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Abstract: We introduce a new geometric object, the correlahedron, which we conjec-

ture to be equivalent to stress-energy correlators in planar N = 4 super Yang-Mills. Re-

expressing the Grassmann dependence of correlation functions of n chiral stress-energy

multiplets with Grassmann degree 4k in terms of 4(n + k)-linear bosonic variables, the

resulting expressions have an interpretation as volume forms on a Gr(n+k, 4+n+k) Grass-

mannian, analogous to the expressions for planar amplitudes via the amplituhedron. The

resulting volume forms are to be naturally associated with the correlahedron geometry. We

construct such expressions in this bosonised space both directly, in general, from Feynman

diagrams in twistor space, and then more invariantly from specific known correlator expres-

sions in analytic superspace. We give a geometric interpretation of the action of the con-

secutive lightlike limit and show that under this the correlahedron reduces to the squared

amplituhedron both as a geometric object as well as directly on the corresponding volume

forms. We give an explicit easily implementable algorithm via cylindrical decompositions

for extracting the squared amplituhedron volume form from the squared amplituhedron

geometry with explicit examples and discuss the analogous procedure for the correlators.
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1 Introduction

Both scattering amplitudes and stress-tensor correlators in N = 4 SYM have been the

subject of intense research for a number of years, revealing wonderful discoveries of mathe-

matical structures. We will be focusing on the integrand in this paper following much recent

work (see for example [1–8] and references therein). One of the most exciting discoveries is

that the perturbative integrands of n-point, `-loop scattering amplitudes in planar N = 4

SYM are equivalent to generalised polyhedra in Grassmannians, with faces and vertices

determined by the momenta and helicities of the particles being scattered [9]. This geo-

metrical object was named the amplituhedron (see also further developments in [10–17]).

On the other hand (the square of) all `-loop amplitudes are limits of tree-level correlation

functions of the stress-energy multiplet (correlators) [6, 7, 18–21] suggesting the possibility

of a larger geometrical object describing correlators and reducing to the amplituhedron in

relevant limits. The purpose of this paper is to give a proposal for this correlahedron.

The starting point for the amplituhedron was the introduction of momentum super-

twistors followed by a “bosonisation” of their fermionic parts. Hodges showed that they

lead to a geometric formulation of the determinants arising from the fermionic coordi-

nates as volumes of a polyhedron in a projective space for the NMHV amplitude [22].

To generalize1 to higher MHV degree introduce a particle-independent fermionic variable

φpI , p = 1, . . . , k where I = 1, . . . , 4 is an R-symmetry index, and send the odd vari-

ables χIi to even variables ξpi = χIiφ
p
I [9]. Here the range of the index p depends on the

helicity structure (or Grassmann degree) of the superamplitude; for NkMHV amplitudes

p = 1, . . . , k and thus momentum supertwistor space (Z, χ) becomes the vector space C4+k

with bosonic variables (Z, ξ). This framework has considerable practical advantages —

for example nilpotent superconformal invariants are straightforward to find and non-trivial

superconformal identities become manifest generalized Schouten identities. Furthermore

the resulting expression can be seen to arise from volume forms on the Grassmannian of

k-planes in 4+k dimensions, Gr(k, 4+k). The construction essentially reduces supercon-

formal invariants to projective invariants.

We perform an analogous bosonisation of the stress-tensor correlators. It is not imme-

diately clear how to do this bosonisation starting from supercorrelators in analytic super-

space directly. However, recently such correlators were considered via Feynman diagrams

in supertwistor space [23] and this formulation leads to a “potential” for the correlation

functions. This potential is a correlator of certain ‘log det d-bar’ operators based on lines

in twistor space. These operators are not manifestly gauge invariant, but only become so

1In fact this generalization is really that of the dual of the original Hodges framework [11].
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when differentiated by a fourth order Grassmann odd differential operator at each point

mapping the ‘log det d-bar’ operators to the gauge invariant super-BPS operators Oi. In

the diagram formulation based on an axial gauge, the gauge dependence will manifest itself

in dependence on the reference twistor Z∗. We will nevertheless suppress this differentia-

tion in the following and indeed provide ample evidence for the conjecture that there is a

Z∗ independent ‘potential’ of the sum of diagrams given by the correlahedron. Indeed there

is a simple prescription for lifting this Z∗-independent potential directly from analytic su-

perspace, even though it is not obtained by direct bosonisation of the analytic superspace

correlator. We thus rewrite all known stress-tensor supercorrelators in an appropriately

bosonised form. These expressions are all equivalent to volume forms on the Grassmannian

space Gr(k+n, 4+k+n).

The key aspect of the amplituhedron however is geometric; it is a generalised polyhe-

dron lying in the real Grassmannian Gr(k, 4+k). A natural volume form on this polyhe-

dron, one with log divergences on the boundary and no divergences inside, gives the afore

mentioned bosonised amplitudes. We generalise this geometric aspect to the correlahedron,

now lying in Gr(k+n, 4+k+n). More precisely it is the “squared amplituhedron”, a larger

object than the amplituhedron itself which generalises to the correlahedron. This “squared

amplituhedron” corresponds to the square of the superamplitude. A key advantage of the

squared amplituhedron is that it has a more explicit definition than the amplituhedron

itself being simply defined by explicit inequalities, whereas the amplituhedron requires a

further topological degree requirement [24].

The lightlike limit, by which the correlators become the square of superamplitudes,

has a natural geometrical interpretation for the correlahedron. Under a partial freezing

to a boundary of the correlahedron space, together with a projection, the correlahedron

geometry becomes the squared amplituhedron geometry. This same procedure projects the

corresponding correlator volume form to the squared amplitude volume form.

For the amplituhedron, the link between the integrands and the geometry arises from

the requirement that the volume form should have no divergences inside the amplituhe-

dron and log divergences on its boundary. This volume form is essentially the bosonised

amplitude. Obtaining this form from the geometry is non-trivial for the amplituhedron,

but becomes much simpler for the “squared amplituhedron” due to its more explicit defi-

nition. A key point is that the requirement that the volume form have simple poles on the

boundary is not sufficient to determine it, but the combinatorics of the positive geometry

of the polyhedral description does. This is manifested in a by-product of this work in

which we introduce a completely algorithmic and easily computerisable way of obtaining

this volume form from the geometry of the squared amplituhedron. The algorithm uses

cylindrical decomposition, an active area of research in its own right and with a number

of physical applications, which unfortunately however can be doubly exponential in the

number of variables. This method quite quickly becomes impractical for large particle

number or loop order. Nevertheless in a number of non-trivial examples, we show that the

squared amplitude geometry gives the square of the superamplitude. We then explore the

corresponding relation between the correlahedron and the bosonised correlators.

– 2 –
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The plan of the paper is thus as follows. In section 2 we introduce our conventions,

details of the bosonisation procedure, and the definitions of the Grassmannians in which

the various ’hedra lie. In section 3 we then define the various hedra — amplituhedron,

squared amplituhedron and correlahedron — as geometrical polytopes in the correspond-

ing Grassmannians. In section 4 we discuss how to write known explicit expressions for

correlators as volume forms on the appropriate Grassmannian. In section 5 we consider

the lightlike limit of correlators in correlahedron space. We show that the same geometric

procedure reduces the geometry of the correlahedron to that of the amplituhedron as well

as reducing the corresponding volume form expressions to those of the amplituhedron vol-

ume form expressions. Finally in section 6 we consider the connection between the hedron

geometry and the hedron volume forms. We develop a simple algorithm using cylindrical

decomposition for obtaining the volume form from the geometry and apply it to a number

of squared amplituhedrons and a correlahedron example. In an appendix we look at the

most non-trivial examples of taking the lightlike limit of the correlahedron.

2 Bosonisation, conventions and -hedron forms

A key aspect of both the amplituhedron and correlahedron is the bosonised superspace.

As such in this section we review this procedure for amplitudes and give our proposal for

the appropriate bosonised space for correlators. This will also set out our notation and

conventions for the rest of the paper.

2.1 Bosonisation

Planar superamplitudes in N=4 SYM can be nicely presented in momentum supertwistor

space C4|4 [22]. Bosonisation of superspace for Nk′MHV superamplitudes maps momentum

supertwistors, which lie in (4|4) dimensions, to a purely bosonic vector of dimension 4 + k′:

C4|4 3 (z|χ) → Z = (z, ζ) = (z, χφ) ∈ C4+k′ . (2.1)

Here z is a bosonic four-dimensional row vector (a twistor), χ is a fermionic 4-vector (the

Grassmann odd component of the supertwistor) and φ is a Grassmann odd 4× k′ matrix.

Thus Z is indeed a Grassmann even (bosonic) 4 + k′-dimensional row vector.

The amplituhedron space itself is a subset of Gr(k′, k′ + 4), the space of k′-planes, Y ,

in 4 + k′ dimensions.

The (chiral) correlator on the other hand will be written in terms of a potential on

chiral superspace in section 2.2. Chiral super-Minkowski space can be equivalently thought

of as the space of 2-planes in supertwistor space. Such 2-planes on supertwistor space are

specified by taking two independent supertwistors on the plane. We will write them as a

2× (4|4) supermatrix (x|θ) where the two rows of the matrix are the two supertwistors in

question, and there is a local GL(2) acting on the left, corresponding to the independence

of the plane on the choice of the two supertwistors.2

2This GL(2) symmetry can be used to set the 2× 4 matrix x to the form (12, x̂) where x̂ is a 2×2 matrix,

the standard spinor representation of 4d Minkowski space.
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We perform a very similar bosonisation of these co-ordinates as perfomed above for the

amplitudes, with the main difference now being that the bosonised supertwistor space lives

in 4 + n+ k dimensions rather than k′ + 4 dimensions. So explicitly we map the 2 × (4|4)

supermatrix to a 2×(4+n+k) matrix

C2×(4|4) 3 (x|θ) → X = (x, ξ) = (x, θφ) ∈ C2×(4+n+k) (2.2)

where x is the 2 × 4 matrix representing Minkowski space, θ the 2 × 4 fermionic matrix

(the fermionic part of super Minkowski space) and φ is a supplementary Grassmann odd

4 × (4+n+k) matrix, which will be independent of the space-time point. Thus X is a

Grassmann even (bosonic) 2 × (4+n+k)-dimensional matrix. Furthermore this matrix X

has a local Gl(2) acting on the left, inherited from that of the supermatrix, and thus has

the natural interpretation of a two-plane in 4+n+k dimensions. We call this bosonised

super-Minkowski space Mb := Gr(2, k+n+4). The correlahedron space itself is a subset of

Gr(k+n, k+n+4), the space of k+n-planes, Y , in k+n+4 dimensions.

We will use the following indices on the bosonised twistor space, space-time and

-hedron space

Zi′
A′ = (zi′

A, ζi′
p′) , XAiα = (xiα

A, ξiα
p) ,

i′ = 1 . . . n′, p′ = 1 . . . k′, A′ = (A, p′), i = 1 . . . n, p = 1 . . . n+k, A = (A, p),

Y A
′

p′ ∈ Gr(k′, 4 + k′) Y Ap ∈ Gr(k + n, 4 + k + n) ,

A = 1 . . . 4, α = 1, 2 . (2.3)

Here the primed indices will correspond to the amplituhedron case and the unprimed to the

correlahedron. The index A is for the bosonic twistor coordinates, and α for homogeneous

coordinates σα on the line in twistor space corresponding to the point X. In certain GL(2)

gauge fixings it can be identified with a two-component self-dual spinor index.

Symmetries: for the amplituhedron we have a local GL(k′) acting from the left on the

p′ index (corresponding to a different choice of basis for the k′-plane Y in Gr(k′, k′+4)) and

n GL(1)s acting scaling each Zi. We also have a global GL(k′+4) acting simultaneously on

the right on the A′ index that Y,Z carry (and the k′ + 4 space). For the correlahedron we

analogously have a local GL(n+ k) acting from the left on Y , and a global GL(4 + n+ k)

acting simultaneously on the right of Y and X. In addition there is also a local GL(2)n

with each GL(2) acting on the α index of Xiα and corresponding to simply changing the

choice of basis for each of the 2-planes Xi.

2.2 Bosonised correlator potentials

We will consider correlators 〈O1 . . .On〉 where Oi is the super-BPS operator whose leading

part is tr((yi ·Φ(xi))
2). Here the yi are skew matrices over the four component R-symmetry

indices that have rank two and the xi are points in Minkowski space. The supersymmetric

extension extends this to a function on analytic superspace [25, 26], however in [23] an

alternative formulation for the supersymmetric extension of the chiral correlator was found

(see [27–29] for the extension to the full non-chiral case). This describes the correlator in

– 4 –
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terms of a potential Gn, a function of (x, θ) in chiral super Minkowski space related by

〈O1 . . .On〉 =

(
n∏
i=1

D4
i

)
Gn(xi, θi)

where

D4
i := yIJi yKLi ∂θαIi

∂
θβJi

∂θKiα
∂θLiβ

.

The correlator decomposes into irreducible parts of degree 4k in the θs, and the corre-

sponding potentials we denote Gn;k (which thus have degree θ4(n+k)).

We bosonise the dependence on the θs as in (2.2), (2.3) to lift Gn;k to a function

Gn;k(X1, . . . , Xn) defined on n copies of Mb = Gr(2, 4+n+k) where the k corresponds to

the fermionic degree 4(n+ k).

Now the potential Gn;k need not be gauge invariant, although the correlator will be

after the differentiation. In the twistor Feynman diagram formalism arising from the twistor

action, this potential is interpreted as a correlator of certain ‘log det d-bar’ operators based

on lines in twistor space. These operators are not gauge invariant, although become so when

differentiated by the D4
i when they become the gauge invariant super-BPS operators Oi.

In the diagram formulation based on an axial gauge, the gauge dependence will manifest

itself in dependence on the reference twistor Z∗. We will suppress this differentiation in

the following and indeed there appears to be a natural Z∗ independent volume form in

correlahedron space, Gn;k obtained directly from analytic superspace expressions.

In the limit where n′ of the xi lie on a lightlike polygon, when multiplied by
∏n′

i=1(x2
i i+1)

this correlator degenerates into the loop integrand for the supersymmetric light-like Wilson-

loop at loop order n − n′. Via the amplitude-Wilson-loop duality this provides the afore-

mentioned link to amplitudes in the planar limit. However, the Wilson-loop to which

it degenerates is in the adjoint rather than fundamental representation and so gives the

square of that in the fundamental that corresponds to the amplitude. We will see that the

correlahedron degenerates geometrically to give the squared amplituhedron in this limit.

2.3 Correlahedron and amplituhedron forms

The correlahedron lives in the Grassmannian Gr(n+k, 4+n+k), a 4(n+k) dimensional

space whose points are represented by the (4+n+k) × (n+k) matrix Y Ap defined up to

GL(n+ k) acting on the p-index.

The potential Gn;k is given by a volume form Ωn;k(Y,Xi) on this space. This gives rise

to Gn;k by the formula

Gn;k(Xi) :=

∫
Ωn;k(Y,Xi)δ

4(n+k)(Y ;Y0) (2.4)

where Ωn;k(Y,Xi) is a 4(n+ k)-form on Gr(n+k, 4+n+k) and

δ4(n+k)(Y ;Y0) :=

∫
d(k+n)2ρrs det(ρ)4δ(Yr−ρsrYs0) , and Y0 =

(
04×(n+k)

1(n+k)×(n+k)

)
. (2.5)

– 5 –
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In this formula, ρ is a dummy variable that picks out the additional (n + k) × (n + k)-

components of Y and takes their determinant which will then provide the bosonised form

of the fermionic delta functions.

Similarly the (square of the) amplituhedron lives in the Grassmannian Gr(k, 4+k) at

tree-level with analogous formulae to the above with

An;k(Z1, . . . , Zn) =

∫
Ωn;k(Y, Zi)δ

4)(Y ;Y0) , (2.6)

with an analogous description for the loop integrand that we shall detail later.

Thus the key information of the correlator/amplitude is encoded in the volume form

Ω. We first remark that there is a natural weighted volume form on Gr(k, 4+k) of weight

k(4+k) that can be written as

〈Y d4Y1〉 . . . 〈Y d4Yk〉

and similarly on Gr(n+k, 4+n+k). However, the overall expression must have weight zero

in both Y and the Xi and Zi. The remaining factor that must balance the weights is

proposed to be characterized by its poles, although we will first find a representation as

a sum of Feynman diagrams, albeit in a gauge dependent form when it comes to the

correlator potential. This remaining factor essentially is the bosonised correlator after

putting Y → Y0 (which can be done using the global GL(n+k+4) symmetry). So for the

amplitude

Ωn;k(Y,Zi) = 〈Y d4Y1〉 . . . 〈Y d4Yk〉 ×An;k(Y, Zi), An;k(Zi) = An;k(Y0, Zi) (2.7)

and for the correlator

Ωn;k(Y,Xi) = 〈Y d4Y1〉 . . . 〈Y d4Yn+k〉 ×Gn;k(Y,Xi), Gn;k(Xi) = Gn;k(Y0, Xi) . (2.8)

3 Hedron geometry

In the previous section we saw that correlators, amplitudes (possibly squared) and their

loop integrands can be encoded in terms of volume forms on respectively Gr(n+k, 4+n+k)

and Gr(k, 4+k). A key aspect of the amplituhedron programme is that these forms should

be uniquely determined by the ‘hedron’ geometry.

In this section we first review the main features of the amplituhedron as a geometrical

object following [9]. We then introduce a larger object in the same space, Gr(k, 4+k)

which we call the “squared amplituhedron” and which was been hinted at in [24]. This

corresponds to the square of the amplitude. Finally we propose a new geometric object,

the correlahedron, a subspace of the higher dimensional Grassmannian Gr(n+k, 4+n+k),

and which should correspond to the correlator.

3.1 Amplituhedron

The first definition of the amplituhedron is as the image of the positive Grassmannian

Gr+(k, n) of positive k-planes in n dimensions, into Gr+(k, 4+k). Positive here means that

all ordered k×k minors are non-negative. The map from Gr+(k, n) to Gr+(k, k+4) follows

– 6 –
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from a linear map from n to k+4 dimensions given by the external kinematic data in the

form of the n bosonised momentum twistors ZA
′

i an n × (k+4) matrix. The matrix Zi
A

also has to be positive, ie all its ordered maximal minors must be positive. In summary,

the amplituhedron is the set

amplituhedronn;k(Z) =
{
Y ⊂ Gr(k, 4+k) : Y A

′
p′ = Cip′Z

A′
i for C ∈ Gr+(k, n)

}
. (3.1)

One way to give an explicit description of this positive geometry is via a BCFW decom-

position of the amplitude in the Grassmannian [30, 31]. It is proposed that this geometric

image uniquely determines the volume form Ω as the unique holomorphic volume form

of Gr(k, 4+k) that has logarithmic singularities on the boundary of the region (and no

singularities inside).

The above is the tree-level amplituhedron. At `-loops there is an analogous object in

which the Grassmannian Gr(k, 4+k) is supplemented by ` 2-planes orthogonal to Y . The

superamplitude is then given as the differential form Ω that has logarithmic divergences

on the boundary of this amplituhedron. For more details of the amplituhedron see [9].

The above definition is somewhat implicit. In general the map from C to Y , Y = CZ

is a projection from a higher dimension, that maps many points to the same point. It is

difficult to extract an explicit logarithmic form (and hence the amplitude) directly from

the geometry without the original BCFW decomposition in the Grassmannian. The defi-

nition (3.1), together with the positivity of the external data, implies however the explicit

Gr(k, 4+k) constraints

〈Y Zi−1ZiZj−1Zj〉 > 0 ,

where here 〈. . .〉 is the skew form over R4+k with 4 + k arguments and

〈Y ABCD〉 := 〈Y1 . . . Yk ABCD〉 .

These constraints do indeed encode the location of the physical singularities but are not

sufficient to fully specify the amplituhedron and in [24] a further topological condition is

understood to be required in addition.

3.2 Squared amplituhedron

The above discussion leads us to consider the subspace of Gr(k, 4+k) defined simply by

the inequalities:

squared amplituhedronn;k(Z) =
{
Y ∈ Gr(k, 4+k) : 〈Y Zi−1ZiZj−1Zj〉 > 0

}
. (3.2)

We call this the squared amplituhedron on the basis of the conjecture that this indeed gives

the square of the amplitude. It lies in the same space, Gr(k, 4+k), as the amplituhedron and

indeed contains the amplituhedron, but it is defined by explicit constraints in Gr(k, 4+k)

(without the additional topological condition specifying the amplituhedron itself). This

explicit definition makes the squared amplituhedron much easier to use in practice.

Indeed we find in a number of examples that the logarithmic volume form associated

with this region gives the square of the (bosonised) superamplitude. The square of the

– 7 –
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superamplitude of Grassmann degree 4k is:

(A2)n;k =
k∑

k′=0

An;k′An;k−k′ , (3.3)

(obtained simply by expanding the square as a sum over k′ and taking the relevant piece).

In section 6 we give a concrete practical method (for small n, `) for obtaining the differential

form, and hence the superamplitude, from the squared amplituhedron using a cylindrical

decomposition.

The squared amplituhedron also extends to loop level. The `-loop squared amplituhe-

dron is a subspace of the space of k-planes Y ∈ Gr(k, k+4) together with ` complementary

2-planes in R4+k, Li ∈ Gr(2, 4 + k), i = 1, . . . , `, subject to the following constraints

squared amplituhedron
(`)
n;k(Z)

=
{

(Y,L1, . . . ,L`) : 〈Y Zi−1ZiZj−1Zj〉 > 0, 〈Y Zi−1ZiLj〉 > 0, 〈Y LiLj〉 > 0
}
. (3.4)

The logarithmic differential form on this region gives the square of the superamplitude at

Grassmann degree k and perturbative order `, explicitly it gives the combination:

(A2)
(`)
n;k =

∑̀
`′=0

k∑
k′=0

A
(`′)
n;k′A

(`−`′)
n;k−k′ . (3.5)

In section 6 we illustrate this squared amplituhedron in some highly non-trivial examples.

3.3 Correlahedron

More importantly for this paper, the squared amplituhedron lends itself to a natural gen-

eralisation, the correlahedron, on the basis of the conjecture that it should yield the stress-

tensor correlator. We propose the correlahedron as a geometrical object lying inside the

space of (k+n)-planes in R4+n+k, Gr(n+k, 4 + n+k), specified by the inequalities

{
Y ∈ Gr(n+k, n+k+4) : 〈Y XiXj〉 > 0

}
. (3.6)

Here the external data Xi, i = 1, . . . , n are themselves 2-planes, Xi ∈ Gr(2, n+k+4), and

are equivalent to points in chiral superspace.

It is the purpose of the rest of this paper to motivate and give evidence for the corre-

lahedron. We will begin in the next section by motivating the choice of space in which the

correlahedron lives, Gr(n+k, n+k+4), from an algebraic point of view, starting with the

formulation of correlators using Feynman rules in twistor space [23].

– 8 –



J
H
E
P
0
9
(
2
0
1
7
)
1
5
6

4 Hedron volume forms

We now describe the correlahedron volume forms (bosonised correlators) in

Gr(n+k, n+k+4) from a purely algebraic and analytic perspective, translating expressions

found both from analytic superspace bootstrap techniques as well as from twistor space

Feynman rules into the correlahedron space we propose. For the correlator the expressions

arising from twistor Feynman rules will not be gauge invariant, however those arising from

analytic superspace bootstrap expressions are, and this shows that there is nevertheless

a unique expression in Gr(n+k, n+k+4) which we propose to be uniquely defined by the

correlahedron geometry described in the previous section.

4.1 Hedron expressions from twistor space Feynman diagrams

Here we explain how the amplituhedra and correlahedra Grassmannians described above

arise from considering Feynman diagrams in twistor space. The key result is that there will

be a volume form ΩΓ for each Feynman diagram Γ in twistor space. The δ4(n+k)(Y ;Y0) will

be seen to arise automatically from the product of propagators in a diagram. Each propa-

gator will provide one physical singularity, but there will be plenty of spurious singularities

in each diagram, that must cancel in the sum for the final correlator or Wilson loop.

The twistor space Feynman rules are described for holomorphic Wilson loops

in [4, 21, 32] and the most developed version for the correlators can be found in [23]. In this

context we will use the amplitude/Wilson-loop duality to give amplituhedron and squared

amplituhedron expressions. This is equivalent to using a momentum twistor formulation of

the amplitudes. Furthermore, the polygonal lightlike Wilson-loop in space-time or region-

momentum space will be understood as a holomorphic Wilson-loop for a polygonal loop in

momentum twistor space.

The diagrams contributing to the `-loop integrand of a holomorphic Wilson loop in

twistor space depends on n′ twistors Zi′ forming the vertices of the polygon in twistor

space that corresponds to the edges of the light-like polygonal Wilson-loop in space-time,

together with ` lines in twistor space corresponding to points in region momentum space

for the loop integrand.3 We will take all our diagrams to be planar (firstly in order that

the amplitude/Wilson-loop duality should hold, and to avoid more complicated rules asso-

ciated with the colour structure). At Nk′MHV degree there should be 2`+ k′ propagators

connecting the lines and polygon. Correlators are computed using essentially the same

rules except that the propagators simply connect a collection of n lines together. In this

case, it is said to have MHV degree k when there are n+ k propagators as each line must

have at least two propagators ending on it. In the light-like limit, n′ of these n lines will

form the sides of the polygon and n − n′ = ` the loop integrand points. In this limit,

the diagrams correpond to the amplitude2 when the planar representation of the diagram

extends both outside and inside the Wilson-loop, but reduces to the amplitude itself when

only diagrams inside the polygon are allowed.

3When the loop integrand is obtained in this way, the region loop momenta come with fermionic coordi-

nates also that need to be integrated out as part of the loop integration, but are part of the supersymmetric

correlator.
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In the following, the simplest case treated first is that for the correlator, where only

lines in twistor space are needed connected by propagators. The log-det operator insertions

give rise to ‘MHV vertices’ on these lines with a Parke-Taylor structure. We can then

incorporate a holomorphic Wilson-loop in twistor space essentially by regarding the edges

of the Wilson loop to carry MHV vertices connected together without propagators around

the polygon.

4.1.1 Super twistor space Feynman rules

Points in chiral superspace correspond to lines in CP3|4 spanned by the pair of twistors XAiα,

α = 1, 2 where points on the line are parametrized homogeneously by σα by Zi(σ) = σαXAiα.

When we reduce to a Wilson loop, we take the lines Xi′ i
′ = 1, . . . , n to intersect in a

polygon, but then we must integrate out 4n′ superfluous fermionic coordinates (the n′

lines have 8n′ fermionic coordinates, whereas the n′ twistors only 4n′, so we require the

identification of the fermionic parts of Zi as a point on Xi with those on the point Xi+1.

The propagator connecting twistors Z and Z ′ corresponds to the delta-function

∆(Z,Z ′) :=

∫
1

volGl(1)

dr

r

ds

s

dt

t
δ4|4(rZ∗ + sZ + tZ ′) . (4.1)

To divide by vol Gl(1) we can simply set one of the parameters r, s, t equal to some constant,

but it will be convenient to keep the scalings in play. In a diagram a propagator will connect

a line Xi at the point Zi(σij) to another Xj at the point Zj(σji). Each line Xi supports

a vertex corresponding to a ‘log det d-bar’ operator on the line in twistor space that can

in practice be thought of as an MHV vertex with as many legs as propagator insertions on

the line. If the number of propagator insertions is Mi, then the insertion points are given

by Zi(σm), m = 1, . . . ,Mi cyclically ordered by the planarity of the diagram. The vertex

requires an integration over the insertion points σr∫
1

MiVol(GL(2)×GL(1)Mi)

Mi∏
m=1

d2σm
(σm, σm+1)

, (4.2)

where the integration points are understood projectively, hence the GL(1)Mi and the

GL(2) acts on the σr and the α index on X. The GL(2)s can all be fixed by setting

XAiβ = (δβ
α, xα̇iβ , θ

I
iβ) although in the Wilson loop context other gauge fixings can be more

helpful. The GL(1)s in (4.2) reflect the fact that the σ integrals are projective. However,

the parameters s and t in (4.1) provide scalings for the σs, otherwise said the GL(1) quo-

tients in (4.2) can be used to fix the s and t parameter integrals in the propagators so that

the s in sZi(σij) defines the scale of σij . There is precisely one such GL(1) for each of the

two insertions of each propagator in the vertex and so we set s = t = 1. The remaining

GL(1) in the propagator definition can be used to fix r to be constant. It nevertheless has

nontrivial weight so we will not set it equal to one, but keep it in the formulae.

With this gauge fixing, the propagator becomes δ̄4|4(rZ∗ + σij · Xi + σji · Xj) where

the scaling integrals are now absorbed into those for the σs at each vertex and r is an

arbitrary nonzero constant that will not affect the final answer. In the case of a correlator,
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the diagram’s contribution GΓ to the potential G for the correlator is

GΓ =

∫ n∏
i=1

Mi∏
mi=1

d2σmi
(σmi , σmi+1)

n+k∏
p=1

δ̄4|4 (rpZ∗ + σipjp ·Xip + σjpip ·Xjp

)
. (4.3)

Here the σs are indexed in two ways, firstly by their locations mi on the ith vertex and

secondly at the ends ip and jp of the pth propagator.4

It was shown in [23] that once the formulae have been differentiated by the product of

the D4
i , diagrams with two adjacent propagators connecting Xi to Xj automatically vanish

so we lose nothing by ruling out such diagrams ab initio. It was further shown that spurious

singularities associated with the (σrσr+1) factors in the Parke-Taylor denominators cancel

via a process of three-way cancellation. This latter property is no longer guaranteed without

the D4
i differentiations.

We now discuss the extension of the Feynman diagrams to the holomorphic Wilson

loop and hence amplitude (perhaps squared). When n′ lines Xi′ , i
′ = 1 . . . n′ intersect so

that Xi′ ∩Xi′−1 = Zi we obtain a polygon in twistor space with vertices Zi′ . It was shown

in [21] that as this limit is approached, when multiplied by
∏n
i′=1Xi′−1 ·Xi′ , the Feynman

diagrams become those for the adjoint holomorphic Wilson loop in twistor space which is

the same as the adjoint super Wilson-loop in chiral super Minkowski space, that can in

turn be identified with the square of the amplitude.

In more detail, the Feynman diagrams for the adjoint holomorphic Wilson loop now

has two types of vertices, the lines Xi′ that form part of the polygon, and those that do not

(these latter in this context correspond to the loop variables in the amplitude interpretation

or Lagrangian/stress-energy insertions in the Born approximation). In taking the lightlike

limit, we simply omit the n′ propagators that connect the now joined consecutive Xi′ and

Xi′−1. However, we do keep the vertices at the Xi′ including the connections between the

Xi′ in the Parke-Taylor factors. These can be gauge fixed using the GL(2) in (4.2) for the

sides of the polygon so that σ ·Xi′ = σ0Zi′ + σ1Zi′+1 and the σ at Zi′ is σ0 = (1, 0) and

that at Zi′+1 is σIi′+1 = (0, 1) when there are Ii′ propagators attached to the i′ edge of the

Wilson loop inside the polygon and Oi′ outside. Thus it gives rise to a factor

∫ Ii′+Oi′+1∏
m=0

d2σm
(σm, σm+1)

, (4.4)

where we have taken the GL(1) scalings to be fixed against the propagators as above

(although note that this is a different gauge fixing for the Feynman diagrams for the Wilson

loop to those given in [21, 32] say). The distinction between the diagrams considered here

is that here the planar diagrams have propagators and vertices both outside and inside the

4The integrations over the σs can then all be done explicitly against the delta functions with solution

σijα =
(XiαZ∗Xj1Xj2)

Xi ·Xj
.

Here (Z1Z2Z3Z4) is the skew form on the bosonic parts of the four twistors. In doing these integrations

against the delta functions, we obtain a Jacobian factor of Xi ·Xj in the denominator for each propagator.
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Wilson loop, whereas for the Wilson-loop in the fundamental representation and hence the

amplitude, they are purely inside.

In order to obtain the loop integrand itself, we must eventually integrate out all the

fermionic θ variables at the Xi when Xi is a region loop variable (if we only do D4
i we are

essentially obtaining the Born level correlator of a Wilson loop with tr Φ2 rather than a

Lagrangian insertion corresponding to a loop integrand point).

4.1.2 Bosonisation of Feynman diagrams in the correlahedron space

The Hodges bosonisation of the fermionic variables yields

δ0|4(χI) =

∫
(χ · φ)4d4φ ,

and this motivates the introduction of new such variables φI
p, four for each propagator

p = 1, . . . , n+k. This gives the new bosonic variables ζp = χ · φp In the amplitude formula

above we will then replace the ath delta function by

δ4|4(Z)→ (ζp)4
4∏

A=1

δ(ZA)

We retrieve the original δ4|4(Z) by substituting in and integrating out the φI
p. With

this (4.3) becomes

GΓ =

∫ n∏
i=1

Mi∏
mi=1

d2σmi
Mi(σmi , σmi+1)

n+k∏
p=1

(yp)4δ4
(
rpZ∗ + σipjp ·Xip + σjpip ·Xjp

)
, (4.5)

where yp = σipjp · ξip + σjpip · ξjp .
We can now define the map from the σ parameters to the correlahedron

Grassmannian by

Y Bp = rpZ
B
∗ + σipjp ·XBip + σjpip ·XBjp . (4.6)

where here now B = (B, q) = (1 . . . 4, 1 . . . n+ k) (we could here include a ζp∗ part of Z∗ in

the same way as we could have had a fermionic part of the original reference twistor).

With this, the product over p on the right hand side of (4.5) becomes
∏
p(y

p
p)4δ4(Y A

p ).

However, we obtain the same formula for the super-amplitude if we replace this expres-

sion by δ4(n+k)(Y ;Y0) as defined in (2.5). On performing the ρ-integral in (2.5), this is

equivalent to replacing
∏
p(y

p
p)4 by (det{yqp})4. This will yield the same super-amplitude

up to some numerical factor because, after inserting yqp = ηqφp, the transform back to the

supersymmetric correlator/amplitude picks out the coefficient of the top power of φs and

this will of necessity be the top power of the ηs that provide the arguments of the desired

δ0|4s in (4.3). Thus the only required check is that the numerical factor is not zero, which

can be done by hand.

Thus, identifying the δ-functions arising from the propagators with δ4(n+k)(Y ;Y0), we

obtain the diagram’s contribution to the correlator by the formula

GΓ(Xi, Z∗) :=

∫
ΩΓ(Y,Xi, Z∗)δ

4(n+k)(Y ;Y0) . (4.7)
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where the 4(n + k)-form ΩΓ on the correlahedron Grassmannian is the product of the

vertices

ΩΓ(Y,Xi, Z∗) :=

n∏
i=1

Mi∏
m=1

d2σijm
(σijmσijm+1)

. (4.8)

This formula can be expressed in terms of the Y s by using (4.6). We introduce the

notation

〈Y ABCD〉 := (Y1Y2 . . . Yn+kABCD)

where on the right hand side (. . .) denotes the natural skew bracket over 4 +n+ k space of

objects with an A-index. This expression taken with Yp as one of A,B,C,D must vanish, so

0 = 〈Y YpXi1Xi2Xjα〉 = rp〈Y Z∗Xi1Xi2Xjα〉+ σjpipα〈Y XiXj〉 ,

yielding

σjpipα = −rp
〈Y Z∗Xip1Xip2Xjpα〉
〈Y XipXjp〉

. (4.9)

Similarly, taking the exterior derivative of (4.6) (regarding Xi and Z∗ as constants) and

inserting the resulting equation 4 times into 〈Y . . .〉 we find

d2σjpipd
2σipjp =

〈Y d4Yp〉
〈Y XipXjp〉

.

With this we can write the volume form as

ΩΓ(Y,Xi, Z∗) :=

n∏
i=1

Mi∏
m=1

1

(σijmσijm+1)

n+k∏
p=1

〈Y d4Yp〉
〈Y XipXjp〉

. (4.10)

In this we can see that we have one ‘physical’ singularity for each propagator namely

the 〈Y XiXj〉 and four spurious ones, essentially the adjacent Parke-Taylor denominators

(shared with the adjacent propagators at the vertex).5 We remark that the cancellation

of these spurious singularities was identified in [23] as being between triples of diagrams

that agree everywhere except on a triangle between three vertices Xi, Xj and Xk with each

diagram having two out of three propagators around the triangle.

4.2 Invariant correlahedron expressions directly from correlators on analytic

superspace

In the previous subection we translated Twistor Feynman expressions directly into correla-

hedron form expressions. Unfortunately the resulting expressions were not gauge invariant.

However we find that one can alternatively lift directly from the analytic superspace ex-

pressions in a canonical gauge invariant way to obtain a unique canonical correlahedron

volume form for each correlator.

5The denominator in (4.9) might be thought to affect the poles in 〈Y XiXj〉 for each propagator,

but these factors cancel in the final formulae as there are fourth powers of the σs in the det{Y qp } in the

δ4(n+k)(Y ;Y0) in (4.7). This factor could for example be incorporated into rp.
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Many correlators have by now been constructed explicitly writing down forms with

the correct singularity structure and showing that they satisfy appropriate consistency

properties. In particular, for maximal k = n− 4, they have been constructed up to n = 14

(equivalent to 10 loop four-point correlators), and the next to maximal case, k = 1, n = 6

has also been constructed [8, 33–42]. We will see here that given these expressions, there is

a simple procedure to uplift them directly (and uniquely) into correlahedron volume forms

on Gr(n+k, 4+n+k).

We start with the simplest non-trivial correlator, the 5 point k = 1 case G5;1. The

physical singularities are at 〈Y XiXj〉. The correlahedron space for this correlator is Y ∈
Gr(6, 10). There is essentially a unique correlahedron form of weight zero in Y and the Xi

with simple poles at the physical singularities. It is given by

Ω5;1(Y,Xi) =
〈Y d4Y1〉 . . . 〈Y d4Y6〉〈X1X2X3X4X5〉4

〈Y X1X2〉〈Y X1X3〉 . . . 〈Y X4X5〉
. (4.11)

The next simplest cases to consider are the maximally nilpotent (k = n−4) correlators.

These are described in terms of a single function f [43] which is a conformally covariant,

permutation symmetric function of x2
ij

f (n−4)(x2
ij) . (4.12)

These functions are known explicitly for n ≤ 14. The corresponding correlahedron space

for these correlators is Y ∈ Gr(2n− 4, 2n) and the correlahedron forms are given simply as

Ωn;n−4(Y,Xi) = 〈Y d4Y1〉 . . . 〈Y d4Y2n−4〉 × 〈X1 . . . Xn〉4 × f (n−4)
(
〈Y XiXj〉

)
. (4.13)

So for example, for n = 5, corresponding to the four-point one-loop correlator, the

function f is

f (1)(x2
ij) =

1∏
1≤i<j≤5 x

2
ij

(4.14)

and we see that making the replacement x2
ij → 〈Y XiXj〉, (4.13) correctly reproduces (4.11).

The only non-maximally nilpotent correlator currently known explicitly is the six

point k = 1 correlator. This was derived in analytic superspace in [42] and also has a

straightforward lift to a correlahedron volume form. This correlahedron lives in the space

Y ∈ Gr(7, 11) so all the angle brackets are 11-brackets in the following expression. Since

we are considering 11-brackets but we have 12 points (6-space time points) it is useful to

label the 11-brackets by the missing point. So we define

〈. . . 〉iα := 〈X11X12X21 . . . X̂iα . . . X62〉(−1)α . (4.15)

The correlator G6;1 was given in [42] in terms of nilpotent superconformal invariants

Iijkl;αβγδ in analytic superspace. Lifting the correlator to the 11-dimensional correlahedron

space, these nilpotent invariants become the following product of 4 11-brackets:

Iijkl;αβγδ = 〈. . . 〉iα〈. . . 〉jβ〈. . . 〉kγ〈. . . 〉lδ . (4.16)
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One interesting consequence of this correlahedron formulation of the correlator as an

object in 11-dimensions is that it manifests highly non-trivial identities involving these

invariants. It was observed in [42] that the invariants satisfy the non-trivial identity

6∑
i=1

XiαIijkl;αβγδ = 0 (for all j, k, l,M, β, γ, δ) , (4.17)

which was found as a non-trivial consequence of superconformal Ward identities. In the

11-dimensional correlahedron space this identity is a straightforward consequence of a gen-

eralised Schouten identity in 11 dimensions

6∑
i=1

Xiα〈. . . 〉iα = 0 . (4.18)

The correlator itself as a correlahedron volume form has the representation

G
(0)
6;1 = 〈Y d4Y1〉 . . . 〈Y d4Y7〉

A2 − 2A1 − 8B2∏
1≤i<j≤6〈Y XiXj〉

, (4.19)

where we introduced the notation

A1 = 〈Y X5αX1X6γ〉〈Y X5βX2X6δ〉〈Y X3X5〉〈Y X4X6〉I5566;αβγδ + S6 permutations ,

A2 = 〈Y X5αX1X6γ〉〈Y X5βX2X6δ〉〈Y X3X4〉〈Y X5X6〉I5566;αβγδ + S6 permutations ,

B2 = 〈Y X4αX3X6γ〉〈Y X5βX2X6δ〉〈Y X1X6〉〈Y X4X5〉I4566;αβγδ + S6 permutations .

(4.20)

This form was directly lifted from the corresponding formula found in [42] in analytic

superspace.

It is clear from this example that the construction of superconformal invariants on

analytic superspace has a direct uplift into the correlahedron space more generally. Indeed

the invariants Iijkl;αβγδ are well-defined for k = n−5 for any n and have the natural uplift

to correlahedron space given by (4.16). But furthermore, the k = 1 analytic superspace

superconformal invariants generalise to lower k. For example, for k = n− 6 the most gen-

eral invariants on analytic superspace are of the form I{i1i2i3i4}{j1j2j3j4};{α1α2α3α4}{β1β2β3β4}

which is symmetric under simultaneous interchange of iaαa with ibαb or separately jaβa
with jbβb. These invariants have a natural uplift to correlahedron space:

I{i1i2i3i4}{j1j2j3j4};{α1α2α3α4}{β1β2β3β4}

= 〈. . . 〉i1α1j1β1〈. . . 〉i2α2j2β2〈. . . 〉i3α3j3β3〈. . . 〉i4α4j4β4 + . . . (4.21)

where 〈. . . 〉iαjβ is the n−2 bracket with Xiα and Xjβ missing and where we sum over the

24 different possible simultaneous permutations of the jaαa.

Thus we see that, although the direct construction of the correlator potential in cor-

relahedron space arising from the twistor Feynman rules outlined in the previous section

yields an expression which explicitly depends on Z∗, nevertheless, there is a canonical Z∗-

independent uplift directly from an analytic superspace expression to the correlahedron

form. We conjecture that this canonical form is uniquely defined by the correlahedron

geometry as we discuss further in section 6.
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5 The lightlike limit on the correlahedron

As discussed previously, in the lightlike limit when consecutive space-time points become

lightlike separated, the stress-tensor correlator reproduces the light like polygonal Wilson

loop in the adjoint representation, and hence the (square of the) amplitude [6, 7, 18–21].

One can take all n points lightlike separated around a polygon, in which case one gets

the corresponding tree-level amplitude. Or one can take a non-maximal lightlike limit in

which fewer than n points are consecutively lightlike separated. In this limit the resulting

object is a square of a loop level amplitude, with the remaining points corresponding to

loop variables.

The reduction from the correlator to the amplitude squared is an explicit algebraic

process. We first take the limit as (xi − xi+1)2 → 0 for i = 1, . . . , n′ (understood cyclically

with n′+ 1 = 1) of Gn;k(Xi)
∏n′

i=1(xi− xi+1)2 but we must then also integrate out half the

fermionic dependence of the Xi′ i
′ = 1, . . . n′. We wish to reduce the eight fermionic θi′s

for each Xi′ to the four fermionic variables for each twistor Zi′ that make the corners of

the corresponding polygon in twistor space. When n > n′ we must furthermore remove all

the fermionic dependence of the remaining Xi, i > n′ which then have the interpretation

of region loop momenta for the loop integrand.

This apparently fairly complicated procedure, however has a very simple and beautiful

geometrical interpretation in correlahedron space which we denote “freeze and project”.

Furthermore the same geometric procedure acts both on the correlahedron geometry as

well as on the corresponding algebraic expressions. This thus gives further confirmation of

our conjecture that the correlahedron determines the correlator.

In this section we explain this lightlike limit on the correlahedron showing how it

reproduces the corresponding (squared) amplituhedron. We show this both geometrically

as well as algebraically.

5.1 The maximal lightlike limit geometrically

Taking the n-point lightlike limit of the correlator Gn;k (we will consider lower point lightlike

limits shortly) has the following geometric interpretation in correlahedron space. Recall

that the correlahedron space is the subspace of the space of k+n-planes, Y , in a 4+k+n-

dimensional space bounded as (3.6)

Y ∈ Gr(n+k, 4+n+k) : 〈Y XiXj〉 > 0 ∀ i, j = 1 . . . n . (5.1)

The n-point lightlike limit is obtained by requiring Y to simultaneously lie on multiple

boundaries 〈Y XiXi+1〉 = 0, i = 1 . . . n of the correlahedron. This can be done by freezing

the first n of the Yp, i.e., Yi, i = 1, . . . n to lie respectively in the span of the consecutive

Xi ∧Xi+1.

To further reduce to the amplitude (squared) we need to reduce the fermionic degree

by 4n and hence the range of the p index inside A to p′ = 1 . . . k. This also has a natu-

ral geometric interpretation for the correlahedron, namely it corresponds to performing a

projection orthogonal to the n frozen intersection points Yi. Thus the 4+k+n dimensional

space is projected down to 4+k dimensions and the k+n-plane in 4+k+n dimensions,
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Y , is projected to a k-plane in 4+k dimensions. This k plane gives the (square of the)

amplituhedron.

In practical terms we can perform the freezing of Y to the boundary by choosing a

GL(n+ k) basis so that Y = Y1 ∧ . . . ∧ Yn+k with

Yp = σαi Xiα − ταi Xi+1α for p = i = 1 . . . n ,

Yp = Ŷp′ p = n+ p′, p′ = 1 . . . k (5.2)

for some parameters σαi , ταi . We then need to project onto the quotient by Y1, . . . Yn. In

practice we can pick a basis for the k+n+4 dimensional vector space

basis =
{
Y1, . . . , Yn, e1, . . . , e4+k

}
, (5.3)

where e1, . . . e4+k are any 4 + k vectors such that this yields an independent basis.6 We

choose Ŷp′ to be a linear combination of the eA′ in this basis. The projection takes the form

Xiα → X̂iα where X̂Aiα =

{
0 A = 1, . . . , n

XAiα A = n+1, . . . , n+k+4
, (5.4)

in the basis {Y1 . . . Yn, e1, . . . e4+k}.
We can then define brackets in the obvious way on the hyperplane spanned by

{e1, . . . , e4+k} and it is clear that

〈X̂ 〉 := 〈Y1 . . . YnX〉 . (5.5)

Here X represents any collection of 4 + k independent vectors, and X̂ the same vectors

projected onto the hyperplane.

After projecting out the Yi, (5.2) gives σi.X̂i = τi.X̂i+1 so we can define

Zi := σi.Xi = τi.Xi+1 + Yi . (5.6)

Then after the projection

Ẑi := σi.X̂i = τi.X̂i+1 . (5.7)

and the projected planes X̂i intersect each other consecutively at Ẑi in the projected space.

Thus freezing and projection yields a k-plane Ŷ living in the 4+k dimensional hy-

perplane spanned by {e1, . . . e4+k} and we have projected planes X̂iα in the same 4+k

dimensional space. Further we have

〈Y XiXj〉 =

{
0 |i− j| = 1 mod n
〈Ŷ Ẑi−1ẐiẐj−1Ẑj〉
τi−1.σi τj−1.σj

otherwise .
(5.8)

So the correlahedron space (5.1) reduces to7

Ŷ ∈ Gr(k, 4 + k) : 〈Ŷ Zi−1ZiZj−1Zj〉 > 0 (5.9)

which is the squared amplituhedron (3.2).

6Geometrically the span of the ei give the hyperplane on which we are projecting. However the final

result is independent of this choice of hyperplane.
7If we assume we have chosen σi and τi appropriately so that τi−1.σi > 0. Indeed different choices of

signs here usually but not always yield the same expressions for the correlator. In some cases one has to

sum over different choices of signs (see section 6.2.2 for example).
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5.2 Maximal lightlike limit on the hedron volume forms

In the previous section we described the lightlike limit of the correlahedron geometry as a

freezing and projection of the space of Y s. Notice that this procedure is not singular as

one might expect. It is simply a restriction of the geometry to a partial boundary, followed

by a projection.

Here we give a simple algorithm for implementing this exact same procedure directly on

the expressions for the correlator as differential forms in correlahedron space. We find that

this indeed correctly reduces the correlator expressions to the correct amplitude (squared)

expressions.

The fully covariant correlahedron form should have simple poles at 〈Y XiXi+1〉 = 0 so

we can write

Ω(Y,Xi) =
gn;k(Y,Xi)∏n
i=1〈Y XiXi+1〉

n+k∏
p=1

〈Y d4Yp〉 , (5.10)

where gn;k has weight two in each Xi and −(n + k)(k + 4) in Y . When we freeze Y as

in (5.2) we find

〈Y d4Yi〉 = 〈Y XiXi+1〉d2σid
2τi i = 1 . . . n . (5.11)

Thus as 〈Y XiXi+1〉 → 0 in the limit, it cancels the corresponding term in the denominator

of the correlahedron form to yield a finite result. Inverting (5.6) we obtain

Xiα =
−τi−1αZi + σi α(Zi−1 + Yi−1)

τi−1.σi
. (5.12)

Projecting along Yi and correspondingly hatting the Zs in this expression sends8

Xiα →
−τi−1αẐi + σi α(Ẑi−1 + Yi−1)

τi−1.σi
. (5.13)

The correlahedron form is then reduced to the amplituhedron squared form by setting

Y to (5.2) and Xiα to (5.13) and finally leaving out the σ, τ dependent factors:

gn;k(Y,Xi)∏n
i=1〈Y XiXi+1〉

n+k∏
p=1

〈Y d4Yp〉 →

(
n∏
i=1

d2σid
2τi

) k∏
p′=1

〈Ŷ d4Ŷp′〉

 gn;k

(
Y,
−τi−1αẐi + σi α(Ẑi−1 + Yi−1)

τi−1.σi

)

=

(
n∏
i=1

d2σid
2τi

(τi−1.σi)2

)(
k∏
i=1

〈Ŷ d4Ŷi〉

)
an;k(Ŷ , Ẑi)

→

 k∏
p′=1

〈Ŷ d4Ŷi〉

 an;k(Ŷ , Ẑi) (5.14)

8Note that this is not quite the same as replacing Xiα → X̂iα as the Yi−1 remains on the right hand

side and is not projected away. We need to do tis in order to make sense of the k+n+4-brackets.
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Here to go from the second to the third line, we used the fact that gn;k as defined in (5.10)

has homogeneity degree two in each Xi. We have defined an;k(Ŷ , Ẑi) = gn;k(Y,−τi−1αẐi +

σi α(Ẑi−1 + Yi−1)) by this relation and this should correspond to the square of the ampli-

tude. In particular it should be independent of σ, τ : this is a direct consequence of the

amplitude/Wilson loop duality. This σ, τ dependence corresponds to choosing different

points on the boundary 4-planes to freeze Y . To go from the third to the fourth line we

simply drop the first factor that depends only on σ, τ which we are freezing.

As an explicit example, take the expression for the correlahedron form G5;1 (4.11) and

perform the above freezing of Y and projection. We have Y = Y1 ∧ · · · ∧ Y6 ∈ Gr(6, 10)

and we freeze Y1, . . . , Y5 as in (5.2), Yi = σαi Xiα − ταi Xi+1α, leaving Y6 = Ŷ orthogonal.

Then

6∏
i=1

〈Y d4Yi〉
〈X1X2X3X4X5〉4

〈Y X1X2〉 . . . 〈Y X4X5〉
freeze Y−−−−−−→
projectX

(
5∏

i=1

d2σid
2τi

(τi−1.σi)2

)
〈Y d4Ŷ 〉〈Y1 . . . Y5Ẑ1 . . . Ẑ5〉4

〈Y Ẑ1Ẑ2Ẑ3Ẑ4〉 . . . 〈Y Ẑ5Ẑ1Ẑ2Ẑ3〉

=

(
5∏

i=1

d2σid
2τi

(τi−1.σi)2

)
〈Ŷ d4Ŷ 〉〈Ẑ1 . . . Ẑ5〉4

〈Ŷ Ẑ1Ẑ2Ẑ3Ẑ4〉 . . . 〈Ŷ Ẑ5Ẑ1Ẑ2Ẑ3〉

↓

〈Ŷ d4Ŷ 〉〈Ẑ1 . . . Ẑ5〉4

〈Ŷ Ẑ1Ẑ2Ẑ3Ẑ4〉 . . . 〈Ŷ Ẑ5Ẑ1Ẑ2Ẑ3〉
(5.15)

Here in the first line we used that under the replacement (5.13)

〈X1X2X3X4X5〉 = 〈Y1 . . . Y5Ẑ1 . . . Ẑ5〉
5∏
i=1

(τi.σi+1)−1 . (5.16)

as well as (5.8)

〈Y XiXj〉 = 〈Y Ẑi−1ẐiẐj−1Ẑj〉 × (τi−1.σi τj−1.σj)
−1 . (5.17)

Finally in the last step we performed the reduction by simply removing the total derivatives

involving the frozen variables dσi, dτi which appear in an invariant measure.

The final result is precisely the five-point NMHV amplituhedron form.

We note that it is easier to consider the functions without the measures (which are also

much closer to the actual correlator/amplitude expressions). Also it is then easier to make

particular choices for the σi, τi for example σαi = (0, 1), ταi = (1, 0). Then the lightlike limit

takes the correlahedron expression gn;k(Y,Xi) to the amplitude expression an;k(Ŷ , Ẑi) via

the simple replacements, implementing the action of freezing and projecting (5.14)

gn;k(Y,Xi)
Yi=Xi2−Xi+1 1(i=1...n), Yn+i=Ŷi(i=1...k)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Xi2→−Ẑi, Xi1→−Ẑi−1−Yi−1

an;k(Ŷ , Ẑi) . (5.18)

We give a highly non-trivial example of this reduction procedure in appendix A. There

we reduce the correlator G6;1 given by the lengthy expression in (4.20) to the corresponding

NMHV 6 point amplitude.
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5.3 The non-maximal limit geometrically

The maximal, n-point, lightlike limit described above reduces the correlahedron, which lives

in Gr(n+k, 4+n+k) to Gr(k, 4+k) by partial freezing and projecting from Y . Physically it

reduces the n-point, Grassmann degree k correlator Gn;k to the (square of the) tree level

n-point NkMHV amplitude. However it is also possible to consider lightlike limits of fewer

points, n′ < n. In this limit the correlator reduces to higher loop amplitudes, specifically

the (n−n′)-loop, Nk′MHV amplitude, A
(n−n′)
n′;k′ where

k′ = k − n+ n′ . (5.19)

As in section 5.1, the light like limit is taken by setting 〈Y Xi′Xi′+1〉 = 0 so that we are

freezing Y to intersect the n′ 4-planes, X1 ∧X2, X2 ∧X3, . . . , Xn′ ∧X1. We then project

through these n′ intersection points, but here we also project through the n− n′ additional

2-planes Xn′+1, . . . Xn. This extra step corresponds to integrating out the supersymmetric

parts of Xi for i > n′ leaving a space-time integrand.

The concrete description of this procedure starts as in the maximal case: the imposi-

tion of 〈Y XiXi+1〉 = 0 allows us to gauge fix (freeze) the first n′ components of Y to take

the form

Yi = σαi Xiα − ταi Xi+1α i = 1 . . . n′ (cyclically). (5.20)

However, in the non-maximal case we further gauge fix the next 2n − 2n′ components of

the Y matrix as follows:

Yn′+1 = L1 1 + σαn′+1Xn′+1α Yn′+2 = L1 2 + σαn′+2Xn′+1α

Yn′+3 = L2 1 + σαn′+3Xn′+2α Yn′+4 = L2 2 + σαn′+4Xn′+2α

. . . . . .

Y2n−n′−1 = Ln−n′ 1 + σα2n−n′−1Xnα Y2n−n′ = Ln−n′ 2 + σα2n−n′Xnα , (5.21)

where the Liα are transverse to all the Xn′+i α and Yi′ , i = 1 . . . n′. Note that (5.21) is not

a restriction on the hyperplane Y but merely on a choice of basis for Y ; we can always

choose a GL(n + k) transformation to obtain (5.21), unlike (5.20) which follows from the

freezing Y to the boundary of the space.

There will be n+k− (2n−n′) = k′ components of Y remaining and we denote these by

Y2n−n′+p′ = Ŷp′ p′ = 1 . . . k′ (5.22)

and we also insist that they are transverse to both Xn′+i α and Yi, i=1 . . . n′ using GL(n+k).

To make the above statements precise we can choose a basis (but the final answer will

be basis independent) for Ck+n+4 given by

basis =
{
Y1, . . . , Yn′ , Xn′+1 1, Xn′+1 2, . . . , Xn 1, Xn 2, e1, . . . , ek′+4

}
, (5.23)
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where e1, . . . ek′+4 are any k′ + 4 vectors such that this yields an independent basis.9 The

projection then corresponds simply to setting to zero the first 2n − n′ components of any

vector in this basis

Xiα → X̂iα where X̂Aiα =

{
0 A = 1, . . . , 2n− n′

XAiα A = 2n−n′+1, . . . , n+k+4
. (5.24)

We will have reduced brackets on the projected k′ + 4 dimensional space spanned by

{e1, . . . , ek′+4}

〈X̂ 〉 := 〈Y1 . . . YnXn′+1 . . . XnX〉 . (5.25)

Here X represents any collection of k′ + 4 independent vectors, and X̂ the same vectors

projected onto the hyperplane.

As in the maximal case we define

Zi := σi.Xi = τi.Xi+1 + Yi i = 1 . . . n′ (5.26)

and after projection this implies

Ẑi := σi.X̂i = τi.X̂i+1 i = 1 . . . n′ , (5.27)

the projected planes X̂i intersect each other consecutively at Ẑi in the projected space.

If we choose coordinates such that τi−1.σi > 0 for all i = 1 . . . n′ and σn′+2a−1.σn′+2a>0

for all a = 1 . . . n (ie make a choice of orientation for the projection planes) then the

correlahedron region becomes

〈Y XiXj〉 > 0→


〈Ŷ Ẑi−1ẐiẐj−1Ẑj〉 > 0 i, j ∈ {1, . . . , n′}
〈Ŷ Li−n′Ẑj−1Ẑj〉 > 0 j ∈ {1, . . . , n′} i ∈ {n′+1, . . . , n}
〈Ŷ Lj−n′Ẑi−1Ẑi〉 > 0 i ∈ {1, . . . , n′} j ∈ {n′+1, . . . , n}
〈Ŷ Li−n′Lj−n′〉 > 0 i, j ∈ {n′+1, . . . , n}

(5.28)

This region is precisely the loop level squared amplituhedron region (3.4).

5.4 The non-maximal limit on the hedron expressions

As in the maximal case, the “freeze and project” procedure can be applied directly on the

correlahedron form also for the non-maximal limit. The procedure in the maximal case

was given in section 5.2 and the non-maximal case is very similar. When we freeze Y as

in (5.21) we get

〈Y d4Yi〉 = 〈Y XiXi+1〉d2σid
2τi i = 1 . . . n′ . (5.29)

We perform the projection on the differential form by the map

Xiα →
−τi−1αẐi + σi α(Ẑi−1 + Yi−1)

τi−1.σi
i = 1 . . . n′ . (5.30)

9As in the maximal case, geometrically the span of the ei gives a hyperplane onto which we are projecting

the quotient.
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The correlahedron form is then reduced to the amplituhedron form by setting Y as

in (5.21) and Xiα to (5.30) and finally leaving out the σ, τ dependent pieces:

n+k∏
i=1

〈Y d4Yi〉 ×
gn;k(Y,Xi)∏n′

i=1〈Y XiXi+1〉

→

(
n′∏
i=1

d2σid
2τi

)(
n−n′∏
i=1

2∏
α=1

d2σn′+2i−2+α〈Y Xn′+id
2Liα〉

)(
k′∏
i=1

〈Ŷ d4Ŷi〉

)
gn;k

(
Y,Xiα

)

→

(
n∏
i=1

d2σid
2τi

(τi−1.σi)2

)(
n−n′∏
i=1

d2σn′+2i−1d
2σn′+2i

(σn′+2i−1.σn′+2i)2

2∏
α=1

〈Y1 . . . Yn′Xn′+1 . . . XnŶ Lid2Liα〉

)

×

(
k′∏
i=1

〈Ŷ d4Ŷi〉

)
a

(n−n′)
n;k

→

(
n−n′∏
i=1

2∏
α=1

〈Ŷ Lid2Liα〉

)(
k′∏
i=1

〈Ŷ d4Ŷi〉

)
a

(n−n′)
n;k (Ŷ , Ẑi,Li) (5.31)

We proceeded in three stages. To get the second line we replaced Y with (5.21) and (5.22)

to get the third line we replaced Xiα with (5.30) and defined a
(n−n′)
n;k (Ŷ , Ẑi,Li) which should

correspond to the square of the amplitude. We also used that

〈Y Xn′+id
2Liα〉 = 〈Y1 . . . Yn′Xn′+1 . . . XnŶ Lid2Liα〉 . (5.32)

We claim that the precise dependence on σ, τ always has the factorised form of the third

line ie

gn;k

(
Y,Xiα

)
→

(
n′∏
i=1

1

(τi−1.σi)2

)(
n−n′∏
i=1

1

(σn′+2i−1.σn′+2i)2

)
a

(n−n′)
n;k (Ŷ , Ẑi,Li) , (5.33)

which can be seen as a consequence of the duality.

Consider for example the four -point light-like limit of the five-point correlahedron G5;1.

We have Y = Y1∧ · · ·∧Y6 ∈ Gr(6, 10) and we freeze Y1, . . . , Y4 to Yi = σαXiα− ταXi+1α,

as in (5.20), leaving Y5, Y6 free, which we gauge fix as Y5 = L1 1 + σα5X5α, Y6 = L1 2 +

σα6X5α (5.21). The projection means we replace (5.30) Xiα → −τi−1αẐi+σi α(Ẑi−1+Yi−1)
τi−1.σi

i = 1 . . . 4. Then

6∏
i=1

〈Y d4Yi〉
〈X1X2X3X4X5〉4

〈Y X1X2〉 . . . 〈Y X4X5〉

freeze Y−−−−−−→
projectX

(
4∏

i=1

d2σid
2τi

(τi−1.σi)2

)
d2σ5d

2σ6
(σ5.σ6)2

〈Y1 . . . Y4X5L1d
2L1 1〉〈Y1 . . . Y4X5L1d

2L1 2〉〈Y1 . . . Y4X5Ẑ1 . . . Ẑ4〉4

〈Y1 . . . Y4X5Ẑ1Ẑ2Ẑ3Ẑ4〉2
∏4

i=1〈Y1 . . . Y4X5L1Ẑi−1Ẑi〉

=

(
4∏

i=1

d2σid
2τi

(τi−1.σi)2

)
d2σ5d

2σ6
(σ5.σ6)2

〈L1d
2L1 1〉〈L1d

2L1 2〉〈Ẑ1 . . . Ẑ4〉2∏4
i=1〈L1Ẑi−1Ẑi〉

↓

〈L1d
2L1 1〉〈L1d

2L1 2〉〈Ẑ1 . . . Ẑ4〉2

〈L1Ẑ1Ẑ2〉〈L1Ẑ2Ẑ3〉〈L1Ẑ3Ẑ4〉〈L1Ẑ4Ẑ1〉
(5.34)
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Here we used

〈Y d4Yi〉 = 〈Y XiXi+1〉d2σid
2τi i = 1 . . . 4 (cyclically)

〈Y d4Y5〉 = d2σ5〈Y1 . . . Y4X5L1d
2L1 1〉

〈Y d4Y6〉 = d2σ6〈Y1 . . . Y4X5L1d
2L1 2〉 (5.35)

and notice that 〈Y XiXi+1〉 cancels four terms of the denominator. Also in the first line

we used

〈X1X2X3X4X5〉 → 〈Y1 . . . Y4X5Ẑ1 . . . Ẑ4〉
4∏
i=1

(τi.σi+1)−1 (5.36)

after the projection (5.30).

The result (5.34) is precisely the one-loop four-point amplituhedron form.

Just as in the maximal case we again note that it is easier to consider the functions

without the measures (which are also much closer to the actual correlator/amplitude ex-

pressions). Also we can then make particular choices for the σi, τi for example σi = (1, 0),

τi = (0, 1). Then the lightlike limit takes the correlahedron expression gn;k(Y,Xi) to the

amplitude expression g(Ŷ , Ẑi) via (5.33)

gn;k(Y,Xi)
Yi=Xi1−Xi+1 2(i=1...n′),Yn′+2i−2+α=L1α+σα

n′+2i−2+α
Xn′+i α,(i=1...n−n′)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Xi1→Ẑi−1+Yi−1, Xi2→−Ẑi,(i=1...n′) ,Y2n−n′+i=Ŷi(i=1...k′)

a
(n−n′)
n;k (Ŷ , Ẑi,Li).

(5.37)

We give a highly non-trivial example in the non-maximal lightlike limit case in the

appendix where we consider the five-point lightlike limit of the six point correlator G6;1

and show that it correctly reproduces the five-point one-loop amplitude.

6 Hedron expressions from hedron geometry

We have introduced the correlahedron as a geometric object in Gr(k+n, k+n+4). We have

also shown how to translate explicit expressions for the correlator in analytic superspace to

invariant differential forms on Gr(k+n, k+n+4). The question we wish to address in this

section is the direct relation between the correlahedron geometry and the corresponding

differential form. We will only give a tentative answer to this question here, leaving further

developments to future work. Working towards this however we first concentrate on the

analogous issue for the squared amplituhedron. For the amplituhedron itself a prescription

for obtaining the amplitude from the geometry was defined in [9]. To obtain the amplitude

from the amplituhedron it was conjectured that one takes the volume form with no diver-

gences inside the amplituhedron and logarithmic divergences on the boundary. This defines

a volume form on amplituhedron space which is equivalent to the bosonised amplitude. We

take exactly the same prescription here for the squared amplituhedron. Furthermore, due

to the more explicit description of the squared amplituhedron, we are able to give a simple

computerisable algorithm (via cylindrical decomposition) for obtaining this volume form.
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6.1 Practical algorithm for obtaining the hedron form from the hedron region

The amplitu-/correla-hedron is described geometrically as a subspace of a Grassmannian

space. In order to relate this to an amplitude or correlator one has to obtain a differential

form from this geometry. For the squared amplituhedron this is the unique form which has

logarithmic divergences on the boundary of the amplituhedron space and no divergences in-

side the space. Here we describe a simple algorithm for obtaining the form from the region.

The first step is to obtain a cylindrical decomposition of the region. A cylindrical

decomposition of any subset of Rn describes it as a union of regions with the form



a < x1 < b,

a(x1) < x2 < b(x1),

(x1, . . . , xn) : a(x1, x2) < x3 < b(x1, x2),

. . . ,

a(x1, . . . , xn−1) < xn < b(x1, . . . , xn−1)


, (6.1)

ie each variable is restricted to an interval which depends on the previous variables.

This is exactly the description of a region one needs to perform an integration over

the region as a multiple integral. Here however instead of integrating over this region one

assigns a differential form to it by assigning to each inequality a dlog:

a(x1, . . . , xi−1) < xi < b(x1, . . . , xi−1) → d log

(
xi − b(x1, . . . , xi−1)

xi − a(x1, . . . , xi−1)

)
(6.2)

thus yielding the n-form

n∏
i=1

dxi

(
b(x1, . . . xi−1)− a(x1, . . . xi−1)

)
(
xi − b(x1, . . . xi−1)

)(
xi − a(x1, . . . xi−1)

) . (6.3)

One then simply adds together the contributions from each region. This gives a form with

log divergences on each boundary and no divergences inside (as long as the original region

is convex).

We here describe this process through the simplest example. We consider the case

of a triangle in P 2 with vertices Z1, Z2, Z3. We give them inhomogeneous coordinates

Zi = (xi, yi, 1). The region (inside of the triangle) is the space of Y ∈ P 2 such that

〈Y Z1Z2〉 > 0, 〈Y Z2Z3〉 > 0, 〈Y Z3Z1〉 > 0 . (6.4)
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Let us also give Y inhomogeneous coordinates Y = (x, y, 1) the region becomes

(x3, y3)

(x1, y1)

(x2, y2)
(6.5)

and can be written as the sum of two regions

xy1 − x2y1 − xy2 + x1y2

x1 − x2
< y <

xy1 − x3y1 − xy3 + x1y3

x1 − x3
and x1 < x < x3

xy1 − x2y1 − xy2 + x1y2

x1 − x2
< y <

xy2 − x3y2 − xy3 + x2y3

x2 − x3
and x3 < x < x2 . (6.6)

So the differential form corresponding to the above region becomes

d log

(
y − xy1−x3y1−xy3+x1y3

x1−x3

y − xy1−x2y1−xy2+x1y2

x1−x2

)
∧ d log

(
x− x3
x− x1

)
+ d log

(
y − xy2−x3y2−xy3+x2y3

x2−x3

y − xy1−x2y1−xy2+x1y2

x1−x2

)
∧ d log

(
x− x2
x− x3

)
=

dxdy (x2y1−x3y1−x1y2+x3y2+x1y3−x2y3) 2

(x1y−x1y2−x2y−xy1+x2y1+xy2)(x1y−x1y3−x3y−xy1+x3y1+xy3)(x2y−x2y3−x3y−xy2+x3y2+xy3)

=
〈Y d2Y 〉〈Z1Z2Z3〉2

〈Y Z1Z2〉〈Y Z2Z3〉〈Y Z3Z1〉
. (6.7)

To get the second line we simply applied the differential and factorised the result and

to obtain the third line we simply rewrote back in homogeneous coordinates. The final

result is the 2-form associated with the triangle (see eg [9].)

The above method can be applied more generally and importantly can be simply

implemented using a computer algebra programme (for numeric external vertices at least).

For example in mathematica one can apply the command CylindricalDecomposition[]

to convert any set of inequalities into the form of a sum of regions upon which we can

implement the simple rule (6.2).

In the next two subsections we illustrate this procedure in a number of tree and loop

examples.

6.2 Tree level squared amplituhedron examples

6.2.1 Five-point NMHV amplitude

We begin with the simplest physical example, 5 point tree-level. The external data is given

by five points, Z1, . . . Z5, in P 4 and we obtain the geometrical amplituhedron squared
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region as Y ∈ P 4 subject to

〈Y ZiZi+1Zi+2Zi+3〉 > 0 . (6.8)

This region arises directly from (5.28).

To make this concrete introduce coordinates by Y = y1Z1 + y2Z2 + y3Z3 + y4Z4 + Z5

so the region becomes simply

y1, y2, y3, y4 > 0 (6.9)

and the corresponding differential form is then trivially

dy1dy2dy3dy4

y1y2y3y4
. (6.10)

Finally we can covariantise this differential form to the coordinate independent form

〈Y d4Y 〉〈12345〉4

〈Y 1234〉〈Y 2345〉〈Y 3451〉〈Y 4512〉〈Y 5123〉
. (6.11)

This correctly reproduces the known amplitude (as a form in amplituhedron space).

Note that in this case the description is entirely equivalent to the amplituhedron itself

(as compared to the squared amplituhedron). We note here that if one instead had a

different orientation for one of the Xi = Zi−1 ∧ Zi then although the region (6.8) would

be different, the resulting differential form would be the same. For example imagine that

instead of Z4 ∧ Z5 we had the reverse order Z5 ∧ Z4 with all other edges having the same

orientation. Then the corresponding region in P 4 would be defined by 〈Y Z2Z3Z5Z4〉 > 0

and 〈Y Z5Z4Z1Z2〉 > 0, but with all other inequalities the same. In coordinates we would

have x2, x4 > 0 as before, but this time x1x3 < 0. However the resulting form (6.10) is the

same.

6.2.2 Six-point NNMHV

The next case, six-point NNMHV is more interesting. We consider the external points

Z1, . . . , Z6 ∈ P 5 and the subspace of the Grassmannian of 2-planes Y = Y1 ∧ Y2 ∈ Gr(2, 6)

defined by the inequalities

〈Y i i+1 j j+1〉 > 0 . (6.12)

Note that this is a weaker requirement than that of the amplituhedron which requires all

ordered minors in the matrix defining Y to be positive (ie it requires additional constraints

such as 〈Y 1235〉 > 0).

Again then to obtain the differential form from this, we first coordinatise the Y s, letting

(
Y1

Y2

)
=

(
1 a b 0 c d

0 e f 1 g h

)Z1

...

Z6

 (6.13)
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In these coordinates the inequalities (6.12) become

e > 0, h > 0, be− af > 0, b > 0,−df + bh > 0, ce− ag > 0, c > 0,−dg + ch > 0 . (6.14)

Performing a cylindrical decomposition of these inequalities in the order e, h, c, b, g, f, a, d

(which seems to give the simplest result — the final answer for the differential form does

not depend on this order) gives a description of the region as

e > 0 ∧ h > 0 ∧ c > 0 ∧ b > 0∧((
g < 0 ∧

((
f <

bg

c
∧ a > be

f
∧ d > bh

f

)
∨
(
bg

c
< f < 0 ∧ a > ce

g
∧ d > ch

g

)
∨
(
f > 0 ∧ ce

g
< a <

be

f
∧ ch
g
< d <

bh

f

)))
∨
(
g > 0 ∧

((
f < 0 ∧ be

f
< a <

ce

g
∧ bh
f
< d <

ch

g

)
∨
(

0 < f <
bg

c
∧ a < ce

g
∧ d < ch

g

)
∨
(
f >

bg

c
∧ a < be

f
∧ d < bh

f

))))
(6.15)

which on performing the replacement (6.2) gives the remarkably simple differential form

2(−abgh− acfh+ adfg + 3bceh− bdeg − cdef)

bceh(be− af)(ce− ag)(bh− df)(ch− dg)
da ∧ · · · ∧ dh . (6.16)

This lifts into the covariant form

2〈Y d4Y1〉〈Y d4Y2〉
(
〈Y 3456〉〈Y 2361〉〈Y 1245〉+ cyclic

)
〈123456〉4

〈Y 1245〉〈Y 2356〉〈Y 3461〉
∏6
i=1〈Y i i+1 i+2 i+3〉

. (6.17)

We will discuss the interpretation of this in a moment but first let us check what hap-

pens if we switch the orientation of one of the edges. Specifically, we replace the edge Z6∧Z1

with Z1 ∧ Z6. This swaps the inequality of three of the brackets in (6.12): 〈Y 2316〉>0,

〈Y 3416〉 > 0, 〈Y 4516〉 > 0. But unlike the NMHV case (where this made no difference to

the final differential form) here these swaps of signs make an enormous difference.

Proceeding as in the previous case, with the same coordinates, the inequalities become

e > 0, h > 0,−be+ af > 0,−ce+ ag > 0, b > 0,−df + bh > 0,−c > 0,−dg + ch > 0

(6.18)

and a cylindrical decomposition becomes even simpler:

e > 0 ∧ h > 0 ∧ c < 0 ∧ b > 0∧((
g < 0 ∧ f < 0 ∧ a < be

f
∧ d > ch

g

)
∨
(
g > 0 ∧ f > 0 ∧ a > be

f
∧ d < ch

g

))
(6.19)

yielding the differential form

2da ∧ · · · ∧ dh
bceh(be− af)(ch− dg)

, (6.20)
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which in turn covariantises to

2〈Y d4Y1〉〈Y d4Y2〉〈123456〉4∏6
i=1〈Y i i+1 i+2 i+3〉

. (6.21)

So in this case we thus obtain two different answers depending on the orientation of the

edges. In fact remarkably both answers have a physical meaning. The result arising from

the cyclic choice of orientation (6.17) corresponds to the square of the NMHV amplitude

(NMHV6)2 whereas the result from the non-cyclic ordering yields (twice) the NNMHV

amplituhedron. The lightlike limit of the correlahedron yields the sum of these two terms.

Furthermore we find that all other choices of orientations for the edges yield the same

results: an odd number of edge flips yields the amplituhedron, an even number yields

(NMHV)2. Given this result it is natural to conjecture that in all cases the correlahedron

is the average of all possible orientations of the edges.

6.2.3 Seven-point N3MHV

As a final tree-level example we consider the seven-point N3MHV amplitude, described as

a subspace of Gr(3, 7) with the external data Zi living in P 6. The subspace is defined as

the set Y = Y1 ∧ Y2 ∧ Y3 ∈ Gr(3, 7) such that

〈Y i i+1 j j+1〉 > 0 . (6.22)

Employing the same procedure as previously, we coordinatise Gr(3, 7) as Y1

Y2

Y3

 =

 1 a b 0 c d 0

0 e f 1 g h 0

0 i j 0 k l 1


Z1

...

Z7

 (6.23)

and then perform a cylindrical decomposition of the region (6.22) in these variables and

then convert the result into a differential form according to (6.2). Remarkably the result

is precisely the lightlike limit of the 7 point correlator, or equivalently the square of the

amplitude 2N3MHV7 + 2NMHV7N
2MHV7. Explicitly it can be written in correlahedron

space as

〈Y d4Y1〉〈Y d4Y2〉〈Y d4Y3〉〈1234567〉4

×
(

〈Y 7123〉
〈Y 1234〉〈Y 1267〉〈Y 2345〉〈Y 2356〉〈Y 2367〉〈Y 7134〉〈Y 7145〉〈Y 7156〉

+ . . .

)
. (6.24)

Here the first (displayed) term is the contribution of the N3MHV amplitude and the dots

denote the contributions from the product amplitudes NMHV7N
2MHV7. The full ex-

pression is most compactly written as the lightlike limit of the correlator, which is the S7

permutation of a single term. So the bit in brackets in (6.24) can be written

limx2i i+1→0(x4
12x

2
34x

2
45x

2
56x

2
67x

2
37 + S7 permutations)∏7

i=1 x
2
i i+2x

2
i i+3

with x2
ij → 〈Y i−1 i j−1 j〉 .

(6.25)
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It is remarkable that this expression arises very simply from the constraints (6.22).

Note that unlike the N2MHV case this single choice of edge orientation gives the full

answer. Flipping the orientation of one or more of the edges yields exactly the same result

in this case.

6.3 Loop level squared amplituhedron examples

As further illustration we now consider some loop level examples where again the cylindrical

decomposition procedure correctly reproduces the squared amplitude.

6.3.1 Four-point one-loop

Here we have external twistors Zi ∈ P 3 and the set of L = L1 ∧ L2 ∈ Gr(2, 4) subject to

〈L12〉 > 0, 〈L23〉 > 0, 〈L34〉 > 0, 〈L41〉 > 0 . (6.26)

Putting coordinates for L as

(
L1

L2

)
=

(
1 0 a b

0 1 c d

)Z1

...

Z4

 (6.27)

This yields the differential form

2da ∧ db ∧ dc ∧ dd
ad(ad− bc)

(6.28)

which lifts to

2〈Ld2L1〉〈Ld2L2〉〈1234〉2

〈L12〉〈L23〉〈L34〉〈L41〉
. (6.29)

6.3.2 Four-point two-loop

Here we have external twistors Zi ∈ P 3 and the set of L = L1 ∧ L2 ∈ Gr(2, 4) and

M =M1 ∧M2 ∈ Gr(2, 4) subject to

〈L12〉 > 0, 〈L23〉 > 0, 〈L34〉 > 0, 〈L41〉 > 0

〈M12〉 > 0, 〈M23〉 > 0, 〈M34〉 > 0, 〈M41〉 > 0, 〈LM〉 > 0 . (6.30)

Putting coordinates for L and M as

(
L1

L2

)
=

(
1 0 a b

0 1 c d

)Z1

...

Z4

 ,

(
M1

M2

)
=

(
1 0 e f

0 1 g h

)Z1

...

Z4

 . (6.31)

This yields the differential form (obtained as in the previous cases by writing the inequali-

ties (6.30) in terms of the coordinates (6.31), obtaining a cylindrical decomposition of this

region, and then making the replacement (6.2))

2da ∧ · · · ∧ dh(2ad− 2bc+ bg + cf + 2eh− 2fg)

adeh(ad− bc)(eh− fg)(ad− ah− bc+ bg + cf − de+ eh− fg)
. (6.32)
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This lifts to

2〈Ld2L1〉〈Ld2L2〉〈Md2M1〉〈Md2M2〉〈1234〉3

×
(

1

〈L23〉〈L34〉〈L41〉〈M12〉〈M23〉〈M41〉〈LM〉
+

1

〈L12〉〈L34〉〈L41〉〈M12〉〈M23〉〈M34〉〈LM〉

+
1

〈L12〉〈L23〉〈L34〉〈M12〉〈M41〉〈M34〉〈LM〉
+

1

〈L12〉〈L23〉〈L41〉〈M23〉〈M41〉〈M34〉〈LM〉

+
〈1234〉

〈L12〉〈L23〉〈L34〉〈L41〉〈M12〉〈M23〉〈M41〉〈M34〉

)
. (6.33)

Here we recognise both the square of the one-loop amplitude (last term) as well as the

two loop amplitude (first four terms which are all double boxes). The full expression

is precisely the result of taking the lightlike limit of the correlator, ie the square of the

four-point amplitude at second order in perturbation theory.

6.3.3 Five-point one-loop

Here we have external twistors Zi ∈ P 4, the loop 2-plane L = L1 ∧L2 ∈ Gr(2, 5) as well as

Y ∈ P 4. Y and L satisfy the following inequalities

〈LY 12〉 > 0, 〈LY 23〉 > 0, 〈LY 34〉 > 0, 〈LY 45〉 > 0, 〈LY 51〉 > 0

〈Y 1234〉 > 0, 〈Y 2345〉 > 0, 〈Y 3451〉 > 0, 〈Y 4512〉 > 0, 〈Y 5123〉 > 0 . (6.34)

Putting coordinates for L and Y as

(
L1

L2

)
=

(
1 0 a b 0

0 1 c d 0

)Z1

...

Z5

 , Y =
(
e f 1 g h

)Z1

...

Z5

 , (6.35)

the inequalities (6.34) lead to the differential form

− 2adef − 2aeg − 2bcef + be− cfg + df + 2g

defgh(ad− bc)(ae+ cf − 1)(adf − ag + b(−c)f + b)
da ∧ db ∧ · · · ∧ dh . (6.36)

This lifts to the co-ordinate independent form

〈LY d2L1〉〈LY d2L2〉〈Y d4Y 〉〈12345〉4

〈Y 1234〉〈Y 2345〉〈Y 3451〉〈Y 4512〉〈Y 5123〉

×
(

〈1234Y 〉〈2345Y 〉
〈LY 12〉〈LY 23〉〈LY 34〉〈LY 45〉

+
〈5134Y 〉〈2345Y 〉

〈LY 23〉〈LY 34〉〈LY 45〉〈LY 51〉

+
〈1234Y 〉〈5123Y 〉

〈LY 12〉〈LY 23〉〈LY 34〉〈LY 51〉
+

〈1245Y 〉〈5123Y 〉
〈LY 12〉〈LY 23〉〈LY 45〉〈LY 51〉

+
〈1245Y 〉〈5134Y 〉

〈LY 12〉〈LY 34〉〈LY 45〉〈LY 51〉

)
. (6.37)

Here we recognise the sum of five box functions (which is the parity even part of the one-

loop amplitude) multiplied by the tree-level NMHV amplitude. This is precisely what we
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expect: the square of the superamplitude at first non-trivial order in both coupling and

the Grassmann odd variable expansion is(
A

(0)
MHV +A

(0)
NMHV + aA

(1)
MHV + aA

(1)
NMHV + . . .

A
(0)
MHV

)2

|a1,η4 =
2A

(0)
MHVA

(1)
NMHV +A

(0)
NMHVA

(1)
MHV(

A
(0)
MHV

)2

= 2
A

(0)
NMHV

A
(0)
MHV

(
M

(1)
NMHV +M

(1)
MHV

)
,

(6.38)

where we define M (`) to be the loop level amplitude divided by tree-level amplitude of the

same helicity structure.

6.4 Obtaining the correlator from the correlahedron

We now arive at the question of how to obtain the correlator from the correlahedron

geometry. The obvious method is to attempt the same procedure successfully implemented

above for the closely related squared amplituhedron, namely take the unique differential

volume form on amplituhedron space with log divergences on the boundary. There are two

problems with this. The first problem is purely practical in that the simplest example,

the five-point NMHV correlator G5;1 is already far too high dimensional for the cylindrical

decomposition procedure to give a result (this procedure is doubly exponential in the

number of dimensions which is 4(k + n) = 24 in this case). The second problem however

is of a more serious nature since it suggests that such a naive implementation of the log

divergence criterion does not even apply straightforwardly in this case. The problem is

that the correlator apparently can have double poles on the boundary, unlike the amplitude

which always has single poles. We have already seen examples of this feature, in for example

equation (5.14) where we see a denominator 1/(τi−1.σi)
2. Such a double pole can not be

obtained naively from the cylindrical decomposition procedure.10

However since, as we saw in section 5, the correlahedron geometry reduces to the ampli-

tuhedron by exactly the same geometric procedure (freeze and project) as the corresponding

differential form it would seem puzzling if the procedure for obtaining the differential form

from the geometry is very different. The situation can be described by figure 1. (We have

displayed multiple arrows from the correlahedron to the amplituhedron to highlight the

fact that one can take many different limits to get many different amplitudes from the

same correlator.)

A possible resolution of this apparent puzzle arises from a stronger implementation of

all the symmetries of the set up before taking the cylindrical decomposition.

10Note that log divergence criterion for obtaining the differential form from the geometry is valid also

when we go to the boundary of the -hedron space. In other words if we choose Y to saturate one or more

of the inequalities 〈Y . . .〉 > 0 (so we pin ourselves to the boundary of -hedron space) then implementing

the cylindrical decomposition procedure on the remaining inequalities/ variables yields the correct answer

for the residue of the expression in this limit.
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amplituhedron amplitude.

correlahedron correlator

cylindrical decomp

freeze/project freeze/project

??

Figure 1. Figure schematically illustrating the relationship between the correlator and amplitude

(squared) as well as the corresponding relation between the geometric objects, the correlahedron

and (squared) amplituhedron.

6.4.1 Toy model reconsidered, implementing the full symmetry

First consider again the simplest toy model case. There we consider points Y ∈ Gr(1, 3)

inside the triangle formed by Z1, Z2, Z3 ∈ Gr(1, 3). In the standard formulation we let Y

(with its two degrees of freedom) vary fully inside the triangle. However in fact the global

GL(3) symmetry in this case allows one to completely fix Y , leaving no degrees of freedom

at all! To see this, first use GL(3) to fix Z1, Z2, Z3 to the basis elements of R3 (using a

projective rescaling of each if necessary) and set Y = (y1, y2, 1). Now consider the residual

GL(3) which leaves the external data Zi invariant. Since the Zi are projective, the action

of the diagonal of GL(3), diag(a, b, c) can be removed by the projective rescaling. On the

other hand this residual GL(3) acts as Y → (a/cy1, b/cy2, 1). Thus by choosing a, b, c

appropriately we can use this to set for example Y = (1, 1, 1). We thus have no degrees of

freedom left at all if we implement the GL(3) symmetry!

In fact the triangle form (6.7) can be completely determined (up to an overall numerical

constant) by these symmetries alone. Indeed the function of Y, Z1, Z2, Z3 multiplying

〈Y d2Y 〉 must be GL(3) covariant, have weight zero in the Zi and weight 3 in Y . The only

possible function with these properties is

〈Y d2Y 〉〈Z1Z2Z3〉2

〈Y Z1Z2〉〈Y Z2Z3〉〈Y Z3Z1〉
, (6.39)

the triangular form. So indeed this expression can be correctly obtained from no degrees

of freedom at all!

6.4.2 Amplituhedron squared reconsidered, implementing the full symmetry

The above example is a bit too trivial, so let us give another example. Indeed one can

reconsider the amplituhedron squared examples we looked at in the previous subsections

and implement the additional symmetry in a similar way and show that the cylindrical

decomposition still gives the right answer which can be covariantised to the full answer in

these cases also.

For example, if we reconsider the 6 point k = 2 example we looked at in section 6.2.2,

we can use the residual GL(6) symmetry to set 5, (a, b, c, d, e), of the 8 variables to unity:

Y =

(
1 1 1 0 1 1

0 1 f 1 g h

)
. (6.40)
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Implementing the cylindrical decomposition procedure exactly as in section 6.2.2 we

arrive at the correct answer for the correlahedron form in these reduced variables (assuming

the measure reduces in the obvious way to df ∧ dg ∧ dh. The full covariant form can then

be obtained from this using the full symmetries.

6.4.3 Correlahedron example

Encouraged by the above results we now consider the simplest non-trivial correlation func-

tion, the 5 point NMHV correlator.

The correlahedron is the subspace Y = Y1∧ . . .∧Y6 ∈ Gr(6, 10) restricted to the region

〈Y XiXj〉 > 0 i 6= j = 1, . . . , 5 . (6.41)

We first use GL(10) to choose the 10 external points Xiα to be the basis elements. We

then note that there is a residual GL(2)5 ⊂ GL(10) which leaves this external data fixed

(up to the GL(2) acting on each Xiα).

Thus we have a Y ∈ Gr(6, 10) with a GL(k) symmetry acting on the left and a GL(2)5

on the right. We can put coordinates on this as follows

Y =

 Y1

...

Y6

 =



1 0 0 0 0 0 1 0 1 0

0 1 0 0 0 0 0 1 0 1

0 0 1 0 0 0 1 0 a 0

0 0 0 1 0 0 0 1 0 b

0 0 0 0 1 0 1 0 c 1

0 0 0 0 0 1 0 1 e f


(6.42)

We claim it is always possible to put Y in this form using the above symmetries. First

use the GL(6) on the left to set the matrix consisting of the first six columns of Y to the

identity. Then use the residual GL(2)5 acting on the right of Y , together with compensating

GL(2)3 ⊂ GL(6) acting on the left to restore the form of Y . We can use this residual GL(2)5

to fix the final four columns of Y to the above form. For example, in the last two stages after

fixing all but the bottom right 4×2 block there is still a residual symmetry, block diagonal

diag(G,G,G) ⊂ GL(6) on the left and diag(G−1, G−1, G−1, G−1, G−1) on the right, for G

a GL(2) matrix, leaving all but the bottom right 4×2 block invariant. Using this we can

diagonalise the a, b 2×2 matrix and set one of the off diagonal components of the bottom

2×2 bocks to 1. The only remaining symmetry is a matrix on the left proportional to the

identity and also on the right (with the inverse factor). This GL(1) does not and can never

act on Y . Note that the number of variables of Y is the dimension of Y (60) minus the

dimension of the residual symmetry GL(6)×GL(2)5/GL(1) (62 + 5.22 − 1 = 55), giving 5,

in agreement with our five remaining variables a, b, c, e, f .

Having reduced the variables down to the minimal number consistent with the sym-

metries, we now perform the cylindrical decomposition procedure. The region (6.41) then

corresponds to the restrictions

−e+cf > 0, ab > 0, ab−bc−e−af +cf > 0, 1−c−e−f +cf > 0, (−1+a)(−1+b) > 0

(6.43)
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which upon rewriting as a cylindrical decomposition and converting to a differential form

according to (6.2) gives

(a− b)2da db dc de df

(a− 1)a(b− 1)b(e− cf)(c(−f) + c+ e+ f − 1)(ab− af − bc+ cf − e)
. (6.44)

Let us then compare this with the expected answer for the correlator (4.11). With the

choice of variables for Y (6.42) this gives

dµ(a, b, c, e, f)

(a− 1)a(b− 1)b(e− cf)(c(−f) + c+ e+ f − 1)(ab− af − bc+ cf − e)
(6.45)

where dµ(a, b, c, e, f) is the measure, 〈Y d4Y1〉 . . . 〈Y d4Y6〉 reduced to these variables. Re-

markably, we get complete agreement on identifying dµ(a, b, c, e, f) = (a−b)2da db dc de df .

Note that the term (a− b)2 is indeed the natural measure factor, the Vandermonde deter-

minant squared, one obtains when writing an integral measure on GL(2) invariant under

conjugation in terms of its eigenvalues. Here it was produced directly by the cylindrical

decomposition procedure.

So we see that in this case at least, the cylindrical decomposition procedure still works,

once all symmetries are correctly taken into account. We leave it to future investigations

to firm up this proposal.

7 Conclusions

In this paper we have presented the definition of a new geometric object, the correlahedron,

defined as a subspace of Gr(n+k, n+k+4). We have provided much evidence for its equiv-

alence to the correlator of stress-energy multiplets Gn;k. We have shown how to obtain

the volume form associated with the squared amplituhedron region and its equivalence to

squared amplitude expressions in a number of examples. In the process we developed a

simple algorithmic procedure for finding the volume form from the region. We have also

shown that the correlahedron as a geometric region reduces to the squared amplituhedron

as a geometric region (in fact many different squared amplituhedrons in general) via a

geometric procedure of freezing the space to a certain boundary and then projecting. The

exact same reduction procedure, applied to all known correlator expressions (recast as vol-

ume forms in correlahedron space) reduces them correctly to the corresponding squared

amplitude expressions.

We believe this gives substantial evidence that the correlahedron geometry is equivalent

to the correlator. However the extraction of the relevant volume form is more problematic

for the correlator than for the squared amplitude both computationally and conceptu-

ally. We overcome both problems in the simplest possible example, by exhausting the full

additional symmetries of the problem and only then implementing the cylindrical decom-

position procedure. Clearly more work needs to be done however to make the procedure

fully concrete, in particular a fuller understanding of the reduced measure.

Our work leaves room for a number of other directions to pursue from here. One of

the many remarkable aspects of the -hedron programme, before one even considers the
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geometric one is the bosonisation of nilpotent invariants. This provides an entirely new

way to explore nilpotent superconformal invariants in a completely bosonic framework as

we saw in section 4.2 and we believe this aspect alone deserves further investigation. One

pertinent technical question here is how to extract explicit component correlation functions

directly from this bosonised form.

The maximally nilpotent correlator, which in the lightlike limit leads to a sum of

products of amplitudes with their conjugates, is a simpler object than the amplitudes

themselves and indeed recent high loop four- and five-loop amplitude expressions have

been calculated via the correlator [8, 40, 41]. It would be interesting to understand the

extent to which one can extract the separate amplitude expressions from the maximally

nilpotent correlator at higher than five points.

Another recent development is the computation of higher loop correlators of higher

charge BPS operators [44]. It would be interesting to explore how/whether the correlahe-

dron generalises to yield these.

In a different direction, it is important to find a systematic proof of the equivalence

between ’hedra and amplitudes and correlators. One approach is to directly work at the

level of twistor Feynman graphs. These can individually be mapped to regions in hedron

space that together provide a tessellation of the hedron. This seems to be problematic for

the amplituhedron itself where sign ambiguities seem to lead to an obstruction to the pro-

gramme for even k. There is some hope that the more explicit definition provided by the

squared amplituhedron might remove these obstructions. Nevertheless, unlike the tessela-

tions provided by the BCFW terms represented in the positive grassmannian, individual

‘tiles’ seem to have to lie both inside and outside the hedron. As it stands, however, the

BCFW description does not apply to correlators, so at this stage, there doesn’t seem to be

an alternative to the twistor space Feynman diagrams.
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A Lightlike limit of NMHV six points G6;1 → A6;1

A.1 Maximal lightlike limit

As a highly non-trivial example of this lightlike limit procedure we here explicitly reduce

the six point “NMHV” correlator G6;1 found in [42] to the NMHV 6-point amplitude

by performing the “freeze and project” procedure outlined for the correlahedron form in
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section 5.2. In particular we implement the reduction in the form (5.18) and we do it in

terms of specific coordinates rather than covariantly.

The correlahedron form for this case is given explicitly in (4.19) where Y ∈ Gr(7, 11).

We choose our basis to be {Y1, . . . , Y6, X12, X22, . . . X52} where Y1, . . . , Y6 are frozen to

Yi = Xi1 − Xi+1 2(i = 1 . . . 6) as in (5.18). The projection then projects out the first 6

coordinates in this basis and projects onto the final 5 coordinates. So with respect to this

basis we have

XAi2 = −ZAi = −δAi+6 XAi1 = XAi−1 2 − Y Ai−1 = −δAi+5 − δAi−1 i = 1 . . . 5

XA62 = −ZA6 = (A,B, . . . , J, 1) XA11 = XA62 − Y A6 = (A, . . . , E, F−1, G, . . . J, 1)

Y Ai = δAi Y A7 = (0 . . . 0, 1, a, b, c, d) . (A.1)

The projection operation then corresponds to projecting onto the last 5 coordinates. In

particular we set the variables A, . . . , F → 0. The projected points have five dimensional

coordinates

Ẑi = −δA′i i = 1 . . . 5

ẐA
′

6 = −(G, . . . , J, 1)

Ŷ A
′

= (1, a, b, c, d) (A.2)

It is straightforward (on a computer) to plug these values into the expression for the

correlahedron (4.19) (see (5.18)). We arrive at a rational function of a, b, c, d,G,H, I, J .

This rational function is precisely

[12345] + [34561] + [56123] (A.3)

where

[ijklm] =
〈ẐiẐjẐkẐlẐm〉4

〈Ŷ ẐiẐjẐkẐl〉〈Ŷ ẐjẐkẐlẐm〉〈Ŷ ẐkẐlẐmẐi〉〈Ŷ ẐlẐmẐiẐj〉〈Ŷ ẐmẐiẐjẐk〉
, (A.4)

which we recognise as the NMHV six-point amplituhedron form.

A.2 Non-maximal lightlike limit

In section 5.4 we performed the maximal lightlike limit explicitly on the six point “NMHV”

correlahedron expression G6;1. We now consider the non-maximal five-point lightlike limit

which reduces it to the five-point one-loop amplitude by implementing the non-maximal

freeze and project procedure of section 5.4.

We start with the correlahedron form given explicitly in (4.19) where Y ∈ Gr(7, 11).

We choose our basis to be {Y1, . . . , Y5, X61, X62, X12, X22, X32, X42}, where Y1, . . . , Y5 are

frozen to Yi = Xi1 −Xi+1 2(i = 1 . . . 5) as in (5.18). The projection then projects out the

first 7 coordinates (the five Y s as well as X6) in this basis and projects onto the final 4

coordinates.
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Then with respect to this basis we have

XAi2 = −ZAi = −δAi+7 XAi1 = XAi−1 2 − Y Ai−1 = −δAi+6 − δAi−1 i = 1 . . . 4

XA52 = −ZA5 = (A,B, . . . , J, 1) XA11 = XA52 − Y A5 = (A, . . . , E−1, F,G, . . . J, 1)

XA61 = δA6 XA62 = δA7

Y Ai = δAi i = 1 . . . 5

Y A6 = (0 . . . 0, 1, 0, 1, 0, a, b) Y A7 = (0 . . . 0, 1, 0, 1, c, d) (A.5)

The projection operation then corresponds to projecting onto the last 4 coordinates. In

particular we set the variables A, . . . , G → 0. The projected points have four dimensional

coordinates

ẐA
′

i = δA
′

i i = 1 . . . 4

ẐA
′

5 = −(H, I, J, 1)

LA′α =

(
1 0 a b

0 1 c d

)
(A.6)

It is straightforward (on a computer) to plug these values into the expression for

the correlahedron (4.19) (see the l.h.s. of (5.37)). We arrive at a rational function of

a, b, c, d,H, I, J . This rational function is

〈5123〉〈1245〉
〈L12〉〈L23〉〈L51〉〈L45〉

+
〈1234〉〈2345〉

〈L12〉〈L23〉〈L34〉〈L45〉
+

(
− 〈L12〉〈2345〉+ 〈L25〉〈1234〉

)
〈1345〉

〈L51〉〈L12〉〈L23〉〈L34〉〈L45〉
(A.7)

where

〈L12〉 := 〈LẐ1Ẑ2〉 . (A.8)

This is precisely (up to a numerical factor) the one-loop five-point amplitude given in [45]

(eq 6.4 with X chosen to be X = 45).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop

Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP 01 (2011) 041

[arXiv:1008.2958] [INSPIRE].

[2] R.H. Boels, On BCFW shifts of integrands and integrals, JHEP 11 (2010) 113

[arXiv:1008.3101] [INSPIRE].

[3] M. Bullimore, L.J. Mason and D. Skinner, MHV Diagrams in Momentum Twistor Space,

JHEP 12 (2010) 032 [arXiv:1009.1854] [INSPIRE].

[4] L.J. Mason and D. Skinner, The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop

in Twistor Space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].

– 37 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP01(2011)041
https://arxiv.org/abs/1008.2958
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2958
https://doi.org/10.1007/JHEP11(2010)113
https://arxiv.org/abs/1008.3101
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.3101
https://doi.org/10.1007/JHEP12(2010)032
https://arxiv.org/abs/1009.1854
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1854
https://doi.org/10.1007/JHEP12(2010)018
https://arxiv.org/abs/1009.2225
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.2225


J
H
E
P
0
9
(
2
0
1
7
)
1
5
6

[5] M. Bullimore, MHV Diagrams from an All-Line Recursion Relation, JHEP 08 (2011) 107

[arXiv:1010.5921] [INSPIRE].

[6] B. Eden, G.P. Korchemsky and E. Sokatchev, More on the duality correlators/amplitudes,

Phys. Lett. B 709 (2012) 247 [arXiv:1009.2488] [INSPIRE].

[7] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The

super-correlator/super-amplitude duality: Part II, Nucl. Phys. B 869 (2013) 378

[arXiv:1103.4353] [INSPIRE].

[8] J.L. Bourjaily, P. Heslop and V.-V. Tran, Amplitudes and Correlators to Ten Loops Using

Simple, Graphical Bootstraps, JHEP 11 (2016) 125 [arXiv:1609.00007] [INSPIRE].

[9] N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030

[arXiv:1312.2007] [INSPIRE].

[10] N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP 12 (2014) 182

[arXiv:1312.7878] [INSPIRE].

[11] N. Arkani-Hamed, A. Hodges and J. Trnka, Positive Amplitudes In The Amplituhedron,

JHEP 08 (2015) 030 [arXiv:1412.8478] [INSPIRE].

[12] T. Lam, Amplituhedron cells and Stanley symmetric functions, Commun. Math. Phys. 343

(2016) 1025 [arXiv:1408.5531] [INSPIRE].

[13] Y. Bai and S. He, The Amplituhedron from Momentum Twistor Diagrams, JHEP 02 (2015)

065 [arXiv:1408.2459] [INSPIRE].

[14] S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the Amplituhedron, JHEP 03

(2015) 128 [arXiv:1408.3410] [INSPIRE].

[15] Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Evidence for a Nonplanar

Amplituhedron, JHEP 06 (2016) 098 [arXiv:1512.08591] [INSPIRE].

[16] D. Galloni, Positivity Sectors and the Amplituhedron, arXiv:1601.02639 [INSPIRE].

[17] L. Ferro, T.  Lukowski, A. Orta and M. Parisi, Yangian symmetry for the tree amplituhedron,

J. Phys. A 50 (2017) 294005 [arXiv:1612.04378] [INSPIRE].

[18] L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation

functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

[19] B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering

amplitudes, JHEP 12 (2011) 002 [arXiv:1007.3246] [INSPIRE].

[20] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The

super-correlator/super-amplitude duality: Part I, Nucl. Phys. B 869 (2013) 329

[arXiv:1103.3714] [INSPIRE].

[21] T. Adamo, M. Bullimore, L. Mason and D. Skinner, A Proof of the Supersymmetric

Correlation Function/Wilson Loop Correspondence, JHEP 08 (2011) 076 [arXiv:1103.4119]

[INSPIRE].

[22] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013)

135 [arXiv:0905.1473] [INSPIRE].

[23] D. Chicherin et al., Correlation functions of the chiral stress-tensor multiplet in N = 4 SYM,

JHEP 06 (2015) 198 [arXiv:1412.8718] [INSPIRE].

– 38 –

https://doi.org/10.1007/JHEP08(2011)107
https://arxiv.org/abs/1010.5921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5921
https://doi.org/10.1016/j.physletb.2012.02.014
https://arxiv.org/abs/1009.2488
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.2488
https://doi.org/10.1016/j.nuclphysb.2012.12.014
https://arxiv.org/abs/1103.4353
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4353
https://doi.org/10.1007/JHEP11(2016)125
https://arxiv.org/abs/1609.00007
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00007
https://doi.org/10.1007/JHEP10(2014)030
https://arxiv.org/abs/1312.2007
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2007
https://doi.org/10.1007/JHEP12(2014)182
https://arxiv.org/abs/1312.7878
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7878
https://doi.org/10.1007/JHEP08(2015)030
https://arxiv.org/abs/1412.8478
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8478
https://doi.org/10.1007/s00220-016-2602-2
https://doi.org/10.1007/s00220-016-2602-2
https://arxiv.org/abs/1408.5531
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5531
https://doi.org/10.1007/JHEP02(2015)065
https://doi.org/10.1007/JHEP02(2015)065
https://arxiv.org/abs/1408.2459
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2459
https://doi.org/10.1007/JHEP03(2015)128
https://doi.org/10.1007/JHEP03(2015)128
https://arxiv.org/abs/1408.3410
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.3410
https://doi.org/10.1007/JHEP06(2016)098
https://arxiv.org/abs/1512.08591
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08591
https://arxiv.org/abs/1601.02639
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.02639
https://doi.org/10.1088/1751-8121/aa7594
https://arxiv.org/abs/1612.04378
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.04378
https://doi.org/10.1007/JHEP09(2011)123
https://arxiv.org/abs/1007.3243
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3243
https://doi.org/10.1007/JHEP12(2011)002
https://arxiv.org/abs/1007.3246
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3246
https://doi.org/10.1016/j.nuclphysb.2012.12.015
https://arxiv.org/abs/1103.3714
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3714
https://doi.org/10.1007/JHEP08(2011)076
https://arxiv.org/abs/1103.4119
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4119
https://doi.org/10.1007/JHEP05(2013)135
https://doi.org/10.1007/JHEP05(2013)135
https://arxiv.org/abs/0905.1473
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1473
https://doi.org/10.1007/JHEP06(2015)198
https://arxiv.org/abs/1412.8718
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8718


J
H
E
P
0
9
(
2
0
1
7
)
1
5
6

[24] N. Arkani-Hamed, H. Thomas and J. Trnka, Unwinding the Amplituhedron in Binary,

arXiv:1704.05069 [INSPIRE].

[25] A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2

Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace, Class. Quant. Grav.

1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].

[26] P.S. Howe and G.G. Hartwell, A Superspace survey, Class. Quant. Grav. 12 (1995) 1823

[INSPIRE].

[27] D. Chicherin and E. Sokatchev, N = 4 super-Yang-Mills in LHC superspace part I: classical

and quantum theory, JHEP 02 (2017) 062 [arXiv:1601.06803] [INSPIRE].

[28] D. Chicherin and E. Sokatchev, N = 4 super-Yang-Mills in LHC superspace part II:

non-chiral correlation functions of the stress-tensor multiplet, JHEP 03 (2017) 048

[arXiv:1601.06804] [INSPIRE].

[29] D. Chicherin and E. Sokatchev, Demystifying the twistor construction of composite operators

in N = 4 super-Yang-Mills theory, J. Phys. A 50 (2017) 205402 [arXiv:1603.08478]

[INSPIRE].

[30] L.J. Mason and D. Skinner, Scattering Amplitudes and BCFW Recursion in Twistor Space,

JHEP 01 (2010) 064 [arXiv:0903.2083] [INSPIRE].

[31] J.L. Bourjaily, S. Caron-Huot and J. Trnka, Dual-Conformal Regularization of Infrared Loop

Divergences and the Chiral Box Expansion, JHEP 01 (2015) 001 [arXiv:1303.4734]

[INSPIRE].

[32] A.E. Lipstein and L. Mason, From the holomorphic Wilson loop to ‘d log’ loop-integrands for

super-Yang-Mills amplitudes, JHEP 05 (2013) 106 [arXiv:1212.6228] [INSPIRE].

[33] F. Gonzalez-Rey, I.Y. Park and K. Schalm, A Note on four point functions of conformal

operators in N = 4 super Yang-Mills, Phys. Lett. B 448 (1999) 37 [hep-th/9811155]

[INSPIRE].

[34] B. Eden, P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Four point functions in

N = 4 supersymmetric Yang-Mills theory at two loops, Nucl. Phys. B 557 (1999) 355

[hep-th/9811172] [INSPIRE].

[35] B. Eden, P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Simplifications of four point

functions in N = 4 supersymmetric Yang-Mills theory at two loops, Phys. Lett. B 466 (1999)

20 [hep-th/9906051] [INSPIRE].

[36] B. Eden, C. Schubert and E. Sokatchev, Three loop four point correlator in N = 4 SYM,

Phys. Lett. B 482 (2000) 309 [hep-th/0003096] [INSPIRE].

[37] M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Anomalous dimensions in N = 4 SYM

theory at order g4, Nucl. Phys. B 584 (2000) 216 [hep-th/0003203] [INSPIRE].

[38] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Hidden symmetry of four-point

correlation functions and amplitudes in N = 4 SYM, Nucl. Phys. B 862 (2012) 193

[arXiv:1108.3557] [INSPIRE].

[39] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation

function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM,

Nucl. Phys. B 862 (2012) 450 [arXiv:1201.5329] [INSPIRE].

– 39 –

https://arxiv.org/abs/1704.05069
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05069
https://doi.org/10.1088/0264-9381/1/5/004
https://doi.org/10.1088/0264-9381/1/5/004
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,1,469%22
https://doi.org/10.1088/0264-9381/12/8/005
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,12,1823%22
https://doi.org/10.1007/JHEP02(2017)062
https://arxiv.org/abs/1601.06803
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.06803
https://doi.org/10.1007/JHEP03(2017)048
https://arxiv.org/abs/1601.06804
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.06804
https://doi.org/10.1088/1751-8121/aa6b95
https://arxiv.org/abs/1603.08478
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.08478
https://doi.org/10.1007/JHEP01(2010)064
https://arxiv.org/abs/0903.2083
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.2083
https://doi.org/10.1007/JHEP01(2015)001
https://arxiv.org/abs/1303.4734
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4734
https://doi.org/10.1007/JHEP05(2013)106
https://arxiv.org/abs/1212.6228
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6228
https://doi.org/10.1016/S0370-2693(99)00017-9
https://arxiv.org/abs/hep-th/9811155
https://inspirehep.net/search?p=find+EPRINT+hep-th/9811155
https://doi.org/10.1016/S0550-3213(99)00360-0
https://arxiv.org/abs/hep-th/9811172
https://inspirehep.net/search?p=find+EPRINT+hep-th/9811172
https://doi.org/10.1016/S0370-2693(99)01033-3
https://doi.org/10.1016/S0370-2693(99)01033-3
https://arxiv.org/abs/hep-th/9906051
https://inspirehep.net/search?p=find+EPRINT+hep-th/9906051
https://doi.org/10.1016/S0370-2693(00)00515-3
https://arxiv.org/abs/hep-th/0003096
https://inspirehep.net/search?p=find+EPRINT+hep-th/0003096
https://doi.org/10.1016/S0550-3213(00)00312-6
https://arxiv.org/abs/hep-th/0003203
https://inspirehep.net/search?p=find+EPRINT+hep-th/0003203
https://doi.org/10.1016/j.nuclphysb.2012.04.007
https://arxiv.org/abs/1108.3557
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3557
https://doi.org/10.1016/j.nuclphysb.2012.04.013
https://arxiv.org/abs/1201.5329
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5329


J
H
E
P
0
9
(
2
0
1
7
)
1
5
6

[40] R.G. Ambrosio, B. Eden, T. Goddard, P. Heslop and C. Taylor, Local integrands for the

five-point amplitude in planar N = 4 SYM up to five loops, JHEP 01 (2015) 116

[arXiv:1312.1163] [INSPIRE].

[41] J.L. Bourjaily, P. Heslop and V.-V. Tran, Perturbation Theory at Eight Loops: Novel

Structures and the Breakdown of Manifest Conformality in N = 4 Supersymmetric

Yang-Mills Theory, Phys. Rev. Lett. 116 (2016) 191602 [arXiv:1512.07912] [INSPIRE].

[42] D. Chicherin, R. Doobary, B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev,

Bootstrapping correlation functions in N = 4 SYM, JHEP 03 (2016) 031

[arXiv:1506.04983] [INSPIRE].

[43] B. Eden, A.C. Petkou, C. Schubert and E. Sokatchev, Partial nonrenormalization of the

stress tensor four point function in N = 4 SYM and AdS/CFT, Nucl. Phys. B 607 (2001)

191 [hep-th/0009106] [INSPIRE].

[44] D. Chicherin, J. Drummond, P. Heslop and E. Sokatchev, All three-loop four-point

correlators of half-BPS operators in planar N = 4 SYM, JHEP 08 (2016) 053

[arXiv:1512.02926] [INSPIRE].

[45] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar

Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

– 40 –

https://doi.org/10.1007/JHEP01(2015)116
https://arxiv.org/abs/1312.1163
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1163
https://doi.org/10.1103/PhysRevLett.116.191602
https://arxiv.org/abs/1512.07912
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07912
https://doi.org/10.1007/JHEP03(2016)031
https://arxiv.org/abs/1506.04983
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04983
https://doi.org/10.1016/S0550-3213(01)00151-1
https://doi.org/10.1016/S0550-3213(01)00151-1
https://arxiv.org/abs/hep-th/0009106
https://inspirehep.net/search?p=find+EPRINT+hep-th/0009106
https://doi.org/10.1007/JHEP08(2016)053
https://arxiv.org/abs/1512.02926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02926
https://doi.org/10.1007/JHEP06(2012)125
https://arxiv.org/abs/1012.6032
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.6032

	Introduction
	Bosonisation, conventions and -hedron forms
	Bosonisation
	Bosonised correlator potentials
	Correlahedron and amplituhedron forms

	Hedron geometry
	Amplituhedron
	Squared amplituhedron
	Correlahedron

	Hedron volume forms
	Hedron expressions from twistor space Feynman diagrams
	Super twistor space Feynman rules
	Bosonisation of Feynman diagrams in the correlahedron space

	Invariant correlahedron expressions directly from correlators on analytic  superspace

	The lightlike limit on the correlahedron
	The maximal lightlike limit geometrically
	Maximal lightlike limit on the hedron volume forms
	The non-maximal limit geometrically
	The non-maximal limit on the hedron expressions

	Hedron expressions from hedron geometry
	Practical algorithm for obtaining the hedron form from the hedron region
	Tree level squared amplituhedron examples
	Five-point NMHV amplitude
	Six-point NNMHV
	Seven-point N3MHV

	Loop level squared amplituhedron examples
	Four-point one-loop
	Four-point two-loop
	Five-point one-loop

	Obtaining the correlator from the correlahedron
	Toy model reconsidered, implementing the full symmetry
	Amplituhedron squared reconsidered, implementing the full symmetry
	Correlahedron example


	Conclusions
	Lightlike limit of NMHV six points G61->A61
	Maximal lightlike limit
	Non-maximal lightlike limit


