case (π ramified at 2 and B non-split),

J̃ρ(f2) = 1. (118)

For the factor J̃ρ(f∞) we follow [14, Section 5.1]. We pick as a model for ρ∞ the
space Hl of homogeneous harmonic polynomials of degree l on R3 restricted to
the sphere. We need to find unit vectors eT , e′T such that

ρ∞(t)eT = Ω−1n (t)eT , ρ∞(t)e′T = Ωn(t)e′T (119)
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for t in R×\C×. In our model these vectors are given by

eT (v) = Y nl (〈v, i〉)e−inθ, e′T (v) = Y nl (〈v, i〉)einθ, (120)

where θ is an angle around the axis of i such that θ(k) = 0. We have then

J̃ρ(f∞) = 〈ρ∞(f∞)eT , eT ′〉. (121)

We chose f∞ so that ρ∞(f∞) was orthogonal projection onto the k-spherical
vector. We can therefore write

[ρ∞(f∞)eT ](y) =

(∫
x∈S2

Y 0
l (〈k, x〉)Y nl (〈x, i〉)e−inθdx

)
Y 0
l (〈k, y〉). (122)

Using that the kernel
√

2l + 1Y 0
l (〈•, •〉) is reproducing gives then

[ρ∞(f∞)eT ](y) =
1√

2l + 1
Y nl (0)Y 0

l (〈k, y〉). (123)

Now we use the reproducing property again to calculate

〈ρ∞(f∞)eT , eT ′〉 =
Y nl (0)√
2l + 1

∫
y∈S2

Y 0
l (〈k, y〉)Y nl (〈y, i〉)e−inθdy

=
Y nl (0)2

2l + 1
,

which gives the value for J̃ρ(f∞).
The local L-factors at 2 can be calculated by local Langlands. For background

on the following discussion see the article of Tate [30]. Since π has conductor 2
and trivial central character it follows that π2 and hence Π(1+i) are twists of the
Steinberg representation. Then Π(1+i) corresponds to a Weil-Deligne parameter
consisting of a representation τ : WE(1+i)

→ GL2(C) of the Weil group of E(1+i)

together with the nilpotent endomorphism of C2

N =

(
0 1
0 0

)
. (124)

The geometric Frobenius Φ maps under τ to

τ(Φ) =

(
χ(Φ)2−1/2 0

0 χ(Φ)21/2

)
(125)

where χ is the character parameterizing the twist of Steinberg. Then the Weil-
Deligne parameter for Π(1+i) ⊗ (Ωn)(1+i) consists of the same N together with
a representation τ ′ of the Weil group under which Φ maps to

τ ′(Φ) =

(
χ(Φ)αn(Φ)2−1/2 0

0 χ(Φ)αn(Φ)21/2

)
(126)

where αn corresponds to (Ωn)(1+i) via local class field theory. The local L-factor
is then given by

L(1+i)(1/2, Π ⊗Ωn) = det(1− τ ′(Φ)|kerN2−1/2)−1 (127)

=

(
1− χ(Φ)αn(Φ)

2

)−1
. (128)
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As the characters are unitary we have

L(1+i)(1/2, Π ⊗Ωn) � 1. (129)

Similarly the Weil-Deligne parameter for π2 consists of a representation σ :
WQ2

→ GL2(C) with the same N as before and geometric Frobenius Ψ mapping
to

σ(Ψ) =

(
χ(Ψ)2−1/2 0

0 χ(Ψ)21/2

)
(130)

for some unitary χ. Now let e1, e2 denote the standard basis for C2 and ẽ1, ẽ2
denote the dual basis. Then the adjoint representation of GL2(C) can be realized

as the 3 dimensional invariant subspace of C2⊗(C2)∗ under standard⊗ ˜standard
given by

V = 〈e1 ⊗ ẽ1 − e2 ⊗ ẽ2, e1 ⊗ ẽ2, e2 ⊗ ẽ1〉. (131)

The three dimensional Weil-Deligne representation for Ad(π2) is given by the
restriction of σ ⊗ σ̃ to V together with the nilpotent element NAd which is the
restriction of N ⊗ 1− 1⊗NT to V . Therefore with respect to the basis in (131)
we have

Ad(σ)(Ψ) =

 1 0 0
0 2−1 0
0 0 2

 NAd =

 0 0 1
−2 0 0
0 0 0

 . (132)

Then

L2(1, π,Ad) = det(1−Ad(σ)(Ψ)|kerNAd
2−1)−1 = 4/3. (133)

Substituting our calculations into (117) gives the desired result.

There is a slightly more natural way to write Lemma 8 which we state now.

Lemma 9. With all our previous notation, suppose that ϕ ∈ HO×l is an eigen-
function of the Hecke operators and the spherical Laplacian which has the ultra-
spherical expansion around i

ϕ(x) =
∑
|m|≤l

amY
m
l (〈x, i〉)eimθ(x),

∑
|m|≤l

|am|2 = 1. (134)

Suppose that l is even. Then am is zero unless m ≡ 0 mod 2 and in this case

|am|2 �
1

2l + 1

L(1/2, Π ⊗Ωm)

L(1, π,Ad)
. (135)

Proof. The square of the absolute value of the mth Fourier coefficient of the
function ϕ|{〈x,i〉=0} is given by Lemma 8. On the other hand the square of the
absolute value of the mth Fourier coefficient of ϕ|{〈x,i〉=0} is

|am|2Y ml (0)2. (136)

Comparing the two expressions, the factors of Y ml (0)2 cancel when they are not
zero - this is true when m ≡ l ≡ 0 mod 2.

It remains to note that if m is odd then am = 0. This follows from the
invariance properties of ϕ - we discuss this in more detail in the proof of Lemma
10.
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9. The subconvexity hypothesis

In this section we introduce a hypothesis which controls the size of the L-
functions which are related to Fourier/ultraspherical coefficients. For a general
automorphic representation π of GLn(AF ), F a number field, Iwaniec and Sar-
nak have defined the analytic conductor C(π). This C(π) is the product of the
usual conductor and a parameter which measures the infinity type of the auto-
morphic representation, and it turns out that C(π) is the natural quantity by
which to estimate the central value L(1/2, π).

In our setting the classical conductor does not vary, so estimates versus C(π)
are in terms of the archimedean (eigenvalue/weight) aspect. One expects a (rel-
atively) easy estimate of the form

L(1/2, π)�n,F,ε C(π)1/4+ε. (137)

Improving over this bound is called the subconvexity problem and has been ac-
complished in some cases. For now we record the important result of Michel and
Venkatesh [21, Theorem 1.1].

Theorem 6 (Michel, Venkatesh). There is an absolute constant δ > 0 such
that: for π an automorphic representation of GL1(AF ) or GL2(AF ) (with unitary
central character), one has

L(1/2, π)�F C(π)1/4−δ. (138)

In the setting of Lemma 9 we are interested in the L-value L(1/2, Π ⊗Ωm) (we
will address L(1, π,Ad) momentarily). We know that L(s,Π ⊗Ωm) is the auto-
morphic L-function of an automorphic representation of GL2(AE) (so Theorem
6 applies to the central value). The Gamma factors for L(s,Π⊗Ωm) in the case
|m| ≤ l are [20, pg. 169]

ΓC

(
s+

k − 1

2
+ |m|

)
ΓC

(
s+

k − 1

2
− |m|

)
, (139)

where k is the weight of the holomorphic cusp form associated to π and the
complex Gamma function is

ΓC(s) ≡ 2(2π)−sΓ (s). (140)

Following the recipe for the analytic conductor given in [21, pg. 207] we have

C(Π ⊗Ωm) =

(
2 +

k − 1

2
+ |m|

)2(
2 +

k − 1

2
− |m|

)2

. (141)

Recall that π is the Jacquet-Langlands transfer of a representation generated
by a spherical harmonic of degree l, so we have k = 2l + 2 and the analytic
conductor can be written

C(Π ⊗Ωm) � (5/2 + l + |m|)2(5/2 + l − |m|)2. (142)

We will want to assume a general subconvexity hypothesis for these L-functions
which we state now.

Hypothesis SC(δ) L(1/2, Π ⊗Ωm)�δ C(Π ⊗Ωm)1/4−δ.
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The ability to take δ arbitrarily close to 1/4 in SC(δ) is a section of the Gener-
alized Lindelöf hypothesis. We therefore consider only δ values in (0, 1/4). The
result of Michel and Venkatesh says that SC(δ) is true for some δ ∈ (0, 1/4).

It is well known that the values L(1, π,Ad) satisfy

(log k)−2 � L(1, π,Ad)� (log k)2, (143)

or keeping with our l parameter

(log l)−2 � L(1, π,Ad)� (log l)2. (144)

Remark 3. Given ϕ ∈ HO×l a Hecke eigenfunction with

ϕ(x) =
∑
|m|≤l

amY
m
l (〈x, i〉)eimθ(x),

∑
|m|≤l

|am|2 = 1 (145)

we have by Lemma 9 that when m and l are even

1

2l + 1

L(1/2, Π ⊗Ωm)

L(1, π,Ad)
� |am|2 ≤ 1. (146)

Thus the inequality

L(1/2, Π ⊗Ωm)� l L(1, π,Ad)� l(log l)2 (147)

gives a convexity bound for the L-value L(1/2, Π ⊗ Ωm) when |m| is not too
close to l.

To conclude this section we note that using the bounds for L(1, π,Ad) along
with SC(δ) in Lemma 9 gives the upper bound for the ultraspherical coefficient

|am| �
log l√
l

(1 + l + |m|)1/4−δ(1 + l − |m|)1/4−δ (148)

where we replaced 5/2 with 1 in the expression (142) for C(Π ⊗ Ωm) for sim-
plicity.

10. Values of ultraspherical polynomials and an L2 restriction lower
bound

Notice that the value Y ml (0) appears in Lemma 8. This is given by VanderKam
[31, pg. 338] as

Y ml (0) =

√
2l + 1

2l

√(
l + |m|

1
2 (l + |m|)

)(
l − |m|

1
2 (l − |m|)

)
(149)

where the combinatorial symbols are understood to vanish when they have non
integer arguments. Using the Stirling bounds

n(n+1)/2e−n � n!� n(n+1)/2e−n (150)

to estimate the binomial coefficients (with a little adjustment for |m| = l) gives

Y ml (0) �
√
l

(1 + l + |m|)1/4(1 + l − |m|)1/4
. (151)

In particular
Y ml (0)� 1 (152)

which gives an easy L2 restriction lower bound in the following Lemma.
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Lemma 10. Let γ denote the geodesic {〈x, i〉 = 0} in S2. When l is even and

ϕ ∈ HO×l we have
‖ϕ|γ‖L2(γ) � ‖ϕ‖L2(S2). (153)

Proof. When l is even and ϕ ∈ HO×l we have noted in Section 2 that ϕ is
invariant under the involution of S2

(x, y, z) 7→ (−x, y, z). (154)

It follows that in the expansion of ϕ about i the only nonzero coefficients corre-
spond to even m, i.e.

ϕ(x) =
∑
|m|≤l

m≡0 mod 2

amY
m
l (〈x, i〉)eimθ(x), (155)

since Y ml (−z) = (−1)mY ml (−z). By Parseval, the L2 norm of ϕ restricted to γ
is

‖ϕ|γ‖L2(γ) =
∑

m≡0 mod 2

|am|2Y ml (0)2, (156)

and using the bound below for Y ml (0) from (152) gives the required

‖ϕ|γ‖L2(γ) �
∑

m≡0 mod 2

|am|2 = ‖ϕ‖L2(S2). (157)

11. Proof of Theorem 4

Just as in our proof of Theorem 3, Theorem 4 follows from Lemma 1 together
with the following Proposition 3.

Proposition 3. Assuming the generalized Lindelöf hypothesis, then for any ε >
0, ϕ has �ε l

1/12−ε zeros on the geodesic

{eiθk} ⊂ S2 = {xi + yj + zk : x2 + y2 + z2 = 1} (158)

when l is even and ϕ is a Hecke eigenfunction in HO×l .

Proof. Let l be a positive even integer and ϕ ∈ HO×l a Hecke eigenfunction. We
assume that ‖ϕ‖L2(S2) = 1. We denote by γ the geodesic

{(0, y, z) ∈ S2} = {v ∈ S2 : 〈v, i〉 = 0}. (159)

We divide γ into intervals which have as endpoints roots of ϕ|γ . That is, we
write

γ =

N−1∐
i=0

Ii, Ii ≡ [(0, yi, zi), (0, yi+1, zi+1)] (160)

where the subscripts run mod N and ϕ(0, y, z) = 0 if and only if (y, z) = (yi, zi)
for some i. Moreover it is understood that the (yi, zi) are in the correct order
mod N . Then ϕ has N zeros on γ.

It is clear then that ϕ has constant sign on the interior of each Ii. This means
we can estimate ‖ϕ|γ‖L1(γ) as

‖ϕ|γ‖L1(γ) =

∫
γ

|ϕ(x)|dγ(x) =

N−1∑
i=0

∣∣∣∣∫
Ii

ϕ(x)dγ(x)

∣∣∣∣ . (161)

If we can
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1. Show that each of the contributions
∣∣∣∫Ii ϕ(x)dγ(x)

∣∣∣ is small and

2. Show that ‖ϕ|γ‖L1(γ) is large (in comparison)

then it will follow that N must be large. This is the approach of Ghosh, Reznikov
and Sarnak in [12] which we follow rather closely.

We now assume SC(δ) for some δ to be chosen in (0, 1/4).
We write as before the ultraspherical expansion of ϕ around i

ϕ(x) =
∑
|m|≤l

amY
m
l (〈x, i〉)eimθ(x), (162)

so that if we define
bm ≡ amY ml (0) (163)

we have the Fourier expansion

ϕ|γ(eiθk) =
∑
|m|≤l

bme
imθ. (164)

As ϕ is L2-normalized Lemma 10 gives

‖ϕ|γ‖L2(γ) � 1. (165)

The bound for |am| from (148) together with the bound for Y ml (0) in (151) gives

|bm| �
log l

(1 + l + |m|)δ(1 + l − |m|)δ
. (166)

Another crucial input is Theorem 1 which is the L∞ bound of VanderKam [31]

‖ϕ‖∞ �ε l
5/12+ε. (167)

We fix an i ∈ [0, N − 1] and write for simplicity I = Ii. We will bound∣∣∫
I
ϕ(x)dγ(x)

∣∣ in terms of ‖ϕ|γ‖L1(γ). We have (by Plancherel)

∣∣∣∣∫
I

ϕ(x)dγ(x)

∣∣∣∣ =

∣∣∣∣∣∣
∑
|m|≤l

bm

(∫
I

e−imθdγ(θ)

)∣∣∣∣∣∣
≤
∑
|m|≤l

|bm|
∣∣∣∣∫
I

e−imθdγ(θ)

∣∣∣∣ ,
and bounding the last integral in size by 1/(1 + |m|) gives∣∣∣∣∫

I

ϕ(x)dγ(x)

∣∣∣∣� ∑
|m|≤l

|bm|
1

1 + |m|
. (168)

We cut the range of the sum into two regions to be estimated separately:∑
|m|≤l

|bm|
1

1 + |m|
=

∑
|m|≤l/2

|bm|
1

1 + |m|
+

∑
|m|>l/2

|bm|
1

1 + |m|
. (169)

When |m| ≤ l/2 we have

|bm| �
log l

(1 + l + |m|)δ(1 + l − |m|)δ
� log l

l2δ
. (170)
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so that∑
|m|≤l/2

|bm|
1

1 + |m|
� (log l)l−2δ

∑
|m|≤l/2

1

1 + |m|
� (log l)2l−2δ. (171)

In the other range we use Cauchy-Schwarz:

∑
|m|>l/2

|bm|
1

1 + |m|
�

 ∑
|m|>l/2

|bm|2
1/2 ∑

|m|>l/2

1

(1 + |m|)2

1/2

(172)

and by Parseval  ∑
|m|>l/2

|bm|2
1/2

≤ ‖ϕ|γ‖L2(γ) (173)

giving ∑
|m|>l/2

|bm|
1

1 + |m|
� l−1/2‖ϕ|γ‖L2(γ). (174)

Putting inequalities (171) and (174) together and recalling (168) gives∣∣∣∣∫
I

ϕ(x)dγ(x)

∣∣∣∣� (log l)2l−2δ + l−1/2‖ϕ|γ‖L2(γ). (175)

To proceed we use ‖ϕ|γ‖L2(γ) � 1 so that we have∣∣∣∣∫
I

ϕ(x)dγ(x)

∣∣∣∣� (
(log l)2l−2δ + l−1/2

)
‖ϕ|γ‖2L2(γ) � (log l)2l−2δ‖ϕ|γ‖2L2(γ).

(176)
Noting

‖ϕ|γ‖2L2(γ) ≤ ‖ϕ|γ‖L∞(γ)‖ϕ|γ‖L1(γ), (177)

the L∞ bound (167) gives

‖ϕ|γ‖2L2(γ) �ε l
5/12+ε‖ϕ|γ‖L1(γ). (178)

Putting this into (176) gives∣∣∣∣∫
I

ϕ(x)dγ(x)

∣∣∣∣�ε (log l)2l5/12+ε−2δ‖ϕ|γ‖L1(γ). (179)

We now assume the Lindelöf hypothesis for the relevant L-functions: taking δ
arbitrarily close to 1/4 gives∣∣∣∣∫

I

ϕ(x)dγ(x)

∣∣∣∣�ε l
−1/12+ε‖ϕ|γ‖L1(γ). (180)

As the contributions from the intervals Ii paving the geodesic must make up
the total L1 norm, the estimate (180) implies that there must be �ε l

1/12−ε

intervals, hence �ε l
1/12−ε zeros of ϕ on γ.
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12. Notation

12.1. Relations.

f � g means that f � g and g � f .

12.2. Symbols.

A The adele ring of Q.
AE The adele ring of E.
B Hamilton quaternions over Q.

Bl Orthonormal basis of Hecke eigenfunctions for HO×l .
Hl Homogeneous harmonic polynomials of degree l restricted to S2.
L(•, •) The finite L-function (without Γ factors).
LS(•, •) The L-function with the Euler factors at S removed.
LS(•, •) The L-function with only the Euler factors at S present.
N (f) The number of nodal domains of a spherical harmonic f .
O(n) Elements of O of norm n.
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