
IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 1

Research on the Architecture and its
Implementation for Instrumentation and

Measurement Cloud
Hengjing He, Wei Zhao, Songling Huang, Geoffrey C. Fox, and Qing Wang

Abstract—Cloud computing has brought a new method of resource utilization and management. Nowadays some researchers

are working on cloud based instrumentation and measurement systems designated as Instrumentation and Measurement

Clouds. However, until now, no standard definition or detailed architecture with an implemented system for IMC has been

presented. This paper adopts the philosophy of cloud computing and brings forward a relatively standard definition and a novel

architecture for IMC. The architecture inherits many key features of cloud computing, such as service provision on demand,

scalability and so on, for remote Instrumentation and Measurement (IM) resource utilization and management. In the

architecture, instruments and sensors are virtualized into abstracted resources, and commonly used IM functions are wrapped

into services. Users can use these resources and services on demand remotely. Platforms implemented under such

architecture can greatly reduce the investment for building IM systems, enabling remote sharing of IM resources, increasing

utilization efficiency of various resources, and facilitating the processing and analysis of Big Data from instruments and sensors.

Practical systems with a typical application are implemented upon the architecture. Results of the experiment show that the new

architecture has achieved the function goals of IMC and demonstrates that the novel IMC architecture can provide a new

effective and efficient framework for establishing IM systems.

Index Terms—Architecture, cloud computing, distributed computing, instrumentation and measurement cloud, parallel

processing, power system state estimation, cloud service

—————————— � ——————————

1 INTRODUCTION

INCE instrumentation and measurement (IM) technol-
ogy is closely combined with information technology,

development in information technology (IT) can lead to
the advance of IM technology. In the early stages, com-
puters were used to control instruments and sensors for
local data acquisition and analysis. Later on, virtual in-
strumentation technology was developed and many of
the functions that were implemented by hardware in in-
struments can now be achieved by computer software.
With the development of networks and the internet, re-
mote instrumentation and measurement (RIM) emerged
as a new technology in IM[1]. Such RIM technology has
brought lots of benefits to related areas, especially to
those areas that involve large distributed systems[2]. It
can greatly facilitate instrument control, data acquisition
and processing. Additionally, new computing paradigms,
such as grid computing, can be integrated into IM tech-
nology to further improve the ability of data processing

and resource sharing and management for distributed IM
systems[3]. The grid-enabled instrumentation and meas-
urement system (GIMS) is a typical type of those systems.
GIMS brings many advantages to data intensive IM ap-
plications and heterogeneous IM resource management.
However, due to some limitations of grid computing,
systems that integrate a grid are eventually not widely
adopted in practical use.

Currently, most IM systems are built upon local archi-
tecture or traditional client/server (C/S) architecture[4].
In local IM architecture, instruments and sensors are con-
nected directly to the computer and it is difficult to build
large IM systems. As for C/S architecture, instruments
and sensors simply provide remote access interfaces
through gateway servers to clients. However, both of the
architectures require the user to build the entire IT system
and, also, to maintain all resources. Thus, there has to be a
great investment in building the whole IM system and,
besides, system stability, scalability and fault tolerance
can be serious problems for both of the architectures.
Moreover, to satisfy resource requirement for both peak
and valley load, the IM system should be built according
to the peak load at the very beginning and, even if the
load drops, the system cannot scale down accordingly.
Therefore, the utilization rate of resource in the IM system
can be quite low, especially for those systems with great
load dynamics. In addition to the problems mentioned
above, the large amounts of data collected from various
devices need much more powerful computing resource
for processing and analyzing, and traditional computing

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

• Hengjing He is with the State Key Lab. of Power System, Department of
Electrical Engineering, Tsinghua University, Beijing, 100084, China. E-
mail: hehj11@mails.tsinghua.edu.cn.

• Wei Zhao is with the State Key Lab. of Power System, Department of
Electrical Engineering, Tsinghua University, Beijing, 100084, China. E-
mail: zhaowei@mail.tsinghua.edu.cn.

• Songling Huang is with the State Key Lab. of Power System, Department
of Electrical Engineering, Tsinghua University, Beijing, 100084, China. E-
mail: huangsling@tsinghua.edu.cn.

• Geoffrey C. Fox is with the School of Informatics and Computing and CGL,
Indiana University, Bloomington, USA. E-mail: gcf@indiana.edu.

• Qing Wang is with the School of Engineering and Computing Sciences,
Durham University, Durham, UK. E-mail: qing.wang@durham.ac.uk

S

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

paradigms may be incapable of dealing with such scenar-
ios.

In recent years, the emergence of cloud computing has
brought many new approaches for resource utilization
and management[5]. Cloud manages all resources as a
resource pool and provides those resources as online ser-
vices to end users according to their demand. Such modes
can greatly increase the utilization efficiency of resources
and, at the same time, save the investment of users on
both hardware and software IT resources[6]. Also, big
data processing and analysis technologies developed
along with cloud computing make data analysis much
easier and faster in the IM field[7]. Motivated by these
benefits, many researchers are exploring novel cloud
based IM technologies to solve the problems above[8].
Until now, most of the work carried out in the interdisci-
plinary area of IM and cloud computing mainly focuses
on the application of cloud computing in IM systems,
which can only deal with a few aspects of related prob-
lems. Little research has been carried out to build novel
IM modes and architectures that can inherit the essence of
cloud computing for IM systems. Some literatures have
brought up new concepts or terminologies such as in-
strumentation cloud or sensor cloud, but with only con-
ceptual architectures. However, designing such an in-
strumentation and measurement cloud with detailed ar-
chitecture and a corresponding practical system is very
important for current IM science to face the many afore-
mentioned challenges.

This paper introduces a novel IMC architecture with
detailed system implementations. The architecture ab-
stracts instruments and sensors into resources, and en-
capsulates frequently used modules and functions into
services. Services are deployed in the cloud and users can
consume these services on demand. IM applications are
also deployed and run in the IMC platform. All IT re-
sources are allocated and managed by the IAAS (Infra-
structure as A Service) cloud platform which will reduce
investments for users and also increase resource utiliza-
tion efficiency. By integrating cloud computing and big
data processing technologies, IMC can benefit a lot from
advantages such as system scalability, fault tolerance,
distributed and parallel computing, and so on. An actual
system based on this architecture is implemented using
various cloud computing frameworks. Applications and
experiments are designed to test the system. Results show
that the IMC architecture designed in this paper can
properly integrate cloud computing with IM technologies
and greatly facilitate the building, managing and use of
IM systems and resources.

The remainder of this paper is organized as follows:
section 2 presents related work; section 3 introduces key
concepts of IMC; section 4 describes the detailed IMC
architecture designed by this paper; section 5 illustrates
the implementation of the architecture; section 6 provides
some applications and tests over the IMC system; section
7 discusses challenges and limitations of IMC; and finally,
section 8 concludes the whole paper.

2 RELATED WORK

Most of the work related to IMC mainly focuses on the
following areas: Grid-enabled instrumentation systems
(GEIS)[9], sensor clouds[10] and instrumentation
clouds[11].

GEIS mainly focuses on converting instruments into
grid services[12], so that heterogeneous instrumentation
resources can be accessed and managed through a grid,
which can facilitate data intensive applications to use var-
ious grid resources and provide distributed instrumenta-
tion and experiment collaborations over the grid[13]. In
GEIS, instruments are abstracted into unified services
through middleware technologies and standard models.
Typical GEISs including Instrument Element[14] architec-
ture from the GridCC project, common instrument mid-
dleware architecture[15], e-infrastructure for remote in-
strumentation from the DORII project[3] and virtual la-
boratory architecture[16].

Although GEIS provides a good way for distributed
instrumentation and collaborative experiments over the
grid, limitations of grid computing, such as complexity,
constrained accessibility and so on, prevented it from
prevailing among scientific and industrial areas. Howev-
er, some of the research work, which regards the common
aspects of GEIS and IMC, in GEIS can guide the study of
IMC. The data retrieval and transmission approach in
distributed IM systems is an important one of those as-
pects. Through comprehensive research, [12] and [17]
demonstrated that publish/subscribe mechanisms are
more efficient for real-time collecting and transmitting
data in a distributed IM environment. Thus, in the work
of this paper, a message-based publish/subscribe mecha-
nism is adopted as the information and data dissemina-
tion method.

Just like IMC, the sensor cloud is also a very new con-
cept. In [18] a sensor cloud infrastructure is developed
and physical sensors are abstracted into virtual sensor
objects. Such virtual sensor objects combined with related
sensor definition templates can provide measurement
services to end users. Besides, service and accounting
models are designed, which makes the sensor cloud in-
frastructure conform to the philosophy of cloud compu-
ting. Another project working on cloud-based sensing
systems is the S4T(Stack4Things) project[19]. This project
is the base for the #SmartME[20] project which mainly
focuses on morphing a city into a smart city. The S4T pro-
ject is trying to build up a cloud platform for managing a
large number of sensors and actuators deployed in a
smart city. One of the main ideas of the S4T project is vir-
tualizing sensors and actuators into abstract resources
similar to those resources in cloud computing and
providing sensing and actuating services through the S4T
platform. Thus, the S4T platform is also viable for build-
ing a sensor cloud. Some other researchers also use the
terminology ‘sensor cloud’, but most of them only con-
centrate on the application of cloud computing technolo-
gy in sensor control and management[21],[22],[23],[24].
Sensors are much simpler than instruments, however
they can also be treated as instruments, only with less
functions.

HENGJING HE ET AL.: RESEARCH ON THE ARCHITECTURE AND ITS IMPLEMENTATION FOR INSTRUMENTATION AND MEASUREMENT CLOUD 3

Current studies of instrumentation clouds only bring
forward conceptual models and architectures with few
details or implementations provided[11],[25],[26]. Some
other research work is mainly about applications of cloud
computing in massive data storage and
processing[27],[28],[29], which, as explained before, only
provide solutions for a few of the problems faced by cur-
rent IM systems.

Compared with the above research, the work of this
paper has the following advantages: (1) the IMC platform
developed in this paper is more open and easier to access
than GEIS; (2) the IMC platform can manage both sensors
and instruments, and provide commonly used IM func-
tions as scalable services to end users; (3) the IMC system
implemented according to the IMC architecture in this
paper is a real cloud platform for the IM field, rather than
just application of cloud computing technologies in the
IM field. All these advantages are achieved by adopting a
cloud-based resource management and usage mode, and
also using state-of-the-art technologies from cloud com-
puting and big data fields. Details will be presented in the
following sections.

3 INSTRUMENTATION AND MEASUREMENT CLOUD

Currently, no standard definition for IMC is presented.
This section brings up a relatively standard definition for
IMC and its related elements by adopting key ideas of
cloud computing into IM field.

3.1 Definition of IMC

The key ideas of cloud computing are: resource abstrac-
tion and virtualization, services delivered on demand,
and scalability[30]. Owing to these ideas, cloud compu-
ting can provide scalable, on demand hardware and
software resources remotely. As introduced in Section 1,
traditional IM systems and modes do not own such ad-
vantages. To inherit these merits, it is necessary to inte-
grate cloud computing and related big data models into
the IM field, and establish a novel Instrumentation and
Measurement Cloud (IMC). Based on our previous
work[31], a definition for IMC is brought forward as fol-
lows:

Definition 1. Instrumentation and Measurement Cloud(IMC)
is a model, based upon cloud computing and big data
frameworks, for enabling on-demand, convenient, ubiqui-
tous network access to a shared pool of Instrumentation and
Measurement(IM) resources(e.g. instruments, sensors, ac-
tuators) and services that can be rapidly provided and re-
leased with minimal interaction with resource provider and
end user.

From definition 1, it can be seen that IMC contains two
direct elements, resource and service, and a third hidden
element which is the IM application designed by the user.
To distinguish these elements from similar concepts in the
traditional IM field, IMC resources, IMC services and
IMC applications are used to feature these three elements
of IMC. Detailed definitions of these elements will be giv-
en in the following sections. The definition of IMC also

points out that IMC relies on cloud computing and big
data frameworks. This is because IMC itself requires the
support of cloud computing and big data frameworks to
achieve many of the function requirements illustrated in
the definition.

3.2 Definition of IMC resource

Definition 2. Instrumentation and Measurement Cloud re-
source stands for virtualized instrument, sensor or actuator
resource that is connected to IMC through network for
online sharing and management.

As can be seen from the above definition, computing
resources are not included in IMC resources. The reason
why it defines IMC resource this way is that computing
resources, such as the CPU, storage and the network, are
managed and provided by cloud computing frameworks
of IMC, and, to IMC, they play the role of service. How-
ever, not all instruments, sensors and actuators can be
converted to IMC resources. Some IM devices that cannot
be virtualized or connected to IMC for use and manage-
ment are not eligible to become IMC resources. Similar to
resources in cloud computing, IMC resource can only be
shared at different times and that means only one user
can control the resource at the same time.

Unlike computing, storage and networking resources,
instruments and sensors have heterogeneous software
and hardware architecture which means it is very difficult
to virtualize them into a unified resource pool and at the
same time keep their full features. However, thanks to
virtual instrumentation (VI) technology and standard
sensor models, many of the modern instruments and sen-
sors can provide unified access interfaces. But such inter-
faces are designed just for local drivers. To virtualize
those IM devices into IMC resources, interface remapping
through the network is required. Generally, there are two
ways to remap the interfaces, as shown in Fig. 1.

Instruments and sensors

Virtual Instrumentation

Drivers/Sensor model

Local

R
P

C
 F

ra
m

e
w

o
rk

Network

Remote access interfaces

Physical interfaces

RPC Server

RPC Client

Instruments and sensors

Local

Physical interfaces

Physical interface

remapping server

Physical interface

remapping client

Network
P

h
y

si
c
al

in
te

rf
ac

e
 r

e
m

a
p
p

in
g

Drivers

(a)Software interface remapping (b)Physical interface remapping

Fig. 1. Remote instrument and sensor interface remapping

Fig. 1(a) shows a software interface remapping scheme
using a remote procedure call (RPC). Such a scheme is
more data-oriented, since it mainly focuses on manipulat-
ing data exchanged between physical devices and up-
level applications. This method is easier but less flexible.
For different VI frameworks or sensor models, corre-
sponding RPC modules should be developed.

The second method, illustrated in Fig. 1(b), remotely

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

maps physical interfaces, such as USB[32], RS-232, GPIB
and many others, to the cloud side, thus IM device con-
nections to those interfaces will be forwarded to the
cloud. Physical interface remapping is a device-oriented
design is more concerned about the device itself rather
than the data generated from the device. It actually
remaps devices to remote servers or applications and,
thus, supports full features of the device. However, im-
plementation of this method is much more difficult, espe-
cially for high speed interfaces such as PCIE, than that of
the software interface remapping approach. And also, this
method only supports VM (Virtual Machine) based appli-
cations, which means each IMC resource should be at-
tached to a VM in the cloud. An IM system based on
physical interface remapping is more like a traditional IM
system and the only difference is that the system is de-
ployed in the cloud. Unless there are special require-
ments, it is better to use software interface remapping for
IM device virtualization.

3.3 Definition of IMC service

Definition 3. Instrumentation and Measurement Cloud ser-
vice stands for online, scalable, shared IM function, cloud
computing resource service or big data processing service
that can be consumed through IMC by IMC applications on
demand.

The IMC service is closer to the concept of SAAS
(Software as a Service) in cloud computing[33]. Tradi-
tionally, commonly-used IM functions are provided
through commercial software packages and users have to
purchase the packages, and install and run them locally.
However, in IMC, commonly-used IM functions are en-
capsulated into online services. Users can consume those
services on demand and all those services are running in
IMC. In this way, much of the computation load can be
shifted to the cloud side which will reduce the require-
ments for computing resources on the user side. When
consuming IMC services, users just need to send data to
input interfaces of IMC services and retrieve results from
output interfaces. Fig. 2 shows the detailed service mode
of IMC services.

IMC

Platform

IMC application 1

IMC service

module A

IMC service

module B

IMC service

module C
Output

IMC application 2

IMC service

module A

IMC service

module C
Output

Measurement

data producer

Measurement

data producer

Message broker

Logic connection Physical data stream

IMC service A

Instance 1 ...Instance 2

IMC service B

Instance 1 ...Instance 2

IMC service C

Instance 1 ...Instance 2

Fig. 2 Service mode of IMC services

Fig. 2 presents service mode of IMC services for real-
time IM stream data processing. Here, real-time means
data are processed as soon as they are received, as distin-
guished from batch processing. Since data from virtual-
ized IM resources are normally stream data, they should

be processed in time before storing to databases or files.
In Fig. 2, there are three IMC services which imple-

ment three commonly used IM functions, e.g. calculation
of electrical power and so on, respectively. Two IMC ap-
plications are consuming these IMC services to carry out
some IM tasks. The IMC application represents applica-
tion that consumes both IMC services and IMC resources,
and carries out user defined custom logic to fulfill specific
IM tasks. A detailed definition of the IMC application will
be given in the following section. When consuming IMC
services, IMC service modules in IMC applications are
just logical representations of IMC service instances that
carry out actual data processing procedures. For example,
in Fig. 2, IMC service modules A, B and C in both IMC
applications 1 and 2 are just used to represent logical data
process flows. When IMC applications are running, data
acquired from IMC resources are not sent to IMC service
modules for processing. Instead, data are sent to running
IMC service instances in IMC through an information
dissemination system, such as message broker, for pro-
cessing. In this way, data processing is carried out in IMC
service instances, not in IMC applications.

Each IMC service can run multiple instances and each
instance can serve multiple IMC applications. By imple-
menting IMC services in cloud computing and big data
frameworks, IMC services can inherit advantages, such as
distribute parallel processing, fault tolerance, scalability,
load balancing, dynamic load transfer and so on, from
those frameworks.

3.4 Definition of IMC application

Definition 3. Instrumentation and Measurement Cloud appli-
cation is the application program that consumes IMC re-
sources and IMC services, and carries out custom logics to
fulfill user defined IM tasks.

Although the IMC platform can provide remote access
to IMC services and IMC resources, it still requires the
user to organize those services and manipulate those re-
sources to carry out specific IM tasks. Since most of the
computation intensive data processing procedures can be
implemented into IMC services deployed in IMC plat-
forms, IMC applications are normally light-weighted. By
developing web-based online IDE (Integrated Develop-
ment Environment), IMC can provide a PAAS (Platform
as a Service) service to users, so that end users can devel-
op, deploy and run IMC applications online through a
web browser. In this case, building a distributed IM sys-
tem will be much easier, since all IM resources and com-
monly used IM functions can be obtained online through
IMC.

3.5 Instrumentation and Measurement mode in IMC

The instrumentation and measurement mode in IMC can
be depicted as in Fig. 3.

HENGJING HE ET AL.: RESEARCH ON THE ARCHITECTURE AND ITS IMPLEMENTATION FOR INSTRUMENTATION AND MEASUREMENT CLOUD 5

Instrument

Sensor

Other IM

device

Instrumentation and Measurement Cloud

IMC resource 1

IMC resource 2

IMC resource 3

IMC

application 1

IMC

application 2

IMC service 1

IMC service 2

IMC service 3

Cloud computing platform and Big data framework

A
cc

ess control

W
e
b based use

r interfaces

IMC user

IMC administrator

IMC resource owner

Fig. 3 Instrumentation and measurement mode in IMC

In Fig. 3, there is an IMC user, IMC administrator and
IMC resource owner. The IMC user normally consumes
IMC resources and IMC services, and develops IMC ap-
plications to carry out IM tasks. The IMC administrator is
responsible for building and maintaining the IMC plat-
form. All IMC resources are provided and maintained by
IMC resource owners. While the IMC service can be de-
veloped by any of them, it is the IMC administrator’s re-
sponsibility to check the quality of the service and decide
whether to deploy it or not. As shown in Fig. 3, with a
web-based user interface and access control, IMC users
can request IMC resources and IMC services, and develop
IMC applications online. By deploying IMC applications
in the IMC platform, IMC users no longer need to invest
in, establish and maintain the whole ICT (Information
and Communication Technology) system for their IM
tasks. Instead, they can use resources and services pro-
vided by the IMC platform according to their need.

The above definitions have clarified the basic function
requirements and characteristics of IMC. Although tech-
nologies from IM science, cloud computing and big data
fields provide full support for the above function re-
quirements, there was no detailed architecture to inte-
grate all these technologies and guide the implementation
of the IMC platform. In the following section, a novel
IMC architecture, which owns the above important char-
acteristics, will be presented.

4 NOVEL ARCHITECTURE FOR INSTRUMENTATION

AND MEASUREMENT CLOUD

The overall IMC architecture developed in this paper is
shown in Fig 4. This architecture mainly consists of six
parts, which are the coordination system, message broker,
IMC resource agent, IMC service pool, IMC application
executor and IMC manager. Details of each part will be
presented in the following sections.

 Running on IAAS platform

Coordination system

Streaming

processing

services

Batch

processing

services

Other services

IMC service pool IMC

application

executor

IMC

application 1

IMC

application 2

...
Message

broker

...

C
o

n
n
ec

te
d

 b
y
 n

e
tw

o
rk

Sensors Instruments

IMC resource agent

RPC framework

Device drivers:

VISA/IVI/Other

Instrumentation and Measurement Cloud

Sensors Instruments

IMC resource agent

RPC framework

Device drivers:

VISA/IVI/Other

IMC

resource

manager

IMC

service

manager

IMC

application

manager

IMC manager

IMC scheduler

Fig. 4 Novel architecture for IMC

4.1 Coordination system and Message broker

The Coordination system records all configuration data
and management data of IMC services, IMC resources
and IMC applications. As the IMC architecture in Fig. 4 is
distributed, the coordination system should have a
distributed syncronization mechanism for data
manipulation. The coordination system should also
support event notification, so that events from the three
IMC elements can be discovered across the architecture
and corresponding actions can be taken.

The message broker is the core component for data
transmission. Data exchanges between IMC applications,
IMC services and IMC resources are mainly achieved by
the message broker. As illustrated in section 2, the
effective and efficient way to transmit data in a
distributed environment is via a publish/subscribe based
messaging mechanism, thus a publish/subscribe based
message broker is a good choice for data transmission in
IMC. And, to transmit data over the message broker, a
related client of the message broker should be integrated
into IMC elements.

4.2 IMC resource agent

The IMC resource agent is responsible for instrument and
sensor virtualization and IM resource registration.

As illustrated in section 3.2, instruments and sensors
can be virtualized through VI frameworks and standard
sensor models. By virtualization, instruments and sensors
are encapsulated into resources with standard access in-
terfaces. And, assisted by RPC frameworks, these inter-
faces can be called remotely from IM applications in the
cloud, which will bring much convenience for building
distributed IM systems. Once virtualized, these IM re-
sources can be registered into IMC by the IMC resource
agent, so that users can use them over networks. To use
IMC resources, users should first make a reservation for
each resource through the IMC manager. After reserva-
tion, an access id with start and end time stamps will be
allocated to user applications and the IMC resource agent,
and also, the entry of the resource, such as the URL of the
IMC resource agent, will be sent to user applications.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

When user applications want to access the reserved re-
sources, firstly they will have to send access the id to the
IMC resource agent through that entry, and the IMC re-
source agent will then check if it also has the same access
id and whether the current time is between the reserved
time span. If all requirements are satisfied, the IMC re-
source agent will allocate a resource handler for the ap-
plication and allow the application to use the resource
through RPC interfaces for instrumentation and meas-
urement tasks. The complete procedure for registering
and using IMC resources in the IMC is depicted through
the UML activity diagram shown in Fig. 5.

IMC resource

agent

IMC resource

manager

IMC application

manager

IMC

application

Coordination

system

Register

IMC resource Write management data of the IMC resource

Return data writing status

Write data
Return

registration

status

Schedule

IMC resource

Return IMC

resource entry

IMC

scheduler

Write

schedule

Return IMC

resource

 entry

Write data

Activate IMC resource
Activate

IMC resource

IM

resource

Bind IM resource

Return IM resource instance

Request IMC resource

Return IMC

resource entry

Reserve IMC resource

Activate IM resource

Use IMC

resource

Return

IM data

Release IMC resource
Release IMC

resource

Release IM resource

Fig. 5 Steps required for consuming IMC resources in IMC

4.3 IMC service pool

In IMC, services represent modularized function blocks
implemented in big data analyzing and cloud computing
frameworks. Such IMC services include stream data pro-
cessing modules, batch processing modules and other
function modules. IMC services are normally developed
and deployed in parallel and distributed cloud compu-
ting platforms. Each type of service can serve multiple IM
applications and the platform or framework running
these services will provide scaling, parallel processing
and fault tolerance abilities. Services and applications in
IMC are connected by a publish /subscribe based mes-
sage broker.

The message broker is used to transmit data between
services, resources and applications. Currently, many
message brokers support clustering, which means brokers
can support fault tolerance. However, overheads from
message headings and message routing can degrade data
transmission performance. To deal with this problem,
some message brokers support light message headings
and a simple message routing scheme. This can increase
message processing and transmission speed, but at the
same time reduce flexibility and functionality of the bro-
ker. Other brokers can provide more flexible control over
message transmission and fault tolerance by adding extra
information to messages but this will bring more over-
heads. IMC service providers should choose the broker

according to their needs.
All services in IMC should register themselves through

the IMC manager. When registering, the IMC manager
will create data entries for each IMC service in the coor-
dination system and write management data of services
into those entries. Normally, each IMC service has several
input interfaces and output interfaces. For input interfac-
es of a service, the IMC manager will write message bro-
ker topics that they are listening on to their data entries
and if IMC applications are to consume this service, they
can get those topics through the IMC manager and then
publish messages to those topics. To get processed data
from the IMC service, IMC applications need to write
topics that their sink modules are listening on to data en-
tries of the service’s output interfaces.

As for stream data processing services, each of them
has several input and output interfaces. Input interfaces
will listen on dedicated message topics and, as for output
interfaces, they will watch on a data cache entry that
stores destination message topics for outputting data.

For batch processing services, file systems and data-
bases constitute the data sources. In most cases, batch
processing is an off-line post-processing approach but IM
systems normally deal with real-time stream data pro-
cessing, so batch processing services will not be studied
in this paper. However, batch processing services are still
indispensable to the whole IMC architecture.

To enable a parallel and distribute computing para-
digm and enhance the ability of fault tolerance for IMC
services, three key roles should be followed when devel-
oping IMC services:

1. Reduce coupling and dependency between data. On-
ly in this way can the service be implemented in a parallel
computing paradigm.

2. Make data self-descriptive. This is very important
for multiple IMC applications to share the same service
instance. Since data can describe themselves, service in-
stance does not need to know which application these
data come from.

3. Try to avoid state caching for IMC applications in
services and use dedicated memory cache systems. Most
distributed and parallel cloud computing frameworks
support fault tolerance. That means that when some pro-
cessing nodes go down the system can still run in a nor-
mal state. However, if those nodes cache states of current
applications they serve, all these states will be lost and
restoring the service process can be difficult, especially
for streaming processing applications. Moreover, avoid-
ing state caching in service instances can facilitate online
load transfer which is vital to load balancing.

4.4 IMC application executor

The IMC application executor is responsible for running
IMC applications that are deployed in the IMC. It often
consists of a script interpreter or runtime engine. By de-
ploying IM applications into the IMC, users can save the
trouble of maintaining the client side. With proper user
interfaces, users can access their IM applications through
mobile terminals.

HENGJING HE ET AL.: RESEARCH ON THE ARCHITECTURE AND ITS IMPLEMENTATION FOR INSTRUMENTATION AND MEASUREMENT CLOUD 7

4.5 IMC manager

The kernel of the whole architecture is the IMC manager.
The IMC manager contains four main components: the
resource manager, the service manager, the application
manager and the scheduler. All IMC resources, related
IMC services and IMC applications are registered and
managed by the corresponding component of the IMC
manager. Fig. 6 shows how the IMC manager works.

IMC resource

manager

Coordination system

IMC resource agent

Register IMC resource

Write management data

IMC application

manager

Request IMC services and IMC resources

Listen on IMC resource requests

Consume

IMC resources

IMC service

Manager

Register IMC service

Write management data

IMC application

Register IMC application and

get entries of IMC services and IMC resources

IMC service
Consume

IMC services

IMC scheduler

Activate\Release

 IMC resource

Schedule IMC services and IMC resources

Fig. 6 Details of IMC manager

When registering resources, the resource manager will
create a data entry for each resource and store their Man-
agement data （之前 用的 meta data 后来全改为
management data） . Under an RPC framework, man-
agement data often contains the URL of the resource side
RPC server. Another data entry that caches all reservation
information of the resource is also created upon registra-
tion. Such reservation information will also be sent to the
IMC resource agent for authorization purposes. A similar
process happens when the service manager is registering
services. However, the service manager mainly maintains
management data about interfaces of each service. Service
and resource requests from IMC applications are pro-
cessed by the application manager. When IMC applica-
tions request services or resources, the application man-
ager will query the coordination system, get all related
management data and send these data back to applica-
tions. At the same time, some of the message broker’s
context of the sink module in the applications will be
written into data entries that output interfaces of services
are listening on.

The tasks of the scheduler are IMC resource and ser-
vice scheduling, load balancing and scaling of IMC ser-
vices. Fig. 7 shows how those tasks are handled by the
IMC scheduler.

Coordination system

Reservation:

IMC resource A(9:00-10:00)

IMC resource B(9:00-10:00)

Allocated IMC resources and IMC services:

IMC resource A and B, Duration 9:00-10:00, IMC service A(instance 2)

IMC application manager

IMC scheduler

IMC resource

schedule

IMC service

schedule

IAAS platform

Cluster

Instance1-Load 90%

Instance 2-Load 50%

IMC service A

VM VM VM

IMC resouce manager

Fig. 7 Work procedure of the scheduler

As shown in Fig. 7, when an IMC application requests
IMC resources, the scheduler will call related algorithms to

calculate a valid time span for those resources and make
reservations. Currently most IM resources are not like ser-
vices, and they cannot be shared at the same time by differ-
ent users. Thus, the scheduling running time of IMC re-
sources according to users’ needs is very important. Load
balancing and service scaling is done by scaling the cluster
that runs the service. When IMC applications request ser-
vices, the scheduler will query the load capacity of each ser-
vice instance and select the ones with low load capacities.
Also when several service instances have low load capaci-
ties, the scheduler can transfer tasks on these instances to on
instance and shut down other instances. Such online load
balancing can greatly increase the utilization efficiency of
computing, storage and other resources in the cloud. How-
ever, online load balancing needs the support from both the
framework that runs the service and the service itself.

Whenever an IMC application is registered in the IMC,
the application manager will record all consumed services
and resources. If the state of any of the services or resources
changes, a related event will be sent to the application man-
ager, which will trigger the state transition of the IMC appli-
cation. Also, a change of application state can trigger state
transition of resource. State transition models for service,
resource and application in IMC are shown in Fig. 8.

Reserved

Registered

Activated

Unregistered

Registered

Unregistered

Pending

Registered

Running

Unregistered
e1

e2

e6

e3
e4

e8

e7 e8e5
e1

e2

e10

e1

e2

e8 e5 e10

e6

e9
e5 e7

e8 e11

IMC Resource IMC Service IMC Application

CreatedDestroyed CreatedDestroyed CreatedDestroyed

e0e0e0
e12

e12

e12

Fig. 8 State transition models of service, resource and application in
an IMC. In the figure relevant evets are:
e0:add element, e1:register, e2:unregister, e3:reserve, e4:cancel
reservation, e5:resource invalid, e6:resrouce available, e7:resource
expired, e8:application invalid, e9:application start, e10:service inva-
lid, e11:application terminated, e12:destroy element.

All state transition models in Fig. 8 start from creation.
After adding an element to a working thread, the state of the
element turns to unregistered and this state normally means
related entities are not yet connected to the IMC. As for re-
source, if the application utilizing this resource becomes in-
valid, the resource state will transfer from reserved or acti-
vated to registered state, which means this resource is re-
leased back to the resource pool. A state transition model for
service is much simpler since service instance can be shared
by many applications at the same time which will save the
“reserved state” from scheduling. The application state tran-
sition model is a little more complicated as it involves events
from resources and services. Invalidation of resources or
services will always cause the application to be unregistered,
thus, when implementing the IMC architecture, only very
serious errors or problems are allowed to generate the “inva-
lid” event and in other situations try pending the application
rather than unregistering it. Fig. 8 shows only very basic
state transition models for IMC, however implementation of
the IMC architecture will need more detailed models to
handle more complicated situations.

To demonstrate the feasibility and advantages of the IMC

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

architecture brought forward by this paper, a practical sys-
tem implemented upon this architecture is presented.

5 IMPLEMENTATION OF THE IMC ARCHITECTURE

5.1 Coordination system and Message broker

The coordination system is used to record important con-
figuration data and management data about resources,
services and applications in the IMC. Here, Zookeeper,
which is a distributed coordination system with fault tol-
erance ability, is utilized to store various data. Zookeeper
uses a data structure called a Zookeeper path which is
similar to the directory of a file system and where each
node of a path can store data. Various message brokers
can be used in the IMC and in this paper Rabbitmq is
adopted.

5.2 VISA based IMC resource agent

First, to verify that the architecture is viable for instru-
ment and sensor virtualization, a VISA (Virtual Instru-
ment Software Architecture) based IMC resource agent is
implemented. The agent uses an Apache Thrift RPC
framework and all VISA driver interfaces are remotely
mapped. Since Thrift supports cross language services
development, it is also used as the service framework
between all servers and clients in the IMC. Fig. 9 shows
the details of the implemented IMC resource agent and
how it interacts with the resource manager in the cloud.

IMC resource manager

IM
C

 re
so

u
rc

e
 a

g
e
n
t

VISA RPC

server

IMC resource management

RPC server

IMC application

VISA RPC client

Instrument Instrument Instrument

VISA instrument driver

IMC resource activate/release

RPC client

IMC resource activate/release

RPC server

IMC resource management

RPC client

VISA resource manager

VISA instrument

resource

VISA instrument

resource

VISA instrument

resource

Fig. 9 Implementation of the IMC resource agent

As shown in Fig. 9, instrument resources are registered
through resource management RPC services, which are
implemented in the Thrift framework. To access the in-
strument resource, each IMC resource agent needs to run
a VISA RPC server and it wraps all VISA driver interfac-
es. However, interfaces are extended to include a third
parameter which is the access ID. Such access IDs contain
both the name of the instrument resource and the re-
served time span of the resource. The resource agent will
also store a set of <access ID, instrument resource> maps
and these maps are built up when applications in the
cloud request the resources managed by this agent. Once
the application in the IMC needs to control a resource, it
will make a remote call with the access ID. On the agent
side, the agent will get the corresponding resource
through this ID and then call a local VISA instrument

driver to control the instrument and then return the result
to the application. To make the agent as independent with
platforms as possible, pyvisa, which is a python imple-
mented frontend of VISA driver, is used as the VISA re-
source manager. Although instruments and sensors are
diverse in their hardware architectures and software in-
terfaces, similar implementation can be applied to virtual-
ize them into an IMC resource as long as their interfaces
are available.

As for resources, the data structure used to record their
information is shown in Fig. 10. When registering re-
sources, the resource manager of the IMC manager will
create a data path according to the domain, site and re-
source name. Here domain and site are used to constitute
a two-level naming convention so that resource manage-
ment can be more convenient and flexible. Whenever a
reservation is made for a resource, a duration with a start
and end time will be added as a child to the resource data
path when the reservation becomes valid. And as long as
a resource is registered, the IMC resource agent will listen
on the data path for a child-adding event. If such an event
happens, the agent will be activated.

/instcloud/resources/[domain]/[site]/[resource]/[duration]

Resource

Management

Application

Management

Listened by

Resource Agent

Fig. 10 Management data for IMC resource

5.3 Storm based IMC service for stream data
processing

The next stage is for IM services to be implemented. As
explained before, IM applications normally need to pro-
cess real-time stream data, thus a stream data processing
engine is required and related IM function modules need
to be developed. In the work of this paper, Apache
Storm[34] is used as the real-time streaming data pro-
cessing engine. Storm is a distribute parallel stream data
processing engine with fault tolerance whose maximum
processing speed can reach around 1 million messages
per second. Storm contains two types of components,
which are Spout and Bolt. Spout is the data source and it
can be connected to a message broker to subscribe mes-
sage topics. Bolt is the process component. Spouts and
Bolts compose a Topology which carries out the stream
data processing logic. Each Spout or Bolt can run multiple
instances so that they can process data in parallel. Topol-
ogies are wrapped into services, with certain Spouts func-
tioning as input interfaces and some Bolts as output inter-
faces. Fig. 11 presents a simple example for computing
electrical power to show how services in the IMC interact
with applications and the IMC manager in the cloud.

HENGJING HE ET AL.: RESEARCH ON THE ARCHITECTURE AND ITS IMPLEMENTATION FOR INSTRUMENTATION AND MEASUREMENT CLOUD 9

IMC service

IMC application

Coordination system

Physical

data stream

Configuration for output

interfaces of IMC services

IM
C

 ap
p
lic

atio
n

 m
an

ag
er

IMC service manager

App_A

Producer

 Consume(Power_M, Input)

Power_M

 Consume(Consumer, Output)

Consumer

 Listen(Queue_Out_A)

App_B

Producer

 Consume(Power_M, Input)

Power_M

 Consume(Consumer, Output)

Consumer

 Listen(Queue_Out_A)

Power, Instance1

Tuple

(<ID, A>

<v, 1>

<i, 2>)

Tuple

(<ID, A>

<p, 2>)

Tuple

(<ID, B>

<v, 2>

<i, 2>)

Tuple

(<ID, B>

<p, 4>)

Compute

Instance 1: v*i Instance 2: v*i

Input

Queue_In

Output

A->Queue_Out_A,

B->Queue_Out_B

Message

broker

Queue_In

Queue_Out_A

Queue_Out_B

Logic

connection

Configuration for output

interfaces of IMC applications

Fig. 11 A service implemented through Storm to compute electrical
power

In Fig. 11, input interfaces of a service are implement-
ed by instances of IMCSpout class, which is an extended
Spout class with service management RPC clients. When
a service is submitted, each IMCSpout instance will regis-
ter the context of the message topic that this IMCSpout is
listening on through those clients. Since Rabbitmq is used
as the message broker, the detailed context of a message
topic is wrapped into RMQContext class. To consume a
service, an IMC application just needs to get the
RMQContext instance of each input interface, create a
Rabbitmq client corresponding to that context, and send
data to the service input interface through that client.

Output interfaces are instances of an extended Bolt
class named IMCBolt class with service management cli-
ents and they will also create management data entries in
Zookeeper and listen on those data paths. However, it is
the application manager that is responsible for writing
message topic contexts to the paths. Whenever data on
paths are updated, output interfaces of a service will up-
date destination contexts and send output data to the cor-
responding message topic. Each context in an output in-
terface is combined with a session ID and a module ID
which will be introduced in the following part, and each
message passed to an output interface will also contain
these IDs. With these IDs, output interfaces will know
which message topic the data should be sent to. Data
paths for services are shown in Fig. 12.

/instcloud/services/[service name]/[service instance]

Transport Context

/in/[InputInterfaces]

/session/[sessionID]/[moduleID]

/out/[OutputInterfaces]/[sessionID]

/capacity

Transport URL

Destination

Load Capacity

Fig. 12 Management data for IMC services

In Fig. 12, children under /in node are input interfaces
of the service and similarly children under /out node are

output interfaces. Each child node under /in node will
store a Transport Context which records the context of the
message topic that the interface is listening on. Each child
node under /out will store a Transport URL which tells
the output interface the message broker that is used to
transmit data. Under each node of output interface there
are child nodes representing IMC application sessions
that consume output data from the output interface and
each of the child nodes will store a Destination Object that
records contexts of message topics for output data trans-
mission.

The /session node under each topology instance or
service instance node and its children are used for service
state management. For example, when an IMC applica-
tion session releases a service, the corresponding session
ID and module ID will be deleted and such a deleting
event will be listened on by the IMC service manager and
related IMC service instance. Once such event happens,
both the IMC service manager and related IMC service
instance will clear data for that session.

The /capacity node stores load capacity of this service
and the IMC manager will use this data for load balance
and scaling.

5.4 IMC application developing mode and data
routing mechanism in IMC

IMC applications are implemented through text program-
ing language and currently only Java APIs (Application
Programming Interfaces) have been developed. Four clas-
ses are defined according to entities in the IMC, which are
ICResource, ICService, StreamProducer and StreamCon-
sumer. ICResource and ICService are wrappers of the
resources and services in the IMC. When creating ICRe-
source objects, the domain, site, resource name and time
span should be specified, but for ICService objects only
service name is required. The ICResource class is normal-
ly wrapped with RPC interfaces that are used to control
resources. StreamProducer is used to publish data to the
input interfaces to a service while StreamConsumer is
responsible for receiving data from the service. However,
all related message broker contexts are automatically set
when submitting the application. A complete IM process
is wrapped into a session task and all related resources,
services and other modules are managed through a Ses-
sion object. All the four types of components in an IMC
application session have their module IDs and each ses-
sion has a universally unique ID, but the module ID is
only unique to a session. Fig. 13 shows a diagram of a
simple IMC application, which is also referred to in Fig.
11 for illustration.

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

StreamConsumer

-ModuleID: Consumer

SessionTask

SessionID:1
ICService

-ServiceName: Power

-ModuleID: Power_M

-In: Input

-Out: Output

-consumeService(

Interface: Output

ModuleID: Consumer)

CustomLogic

Method: Combine

:VOLT:IMM:AMPL?

v
:CURR:IMM:AMPL?

i

StreamProducer

-ModuleID: Producer

-send()

-consumeService(

ModuleID: Power_M

Interface: Input)

Current

Meter

Voltage

Meter

ICResource

-Name: VoltMeter

-Domain: test

-Site: site1

-Resource: ASRL3::INSTR

-Duration:0:00-1:00

-Query()

ICResource

-Name: CurrentMeter

-Domain: test

-Site: site1

-Resource:

TCPIP0::localhost::2222

::inst0::INSTR

-Duration:0:00-1:00

-Query()

i v

Session ID: 1

Module ID: Producer

Data: <v:1,i:2>

Data: <p:2>

Fig. 13 An IMC application example

A code fragment for the IMC application in Fig. 13 is as
follows.
ICResource voltMeterICRes = session.newICResource(“test”,“site1”, “AS

RL3::INSTR”, “VoltMeter”);

ICResource currentMeterICRes=session.newICResource(“test”,“site1”, “T

CPIP0::localhost:2222::inst0::INSTR”, “CurrentMeter”);

StreamConsumer strConsumer = session.newSink(“Consumer”);

StreamProducer strProducer = session.newHeader(“Producer”).consumeSe

rvice(“Power_M”, “Input”);

session.newICServiceModule(“Power_M”, “Power”).consumeService(“Ou

tput”, “Consumer”);

There is a consumeService method that is used to de-
cide which module and interface the data of the current
module should be sent to. For the StreamProducer mod-
ule, the name of the next module and the interface should
be provided, while for the service module the name of the
service output interface and the next module and its input
interface, if any, should be defined.

Data routing in IMC is relatively more complex than
conventional IM programs. Fig. 14 shows how data are
routed between multiple services.

StreamProducer

ModuleID: StreamA

StreamProducer

ModuleID: StreamB

StreamConsumer

ModuleID: StreamD

ICService: G

ModuleID: modG

D=g(C)

F: Instance1 Instance2

G: Instance1

Session1

/instcloud/services/F/Instance2/session/Session1/modF

/instcloud/services/F/Instance2/in/IMCSpoutA

/instcloud/services/F/Instance2/out/IMCBoltC/Session1

RMQContext

Destination: <CurrentModuleID→

List<NextModuleID, RMQContext>>
Destinations: <SessionID→ Destination>

Tuple:{

SessionID:“Session1”;

ModuleID:“modF”;

Data:C;

...}

Message

Broker

BoltF

C=f(A,B)

IM
C

S
p
o

u
tA

IMCBoltC

IM
C

S
p
o

u
tB

BoltF

C=f(A,B)

IM
C

S
p
o

u
tA

IMCBoltC

IM
C

S
p
o

u
tB

BoltG

D=g(C)

IM
C

S
p
o

u
tC

IM
C

B
o

lt
D

ICService: F

ModuleID: modF

C=f(A,B)

Fig. 14 Data routing in IMC

In Fig. 14 two services are consumed by the IMC appli-
cation session, which is Session1. Here, simple IDs are
used just for the convenience of illustration. StreamA and
StreamB are instances of StreamProducer class. SteamD is
an instance of StreamConsumer. IMCSpoutA, IMCSpoutB
and IMCSpoutC are instances of the IMCSpout class
while IMCBoltC and IMCBoltD are instances of IMCBolt.
BoltF and BoltG are instances of the ordinary Bolt class.

When the IMC application manager processes service

requests from an IMC application, it will assign an IMC
service instance for each consumed service. In Fig. 14,
IMC service F consumed by Session1 is assigned with
IMC service instance2. The corresponding session ID (e.g.
/Session1) and module ID (e.g. /modF) will be written
into the data path of the IMC service instance (e.g.
/F/Instance2/) for state management.

To send data from an IMC application session to an
IMC service instance, the RMQContext object of each in-
put interface should be returned to the IMC application
session. For example, in Fig. 14, the RMQContext object
stored on /IMCSpoutA will be returned to Session1 and
the Rabbitmq client in StreamA will be configured ac-
cording to that object. Similarly, StreamB will also be con-
figured through the RMQContext object stored on the
/IMCSpoutB node. In this way, data from Session1 can be
transmitted into the correct input interfaces of each IMC
service instance.

Once data are processed, e.g. calculated through func-
tion	�(x, y), results need to be output by output interfaces,
e.g. IMCBoltC of Instance2. Since one IMC service in-
stance can be shared by multiple IMC applications, to
distinguish the source of each data, the session ID and
related module ID should be attached to each data. For
example, data sent from Session1 to Instance2 of IMC
service F will be attached with session ID “Session1” and
module ID “modF”. As explained in Fig. 12, sessions that
consume the output of an output interface of a service
instance will create a child node under the data path of
that interface. For example, in Fig. 14, node /Session1 is
added to children of the /IMCBoltC node. This adding
event will be listened on by IMCBoltC and a Map object
named Destinations will be created in IMCBoltC to store
destinations of data that are related to Session1. Detailed
information about the destination will be stored as a Map
object on the node of the session. For example, destina-
tions for output data, which related to Session1, of
IMCBoltC will be stored on the /IMCBoltC/Session1
node. Such destinations are organized as a Map object
named Destination, and the key of the Map is the current
module ID of the service (e.g. modF) and the value is a
list of Object that stores the ID of the next module and
RMQContext object of the next module’s input interface.
This Destination object will also be added to the Destina-
tion object in IMCBoltC. Now, with the session ID and the
module ID attached to the data, IMCBoltC will know
which message topics defined by RMQContexts in the list
of Destination object the data should be sent to. A Desti-
nation object is also created and written to Zookeeper by
the IMC application manager and this happens during
the service request processing stage. In Session1, the out-
put of IMC service F is connected to IMC service G, thus
RMQContext of IMCSpoutC in Instance1 of IMC service
G will be stored in the Destination object. And after fin-
ishing processing the service request from Session1, the
whole Destination object of Session1 for service F in-
stance2 will be written onto the /IMCBoltC/Session1
node. The reason why the ID of the next module is also
recorded in the Destination object is that each data can
only store the module ID of the current service instance

HENGJING HE ET AL.: RESEARCH ON THE ARCHITECTURE AND ITS IMPLEMENTATION FOR INSTRUMENTATION AND MEASUREMENT CLOUD 11

and, once data is passed to the next service instance, this
module will be invalid. Thus before passing data to the
next service instance, the value of the ModuleID field
should also be updated to the ID of the next module. As
in Fig. 14, “modF” will be replaced by “modG” in the
date Tuple. Through the above data routing mechanism,
data can be transmitted between different shared IMC
services.

To send data back to an IMC application, the IMC ap-
plication manager just needs to create a Destination object
according to the RMQContext of an instance of
StreamConsumer and write the object to the data path of
output interfaces of the connected service instance. This
process is similar to data routing between IMC services.

5.5 Implementation of IMC Manager

Implementation of IMC manager is shown in Fig. 15.

IMC resource manager

Curator Framework

IMC application manager

Zookeeper

Load

Capacity

Storm REST

server

RPC server RPC client

Curator Framework RPC client

RPC server

IMC service

RPC client

IMC service manager

Curator Framework

RPC server

IMC scheduler

RPC server

Curator Framework

IMC application

RPC client

Event Bus

IMC manager

IMC resource agent

RPC client RPC server

Fig. 15 Implementation of IMC manager

As shown in Fig. 15, the IMC manager needs to interact
with Zookeeper, IMC resource agents, IMC applications and
IMC services. In the implementation of this paper, Curator
Framework is used to interact with Zookeeper. Most of the
other remote management operations are carried out
through the Apache Thrift RPC framework. To obtain load
capacities of Storm-based services and schedule resources
for those services, the IMC scheduler will call the Storm
REST (Representational State Transfer) API. Each module of
the IMC manager in Fig. 15 can run a thread pool for its RPC
server, so that it can serve multiple RPC clients.

Currently, the IMC manager is implemented in a central-
ized way just to verify the feasibility and functionality of the
IMC architecture in this paper. As shown in Fig. 15, the IMC
resource manager, IMC service manager, IMC application
manager and IMC scheduler are loosely coupled through an
event bus. In this way, the IMC manager can manage the
state of each IMC element according to Fig. 8. However,
each module of the IMC manager is relatively independ-
ent, thus it will be very easy to implement the IMC man-
ager in a distributed way, e.g. substitute event bus with
message broker.

6 APPLICATION AND EXPERIMENT

To test the designed IMC architecture, an application for
power system state estimation (SE)[35] is developed based
on the implemented system.

6.1 Distributed parallel power system state
estimation

In a power system, not all states of the system are monitored

and, even if some electric states are measured by instrumen-
tation meters or sensors, the value may not reflect the true
state due to measurement errors or bad data caused by dis-
turbance to communication systems and many other factors.
However, all real states of a power system should always
obey the law of electric circuits. Thus, using these electric
circuit laws and measured data, a group of measurement
equations can be built up. With these equations, a mathe-
matic model can be developed to estimate the true states of
the whole power system. The most fundamental state esti-
mation method is the WLS (Weighted least square) meth-
od[36], also referred to as the NE (Normal equation) method.
And the mathematical model for the WLS method can be
formulated through (1) to (4): � =
(�) +
 (1)
Where z is the m dimension measurement vector, � is the
2n-2 dimension state variable vector,
 is the m dimension
measurement error vector and
(�) is the relation func-
tion of measurements and the state variable �.

��(x) = [z−
(�)]��[�−
(�)]� = diag[���� , ⋯ , ���� ,⋯ , ����] (2)

Where �(�) is the objective function, � is the × diag-
onal weight matrix, and σ#$ is the covariance of the % th
measurement error. ∆�(�) = � −
(�) (3)
Where ∆�(�) is the measurement residual vector.

'(TTTT(�)�((�)∆� = (TTTT(�)�∆�(�)HHHH(xxxx)==== ∂h(x)∂h(x)∂h(x)∂h(x)∂x∂x∂x∂x
 (4)

Where ((�) is the Jacobian matrix of
(�) and ∆� is the
correction vector for estimated state variables.

The WLS state estimation method is carried out by itera-
tion (4).

As there are bad data among measurements, a bad data
recognition process is required to find and eliminate bad
measurement data. A commonly used method is the nor-
malized residual recognition method[37]. This method uses
(5)-(6) to detect and identify bad measurement data.

-N = /0�− ((�)1(TTTT(�)�23((�)423(TTTT(�)523 ∆∆∆∆z(x)z(x)z(x)z(x) (5)

Where -N is the normalized residual vector for measure-
ment vector z. 7 = 8∑ :#$;#<� (6)
Where 7 is the threshold for bad data recognition.

If the %th element =N# of -N is greater than 7, then the cor-
responding measurement ># is taken as the bad data sus-
pect. And the measurement, which has the largest normal-
ized residual larger than	7, is taken as the prime bad data
suspect. Once bad measurement data are detected, they
should be discarded and the state estimation process should
restart. Normally, bad measurement data will not be dis-
carded at one time, instead, only the bad data that has the
prime suspect is discarded. The procedure of state estima-
tion with bad data recognition for power systems is shown
in Fig. 16.

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

Get measurements

Initialize SE

related parameters

State estimation

Bad data recognition

Bad data exists

Remove bad data

No bad data

Output result

Fig. 16 Power system state estimation procedure

In Fig. 16 the state estimation step is actually carrying out
the iteration process formulated in (4), while the bad data
recognition step is calculating -N and comparing its ele-
ments to	7.

Nevertheless, such an estimation process is quite compu-
tation-intensive and also consumes lots of memory, especial-
ly when the system is large. But still, the state estimation
process is required to be as fast as possible. To achieve this
goal, the parallel state estimation method[38] is introduced.

The parallel state estimation method is based on system
partitioning. To implement a parallel state estimation algo-
rithm, a large system should, firstly, be partitioned into sev-
eral subsystems where all subsystems can estimate their
own state in parallel. Each subsystem can use the aforemen-
tioned methods to estimate state except that the iteration
process is different. In a parallel state estimation algorithm,
after each iteration, all subsystems should share the states of
boundary buses before the next iteration. The basic proce-
dure of parallel state estimation algorithm is depicted in Fig.
17.

Initialize

Compute h(x) and H(x)

Share states of boundary buses

Iterate one time for a

subsystem

Compute h(x) and H(x)

Iterate one time for a

subsystem

Compute h(x) and H(x)

Iterate one time for a

subsystem

Bad data recognition

for a subsystem

Bad data recognition

for a subsystem

Bad data recognition

for a subsystem

Output result

Remove bad data

All subsystems are iterated once

All subsystems are converged

Else

No bad data

Else

Else

Iteration in parallel

Bad data recognition

in parallel

Step 1

Step 2

Step 4

Step 6

Step 8

Step 9

Step 3

Step 5

Step 7

Fig. 17 Parallel state estimation for a large power system

In Fig. 17 iteration and bad data recognition tasks from
multiple subsystems can be distributed in a cluster to accel-
erate the overall estimation speed.

6.2 IMC based power system state estimation

Since the IMC platform can greatly facilitate building dis-
tributed IM systems and provide efficient big data pro-
cessing frameworks, this section tries to establish an IMC-
based power system state estimation system. Such a system
will not only make state estimation easier and more efficient,
but can also test the functionalities that the IMC architecture
brings up in this paper.

According to the IMC architecture elaborated on before,
three aspects should be considered when developing an
IMC-based state estimation system: (1) Virtualizing a meas-
urement system into an IMC resource; (2) Implementing a
parallel state estimation algorithm into an IMC service; (3)
Developing a state estimation IMC application.

(1) Virtualizing a measurement system into an IMC re-
source

There are eight types of electric variables that need to
be measured for state estimation. Since the test cannot be
carried out in a real power system for safety reasons, all
measurements are simulated by adding Gaussian noise to
system power flow data.

As the implemented IMC resource agent is based on
VISA, here, a meter that conforms to VISA is implement-
ed for each system through a pyvisa-sim, which is an in-
strument simulation software for pyvisa, and custom de-
fined instrument commands, such as ?MEA, are used to
retrieve measurement data from the simulated meter. In
this way, the measurement system of each power system
can be virtualized into an IMC resource. However, in

HENGJING HE ET AL.: RESEARCH ON THE ARCHITECTURE AND ITS IMPLEMENTATION FOR INSTRUMENTATION AND MEASUREMENT CLOUD 13

practical applications, a corresponding IMC resource
agent should be developed according to the physical
measurement system.

Once a measurement system is virtualized into an IMC
resource, a state estimation IMC application can retrieve
all measured data by sending instrumentation commands
through the RPC framework.

 (2) Implementing a parallel state estimation algorithm
into an IMC service

A parallel state estimation algorithm is implemented into
an IMC service, which can be consumed by different state
estimation IMC applications to estimate states of multiple
power systems simultaneously. According to Fig. 17, a
storm-based state estimation IMC service can be developed,
as in Fig. 18.

System

Partitioning Bolt

Initialization

Bolt

Measurement Data

Converting Bolt

Measurement Data

Caching Bolt

Trigger Command

Handling Bolt

First SE

Bolt

Bad Data

Discarding Bolt

Single Iterating

Bolt

Convergence

Checking Bolt

Bad Data

Recognition Bolt

Estimated State

Checking Bolt

Output Data

Converting Bolt

Output

Bolt

Redis

M
es

sa
g
e

b
ro

k
er

System

Configuration Spout

Measurement

Data Spout

Cached Command

Triggering Spout

Triggering

Spout

IMCBolt

IMCSpout

Bolt

Spout

Fig. 18 Storm-based IMC service for power system estimation

The topology mainly contains three subsystems. The
first is the system partitioning subsystem. This subsystem
receives the configuration data of a power system from
the SE IMC application through a System Configuring
Spout. It is responsible for partitioning a large power sys-
tem into small subsystems and initializing various pa-
rameters for SE. In this test, KaHIP[39], which is an effec-
tive and fast graph partitioning tool, is used to partition
the power system. Also the topology is implemented
through JAVA, however JAVA is not quite suitable for
matrix computation, thus all matrix-related computations
are carried out by Matlab. Partitioned data and initialized
parameters are all stored in Redis[40], which is an in-
memory database, so that computation processes can be
separated from data, which is one of the rules for devel-
oping the IMC service. Redis uses a key-value data struc-
ture, and it is fast and very suitable for big data pro-
cessing. As an IMC service is shared by multiple IMC
applications, when caching data, a key should be attached
to each data to identify its origin and that is why Redis is
chosen as the caching database. Here, most of the inter-
mediate data are cached in Redis.

The second subsystem is the measurement subsystem.
It converts raw measurement data into formatted data, so
that those data can be used for state estimation. Raw
measurement data are acquired from the IMC resource
corresponding to the virtualized measurement system of
a power system by the SE IMC application, and then sent
to the Measurement Data Spout through the message
broker. A Measurement Data Converting Bolt will con-
vert the data and then send the converted data to the
Measurement Data Caching Bolt to store the data in Redis.

The third subsystem is the SE subsystem. This subsys-
tem implements the parallel SE algorithm, as shown in

Fig. 17. Whenever a power system needs to estimate state, it
can just send a trigger command with the ID of the power
system to the SE subsystem through the Triggering Spout.
After receiving the trigger command, the Trigger Command
Handling Bolt of the SE subsystem will check if the power
system that requires SE is currently being estimated. If so,
the SE subsystem will cache the command for the latter SE
triggering, otherwise it forwards the command to the First
SE Bolt. The Cached Command Triggering Spout will check
all cached commands similar to the Command Handling
Bolt periodically and send a valid command to the First SE
Bolt. The First SE Bolt will then compute �(�) and compare
it to the corresponding threshold to see if the initial state
is the estimated state. If �(�) is below the threshold, the
initial state is the estimated state and it will be forwarded to
the Output Data Converting Bolt to convert the data for out-
put, otherwise the SE trigger command will be sent to the
Bad Data Discarding Bolt to start a new state estimation pro-
cess.

The Single Iterating Bolt, the Convergence Checking Bolt,
the Bad Data Recognition Bolt, the Estimated State Checking
Bolt and the Bad Data Discarding Bolt implement step 2,
steps 3-5, step 6, step 7 and step 8 in Fig. 17, respectively.
However, there are three main differences. Firstly, the Bad
Data Discarding Bolt has two inputs, which are the First SE
Bolt and the Estimated State Checking Bolt. If the input is
from the First SE Bolt, the Bad Data Discarding Bolt will do
nothing but send the input command to the Single Iterating
Bolt, otherwise it will discard bad measurement data and
send a command to the Single Iterating Bolt for new SE. Sec-
ondly, as estimated states from each iteration are cached in
Redis, all states will be updated immediately, which means
states of boundary buses are shared in time by the Single
Iterating Bolt and that is why no Bolt for step 4 in Fig. 17 is
implemented. Thirdly, each of the Bolts in the SE subsystem
can serve different power systems and do not bind to one
specific power system. Such a loosely coupled processing
characteristic is achieved by caching data in Redis and re-
trieving corresponding data of each power system through
keys such as the ID of a power system. Once the state of a
power system is estimated, it will be sent back to the corre-
sponding SE IMC application through the Output Bolt. Par-
allel iteration and bad data estimation are implemented by
running multiple instances of corresponding Bolts.

Once the SE topology is developed, it can be deployed in-
to the IMC platform, and the SE IMC service can be started.

 (3) Developing a state estimation IMC application
With the measurement system being virtualized and

the SE IMC service running, to carry out state estimation,
end users just need to develop a very simple SE IMC ap-
plication to acquire measurement data of a power system
from the corresponding IMC resource and send those data
to the SE IMC service for SE online. Detailed activities of
the SE IMC application are shown in Fig. 19.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

Initialize the IMC resouce corresponding to

the measurement system and SE IMC service

Send configuration data of the power

system to the SE IMC service

Get measurement data from the IMC resource

Else

Send raw measurement data

 to the SE IMC service

Send SE trigger command

Receive estimated state and process it

Continue next estimation

Fig. 19 Activity diagram of the SE IMC application

In Fig. 19 IMC resources and IMC services are defined
through instances of ICResource Class and ICService
Class respectively. Data are sent by instances of
StreamProducer Class and are received by instances of
StreamConsumer.

6.3 System deployment and test scenarios

The deployment of the whole IMC platform is shown in
Fig. 20 with the whole system running on an Openstack
IAAS cloud platform.

Nimbus and

 Zookeeper

Supervisor-1

Supervisor-2
IMC Manager

Redis Server IMC resource agent with

Simulated instrumentation meters

IMC Application

 Executor

...

Storm cluster running SE

IMC Service

Openstack IAAS Cloud

Fig. 20 Deployment of the whole system

Detailed configurations of nodes in the Openstack
cloud and VMs of the IMC platform are shown in Table 1.

TABLE 1

CONFIGURATIONS OF NODES IN THE OPENSTACK CLOUD

Node type
CPU/Speed/

Quantity
Memory

Cores/

Threads

Control and network Node

of the Openstack cloud

E3-1246/3.5GHz/1 16GB 4/8

Compute node of the

Openstack cloud

E5-2620/3.2GHz/2 32GB 6/12

VMs for Supervisors of

Storm cluster

E3-12XX/2.3GHz/1 8GB 4/4

VMs for Other nodes in

the IMC platform

E3-12XX/2.3GHz/1 4GB 4/4

All hypervisors are connected by a Gigabit Ethernet
switch.

In this test, case data from Matpower[41] are used and
two test scenarios are set. In the first test scenario, state
estimation for case3120sp is tested and the SE IMC service
is exclusive to case3120sp. The number in the case name
represents the number of buses in the system. This sce-
nario is used to test the functionality of the implemented
IMC platform so as to test the IMC architecture brought
up in this paper. In the second test scenario, state estima-
tions for case2869pegase, case3012wp and case3120sp are
tested simultaneously and the SE IMC service is shared
by multiple cases. This scenario is used to test the service
sharing ability of the IMC architecture. Systems of these
cases are very large in the electrical engineering field and,
when running a parallel SE algorithm, each system is split
into several subsystems. The number of buses in each
subsystem is limited to 300 when splitting the system.

The most computation intensive Bolts are the Single It-
erating Bolt and the Bad Data Recognition Bolt, and,
while these two Bolts are under full load, all load capaci-
ties of other Bolts in Fig. 18 are less than 5%. Thus, multi-
ple workers are set for the instances of these two Bolts. To
find out which Bolt plays a more important role in deter-
mining the total estimation time ?se, a different number of
workers are set for each of the Bolts.

6.4 Test results

The test result for the first test scenario is shown in Fig.
21.

Fig. 21 State estimation time for case3120sp using the IMC platform

In Fig. 21, PB is the number of workers for the Bad Da-
ta Recognition Bolt and PE is the number of workers for
the Single Iterating Bolt. Fig. 21 shows that, when increas-
ing PB, estimation time will reduce dramatically. Fig. 21
also shows that, when PB is fixed, changing PE does not
effectively influence the estimation time. However, when
PB increases to 12 or larger, the estimation time does not
decrease any more. This phenomenon is caused by the
overheads from distributed computing, such as data
transmission delay between computing nodes.

Fig. 21 demonstrates that the bad measurement recog-
nition process is much more time-consuming than the
estimation process. Fig. 21 also shows that sometimes

HENGJING HE ET AL.: RESEARCH ON THE ARCHITECTURE AND ITS IMPLEMENTATION FOR INSTRUMENTATION AND MEASUREMENT CLOUD 15

increasing PB or PE may cause performance degradation
and that is because instances of Bolt may distribute across
different computing nodes. When more directly-
connected Bolt instances run on the same node, commu-
nication delay can be reduced. However, if more directly-
connected Bolt instances distribute over different nodes,
overheads from communication will degrade overall per-
formance. Currently, the distribution of Bolt instances is
carried out automatically by Storm and that is the reason
for performance fluctuation in Fig. 21. Similar phenome-
non will also happen in the second test scenario.

The result of the first test shows that the IMC architec-
ture brought up in this paper is feasible and satisfies the
basic functional requirements defined in section 3.

In the second scenario, the test results for each case is
similar to Fig. 21, thus, those results are not presented.
However, comparing the estimation time of case3120sp in
the two different test scenarios is important, since it can
reveal some characteristics of shared IMC services. Fig. 22
shows ?se of case3120sp in exclusive service mode and in
shared service mode.

Fig. 22 Comparing ?se of case3120sp in exclusive service mode and
in shared service mode

In Fig. 22, PEM designates the number of workers for
the Iterating Bolt in the second test scenario. Fig. 22
shows that when PB is small, which means computing
resource for SE service is inadequate, ?se is much higher
in exclusive service mode than in shared service mode.
However, when PB increases, ?se in exclusive service
mode is only 10%-20% higher than in shared service
mode. This demonstrates that, when computing resource
is not strained, performance of the SE IMC service in
shared service mode is very close to that in exclusive ser-
vice mode, which means resource utilization efficiency
can be greatly increased through service sharing in the
IMC platform.

Such a resource utilization efficiency improvement is
normally attributed to the overheads from synchroniza-
tion of the parallel algorithm. For example, in the parallel
SE algorithm shown in Fig. 17, step 2 or step 6 has to wait
until all subsystems are processed to continue, and dur-
ing this period some of the computing resource will be
idle if the service implemented upon this parallel algo-
rithm is exclusive. However, if the service is implemented
in shared mode, the idle resource can be used for SE of
other power systems, thus resource utilization efficiency
can be improved.

Comparison of the results from the above two test sce-
narios demonstrates that the IMC architecture in this pa-
per is viable for service sharing which can improve re-
source utilization efficiency.

7 DISCUSSION

Although the IMC brought up in this paper can greatly
facilitate utilization and management of IM resources,
limitations and challenges still exist. Firstly, IMC is not
suitable for those application scenarios that are highly
time-critical and require extremely high reliability. Such
limitation is caused by the latency and fluctuation of net-
works and overheads from message brokers, RPCs and
distributed parallel computing frameworks. Secondly,
high-speed and high-precision IM devices normally pro-
duce large amounts of data in a very short time, and di-
rectly transferring those large amounts of raw data in real
time from IM devices to the IMC may be impossible due
to the bandwidth limitation of the network. Thirdly, fre-
quent remote procedure calls can bring a lot of overheads,
especially for remote IM device control with short inter-
vals.

Currently, a promising solution for the first and sec-
ond challenges above is adopting fog computing[42] par-
adigms as a complementary framework between the IMC
layer and the physical IM device layer. Fog computing is
more focused on proximity to client objectives and end
users, which leads to less latency and higher reliability.
By pre-processing data locally or through fog computing,
the amount of data that need to be transferred over the
network can be greatly reduced, which will lower the
requirement for the bandwidth of the network. And also,
time-critical tasks can be carried out in a fog computing
framework and other computation intensive tasks can be
shifted to the IMC. In this way, the overall performance
and QoS (Quality of Service) can be greatly improved.

To solve the third problem, frequent remote procedure
calls can be substituted by direct interaction between local
devices and the IMC services. RPCs can just be used to
manipulate the interaction process rather than relay data
between IM devices and the IMC.

8 CONCLUSION AND FUTURE WORK

The instrumentation and measurement cloud can

greatly facilitate management of instruments and sen-

sors and at the same time allows users to utilize those

resources and related IM services on demand remote-

ly.
The IMC architecture brought forward in this paper

provides efficient guidance for developing a practical
IMC. With IM device virtualization and service wrap-
ping, building a remote IM system just requires only very
simple coding work. Most of the investment in IT facili-
ties and system development work can be saved. Also
with the ability to scale and load balance, the IMC can
increase the utilization efficiency of various resources to a
much higher level. Distributed parallel computing para-
digms of the IMC will accelerate the processing speed,
which brings lots of benefits for large-scale remote IM
systems and also for analysis of big data coming from
huge numbers of instruments and sensors. Application
developed upon the implemented system has demon-
strated the advantages of the work done in this paper.

16 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

However, more research work is still required to deal
with some challenges. Such challenges include latency
and stability of networks, geographic characteristics of
the physical object that is being measured, and so on.
These challenges are not proprietary to the IMC but
common in the remote instrumentation and measurement
field. But with more effort, problems caused by these
challenges can eventually be solved.

ACKNOWLEDGMENT

This work was funded by the State Key Laboratory of
Power System award SKLD15M02, Department of Elec-
trical Engineering, Tsinghua University, Beijing, China.

REFERENCES

[1] M. Bertocco, "Architectures For Remote Measurement," Distributed

Cooperative Laboratories: Networking, Instrumentation, and Meas-

urements, F. Davoli, S. Palazzo, and S. Zappatore, 1 ed: Springer US, pp.

349-362, 2006.

[2] A. Roversi, A. Conti, D. Dardari, and O. Andrisano, "A WEB-Based

Architecture Enabling Cooperative Telemeasurements," Distributed

Cooperative Laboratories: Networking, Instrumentation, and Meas-

urements, F. Davoli, S. Palazzo, and S. Zappatore, 1 ed: Springer US, pp.

395-407, 2006.

[3] A. Cheptsov, B. Koller, D. Adami, F. Davoli, S. Mueller, N. Meyer, P.

Lazzari, S. Salon, J. Watzl, M. Schiffers, and D. Kranzlmueller, "E-

Infrastructure for Remote Instrumentation," Computer Standards & In-

terfaces, vol. 34, no. 2012, pp. 476-484, 2012.

[4] S. Qin, X. Liu, and L. Bo, "Study on the Networked Virtual Instrument

and Its Application," Intelligent Data Acquisition and Advanced Com-

puting Systems: Technology and Applications, 2005. IDAACS 2005.

IEEE, pp. 337-339, 2005.

[5] Y. Jadeja and K. Modi, "Cloud computing - concepts, architecture and

challenges," Computing, Electronics and Electrical Technologies (IC-

CEET), 2012 International Conference on, pp. 877-880, 2012.

[6] I. Foster, Z. Yong, I. Raicu, and L. Shiyong, "Cloud Computing and

Grid Computing 360-Degree Compared," Grid Computing Environ-

ments Workshop, pp. 1-10, 2008.

[7] M. Fazio, M. Paone, A. Puliafito, and M. Villari, "Huge amount of het-

erogeneous sensed data needs the cloud," Systems, Signals and Devices

(SSD), 2012 9th International Multi-Conference on, pp. 1-6, 2012.

[8] W. Rekik, M. Mhiri, and M. Khemakhem, "A smart cloud repository for

online instrument," 2012 International Conference on Education and e-

Learning Innovations (ICEELI), pp. 1-4, 2012.

[9] A. S. McGough and D. J. Colling, "The GRIDCC Project," First Interna-

tional Conference on Communication System Software and Middle-

ware, pp. 1-4, 2006.

[10] M. Yuriyama and T. Kushida, "Sensor-Cloud Infrastructure - Physical

Sensor Management with Virtualized Sensors on Cloud Computing,"

13th International Conference on Network-Based Information Systems

(NBiS), pp. 1-8, 2010.

[11] R. Di Lauro, F. Lucarelli, and R. Montella, "SIaaS - Sensing Instrument

as a Service Using Cloud Computing to Turn Physical Instrument into

Ubiquitous Service," IEEE 10th International Symposium on Parallel

and Distributed Processing with Applications (ISPA), pp. 861-862, 2012.

[12] F. Lelli, "Bringing Instruments to a Service-Oriented Interactive Grid,"

Ph.D Thesis, Dipartimento di Informatica, Università Ca’ Foscari di

Venezia, Venice,Italy, 2007.

[13] G. C. Fox, R. Guha, D. F. McMullen, A. F. Mustacoglu, M. E. Pierce, A.

E. Topcu, and D. J. Wild, "Web 2.0 for Grids and e-Science," Grid Ena-

bled Remote Instrumentation, F. Davoli, N. Meyer, R. Pugliese, and S.

Zappatore, 1 ed: Springer US, pp. 409-431, 2009.

[14] E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S. Orlando, A.

Petrucci, S. Squizzato, and S. Traldi, "Instrument Element: a new grid

component that enables the control of remote instrumentation," Sixth

IEEE International Symposium on Cluster Computing and the Grid,

pp. 44-52, 2006.

[15] I. M. Atkinson, D. d. Boulay, C. Chee, K. Chiu, P. Coddington, A. Ger-

son, T. King, D. F. McMullen, R. Quilici, P. Turner, A. Wendelborn, M.

Wyatt, and D. Zhang, "Developing CIMA-based cyberinfrastructure for

remote access to scientific instruments and collaborative e-Research,"

Conferences in Research and Practice in Information Technology Series,

Ballarat, Australia, pp. 3-10, 2007.

[16] M. Okon, D. Kaliszan, M. Lawenda, D. Stokosa, T. Rajtar, N. Meyer,

and M. Stroinski, "Virtual laboratory as a remote and interactive access

to the scientific instrumentation embedded in Grid environment," 2nd

IEEE International Conference on e-Science and Grid Computing, Am-

sterdam, Netherlands, pp. 1-5, 2006.

[17] L. Berruti, F. Davoli, and S. Zappatore, "Performance evaluation of

measurement data acquisition mechanisms in a distributed computing

environment integrating remote laboratory instrumentation," Future

Generation Computer Systems, vol. 29, no. 2, pp. 460-471, 2013.

[18] M. Yuriyama, T. Kushida, and M. Itakura, "A New Model of Accelerat-

ing Service Innovation with Sensor-Cloud Infrastructure," Annual SRII

Global Conference (SRII), pp. 308-314, 2011.

[19] G. Merlino, D. Bruneo, S. Distefano, F. Longo, and A. Puliafito,

"Stack4Things: integrating IoT with OpenStack in a Smart City context,"

Smart Computing Workshops (SMARTCOMP Workshops), 2014 In-

ternational Conference on, pp. 21-28, 2014.

[20] G. Merlino, D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and A. Al-

Anbuky, "A smart city lighting case study on an openstack-powered in-

frastructure," Sensors, vol. 15, no. 7, pp. 16314-16335, 2015.

[21] K. Ahmed and M. Gregory, "Integrating Wireless Sensor Networks

with Cloud Computing," 2011 Seventh International Conference on

Mobile Ad-hoc and Sensor Networks, pp. 364-366, 2011.

[22] M. S. Aslam, S. Rea, and D. Pesch, "Service Provisioning for the WSN

Cloud," Cloud Computing (CLOUD), 2012 IEEE 5th International Con-

ference on, pp. 962-969, 2012.

[23] Y. Byunggu, A. Cuzzocrea, J. Dong, and S. Maydebura, "On Managing

Very Large Sensor-Network Data Using Bigtable," Cluster, Cloud and

Grid Computing (CCGrid), 2012 12th IEEE/ACM International Sym-

posium on, pp. 918-922, 2012.

[24] Y. Chang Ho, H. Hyuck, J. Hae-Sun, Y. Heon Young, and L. Yong-

Woo, "Intelligent Management of Remote Facilities through a Ubiqui-

tous Cloud Middleware," IEEE International Conference on Cloud

Computing, pp. 65-71, 2009.

[25] S. Distefano, G. Merlino, and A. Puliafito, "Sensing and Actuation as a

Service: A New Development for Clouds," 11th IEEE International

Symposium on Network Computing and Applications (NCA), pp. 272-

275, 2012.

[26] Y. Kang, Z. Wei, and H. Song-ling, "Discussion on a new concept of

measuring instruments-Instrument Cloud," China measurement and

test, vol. 38, no. 2, pp. 1-5, 2012.

[27] V. Rajesh, O. Pandithurai, and S. Mageshkumar, "Wireless sensor node

data on cloud," IEEE International Conference on Communication Con-

trol and Computing Technologies (ICCCCT), pp. 476-481, 2010.

[28] Y. Takabe, K. Matsumoto, M. Yamagiwa, and M. Uehara, "Proposed

Sensor Network for Living Environments Using Cloud Computing,"

15th International Conference on Network-Based Information Systems

HENGJING HE ET AL.: RESEARCH ON THE ARCHITECTURE AND ITS IMPLEMENTATION FOR INSTRUMENTATION AND MEASUREMENT CLOUD 17

(NBiS), pp. 838-843, 2012.

[29] G. Zhongwen, L. Chao, F. Yuan, and H. Feng, "CCSA: A Cloud Com-

puting Service Architecture for Sensor Networks," International Con-

ference on Cloud and Service Computing (CSC), pp. 25-31, 2012.

[30] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "A view of

cloud computing," Communications of the ACM, vol. 53, no. 4, pp. 50-

58, 2010.

[31] W. Z. Hengjing He, Songling Huang "Future trend of integrating in-

strumentation into the cloud " 2013.

[32] T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara, "USB/IP: A

Transparent Device Sharing Technology over IP Network," IPSJ Digital

Courier, vol. 1, pp. 394-406, 2005.

[33] P. Kalagiakos and P. Karampelas, "Cloud Computing learning," Appli-

cation of Information and Communication Technologies (AICT), 2011

5th International Conference on, pp. 1-4, 2011.

[34] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kul-

karni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and

D. Ryaboy, "Storm@twitter," Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, Snowbird, Utah,

USA, pp. 147-156, 2014.

[35] H. Karimipour and V. Dinavahi, "Parallel Domain Decomposition

Based Distributed State Estimation for Large-scale Power Systems,"

IEEE Transactions on Industry Applications, no. 99, pp. 1-6, 2015.

[36] M. Shahidehpour and Y. Wang, "Communication and control in electric

power systems: applications of parallel and distributed processing," 1

ed: John Wiley & Sons, pp. 235-249, 2004.

[37] Y. Erkeng, "Power system state estimation," Beijing: Hydroelectric Pow-

er publishingcompany, 1985.

[38] H. Karimipour and V. Dinavahi, "Parallel domain decomposition based

distributed state estimation for large-scale power systems," IEEE/IAS

51st Industrial & Commercial Power Systems Technical Conference

(I&CPS), 2015.

[39] P. Sanders and C. Schulz, "Think locally, act globally: Highly balanced

graph partitioning," Experimental Algorithms, 1 ed: Springer, pp. 164-

175, 2013.

[40] J. Zawodny, "Redis: Lightweight key/value store that goes the extra

mile," Linux Magazine, vol. 79, 2009.

[41] R. D. Zimmerman, S. Murillo, x, C. E. nchez, and R. J. Thomas,

"MATPOWER: Steady-State Operations, Planning, and Analysis Tools

for Power Systems Research and Education," IEEE Transactions on

Power Systems, vol. 26, no. 1, pp. 12-19, 2011.

[42] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its

role in the internet of things," Proceedings of the first edition of the

MCC workshop on Mobile cloud computing, pp. 13-16, 2012.

Hengjing He received his master’s degree
from Shanghai Jiao Tong University in China in
2011. He is now a PhD student in Tsinghua
University. His research interests include Com-
puterized Measurement and Instrumentation,
Cloud based Instrumentation and real-time big
on data processing in Measurement systems.

Wei Zhao received his Ph.D. from Moscow
Energy Institute, Russia, in 1991. He is now a
professor of Tsinghua University. His research
areas include electromagnetic measurement,
virtual instrumentation, networked instrumenta-
tion system, cloud based instrumentation.

Songling Huang received his Ph.D. from
Tsinghua University in 2001. Currently, he is a
professor in the Department of Electrical Engi-
neering at Tsinghua University. His current
research interests are electromagnetic meas-
urement and nondestructive evaluation.

Geoffrey C. Fox received a Ph.D. in Theoreti-
cal Physics from Cambridge University in 1967
and is now the Associate Dean for Research
and Graduate Studies at the School of Infor-
matics and Computing at Indiana University,
Bloomington, and professor of Computer Sci-
ence, Informatics, and Physics at Indiana Uni-
versity where he is director of the Community
Grids Laboratory. His research interests in-
clude data science, parallel and distributed
computing.

Qing Wang received her Ph.D. from the De
Montfort University, UK in 2001. She is now a
lecturer with the School of Engineering and
Computing Sciences at Durham University. Her
research interests include electronic instru-
ments and measurement, computer simulation
and advanced manufacturing technology. Dr
Wang is a Charted Engineer (CEng), a senior
member of IEEE (SMIEEE), a member of
IMechE (MIMechE), a member of ASME
(MASME) and a Fellow of the Higher Educa

tion Academy (FHEA).

