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1 Introduction

In studies on strategic reasoning, teams have bmerd to adhere closer to standard game-
theoretic predictions than individual players. Wotpapers on the guessing game, Kocher and
Sutter observe decisions by teams to approach #sk-Hquilibrium quicker than those by indi-

viduals (Kocher and Sutter, 2005, Sutter, 200530Ateams play the Nash-equilibrium strategy
more often in one-shot normal-form games studied®biger et al. (2013) and behave more ra-
tionally in information cascade situations as Famad Irlenbusch (2011) observe. Yet, so far the
nature of these differences in behavior remaindeancMaybe teams are just as smart as their

smartest member? Or, do people reasoning togatsatecsynergies?

The idea that teams perform as well as their beshiber has been discussed in the psychology
literature since the 1950s. It is known as thethwins” hypothesis which was proposed by
Lorge and Solomon (1955) and by Marquart (1955)edims beat this benchmark, we can con-
clude that they are more than the sum of theirspamtl are able to generate insights none of its
members would have had alone. Focusing mainly onimeractive tasks, results from the psy-
chology literature on small groups suggest thansasually do not reach the truth-wins bench-
mark, let alone beating it, as Kerr and Tindale0D@0summarizé.The evidence from economics

is less clear cut.

On the one hand, findings from experiments run hgr@ess et al. (2007), Charness et al. (2010)
and Casari et al. (2011) point into the same doads the psychology literature. Charness et al.
(2007) study decisions in an urn experiment witspest to Bayesian updating and (first-order
stochastic) dominance. They find that error ratep avith the number of decision makers. How-
ever, when comparing two-person and three-persam teerformance with individual perfor-
mance, most teams apparently do not reach the-wnnh benchmark. Charness et al. (2010)
study the conjunction fallacy, i.e. the tendencydetision-makers to violate the rule that the
probability of the intersection of two events canegceed the probability that one of the two
events occurs. In their experiment teams of twothnek violate this rule less often than individ-

uals, but also fall short of the truth-wins benchkn&imilar findings are reported by Casari et al.

2 See also the textbooks by Larson (2010) and Lau@®011) for an overview. Teams sometimes reaehbénch-
mark in tasks that have a demonstrably correctisolufor example in mathematical problems (Laugland Ellis,
1986) or in the game of Mastermind (Bonner et @02). They beat it on Letters-to-Numbers probleb@ighlin et
al. 2002). Charness and Sutter (2012) and Kuglak. ¢€2012) provide overviews on the economicsditiere.



(2011). The authors study bids in a company takegaene and find that teams of three place
better bids than individuals, i.e. less bids thaldyan expected loss or less bids that are dominat
ed by others. Yet, teams underperform with resfmetite truth-wins benchmark. However, simi-
lar to the psychological studies, these three eéxygents require no, or only little, strategic reason
ing: In the first two, subjects face a non-intenzetdecision task; in the third, subjects play

against a buyer who simply accepts all offers yngdh positive profit.

Analyzing strategic interaction, Cooper and Kag@$l05), on the other hand, observe that teams
of two are able to beat the truth-wins norm. Thegus on behavior in signaling games with nu-
merous equilibria which are based on the entrytlipnicing model by Milgrom and Roberts
(1982). Cooper and Kagel identify a subset of masstrategic” and show that teams behave
more strategically and thereby beat the truth-wiosm in some variants of the game. Interpret-
ing the individuals’ speed of learning as a measirdifficulty, Cooper and Kagel conjecture
that the team advantage is positively related ¢odifficulty of learning to play strategically. In
light of the experimental evidence Charness ef28l10) speculate that “the additional layer of
complexity may lead to a greater degree of synengystrategic games (p. 555). Unfortunately,
in strategic interactions it is often difficult jodge what constitutes “better” performance (and,
accordingly, a greater degree of synergyyiori. Does it mean increasing payoffs? Or, adhering
closer to the predictions derived from game-theometodels under the assumption of strictly

selfish preferences and common knowledge of rdliiygAa

This study provides a clean test of the conjectnaele by Charness et al. (2010). To overcome
the aforementioned interpretation problems, we egnfite race game, which has recently come
into focus of economists (see, e.g., Burks et241Q9, Dufwenberg et al., 2010, Gneezy et al.,
2010, and Levitt et al., 2011). The race gametis@player constant-sum game with complete
and perfect information that has a dominant stgatedpich can be found by backward induction.
Optimal behavior in this game does not depend diefbeand is the same for all potential prefer-
ences that value one’s own payoff higher than p@ooent’s. The only way to increase payoffs
is to adhere closer to the game-theoretic prediciitierefore this game allows for a comparison
of team performance with the truth-wins benchmart the identification of synergies. Moreo-
ver, by varying the length of the game we can chvelother a relationship between the complex-
ity of the strategic interaction and the differem¢etween individual and team performance ex-
ists, as suggested by Charness et al. (2010). T&mmwledge this is also the first study that al-



lows comparing the ability to apply the fundamemfame-theoretic concept of backward induc-

tion (in isolation) between teams and individuals.

2 Experimental Design

In a race gamé&(m, k), two players alternate in choosing integers betwg andk. All chosen
values are summed up and the player who can cleoosenber that makes the sum equainto
wins. The race game is a combinatorial game thabeasolved by backward induction. If player
1 wants to win and reaeh on her last move, she needs to secure the wimpasgionm-(k+1) in

the preceding move. This way, limited to a choiedneen 1 and, player 2 will not be able to
reachm on his turn. In order to secure this winning gosit however, player 1 also needs to se-
curem-2(k+1) on the move before, or, generalfsn(k+1) on hem-th to last mové. Applying

this strategy, the first mover can win all race garaxcept those whemeis divisible by k+1).

In our experiment we aimed to compare the perfoomaf teams and individuals in race games
of different lengths. Subjects played twelve raeengsG(m, k=4) consisting of two identical
series of games wit taking the values 19, 3, 29, 8, 11 and 21. Theegavaried from zero to
five steps of reasoning that are necessary totfiedirst winning position. In the following we
refer to the two series as part 1 and part 2. Toease comparability between individuals and
teams, subjects played against a computer progrdnmim@lay the winning strategy outlined
above - if possible. Subjects moved first in alhga and could — theoretically — reach a winning
position in the first move of all games. If the qauter could not reach a winning position, it re-
sorted to random play. Subjects were unaware otdta number of games but knew that the

computer “tries to win” each game.

Our implementation of the race game and the experiah procedures were based on the study
by Brosig-Koch et al. (2012) that considers thatiehship between age and the capability to

backward induct. We used their graphical interfand framed the players’ goal as securing a

% As Dufwenberg et al. (2010) and Levitt et al. (BDpoint out, this procedure is not backward inirctn thestrict
sense as a player does not need to solve for psngmt’'s optimal choice. Nevertheless, solving tasne might
still be a challenging computational task for mupsople.



treasuré’. The instructions were read out aloud and were rapamied by a presentation and a
video. They were followed by five control questioAdter the two series of race games the ex-
periment concluded with a short questionnaire. @tvplete instructions and the control ques-
tions are included in Appendix A. The video is &afalie upon request.

In theIndividuals treatment 21 subjects participated, 12 of them ammnSubjects made the deci-
sion individually at a computer and were paid 5dsufor each game they won. In theams
treatment 24 subjects participated in 12 same-gderdens, half of them female. In this treatment
both team members also used an individual compbigr,each member had two computer
screens available. One screen showed the gamettibe a chat interface that connected both
team members and allowed them to exchange textagessiuring the course of the 12 games.
Only one subject in each team could enter the tea@®Cisions. The other subject saw a copy of
the decision-maker's game screen. Each subjecivezt® Euros for each game the team won.
All subjects were students and 20 years old atithe of the experimentThey were recruited
with ORSEE (Greiner, 2004). Experiments were cotetliat the Essen Laboratory for Experi-
mental Economics (elfe) using z-Tree (Fischback@®,7). On average subjects earned 30.0 Euro

and were paid using a double-blind procedure.

3 Reaults

A first view on the results confirms the commondiimg: Teams adhere closer to standard game-
theoretic predictions and outperform individualygles. On average they win almost two more of
the 12 games. Individuals only win 41.3 percenthef games while teams win 57.6 percent. The
difference in performance is significapt£ 0.003, exact two-tailed Mann-Whitnéytest) and it
persists when considering the first and the segart of the experiment separatefy< 0.015,
exact two-tailed Mann-Whitney-tests). The number of games teams or individuaisdaes not
differ between both parte & 0.183, exact two-tailed Wilcoxon tests). Also, g@aring the two

instances of each game individually yields no digant differencesg> 0.250, exact McNemar

4 Before the first move in each game, the valum@ hidden to the subjects but can be uncoverezbbifess clicks.
All teams and 15 of 21 individuals uncovered theagsure before their first move in every game. After third
game, all individuals except one uncovered thestreabefore the first move.

> All data at the individual level is included in p@ndix B. The data from tHadividuals treatment is also analyzed
in Brosig-Koch et al. (2012).



tests). That is, we do not observe any learningidams and individuals. Table 1 displays the
share of games won in each of the 12 games.

Table 1 — Share of games won (in percent)

Game 1 2 3 4 5 6 7 8 9 10 11 12
m 19 3 29 8 11 21 19 3 29 8 11 21
Individuals 14.3 100.0 0.0 714 476 00 00 1000 0.0 81.0 66.7 143
Teams 250 100.0 8.3 100.0 75.0 16.7 25.0 100.0 16.7 100.0 91.7 33.3

In the spirit of Cooper and Kagel (2005), we alkeak whether teams create synergies and are
able to beat the truth-wins benchmark. For thigppse we compare the performance of our real
teams to the performance of simulated teams thgreggte individual performance according to
the truth-wins hypothesis. More precisely, we rantjodraw (with replacement) 12 observations
of women and 12 of men playing alone. We then mttem into two-person same-gender teams
and record the average performance of all 12 siedlgeams — assuming that each simulated
team performs as well as its best member. We repeatprocess 100,000 times. Following
Cooper and Kagel (2005), we consider teams to theatruth-wins benchmark when they win
more games than 95 percent of the simulated teanis other words, when their average per-

formance lies above the 90-percent confidencevat¢€l) of simulated team performante.

Over all games, the simulated teams win 47.9 péiethe games on average (median 47.9, 90-
percent Cl [43.8; 51.4]), suggesting that real tedwith their success-rate of 57.6 percent) beat
the truth-wins benchmark. Considering part 1 amtl paeparately presents a similar picture: In
the first run-through of the six games, real teavits 54.2 percent of the games while simulated
teams win 45.6 percent on average (median 45.@e8ent Cl [41.7; 48.6]); in the second run-

through, real teams win 61.1 percent while simalagams win 51.5 percent on average (median
51.4, 90-percent CI [45.8; 56.9]).

® We chose 90-percent Cls for comparability with stedy by Cooper and Kagel (2005). Choosing a strigb-

percent confidence interval would not alter anyhef results qualitatively.



Re-running the simulations after grouping the gaa®@®rding to their length into shorh & 3
andm = 8), mediumifh = 11 andm = 19) and longrfi= 21 andm = 29), reveals that the team
advantage appears to be modulated by the complekitye game. Figure 1 plots the share of
games won for individuals and real teams as wethasmedian performance of the simulated
teams together with 90-percent confidence intergaés the three groups. The advantage of real

teams increases with game length. Only in mediuchlamg games do they outperform the simu-

lated team$.
Figure 1 — Share of games won and length of game
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! Interestingly, the data on behavior in informatt@scades by Fahr and Irlenbusch (2011) yields s&wabiat simi-
lar pattern. Fahr and Irlenbusch distinguish dileangituations in which decision-makers should “fellthe herd”
instead of their private signal from non-dilemmaaiions. They observe that only 55.5 percent dividual deci-
sions in dilemma situations are rational compam@®7.4 percent of the remaining individual decisioRe-
analyzing their data with respect to the truth-wimesm, we find that teams fall short of simulatearhs in non-
dilemma situations. Yet, in the more demandingnditea situations the difference in performances tssignificant
anymore. Note, however, that the behavior in infation cascades crucially depends on the playefi&fbeand not
only on the ability to reason strategically.



4 Conclusion

Our contribution to the literature is twofold: Rirsve introduce the race game to the study of
team performance and show that teams outperformidhugls in a game that can be solved by
backward induction. The employed race game is éspesuitable for identifying synergies in

team performance as optimal play does not deperixtlefs and is the same for a wide range of
preferences. Second, we show that in this gamesteaeonly able to create synergies if a suffi-
cient degree of complexity is prevalent. This otaaBon is broadly in line with conjectures by

Charness et al. (2010) and Cooper and Kagel (20@%),suggest a relation between task com-
plexity and the advantages teams have over indisd®f course, one has to be careful in draw-
ing general conclusions from this observation bumight explain some of the mixed results on
the truth-wins benchmark. Furthermore, the raceegeamains a rather abstract task. It would be

important to learn whether our findings extend mremnatural decision environments.
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Appendix A: Instructions (translated from Ger man)

The first part of the following instructions wasadealoud by the experimenter. It was acca-
nied by slides and a short video that were showa oantral screen in the laboratory. In cas
the Team treatment, subjects subsequently had to read twdepart of the instructions in th
respective soungroof cubicle

Part 1

Hello and welcome! Today you are taking part ire&periment in which you will be able to et
money. How much money you ll earn depends on your decisions.

[Team treatment only: The instructions of today’s expenniconsist of two parts. | will read pi
one now. You will find the second part later insttle cubicles. Please enter your respectu-
bicle after the firspart of the instructions. You can find the numbeyaur cubicle on the tabl
tennis ball that you have found at your currenkd

Important: All your decisions are made anonymoublgbody will be able to link the choici
you made to your name. We 1 tell you in a moment what the experiment is ab@irst of all
there are two important rule

Rule 1

1. Signal us, if you do not understand something. Veatwou to have a perfect underd-
ing of everything!

11



Rule 2

2. Itis not allowed to talk to other particigts. If you, however, talk to another particip.
you will be immediately excluded from this expermheConsequently you will also ee
no money in this case.

Now let’s return to the rules of the game. Sevena¢s each of you will individually play a me
against the computer. The more often you win agahe computer, the more money you \

earn. How does the game look li

The computer challenges you. The goal of the ganeieach and collect a treast

The treasure, which looks like a yellow square, tessn buried by the computer in a cave, wi
has only one entry. You and the computer can rédaekreasure only by using the entrance of

cave.

12



Unfortunately, the computer has blocked the pze from the entry to the treasure with one
more red stones. (This means that behind the tredlsere are no more red stones but only
To reach the treasure you have to remove the oest The stones can only be removed Ir-
rying them out throgh the entrance of the cave. This means that gdulee computer can on
move the stone, which is the closest to the engs:

You can remove the stones by packing them into yox: This box (the blue rectangle on
left side) only fits one, te, three, or at most four ston:

13



By removing the stones you alternate with yourlrittee compute

i

The computer can also remove stones and also has @he blue rectangle on the right side) -
fits four stones at most.

i

After every moe the stones in your box and the computer’'s boapgiear. The winner is ti
player who packs the treasure in his box firsthis game you are always the first who can g
stones into your box and remove them. Thereaftas, the computer’s turn. S as you, the
computer tries to win the game and to put the tneamito his bo»

You can pick a stone by clicking on it with the meuholding the button and pulling the st
into your box. (If you have put more stones in ybox than you wanted teyou can pull the
stones back into the cave.) When there are as stangs in your box as you want to remc
you have to click on the blue checkmark button #red stones disappear. Then it is thm-

puter’s turn and you can observe how many storeescmputer removes.

14



[Video]

You take turns with the computer until one of yemoves the treasure and wins. You can
win by packing the stone into your box and removin§ame as you, the computer must rerr
at least one stone at each turn.

There is aspecial feature: After the computer has hiddentrisure it has blocked your view
the cave with bushes, that look like green squdrke.computer knows what is hidden bel
each green bush. If you want to see what is bethiadgreen bushes as ', you just have to
click on the hedge trimmer.

15



Starting from the entry of the cave you can remtwwe adjacent bushes by clicking on the he
trimmer once.

In each move you can remove as many green bushgsiagant. Behind every green bushre
can be either a red stone, or nothing, or the tireasAs mentioned before, you play sew
games consecutively. These games differ from edlclar mnly in the number of red ston
blocking your way to the treasure. For each gamewin you will receive five Eurc

When you entered this room you received a card yatlr code name. Please keep it safe. A
end of the experiment you have to enter your caeenin the computer. You also need y
card to collect your payoff.

At the end of the expenent your respective payoffs will be calculatédter this the cash des
in the corridor outside the laboratory opens. There can collect a closed envelope contair
your payoff by showing your card. The cashier doesknow what is inside thesevelopes.
Please collect your payoffs immediately after thpeziment

Questions

16



Questions

Before we start we will ask some questions so wmatcan help you better to understand
game.

JA
o [N

Please answer the questions with “Yes” or “No” llipg the blue ball, which will appear i
front of you on the monitor, into the green or thd are:

Question 1

1) Please have a look at the following game. Doesdngputer know behind which gre
bush the treasure lies?

17



Question 2

2) Please have a look at the following game. Du see where the treasure

Question 3

3) Please have a look at the following game. Are Jmwad to remove all green busk
with the hedge trimmer no\

Question 4

4) Please have a look at the following game. Is itexdy that the computer is winning t
game?

18



Question 5

5) Pleaseéhave a look at the following game. You want to paes stones into your box |
order to win. Is this possibl

[Team treatment only:
Part 2

Playing in teams: During the experiment you wilkypthe game that was just presented. You
play againsthe computer jointly with another participant. Tdhecisions will only be entered |
one of the team members (player A). The other tesmber (player B) can observe the cot
of the game on the screen. Which player you arép@ishown on your scree

Chat: During the experiment each team can commigigia chat messages. You can de:
freely about the content of the chat. But you atatiowed to reveal personal information ab
yourself like name, age, address, field of studgl(iding lectures, lectures or lecture conten
that would allow identification of the field of sty) or similar. Anyone who violates thesem-
munication rules will be excluded from the expernitnand will not receive any mone

19



Appendix B: Data

Team Observer
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