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AB STRACT

The Eocene Heart Mountain slide of northwest Wyoming covers an area of as much as 5000 km2 and includes al-
lochthonous Paleozoic carbonate and Eocene volcanic rocks with a run-out distance of as much as 85 km. Recent
geochronologic data indicated that the emplacement of the slide event occurred at ∼48.9 Ma, using laser ablation in-
ductively coupled plasmamass spectrometry (LA-ICPMS) extracted fromU-Pb zircon ages frombasal layer and injectite
carbonate ultracataclasite (CUC). We now refine that age with U-Pb results from a lamprophyre diatreme that is
temporally and spatially related to the CUC injectites. The ages for the lamprophyre zircons are 48.97 5 0.36 Ma
(LA-ICPMS) and 49.19 50.02 Ma (chemical abrasion isotope dilution thermal ionization mass spectrometry). Thus,
the lamprophyre and CUC zircons are identical in age, and we interpret that the zircons in the CUC were derived
from the lamprophyre during slide emplacement. Moreover, the intrusion of the lamprophyre diatreme provided the
trigger mechanism for the Heart Mountain slide. Additional structural data are presented for a variety of calcite
twinning strains, results from anisotropy of magnetic susceptibility for the lamprophyre and CUC injectites and
alternating-field demagnetization on the lamprophyre, to help constrain slide dynamics. These data indicate that
White Mountain experienced a rotation about a vertical axis and minimum of 357 of counterclockwise motion during
emplacement.

Online enhancements: supplemental tables.
Introduction

The Heart Mountain slide has been one of the most
controversial and enigmatic features in North Amer-
ica for nearly 120 y. The slide covers an area of at least
3500 km2 (Hauge 1993 and references therein) and
perhaps asmuch as 5000 km2,with a run-out distance
of as much as 85 km (Malone et al. 2014b). White
Mountain is one of the best exposures of the Heart
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Mountain slide and is an allochthon of Paleozoic
carbonate and Eocene volcanic rocks. The western
half of White Mountain, which is in the distal por-
tion of the bedding-parallel section of the Heart
Mountain slide, is the only occurrence of marble
within the entire HeartMountain system. This ther-
mal metamorphism took place before slide emplace-
ment and likely accompanied intrusion of the dio-
rite stock at the northeast end of White Mountain
(Malone et al. 2014a).
The base of allochthonous rocks at White Moun-

tain is defined by a horizontal, 2-m-thick carbonate
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ultracataclasite (CUC; Craddock et al. 2009) that
fed eight injectites of the same material, which are
as much as 120 m above the slide base within mar-
ble andMadison Group limestones (Craddock et al.
2012). Existing structural, mineralogical, and geo-
chemical constraints indicate that the Heart Moun-
tain slidemoved at ∼100m/s (Craddock et al. 2009).

New field and lab work has identified a coeval
tabular lamprophyre dike (striking N557E) at White
Mountain that is the remnant of a lamprophyre dia-
treme that may have triggered the Heart Mountain
slide. We present calcite twinning-strain, AMS (an-
isotropy of magnetic susceptibility), paleomagnetic,
compositional, petrological, and geochronologic data
This content downloaded from 129.23
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on this lamprophyre to unravel the details of the re-
lationship of emplacement kinematics and mechan-
ics of the Heart Mountain slide.
Previous Work

The Heart Mountain slide is one of the largest sub-
aerial landslides on Earth, with the only analog be-
ing the 21 Ma Markagunt slide in Utah (Hacker
et al. 2014). TheHeartMountain slide initiated on a
50-km-long, gently dipping bedding plane within
theOrdovician BighornDolomite, cutting upsection
for ∼5 km and out onto the Eocene landscape (Ma-
lone et al. 2014a; figs. 1–3). Most of those working
Figure 1. Generalized geologic map of northwest Wyoming, illustrating the areal extent of the Heart Mountain slide
and locations of features discussed in the text. 1 p White Mountain, 2 p Heart Mountain, 3 p McCullough Peaks,
4 p Squaw Peaks, 5 p Upper South Fork Shoshone River Valley. Modified from Malone et al. (2014b, 2014c).
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on the slide regard it as a catastrophic event asso-
ciated with widespread igneous activity in the Eo-
cene Absaroka volcanic province (e.g., Bucher 1947;
Nelson and Pierce 1968; Pierce 1973; Malone 1995;
Beutner and Craven 1996; Beutner and Gerbi 2005;
This content downloaded from 129.2
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Aharanov and Anders 2006; Craddock et al. 2009,
2012; Anders et al. 2010; Malone et al. 2014a). Tim-
ing relations are key to understanding various em-
placement models, which include a catastrophic
landslide followed by volcanic burial (Pierce 1973),
Figure 2. Generalized geologic map of the Heart Mountain slide area. Modified from Hauge (1993) and Malone et al.
(2014a).
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incrementalmovement potentially lastingmillions
of years (Hauge 1985, 1990; Templeton et al. 1995;
Swanson et al. 2016), and catastrophic emplacement
of Paleozoic carbonate and Eocene volcanic rocks
over a period of minutes to hours (Craddock et al.
2009). Themechanismof upper-platemovement that
allows for catastrophic emplacement along a low-
angle surface with only minor associated deforma-
tion preserved above, along, or below the detachment
is poorly understood. Contemporaneous dike intru-
sion (Aharanov and Anders 2006; DeFrates et al.
2006; King et al. 2009), various detachment fluids
(Templeton et al. 1995; Aharanov and Anders 2006;
King et al. 2009), and CO2 generation by limestone-
on-limestone sintering (Beutner and Gerbi 2005;
Craddock et al. 2009; Anders et al. 2010; Mitchell
et al. 2015) have been proposed to facilitate move-
ment of the slide mass. Hauge (1993) provides an
excellent detailed summary of all aspects of thefirst
century of Heart Mountain research. Malone and
Craddock (2008) summarized the research conducted
from 1990 to 2008.

Throughout the proximal areas of the Heart Moun-
tain slide, carbonate-dominated cataclastic mate-
rial (first reported by Pierce 1979; referred to as CUC
This content downloaded from 129.23
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in Craddock et al. 2009, 2012; previous workers have
referred to this as breccia, microbreccia, or the “basal
layer”) occurs as a centimeters-to-meter-thick ve-
neer along the contact of allochthonous and autoch-
thonous rocks. The basal layer is best exposed at
White Mountain (Nelson et al. 1972), along with
discordant injectite dikes of the samematerial found
up to 120 m above the slide base (Craddock et al.
2012). U-Pb ages from zircons extracted from the
basal-layer CUC and injectites (White Mountain
and Silver Gate) yield an age of ∼48.9 Ma (Malone
et al. 2014a).

The purpose of this article is to provide additional
constraints on the timing and duration of the Heart
Mountain slide, usingU-Pbgeochronology,magnetic,
and structural techniques on rocks formed during
emplacement. We describe and interpret a newly dis-
covered lamprophyre igneous suite at White Moun-
tain that bears on the Heart Mountain problem, and
we present an analysis of the lamprophyre diatreme
and slide dynamics. Thus, this work is a follow-up to
Malone et al. (2014a), who directly tested the rapid-
and gradual-emplacement hypotheses. Field evidence
indicates that the lamprophyre igneous suite is geo-
metrically and temporally related to the CUC inject-
Figure 3. Oblique view of White Mountain and the basal detachment of the Heart Mountain slide, including the
positions of the carbonate ultracataclasite (CUC) injectites and lamprophyre. Injectites are numbered 1–8 from west
to east. Open circles indicate calcite twin samples, black circles CUC injectite AMS samples, and the gray circle the
lamprophyre AMS and paleopole sample. Sample sites are indicated in subsequent figures. A color version of this
figure is available online.
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ites at White Mountain. The concept presented and
argued here is that the emplacement/eruption of the
lamprophyre suite may have provided the elusive
triggering mechanism for slide emplacement.
Methods

The igneous-suite energy-dispersive X-ray fluores-
cence (XRF) datawere collected atWesternKentucky
University and the Illinois State Geological Survey
(table S1; tables S1–S6 available online). Mineral sep-
arations and heavy-mineral analysis via wavelength-
dispersive X-ray spectroscopy on a scanning elec-
tron microscope were done at Macalester College.
Fabric analysis via electron backscatter diffraction
(EBSD) was done at the University of Minnesota-
Duluth. Zircon crystals were analyzed for trace-
elementconcentrationsandU-Pbagevia laser ablation–
inductively coupled plasma mass spectrometry
(LA-ICPMS) and subsequently dated at high precision
by chemical abrasion–isotope dilution thermal ioni-
zationmass spectrometry (CA-IDTIMS) at Boise State
University. Diamonds were analyzed with Raman
spectroscopy at Western Kentucky University and
X-ray diffraction and electron microprobe analysis at
theUniversity of Minnesota. Paleomagneticmeasure-
ments were conducted at the University ofMinnesota
Institute of Rock Magnetism. Calcite twinning-strain
analysis was conducted at Macalester College.

Zircon Geochronology. In situ zircon U-Th-Pb iso-
tope and trace-element concentrationmeasurements
were conducted at Boise State University with a
ThermoElectron X-Series II quadrupole ICPMS and
a New Wave Research UP-213 Nd:YAG ultraviolet
(213-nm) laser ablation system. Lamprophyre brec-
cia zircons were analyzed with a suite of standards
including a large zircon megacryst from the Orapa
kimberlite as a reference material. Zircons were ab-
lated with a laser diameter of 25 mm using fluence
and pulse rates of 5–6 J/cm2 and 10 Hz, respectively,
during a 45-s analysis (15-s gas blank, 30-s ablation),
which excavated a pit approximately 25 mm deep.
Ablated material was carried by a 1-L/min He gas
stream to the plasma. Dwell times were 5 ms for Si
and Zr; 40 ms for 49Ti, 238U, 232Th, 202Hg, and all Pb
isotopes; and 10 ms for all other high-field-strength
elements and rare earth elements (REEs). Background
count rates for each analyte were obtained before
each spot analysis and subtracted from the raw count
rate for each analyte. For concentration calculations,
background-subtracted count rates for each analyte
were internally normalized to 29Si and calibrated
with respect to National Institute of Standards 610
and 612 glasses as the primary standards. Temper-
This content downloaded from 129.2
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ature was calculated from the Ti-in-zircon ther-
mometer (Watson et al. 2006), with a nominal ac-
tivity of TiO2 of 0.6used for both lamprophyre breccia
zircons and the Orapa kimberlite zircon standard.
For U-Th-Pb age analysis, instrumental fraction-

ation of the 206Pb/238U, 207Pb/206Pb, and 208Pb/232Th
ratios was corrected and ages calibrated with re-
spect to interspersed measurements of the Plešo-
vice zircon standard (Sláma et al. 2008). Signals at
mass 204 are indistinguishable from 0 for most zir-
cons after subtraction of mercury backgrounds mea-
sured during the gas blank (!150 counts/s 202Hg);
thus, ages are normally reported without common-
Pb correction, although our data acquisition and re-
duction scheme allows for a variety of 204Pb-, 207Pb-,
or 208Pb-based corrections. Radiogenic-isotope ratio
and age error propagation includes uncertainty con-
tributions from counting statistics, background sub-
traction, and regression errors. Standard calibration
uncertainty is propagated in quadrature following
group statistics (e.g., weighted mean calculations);
standard calibration uncertainties (2j) over an experi-
ment range from 1% to 2% for 206Pb/238U and from
0.5% to 1% for 207Pb/206Pb. The LA-ICPMS U-Pb iso-
tope and trace-element results are reported in tables S2
and S3.
For more precise dates, the same zircon crystals

were analyzed via CA-IDTIMS at Boise State Uni-
versity (table S4). Selected zircon crystals were re-
moved from the epoxymount and annealed at 9007C
for 60 h. Individual crystal fragments were then
“chemically abraded” in 120 mL of 29 M HF for 12 h
at 1907C in 300-mL Teflon perfluoroalkoxy (PFA)
microcapsules. The residual crystals after this partial
dissolution were fluxed in 3.5 M HNO3 in an ultra-
sonic bath and on a warm hotplate for 60 min and
then rinsed twice in ultrapure H2O before being
reloaded into microcapsules and spiked with the
mixed U-Pb isotope tracer ET535 (Condon et al.
2015). Additional details of chemical separations,
mass spectrometry, and data analysis are described
in Rivera et al. (2013). Errors on CA-IDTIMS U-Pb
isotope ratios and dates are reported at the 95%
confidence interval (2j) in table S4. Uncertainty in
the weightedmean date is given as5x(y)[z], where x
is the internal error based on analytical uncertainties
only, including counting statistics, subtraction of
tracer solution, and blank and initial common-Pb
subtraction; y includes the tracer calibration uncer-
tainty propagated in quadrature; and z includes the
238U decay constant uncertainty propagated in
quadrature. The latter uncertainty should be con-
sidered when comparing our dates with those de-
rived from other decay schemes, such as 40Ar/39Ar.
The resulting interpreted ages are shown on Pb�=U
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concordia and ranked-age diagrams using the rou-
tines in Isoplot (Ludwig 2008).

AMS and Demagnetization Techniques. The “Roly-
Poly” is an AC susceptibility bridge with an auto-
mated sample handler for determining anisotropy of
low-field magnetic susceptibility at room tempera-
ture. An alternating current in the external “drive”
coils produces an alternating magnetic field in the
sample space with a frequency of 680 Hz and an am-
plitude of up to 1 mT. The induced magnetization of
a sample is detected by a pair of “pickup” coils, with
a sensitivity of 1.2 # 1026 SI volume units. For an-
isotropy determination, a sample is rotated about
three orthogonal axes, and susceptibility ismeasured
at 1.87 intervals in each of the three measurement
planes.The susceptibility tensor is computed by least
squares from the resulting 600 directional measure-
ments. Very high precision results from the large
number of measurements; in most cases principal-
axis orientations are reproducible to within 27 and
axial ratios to within about 1%. For each measured
core, one unique magnetic ellipsoid is produced and
plotted. Sample anisotropy percentages ranged from
5%to 14% for the eight samples and 193 cores taken
from the CUC injectites, CUC basal layer, and lam-
prophyre. The AMS data are provided in table S5.

Calcite Twin Analysis. The calcite strain-gage tech-
nique (CSGT) of Groshong (1972) allows investiga-
tion of intraplate stresses as constrained by intra-
crystalline twinning of rock-forming calcite grains.
Although the result is a strain tensor, a similar orien-
tation of the stress tensor appears likely in case of
coaxial deformation (Turner 1953, 1962). The CSGT
has been used to constrain strain tensor directions
in veins (Kilsdonk andWiltschko 1988; Paulsen et al.
2014), limestones (Engelder 1979; Spang and Gro-
shong 1981; Wiltschko et al. 1985; Craddock and
van der Pluijm 1988; Mosar 1989; Ferrill 1991; Crad-
dock et al. 2000),marble (Craddock et al. 1991), amyg-
daloidal basalts (Craddock and Pearson 1994; Crad-
dock et al. 1997, 2004), and lamprophyres (Craddock
et al. 2007).

Below temperatures of ca. 2007C, intracrystalline
deformation of calcite results in the formation of
e-twins. The formation of calcite e-twins requires a
shear stress exceeding ca. 10MPa (Wenk et al. 1987;
Burkhard 1993; Lacombe and Laurent 1996; Ferrill
1998). Calcite offers three glide systems for e-twinning.
From U-stage measurements of width, frequency,
and orientation of twins and the crystallographic
orientation of the host crystals, a strain tensor can
be calculated with a least squares technique (Gro-
shong 1972). In order to remove “noise” from the
data set, a refinement of the calculated strain tensor
can be achieved by stripping the 20% of twins with
This content downloaded from 129.23
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highest deviations (Groshong et al. 1984). This pro-
cedure has been used if the number of measured
grains was large (n 1 20). In cases where the data ap-
pear to be inhomogeneous, the separation of incom-
patible twins (negative expected values [NEVs]) from
compatible twins (positive expected values) of the
initial data set allows separate calculation of two or
more least squares deviatoric-strain tensors. Thus,
the CSGT can be used to obtain information on su-
perimposed deformations (Groshong 1972, 1974) and
differential stressmagnitudes (RoweandRutter 1990).

The validity of this stripping procedure was dem-
onstrated in experimental tests where the reliability
depends on the overall complexity of deformation
and the number of grainswith twins (Groshong 1974;
Teufel 1980). The stripping procedure was used in
cases of high proportions ofNEVs and a large number
of measured grains. An experimental reevaluation of
the CSGT has shown that measurements of about
50 grains on one thin section or 25 grains on two
mutually perpendicular thin sections yield the best
results (Groshong et al. 1984; Evans and Groshong
1994; Ferrill et al. 2004). The chance to extract the
records of more than two deformations from one
data set is limited when dealing with natural rocks
(Burkhard 1993). Individual analyses of veins,matrix,
nodules, and so on allows the acquisition of several
strain tensors without applying statistical data strip-
ping. The complexity of rotational strains in fault
zones has limited the application of this method to
the efforts of Gray et al. (2005). Application of the
CSGT requires the following assumptions to be valid:
(1) low temperatures (dominance of Type I and Type
II twins), (2) random c-axis orientations of calcite,
(3) homogenous strain, (4) coaxial deformation, (5) vol-
ume constancy, (6) low-porosity materials, and (7) low
strain (!15%). If these conditions are not fully met,
theunderlying data set of the calculated strain tensor
could be biased, modified, or random. Strain tensors
were calculated from calcite e-twin data sets with
the software package of Evans and Groshong (1994).
The calcite twinning-strain data are presented as
table S6.
Results

Field Relations. White Mountain is composed of
Ordovician BighornDolomite andMississippianMad-
ison Limestone that were thermally metamorphosed
intomarbles before emplacement of the Heart Moun-
tain slide. This thermal metamorphism was associ-
ated with the intrusion of a diorite stock at ∼49.8 Ma
(Malone et al. 2014a). The lamprophyre diatreme dike
is at the west end of WhiteMountain and is hosted in
the Bighorn andMadisonmarble. Themarbles areflat
4.000.070 on August 16, 2017 02:48:05 AM
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lying near the base of the allochthon, where the
lamprophyre has intruded, but are more complexly
deformed and steeply dipping near the contact of the
diorite stock. The marbles are crosscut by eight sub-
vertical CUC injectites that occur as much as 120 m
above the SE-dipping, 3-m-thickCUCbasal layer that
defines the base of the Heart Mountain slide (Crad-
dock et al. 2012). Andesitic, basaltic, and clastic dikes
also crosscut the marble and diorite stock. Lower-
plate rocks at White Mountain are flat lying and un-
metamorphosed basal Bighorn Dolomite and Cam-
brian SnowyRange Limestone (Craddock et al. 2000,
2009).
The west end of White Mountain contains steeply

included volcanic and plutonic rocks that terminate
along the basal detachment.The contact between the
igneous rocks and the marble strikes N557E, can be
traced for ∼3 km, and is ∼300 m high. Whole-rock
compositional analyses of the igneous series, includ-
ing diorite (fresh, weathered, foliated), lamprophyre,
lamprophyre breccia, and clinopyroxenite, are shown
This content downloaded from 129.2
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in table S1. The diorite and granodiorite are locally
foliated, and the diorite has a U-Pb zircon age of
∼49.9 Ma and is therefore older than the zircons in
the CUC injectites and basal layer (Malone et al.
2014a). The lamprophyre (fig. 4) has a brown, apha-
nitic groundmasswithnumerousarmored lapilli and,
aside from being interlayered with the clinopyro-
xenite, looks much like the CUC injectites but does
not react with HCl. The lamprophyre margin also
contains diorite, granodiorite, and minor andesite,
all of which are crosscut by the lamprophyre brec-
cia. Both units are crosscut by aragonite and zeolite
veins. The lamprophyre is found only above the
base of the slide and is allochthonous (fig. 3).

Lamprophyre Description. Lamprophyres are vol-
canic peralkaline and ultrapotassic igneous rocks that
initiate in the subcontinental lithospheric mantle at
6–8-GPa pressures and temperatures of 13007C. As a
result of volatile saturation, they have an enormous
pressure differential during ascent, similar to that of
kimberlites (70 GPa; e.g., MacGregor 1970; Mitchell
Figure 4. Field photographs of the White Mountain lamprophyre and related rocks. A, Lamprophyre (top) intruding
diorite; B, foliated diorite; C, brecciated clinopyroxenite; and D, lamprophyre. A color version of this figure is available
online.
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Figure 5. Photomicrographs of the White Mountain lamprophyre breccia. A, Foliated nature of the breccia (sample
11WY-55) from which the euhedral zircons were extracted (cathodoluminescence image, inset). B, C, Thin section of
analcime (white) with inclusions of sphene (lighter inclusion in C), Cr-diopside (darker inclusions in C), and diamond
(darkest areas in E) in plane light. D, Scanning electron microscopy backscatter image of C. E, Magnified view of
diamond with Raman spectra spots. A color version of this figure is available online.
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and Bergman 1991; Heaman et al. 2004; Skinner and
Marsh 2004; Sparks et al. 2006; Wilson and Head
2007; Cas et al. 2008).
The lamprophyre breccia at WhiteMountain was

initially thought to be a CUC injectite (Malone et al.
2014a) until thin sections, heavy-mineral analysis,
and XRF data became available. The CUC injectites
are SiO2 poor (7%) andCaO rich (38%) andhave large
This content downloaded from 129.2
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loss-on-ignition values (∼30%; seeCUC injectiteXRF
data in Craddock et al. 2012), whereas the lampro-
phyre breccia is SiO2 rich (46%) and CaO rich (24%)
and ultramafic in composition. The lamprophyre
breccia contains olivine (forsterite), Cr-diopside, chro-
mite, pyrope garnet, sphene, spinel, zircon, apatite, and
secondary aragonite and analcime. Heavy-mineral
separations yield significant amounts of pyrite, mag-
netite, ilmenite, and hematite, plus euhedral, weakly
zoned zircons. The lamprophyre breccia contains
euhedral, single-phase zircons, whereas many of the
zircons in the CUC are rounded and polished and
foundwith euhedral spinel. The breccia textures are
chaotic but weakly foliated, with mantled lapilli,
pyroxene with apatite needles, and rolled analcime
clasts with included Cr-diopside, sphene, and di-
amonds (fig. 5). The diamonds (30–50 mm in diam-
eter) are found in green clinopyroxenite and are pink
in color. Raman spectroscopy (fig. 6) identifies a
1301-nm diamond peak, confirmed by ion micro-
probe and in situ X-ray diffractometry (2v p 47.77
and 907).
Whole-rock compositional analyses yielded results

comparable to those for other North American lam-
prophyres (fig. 6; Cullers andMedaris 1977; Laughlin
et al. 1986; LeCheminant et al. 1987; Sage 1987;
Wyman and Kerrich 1989, 1993; Barrie and Shirey
Figure 6. A, Major-element oxides from the White
Mountain lamprophyre (diamonds) and published North
American lamprophyres (plus signs). North American lam-
prophyre data compiled from the GEOROC (GEOchemistry
of Rocks of the Oceans and Continents) database (Cullers
andMedaris 1977; Laughlin et al. 1986; LeCheminant et al.
1987; Sage 1987; Wyman and Kerrich 1989, 1993; Barrie
and Shirey 1991; Fitton et al. 1991; Wyman et al. 1995;
Hattori et al. 1996; Sevigny andThériault 2003;Tappe et al.
2004, 2008). B, Laser Raman spectroscopy of diamonds
present in figure 5.
Figure 7. Log Zr-versus-Nb (ppm) plot comparing the
White Mountain lamprophyre to alkaline igneous rocks
in Montana. The plot shows that the White Mountain
lamprophyre resembles a subtype of lamprophyre called
a minette. Diagram after Hearn (2004), with lamprophyre
and minette fields from Mitchell and Bergman (1991) and
kimberlite and orangeite fields from Mitchell (1995).
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1991; Fitton et al. 1991; Wyman et al. 1995; Hattori
et al. 1996; Sevigny and Thériault 2003; Tappe et al.
2004, 2008). With the exception of CaO, all other ma-
jor elements fit within the compositional ranges of
published North American lamprophyre data. The
high CaO values may be a result of a sampling bias,
with disproportionately high clinopyroxenewithin the
sample. Trace elements Zr and Nb show that the
rocks fromWhite Mountain are similar to minettes
(fig. 7), which are associated with arc magmatism
(Hearn 2004). Compositional and petrologic evidence
suggests that the rocks onWhiteMountain are likely
a diamond-bearing lamprophyre and that the rocks
likely originated from the subcontinental lithospheric
mantle.

Geochronology. Lamprophyre breccia–derived zir-
cons are euhedral, without older cores, and were
originally dated at 48.9 5 0.5 Ma, as part of sample
11WY-55 (White Mountain injectite, as reported by
Malone et al. 2014a), with LA-ICPMS techniques at
the University of Arizona Laserchron Center. Sam-
ple 11WY-55 included zircons separated from sev-
eral CUC injectites. As zircons for each individual
injectite dike were sparse, the data from the set of
dikes were compiled, and a resultant age was de-
This content downloaded from 129.23
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termined. Sample 11WY-55 also contained zircons
separated from the lamprophyre diatreme. These same
zircon crystals were reoccupied with laser spot anal-
yses for a suite of trace elements including REEs, Y,
Ti, Nb, Ta, Hf, Th, and U. Figure 8 illustrates the
trace-element concentrations of lamprophyre breccia
zircons and Orapa kimberlite megacryst, superim-
posed on the compositions of a diverse suite of ig-
neous zircons fromBelousova et al. (2002). The trace-
element compositions of the Orapa kimberlite zircon
megacryst clearly overlap the distinctive fields of
kimberlite zircon geochemistry defined by Belou-
sova et al. (2002), typified by relatively high Hf con-
tents, low REE and U contents, low Nb/Ta, and the
lack of a Eu anomaly in the REE pattern. Compared
to kimberlitic zircons, the lamprophyre breccia zir-
cons span a larger range of correlated temperatures
and Eu anomalies, indicative of magmatic differen-
tiation in the presence of feldspar. The lamprophyre
breccia zircons are clearly distinct from kimberlite
zircon compositions, with higher REE contents, a mi-
nor negative Eu anomaly, and higher U contents and
Nb/Ta. The geochemical characteristics of the lam-
prophyre breccia zircons do, however, overlap the
compositions of lamproite zircon from Belousova
Figure 8. Trace-element geochemistry of lamprophyre breccia zircon crystals with respect to measurements of the
Orapa kimberlitic zircon megacryst, and the ranges of compositions for a diverse suite of igneous zircons from
Belousova et al. (2002). The compositions of the Orapa kimberlite and White Mountain lamprophyre zircons are
themselves distinct but overlap the fields of kimberlite and lamproite zircon, respectively, from Belousova et al.
(2002).
4.000.070 on August 16, 2017 02:48:05 AM
 and Conditions (http://www.journals.uchicago.edu/t-and-c).



Journal of Geology 449V O L CAN I C I N I T I A T I ON O F TH E H E A R T MOUNTA I N S L I D E
et al. (2002), being less trace element enriched than
most granitoid zircons.
On the basis of cathodoluminescence imagery

andLA-ICPMS results, a selection offive grainswere
plucked from the epoxy mounts and analyzed via
CA-IDTIMS. All grains yielded concordant and equiv-
alent isotope ratioswith aweightedmean 206Pb/238U
date of 49.195 0.02(0.04)[0.06]Ma (fig. 9). Given the
consistency of this result and the simplicity of the
zoning and compositions of this population of zir-
cons, we interpret this result as estimating, within
its analytical uncertainty, the emplacement age of
the lamprophyre diatreme.

Rock Fabrics. Anisotropy of magnetic suscepti-
bility (AMS) is a sensitive magnetic technique used
as a proxy for measuring magmatic flow. Craddock
et al. (2009) report a subhorizontal flow fabric (NW-
SE) in the CUC basal layer, and we report here the
results of AMS measurements in four CUC injec-
tites and the lamprophyre (fig. 10; table S5). White
Mountain injectites 1, 2, and 4 (fig. 2) represent one
sample each from the vertical base of the structure,
and injectite 3 has results from the bottom, middle,
and top spanning ∼100 m of relief. We also have one
sample from the injectite at Silver Gate, 50 km to
the northwest. There is no flow fabric in any of the
CUC injectite AMS results except the top of White
Mountain injectite 3, where the Kmax values are all
subvertical and the Kmin values are subhorizontal
and normal to the injectite. The AMS results for the
This content downloaded from 129.2
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lamprophyre preserve a Kmax flow fabric parallel to
the lamprophyre dike (N557E, 907).
Additional orientedmarble and vein samples were

collected from White Mountain to complement the
calcite strain results in Craddock et al. (2009; fig. 11;
table S6). Samples 2a (marble) and 5 (limestone) pre-
serve the pre–Heart Mountain layer–parallel short-
ening strain of the Sevier orogeny (Craddock and van
der Pluijm 1989; Craddock et al. 2000). Sample 5
remained autochthonous with the E-W shortening
orientation, whereas sample 2a has been rotated
about a vertical axis by the landslide. Sample 6 is
a calcite vein discovered in the footwall of White
Mountain (N-S, 907) that is truncated by the detach-
ment and preserves a preslide horizontal shortening
Figure 9. U-Pb concordia and ranked-age plots of chem-
ical abrasion–isotope dilution TIMS results for zircons
from lamprophyre breccia sample 11WY-55. The 49.195
0.02 Ma date significantly refines the age of lamprophyre
intrusion and is within the error of the 48.95 0.5 age for
carbonate ultracataclasite zircons at Silver Gate (Malone
et al. 2014a).
Figure 10. Lower-hemisphere projections of AMS (an-
isotropy of magnetic susceptibility) data (filled circles are
for Kmax, open circles for Kmin; large circles illustrate ori-
entations of the lamprophyre, injectites, or detachment).
See figure 2 for sample locations and table S5, available
online, for a summary. CUCp carbonate ultracataclasite.
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strain parallel to the vein with no strain overprint.
Sample 1 is Madison Group marble (N557E, 557NW)
in contact with the lamprophyre margin, sample 2b
is the strain overprint (NEV) from the marble of sam-
ple 2a, and sample 4 is a detachment-parallel calcite
vein; all three record a vertical shortening strain re-
lated to postslide burial. Differential stress magni-
tudes are remarkably consistent (235 MPa) for twin-
ning events that were tectonic or related to postslide
burial. Electron backscatter diffractometry was mea-
sured on the basal CUC (n p 183) in contact with
This content downloaded from 129.23
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Bighorn Dolomite (n p 169); neither material pre-
serves an optic axis fabric (fig. 12).

Discussion

EnigmaticWhiteMountain, with its allochthonous
marbles and its comparatively thick basal layer (2m
of CUC), now reveals additional information re-
garding the initiation and dynamics of the Eocene
Heart Mountain slide. Detailed field mapping has
documented the eight CUC injectites, which be-
Figure 11. Schematic cross section of White Mountain and calcite twinning-strain data (table S6) plotted on lower-
hemisphere projections (ε1 p shortening axis; ε2 p intermediate axis; ε3 p extension axis). Sample details: 1. Madison
Formation marble in contact with lamprophyre; 2a. Madison marble with pre–Heart Mountain layer–parallel short-
ening (N507E); 2b. vertical-shortening overprint (negative expected values); 3. calcite vein parallel to the lamprophyre
margin; 4. vertical shortening in detachment-parallel vein; 5. Pre–Heart Mountain layer–parallel shortening in foot-
wall limestones; and 6. Laramide shortening in a vein truncated by the slide. AMS p anisotropy of magnetic suscep-
tibility); CUC p carbonate ultracataclasite.
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come listric (and/or join) with the basal CUC, and
the presence of older intrusions (diorite, granodio-
rite; 49.9 5 0.5 Ma) and the younger lamprophyre
suite (breccia, clinopyroxenite, lamprophyre). Zir-
cons in the lamprophyre breccia and CUC (injec-
tites and basal layer; Malone et al. 2014a) are the
same age (49.19 Ma 5 0.02 Ma TIMS age) and are
This content downloaded from 129.2
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thereby also genetically and dynamically related.
We suggest that the emplacement of the lampro-
phyre diatremewas the triggeringmechanism for the
catastrophic Heart Mountain slide and that White
Mountain represents a remnantof the eruptioncenter.

Eruption and Landslide Dynamics. Figures 13 and
14 portray the interpreted sequence of events at
Figure 12. Electron backscatter diffraction pole results for the CUC (carbonate ultracataclasite; top) and Bighorn
Dolomite (bottom) contact.
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White Mountain. The diorite-granodiorite intruded
at 49.95 0.5Ma and thermallymetamorphosed the
host carbonate rocks. The lamprophyre diatreme
intrusion at 49.19 5 0.02 Ma is preserved as a
dike oriented at N557E, 907. The lamprophyre dike
pinches out to the northeast, suggesting that thewest
end of the dike was connected to the main diatreme
body. The lamprophyre diatreme intrusion, which
triggered the emplacement of the Heart Mountain
slide, included generation of the CUC fault gouge
and injection (!120 m) of CUC into the upper plate.
The AMS proxy for magmatic flow preserves a south-
eastward, subhorizontalflow in theCUCbasal layer
(Craddock et al. 2009) and chaotic flow in the injec-
tites, except at the top of injectite 3. The lampro-
phyre AMS results suggest intrusion to the north-
east (N557E), as theKmax directions are subhorizontal
and parallel to the intrusion. ThisAMSflowproxy is
also parallel to the pre–Heart Mountain slide layer–
parallel shortening strain preserved in the host Mis-
sissippianMadison limestones, whichwere oriented
N907E (Craddock et al. 2000) before the landslide.
This means that the lamprophyre erupted in an E-W
direction and then slid down the bedding-plane por-
tion of the slide to its resting place at White Moun-
tain (N557E), which requires a horizontal rotation
about a vertical axis and a minimum of 357 of coun-
terclockwisemotion. Alternatively, theWhiteMoun-
tain allochthon could have rotated to N557E early in
its motion and slid into place heading to the south-
east, as the detachment striations and AMS fabric
(Kmax) at White Mountain trend S407E.

Gentle N-S folds are present in the marble of
western White Mountain. The marbles are termi-
nated against the lamprophyre suite and preserve a
vertical shortening strain. The lamprophyre-margin
sheared calcite vein preserves a horizontal short-
ening strain parallel to the lamprophyre dike and no
strain overprint; this is presumably deformation
related to shearing along the lamprophyre margin
during emplacement (fig. 11). Preslide calcite veins
preserve a Laramide shortening strain (Craddock and
van der Pluijm 1989) and no strain overprint. Themar-
bles away from the lamprophyre preserve a vertical
shortening-strain overprint (NEVs), and the coeval
vein preserves vertical shortening; these are both in-
terpreted to be related to postslide burial by younger
Eocene volcanic rocks.

The lower-plate (subsurface) location of the lam-
prophyre diatreme is unknown and presumed to be
west or northwest of White Mountain. The lampro-
phyre and CUC along the base of the slide and as-
sociated injectites were part of the same intrusion-
landslide collapse event, as their zircons are the
same age.
Figure 13. Schematic sequence of events atWhiteMoun-
tain (modified fromMalone et al. 2014a; not to scale). Before
the initiation of the Heart Mountain slide, a diorite stock
intruded a succession of Paleozoic carbonate and Eocene vol-
canic rocks at ∼49.9 Ma. The emplacement of a lampro-
phyre intrusion at∼49.19Ma caused failure and collapse of
theupper plate.This slabwas catastrophically emplaced to
the south and east into the adjacent Bighorn and Absaroka
Basins. The basal layer carbonate ultracataclasite (CUC)
contains cataclastic carbonate material derived from the
upper plate, euhedral and abraded zircons from the lam-
prophyre and other intrusions, and delicate volcanic glass.
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Regional Field Relations. Heart Mountain and
McCullough Peaks are the most obvious and distal
upper-plate slide blocks of Madison Group lime-
stones in the Bighorn Basin. It is now apparent that
the vertical volcaniclastic rocks atop Squaw Peaks
in the southern Bighorn Basin are also part of the
Heart Mountain slide run-out, along with Eocene
volcanic rocks in the upper South Fork Shoshone
River Valley and Carter Mountain (Malone 1995,
1996, 1997; Malone et al. 2014b, 2014c). The Ab-
saroka volcanic field covers an area of ∼8,000 km2

with a composite thickness of ∼5 km extruded be-
tween 55 and 38 Ma (Sundell 1993). This extensive
mafic-intermediate outpouring may in some way
be related to Eocene rollback of the Farallon Plate
This content downloaded from 129.2
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(Humphreys 1995; Smith et al. 2014) and is an anom-
alous thick, horizontal cap in northwest Wyoming,
especially when compared to the variety of other al-
kaline Eocene intrusions in the area (Sundell 1993;
Feeley and Cosca 2003)

CO2 Generated by the Heart Mountain Slide. The
emplacement of the Heart Mountain slide has been
proposed to be the result of a reduction in friction
along the detachment, perhaps accommodated by
CO and CO2 generated by limestone-on-limestone
sintering (Han et al. 2007; Mitchell et al. 2015) and
the introduction of mantle CO and CO2 when the
lamprophyre erupted.Wehave calculated the amount
of CO2 generated by the Heart Mountain slide to be
7 billion kilograms (0.07 gigatons), which is a mi-
Figure 14. Map view schematic of the sequence of events at White Mountain. These diagrams are not to scale; the
area shown is 5–10 km2. At ∼50 Ma, trachyandesite lavas and other volcanic rocks were deposited on Paleozoic
carbonate rocks. The carbonate rocks preserve the Sevier Laramide E-W layer parallel strain. A diorite stock was
emplaced at ∼49.9 Ma. At ∼49.19 Ma, during eruption, a lamprophyre diatreme intruded the diorite stock and host
carbonate rock, with a Kmax flow direction parallel to the to the Sevier-Laramide E-W layer parallel strain. The
eruption caused the upper plate to fail, and the allochthonous rocks at White Mountain were transported to the
southeast while rotating counterclockwise about a vertical axis of rotation, before coming to rest at their current
location. LPS p layer-parallel shortening.
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nuscule amount of CO2 when compared to the an-
nual human (29 gigatons) and oceanic (332 gigatons)
CO2 emissions. The observation and interpretation
that a lamprophyre eruption occurred and triggered
the event provides an answer to the question, what
caused this slab of rock tomove to beginwith? Once
the emplacement was triggered, the various mech-
anisms suggested by Beutner and Gerbi (2005), Aha-
ronov and Anders (2006), Craddock et al. (2009), and
Anders et al. (2010) that aided continued movement
may have operated.
Conclusions

Our understanding of the Heart Mountain slide has
been refined during the past decades. There are now
data for (1) the structure and stratigraphy of the rocks
involved (Pierce 1973; Malone 1995, 1996, 1997),
(2) emplacement duration (Craddock et al. 2000, 2009),
(3) emplacement timing (Malone et al. 2014a; this
report), (4) areal extent (Malone et al. 2014b, 2014c),
(5) the relationship between theSouthFork andHeart
Mountain slide masses (Craddock et al. 2015), (6) the
characteristics of theCUC (Beutner andCraven 1996;
Beutner and Gerbi 2005, Craddock et al. 2009, 2012;
Anders et al. 2010), and (7) the regional paleogeog-
raphy at the time of collapse (Rhodes et al. 2007;
Malone et al. 2014b, 2014c; Craddock et al. 2015).

White Mountain, with its allochthonous marble,
has always been an anomaly within the chaos of the
Heart Mountain slide. We argue that the marble is
the result of contact metamorphism adjacent to an
older diorite intrusive suite and that the younger
lamprophyre was the triggering mechanism for the
volcanically induced landslide at ∼49.19 Ma. Zir-
cons in the lamprophyre breccia and resultant CUC
(basal layer and injectites) are the same age and
thereby genetically related. A supersonic lampro-
phyre eruption helps explain earlier computations
about the mechanism and rapid initiation speed
(100 m/s) of the landslide, which also makes plau-
sible the increase in the chaotic, rotational run-out
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of the slide (∼5000 km2) to include the Eocene vol-
caniclastic rocks at Squaw Peaks and Hominy Peak
(100 km to the west). The location of the lampro-
phyre root remains unknown but is presumed to be
upgradient to the west of White Mountain and is
part of the regional grouping of Cretaceous-Eocene
alkaline and ultramafic intrusions that intruded as
the Farallon slab rolled back to the southwest be-
tween 50 and 45 Ma.

It is interesting that wemay have come full circle
with respect to an explanation for the initiation of
theHeartMountain slide. Bucher (1933)was thefirst
to suggest that Heart Mountain was propelled to the
east by a gigantic volcanic explosion. His explana-
tion was

The writer thinks it possible that the limestone-plates
which constitute the thrust-masses of this region were
thrust eastward and scattered much as they are today by
the horizontal component of the force of a large volcanic
explosion . . . volcanic gases, perhaps largely pent-up steam,
exploded in such a way as to shear off large sheets of
limestone from the highly micaceous Cambrian shales
and to drive them eastward (or, perhaps better, south-
eastward) down the pediment slope into the plain.
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