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Abstract

We give a generalisation of Shimizu’s lemma to complex or quaternionic hyperbolic space in
any dimension for groups of isometries containing an arbitrary parabolic map. This completes
a project begun by Kamiya in 1983. It generalises earlier work of Kamiya, Inkang Kim and
Parker. The analogous result for real hyperbolic space is due to Waterman in 1993.
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1 Introduction

1.1 The context

The hyperbolic spaces (that is rank 1 symmetric spaces of non-compact type) are Hi where
[F is one of the real numbers, the complex numbers, the quaternions or the octonions (and in
the last case n = 2), see Chen and Greenberg [5]. A map in Isom(Hy) is parabolic if it has
a unique fixed point and this point lies on 0Hy. Parabolic isometries of H% and H%, that is
parabolic elements of PSL(2,R) and PSL(2, C), are particularly simple: they are (conjugate to)
FEuclidean translations. In all the other cases, there are more complicated parabolic maps, which
are conjugate to Euclidean screw motions.

Shimizu’s lemma [23] gives a necessary condition for a subgroup of PSL(2,R) containing a
parabolic element to be discrete. If one normalises so that the parabolic fixed point is oo,
then Shimizu’s lemma says that the isometric sphere of any group element not fixing infinity
has bounded radius, the bound being the Euclidean translation length. Equivalently, it says
that the horoball with height the Euclidean translation length is precisely invariant (that is
elements of the group either map the horoball to itself or to a disjoint horoball). Therefore,
Shimizu’s lemma may be thought of as an effective version of the Margulis lemma in the case
of cusps. Shimizu’s lemma was generalised to PSL(2,C) by Leutbecher [17] and to subgroups
of Isom(HE) containing a translation by Wielenberg [25]. Ohtake gave examples showing that,
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for n > 4, subgroups of Isom(Hp) containing a more general parabolic map can have isometric
spheres of arbitrarily large radius, or equivalently there can be no precisely invariant horoball
[19]. Finally Waterman [24] gave a version of Shimizu’s lemma for more general parabolic maps,
by showing that each isometric sphere is bounded by a function of the parabolic translation
length at its centre. Recently Erlandsson and Zakeri [6, 7] have constructed precisely invariant
regions contained in a horoball with better asymptotics than those of Waterman; see also [22].

It is then natural to ask for versions of Shimizu’s lemma associated to other rank 1 symmetric
spaces. The holomorphic isometry groups of Hf and Hjj are PU(n,1) and PSp(n,1) respec-
tively. Kamiya generalised Shimizu’s lemma to subgroups of PU(n, 1) or PSp(n, 1) containing a
vertical Heisenberg translation [13]. For subgroups of PU(n, 1) containing a general Heisenberg
translation, Parker [20, 21] gave versions of Shimizu’s lemma both in terms of a bound on the
radius of isometric spheres and a precisely invariant horoball or sub-horospherical region. This
was generalised to PSp(n, 1) by Kim and Parker [16]. Versions of Shimizu’s lemma for subgroups
of PU(2,1) containing a screw parabolic map were given by Jiang, Kamiya and Parker [10, 14].
Kim claimed the main result of [10] holds for PSp(2,1) [15]. But in fact, he failed to consider all
possible types of screw parabolic map (in the language below, he assumed g = 1). Our result
completes the project begun by Kamiya [13] by giving a full version of Shimizu’s lemma for any
parabolic isometry of Hf or Hyj for all n > 2.

Shimizu’s lemma is a special case of Jorgensen’s inequality [12], which is among the most
important results about real hyperbolic 3-manifolds. Jgrgensen’s inequality has also been gen-
eralised to other hyperbolic spaces. Versions for isometry groups of H% containing a loxodromic
or elliptic map were given by Basmajian and Miner [1] and Jiang, Kamiya and Parker [9]. These
results were extended to HZ by Kim and Parker [16] and Kim [15]. Cao and Parker [3, 4] ob-
tained generalised Jgrgensen’s inequalities in Hy for groups containing a loxodromic or elliptic
map. Finally, Markham and Parker [18] obtained a version of Jgrgensen’s inequality for the
isometry groups of H%) with certain types of loxodromic map.

1.2 Statements of the main results

The purpose of this paper is to obtain a generalised version of Shimizu’s lemma for parabolic
isometries of quaternionic hyperbolic n-space, and in particular for screw parabolic isometries.
In order to state our main results, we need to use some notation and facts about quaternions
and quaternionic hyperbolic n-space.

We will show in Section 2.3 that a general parabolic isometry of quaternionic hyperbolic space
H; can be normalised to the form

o =V2rr e (=7l + t)p
T=10 U No , (1)
0 0 I

where 7 € H" !, ¢ is a purely imaginary quaternion, U € Sp(n — 1) and y is a unit quaternion
satisfying
Ur=upr, U't=0r, pr #7a if 7#0and p # +1,
Ur=ur, Ut =nr if 7#0 and p = +£1,
ut £t if r=0and p # +1,
t#0 ifr=0and p==+1.

(2)
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We call a parabolic element of form (1) a Heisenberg translation if y = +1 and U = ul,—1, and
we say that it is screw parabolic otherwise. We remark that even for n = 2 it is possible to find
screw parabolic maps with p # +1 and 7 # 0. This is the point overlooked by Kim in [15].

If ;1 is a unit quaternion and ¢ € H" !, the map ¢ — u(f is linear. For U and p as above,
consider the following linear maps:

By : ¢ — U¢ —(pu, By ¢ — pu¢ — Cp.

Define Ny, and N, to be their spectral norms, that is

Ny = max{||BuyCl : ¢ € B  and [¢] = 1}, (3)
Ny = max{[| B¢ : ¢eH"Vand ¢ =1} = 2[im(u)]. (4)

Note that U*¢ —(n = U*Cup—U*U(n = —U*(U¢ — (u)fi. Therefore Ny« 3 = Ny, We remark
that N, = 0 if and only if u = £1, and Ny, = 0 if and only if both p = +1 and U = ul,, 1,
that is Ny, = 0 if and only if T" is a Heisenberg translation.

We may identify the boundary of Hp with the 4n — 1 dimensional generalised Heisenberg
group with 3 dimensional centre, which is 94,1 = H?*! x Im(H) with the group law

(¢ v1) - (G2 v2) = (G 4 oy 01 + v + 2Im((5¢1)).

There is a natural metric called, the Cygan metric, on 94, _1. Any parabolic map 7' fixing oo is a
Cygan isometry of My, 1. The natural projection from MMy, 1 to H* ! given by I : (¢, v) —
is called vertical projection. The vertical projection of T is a Euclidean isometry of H"~!.

An element S of Sp(n,1) not fixing oo is clearly not a Cygan isometry. However there is a
Cygan sphere with centre S~!(oc0), called the isometric sphere of S, that is sent by S to the
Cygan sphere of the same radius, centred at S(co). We call this radius rg = rg-1. Our first
main result is the following theorem relating the radius of the isometric spheres of S and S~1,
the Cygan translation length of T" at their centres and the Euclidean translation length of the
vertical projection of T' at the vertical projections of the centres.

Theorem 1.1 Let I' be a discrete subgroup of PSp(n, 1) containing the parabolic map T given
by (1). Let I : Myy—1 — H"! be vertical projection given by I1 : (¢,v) — (. Suppose that the
quantities Ny, and N, defined by (3) and (4) satisfy N, < 1/4 and Ny, < (3—24/2+ N,)/2.
Define

1
RN (T e A ®

If S is any other element of I' not fixing oo and with isometric sphere of radius rg then

(571 (00))lr (S (c0)) N 4| TS~ (00) — LS (00) || || TIT'S (00) — ILS (o) || |

2
<
s = K K(K —2Ny,,,) (6)

If 4 =1 then Theorem 1.1 becomes simpler and it also applies to subgroups of PU(n,1):

Corollary 1.2 Let I' be a discrete subgroup of PU(n,1) or PSp(n,1) containing the parabolic
map T given by (1) with = 1. Suppose Ny = Ny defined by (3) satisfies Ny < (v/2 —1)2/2.
Define

1

K
2

(1280 + /1 - 1200 + 483).



1 INTRODUCTION 4

If S is any other element of I' not fixing oo and with isometric sphere of radius rg then

2 < tr(S71(00)) by (S(c0)) N 4| TS~ (00) — LS (00) || || TIT'S (00) — ILS(0) ||
§= K K(K —2Np) '

As we remarked above, T' is a Heisenberg translation if and only if Ny, = 0, which implies
N, =0 and K = 1. In this case ||[IIT'S™!(c0) — ILS~!(c0)|| = |[IT'S(c0) — I1S(00) || = ||7|| and
so Theorem 1.1, or Corollary 1.2, is just Theorem 4.8 of Kim-Parker [16]. If in addition 7 = 0
then £7(S~'(c0)) = £7(S(c0)) = |t|'/? and we recover Kamiya [13, Thm. 3.2].

For a parabolic map T of the form (1), consider the following sub-horospherical region:

e {(C’”’“) eHp : us TS 4(2K — N,)|TIT(2) - TI(=) } (M)

K =Ny (K~ Nu)((K = Nu)(K - 2Ny,,) — 2Ny, K)
Also, using the definitions of Ny ,, N, and K one may check
(K — N,)(K —2Ny,) — 2Ny, K = (K — 4Ny ,)2Ny,, + K(K — 2NU,M)2,

which is positive since K — 4Ny, > (1 — 6Ny,,)/2 > 0. Note that when p = +1, including the
case of PU(n, 1), then we have the much simpler formula, generalising [21, eq. (3.1)]:

tr(z)* | 8IIT(z) - H(Z)IIZ}
K K(K —4Ny,) J-

Ur = {(C,U,U)GH]?H Dou >

If H is a subgroup of G then we say a set U is precisely invariant under H in G if T(U) = U
forall T € H and S(U) NU = for all S € G — H. Our second main result is a restatement of
Theorem 1.1 in terms of a precisely invariant sub-horospherical region.

Theorem 1.3 Let G be a discrete subgroup of PSp(n,1). Suppose that G the stabiliser of oo
in G is a cyclic group generated by a parabolic map of the form (1). Suppose that Ny, and N,
defined by (3) and (4) satisfy N, < 1/4 and Ny, < (3 —2y/2+ N,)/2 and let K be given by
(5). Then the sub-horospherical region Ur given by (7) is precisely invariant under G in G.

1.3 Outline of the proofs

All proofs of Shimizu’s lemma, and indeed of Jgrgensen’s inequality, follow the same general
pattern, see [13, 10, 16]. One considers the sequence S;i; = SjTSfl. From this sequence one
constructs a dynamical system involving algebraic or geometrical quantities involving S;. The
aim is to give conditions under which Sy is in a basin of attraction guaranteeing S; tends to T'
as j tends to infinity.

The structure of the remaining sections of this paper is as follows. In Section 2, we give the
necessary background material for quaternionic hyperbolic space. In Section 3 we prove that
Theorem 1.3 follows from Theorem 1.1. In Section 4 we construct our dynamical system. This
involves the radius of the isometric spheres of S; and S’;l and the translations lengths of T" and its
vertical projection at their centres. We establish recurrence relations involving these quantities
for Sj;1 and the same quantities for S;. This lays a foundation for our proof of Theorem 1.1 in
Sections 5 and 6. In Section 5 we rewrite the condition (6) in terms of this dynamical system,
(Theorem 5.1) and show that it means we are in a basin of attraction. Finally, in Section 6, we
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show this implies S; converges to 1" as j tends to infinity. Thus, our proof follows the existing
structure; but it is far from easy to construct a suitable dynamical system and to find a basin
of attraction.

Acknowledgements The first author was supported by State Scholarship Council of China
and NSFS of Guangdong Province (2015A030313644,2016A030313002).

2 Background

2.1 Quaternionic hyperbolic space

We give the necessary background material on quaternionic hyperbolic geometry in this section.
Much of the background material can be found in [5, 8, 16].

We begin by recalling some basic facts about the quaternions H. Elements of H have the form
2 = 21+ 29i+23j+24k € Hwhere z; € Rand i = j> = k% = ijk = —1. Let Z = 2; — 201 — 23] — 24k
be the conjugate of z, and |z| = VZz = \/2? + 25 + 22 + 27 be the modulus of z. We define
Re(z) = (2 + Z)/2 to be the real part of z, and Im(z) = (2 — Z)/2 to be the imaginary part of
z. Two quaternions z and w are similar if there is a non-zero quaternion ¢ so that w = qzq~".

Equivalently, z and w have the same modulus and the same real part. Let X = (x;;) € Mpxq be
a p x q matrix over H. Define the Hilbert-Schmidt norm of X to be [|X|| = />, ;[25[*. Also
the Hermitian transpose of X, denoted X*, is the conjugate transpose of X in M.

Let H™! be the quaternionic vector space of quaternionic dimension n+1 with the quaternionic
Hermitian form

(z, w) = W'Hz = W12p41 + Wazo + -+ + Wpzp + Wnt121, (8)

where z and w are the column vectors in H™! with entries 21, ..., 2,41 and wy, ..., Wpit
respectively, and H is the Hermitian matrix

0 1
H=10 I,-1 0
1 0 O
Following [5, Sec. 2], let

V():{ZEH"’I—{O}:(z, z):()}, Vo= {ZGH"’l : (z, z) <0}.

We define an equivalence relation ~ on H™! by z ~ w if and only if there exists a non-zero
quaternion \ so that w = z\. Let [z] denote the equivalence class of z. Let P : H™»!—{0} — HP"
be the right projection map given by P : z — [z]. If 2,41 # 0 then PP is given by

P(z1, ..., Zn, Zns1) ) = (zlz;il, e ,znz;il)T € H".
We also define
P(z1,0, ..., 0,0)7 = .

The Siegel domain model of quaternionic hyperbolic n-space is defined to be Hy = P(V_)
with boundary OHf, = P(Vp). It is clear that oo € OHJ;. The Bergman metric on Hfj is given
by the distance formula
h2 p(Z,U)) <Z, W><W7 Z>

= 2. ) (w, W)’ where z,w € HE, z € P l(2),w € P~ (w).

COS
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This expression is independent of the choice of lifts z and w.

Quaternionic hyperbolic space is foliated by horospheres based at a boundary point, which
we take to be co. Each horosphere has the structure of the 4n — 1 dimensional Heisenberg group
with three dimensional centre M4,—1. We define horospherical coordinates on H — {co} as
z = ((,v,u) where u € [0,00) is the height of the horosphere containing z and ({,v) € MNyp—1
is a point of this horosphere. If u = 0 then z is in OH} — {oo} which we identify with 4,1
by writing (¢,v,0) = (¢,v). Where necessary, we lift points of HY, written in horospherical
coordinates to Vp U V_ via the map ¢ : (Mun—1 x [0,00)) U {oo} — Vo U V_ given by

1
—lI¢I? = u+v 0
Bvw = | VR | wle) = |
1 .
0
The Cygan metric on the Heisenberg group is the metric corresponding to the norm

(G 0)] 5 = ICH2 + o = (Ch* + Jof?) ™.

It is given by
-1 2 * 1/2
dp ((C1,01), (G2 v2)) = |(Cry01) ™ (Coyv2) |y = ‘||C1 — Gl v+ v — 21m(€2€1)‘
As on [16, p. 303], we extend the Cygan metric to HE — {oo} by

A (G, 1, 01), (G v 2)) = [IG3 = P+t — wal = v 3 — 2m(Ggr)|

2.2 The group Sp(n,1)

The group Sp(n, 1) is the subgroup of GL(n + 1, H) preserving the Hermitian form given by (8).
That is, S € Sp(n, 1) if and only if (S(z), S(w)) = (z, w) for all z and w in H™!. From this we
find S~! = H~1S*H. That is S and S~! have the form:

a v b d B* b
S=a A g |, St=|46 A ~ |, (9)
c 0 d c af a

where a,b,¢c,d € H, Ais an (n—1) x (n — 1) matrix over H, and «, 3,7, are column vectors in
H~ L
Using the identities I,,.1 = SS™! we see that the entries of S must satisfy:

1 = ad+~"6 +be, 10
0 = ab+ |v|? + ba, 11
0 =

Ino1 = aBf™+ AA™ + Ba’,
ab + Ay + fa,

(10)
(11)
ad + Ad + e, (12)
(13)
(14)
= cd+|d)?+de (15)

o o
I



2 BACKGROUND 7

Similarly, equating the entries of I,,11 = S™1S yields:

1 = da+ f*a+be,

0 = dv*+ B*A+bs*,
0 = db+|B|?+bd,
0

= da+ A*a+ e,
Ini = 07"+ A*A 46",
0 = ca+|al®+ac

An (n—1) x (n — 1) quaternionic matrix U is in Sp(n — 1) if and only if UU* = U*U = I,,_;.
Using the above equations, we can verify the following lemma.

Lemma 2.1 (c.f.[16, Lem. 1.1]) If S is as above then A — ac™16* and A — Bb~1y* are in
Sp(n —1). Also we have

B—acld = —(A—ac'5*)oc !,
y—dclta = —(A—ac 0 ac,
a—fbla = —(A— by,
§—b'd = —(A—Bb'y) Byt

It is obvious that V and V_ are invariant under Sp(n,1). This means that if we can show
that the action of Sp(n, 1) is compatible with the projection P then we can make Sp(n,1) act
on quaternionic hyperbolic space and its boundary. The action of S € Sp(n, 1) on Hf; U0H is
given as follows. Let z € V_ U V| be a vector that projects to z. Then

S(z) =PSz.
Note that if z is any other lift of z, then z = z\ for some non-zero quaternion A. We have
PSz = PSz\ = PSz = S(z)

and so this action is independent of the choice of lift. The key point here is that the group acts
on the left and projection acts on the right, hence they commute.

Let S have the form (9). If ¢ = 0 then from (15) we have [|d|| = 0 and so ¢ is the zero vector
in H?~!. Similarly, « is also the zero vector. This means that S (projectively) fixes co. On the
other hand, if ¢ # 0 then S does not fix co. Moreover, S~1(c0) and S(00) in MNyy,—1 = OHE — {00}
have Heisenberg coordinates

S7Hoo) = (671 /V2, Im(de ™)), S(c0) = (ac™!/V2, Im(ac™?)).

For any r > 0, it is not hard to check (compare [21, Lem. 3.4]) that S sends the Cygan sphere
with centre S~!(c0) and radius r to the Cygan sphere with centre S(co) and radius 7 = 1/|c|r.
The isometric sphere of S is the Cygan sphere with radius rg = 1/|c['/? centred at S~ (c0). It
is sent by S to the isometric sphere of S~!, which is the sphere with centre S(co) and radius
rs. In particular, if r and 7 are as above, then 7 = r% /r.

We define PSp(n,1) = Sp(n, 1)/{£1,+1}, which is the group of holomorphic isometries of Hf.
Following Chen and Greenberg [5], we say that a non-trivial element g of Sp(n, 1) is:
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(i) elliptic if it has a fixed point in Hi};
(ii) parabolic if it has exactly one fixed point, and this point lies in OH;

(iii) loxodromic if it has exactly two fixed points, both lying in OHJ.

2.3 Parabolic elements of Sp(n, 1)

The main aim of this section is to show that any parabolic motion 7" can be normalised to the
form given by (1). We use the following result, which we refer to as Johnson’s theorem:

Lemma 2.2 (Johnson [11]) Consider the affine map on H given by Ty : z — vzl + 7 where
T € H—{0} and p, v € H with |p| = |v| = 1.

(i) If v is not similar to p then Ty has a fized point in H.
(ii) If v = p and p # £1 then Ty has a fized point in H if and only if pr = 1.
We now characterise parabolic elements of Sp(n, 1) (compare [2, Thm. 3.1 (iii)]).

Proposition 2.3 Let T € Sp(n, 1) be a parabolic map that fizes oo. Then T may be conjugated
into the standard form (1). That is

po =Vt (=T +t)p
T'=1{0 U V2T ,
0 0 "

where (1,t) € Mup—1, U € Sp(n — 1) and p € H with |u| = 1 satisfying (2). That is

Ur=ur, U't=q0r, ur Z70n  if 7 #0 and p # £1,

Ur=upr, U't =0t if 7 #0 and p = £1,
ut # ti if T =0 and p # +1,
t#0 if7=0 and p = =£1.
Recall that if U = I,y and p = 1 (or U = —I,—1 and p = —1) then T is a Heisenberg

translation. Otherwise, we say that U is screw parabolic.

Note that if UT = u7 = 71 and g # %1 then ¢ = 7(1 —p2)~! is a fixed point of ¢ — U(i+7.
Furthermore, if 7 = 0, ut = tfr and p # =£1 then (¢,v) = (0,¢(1 — z*)™!) is a fixed point of T'
(note that, when ut = ¢, if ¢ is pure imaginary then so is t(1 — i) ~1).

Proof: Suppose that T', written in the general form (9), fixes co. Then it must be block upper
triangular, that is ¢ = 0 and a = § = 0, the zero vector in H"~!. This means that (co) is an
eigenvector of T' with (left) eigenvalue a. Thus, if T' is non-loxodromic, we must have |a| = 1.
From (10) we also have ad = 1. Using |a| = 1, we see that a = d. We define g :=a =d € H
with |u| = 1.

If o = (0,0) is the origin in My,,—1, then suppose T maps o to (7,t) € MNyp,—1. This means that

bd~h = 7P+, Bd' = Vor
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Hence b = (—||7||> + ) and 8 = v27rp. Also, A € Sp(n — 1) and so we write A = U. It is easy
to see from (14) that U~y + /27 = 0. Hence, T has the form

po =20 (=Tl + ) m
T=1{0 U V2T
0 0 W

Since T fixes co and is assumed to be parabolic, we need to find conditions on U, p and 7 that
imply T' does not fix any finite point of M4y,—1 = OH}; — {o0}.

Without loss of generality, we may suppose that U is a diagonal map whose entries u; all
satisfy |u;| = 1. Writing the entries of ( and 7 € H" ! as ¢; and 7; for i = 1, ..., n — 1, we see
that a fixed point (¢,v) of T' is a simultaneous solution to the equations

—[I¢|1* + v w(=[¢I? +v)a — 27 UCE — ||I7)|* + ¢,
G = wiGp+ T,

fori=1, ..., n— 1. If any of the equations (; = u;(;;w + 7 has a solution, then conjugating by
a translation if necessary, we assume this solution is 0.
If all the equations (; = u;(;ix + 7 have a solution, then, as above, ( = 0 and so 7 = 0. The
first equation becomes
v = pop +t.

By Johnson’s theorem, Lemma 2.2, if ;1 # £1 this has no solution provided ut # tii. Clearly, if
@ = £1 then it has no solution if and only if ¢ # 0.

On the other hand, if there are some values of i for which {; = w;(;;t + 7; has no solution,
then by Johnson’s theorem, Lemma 2.2, for each such value of i, the corresponding u; must be
similar to p (and 7; # 0 else 0 is a solution). Hence, without loss of generality, we may choose
coordinates so that whenever 7; # 0 we have u; = p. In particular, u;7; = p7r; and so UT = ur.
Furthermore, again using Johnson’s theorem, Lemma 2.2, if u # +1 then ur # 7.

Observe that w;7; = pm; and 7; # 0 imply

Wimy = () (77 ims) = i (wmy) (75 ims) = .
Hence U*T = fur, or equivalently 7*U = 7% and so T has the required form. 0
The action of T on HE — {oco} is given by
T(¢v,u) = (UGE+17, ¢+ ot — 21m(r* ), w).

Observe that T' maps the horosphere of height u € [0, 00) to itself. The Cygan translation length
of T at (¢, v), denoted 7 (¢, v) = du(T(¢,v), (¢,v)) = du (T(¢,v,w), (¢, v,u)), is:

r(¢v) = (UCE—FT—(,t—f—uvﬁ—v—l—ﬂm(((*—T*)(UCE—FT)))‘H
= HUCH+T—C}I2+t+uvﬁ—v+2Im((C*—T*>(U<ﬁ+7))\1/2

*TT — Op— * — 1/2
= |2C°UCE = 27 puCE + 2¢*T — [|7]|* + t = 2|[¢1* + por — v (16)

The vertical projection of T acting on H" ! is ¢ — U(li+ 7. Its Euclidean translation length
is [|[IT(¢,v) — (¢, v)|| = |UCE + 7 — ¢||. The following corollary is easy to show.
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Corollary 2.4 Let (¢,v) € Man_1 and let T : Ny, 1 — H~L be the vertical projection given
by I : (C,v) — (. If T is given by (1) then

HHT(<7 U) - H(Ca U)H < eT(Cvu)'

The following proposition relates the Cygan translation lengths of T at two points of 9y, _1.
It is a generalisation of [21, Lem. 1.5].

Proposition 2.5 Let T be given by (1). Let (¢,v) and (§,r) be two points in Nyp—1. Write
(¢, v)7 (& r) = (n,8). Then

r(€,1)? < €r(C0)? + 4TT(C, v) — TS, o) [HInll + 2Nw, 0> + Nuls
Proof: We write (£,7) = (¢,v)(n,8) = (C+n, v+ s+n*¢C — (*n). Then

2VER — 27 P + 26" — ||7|* + ¢ = 2||¢|* + prpp — v
= 2C+ ) UC+ma =2 u(C +mE+2(¢+ )7 — |I7]* + ¢
=20+l + pv+ s+ 0 ¢ = —v—s -0 ¢+
= 2C°UCE — 27" (i + 2" — ||7)1* + ¢ = 2||¢|f* + popr — v
+20"(UCa + 71— ) = 2(uC*U* + 7" = () Unp + 20" (Un — nup)i + (ps — sp).

Therefore, using (16),

brigr? = [26°Ug— 20 uga+ 267 — |72 + t = 2 €)1 + i - v|
< UG- 27+ 20T = 7P+ = 20CI2 + - o
2" (UCE + 7 = Q)| + 2| (u¢*U” + 7 — YU
+2[nl | Unz — nl| + [us — sp
< p(Cv)* + 4l |UCE+ 7 = ¢l + 2Nuulnll? + Nylsl.
The result follows since UCn + 7 — ¢ = HT'(¢,v) — II({,v). O

3 A precisely invariant sub-horospherical region

In this section we show how Theorem 1.3 follows from Theorem 1.1. This argument follows [21,
Lem. 3.3, Lem. 3.4].

Proof: (Theorem 1.3.) Let z = ((,v,u) be any point on the Cygan sphere with radius r and
centre ({p, vo,0) = ({o,v0) € Man—1 C OHY and write (n,s) = (¢,v) (o, v0). Then we have

/
2 = dig (G0, u), (Go,00,0))> = Il + 5| = (il + ) +1sP7)

In particular, 72 > ||n||?> + « and 72 > |s|. We claim that the Cygan sphere with centre ({p,vo)
and radius r does not intersect U when r satisfies:
C1(Go,v0)? | 4|17 (Go, vo) — TI(Co, vo)I?

2 < : 17
e K(K — 2Ny, (17
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To see this, using Proposition 2.5 to compare ¢7((p, vg) with ¢ ({,v) = €p(z), we have

w < |yl
K 2 Ny

— _ 2 2
- ‘Z;{_]\[p(71 K_N’ur ”77”
< K <£T(C07U0)2 + 4”HT(C0700) - H(COv'UO)Hz) o NM |3| _ H77||2
= K-N, K K(K —2Ny,,) K — N,
1 2 2
< —
< g () AT E) =Tl + 2Nl + Nl
4 2 N,
N7(z) -1 N, — s — [In|]?
w2 (T = @I+ Nelal)” = 2= Isl =l
_ 4GP | ANTE -TE)P | AKITe) -ae)
K—N, ' (K -NJE —2Ny,) " (K = N)(K ~2Ny,)
_ (K — Nu)(K — 2NU,M) — 2Ny, KK ||77||2
(K - Nu)(K - 2NU,#)
POk 42K = N,)|IT(z) = 11(2)

K—N, (K_Nu)((K_Nu)(K_QNUw)_2NU7uK)’

where the last inequality follows by finding the value of ||n|| maximising the previous line. Hence,
when 7 satisfies (17) the Cygan sphere with centre ({y,vp) and radius r lies outside Uy .

Now suppose that the radius rg of the isometric sphere of S satisfies the bound (6). Consider
the Cygan sphere with centre S~1(c0) = ({p,v0) and radius r with equality in (17). That is

o Ar(Co,v0)? | A|TIT(Co, o) — T(Co, vo) ||

re = I + K(K —2Ny,) . (18)

We know that S sends this sphere to the Cygan sphere with centre S(o0) = (60,50) and radius
7 =r%/r. We claim that 7 satisfies (17). It will follow from this claim that both spheres are
disjoint from Up. Since S sends the exterior of the first sphere to the interior of the second, it
will follow that S(Ur) NUr = (.

In order to verify the claim, use (18) and (6) to check that:

72 o= rfé/r2
1 7(Co, v0) 01 (Co, To) N 4|17 (G, vo) — T(Co, v0)|| [T (o, T0) — 11(Co, o) | ’
2 K K(K —2Ng,.)

< 1(Co, To)? n AT (Co, Bo) — T1(Co, o) |12
- K K(K — QNU,#) '

Thus 7 satisfies (17) as claimed.

Therefore, if S € G — G4 then the image of Ur does not intersect its image under S. On the
other hand, clearly T" maps Uy to itself. Thus every element of Go, = (T') maps Ur to itself.
Hence U7 is precisely invariant under G in G. This proves Theorem 1.3. U
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4 The dynamical system involving S and T

4.1 The sequence S;j;; = SjTSj’l

Let T be a parabolic map fixing co written in the normal form (1) and let S be a general element
of Sp(n, 1) written in the standard form (9). We are particularly interested in the case where
S does not fix co. We define a sequence of elements {S;} in the group (S, T') by Sy = S and
Sit1 = SjTSj_1 for j > 0. We write S; in the standard form (9) with each entry having the
subscript j. Then Sj; 1 is given by:

aj+1 Vg1 bjtr aj ;b po V2 (|7l + tp 4 By b

aji1 A B | =1 o 4 B 0 U V2rp o5 A7

G+1 o Ojp1 din ¢ 0 dj /) \0 0 p G 9 G
(19)

Performing the matrix multiplication of (19), we obtain recurrence relations relating the entries
of Sj+1 with the entries of Sj:

ajy1 = VUG — V2a;m*ud; + V2yiTpe; — a;(||7)|* — t)pe; + ajud; + bjuc;, (20)
v = AU = V2A ra; + V2a ity — agi(|17lP + tag + ayb; + Bimag,  (21)
b1 = YUy = V2a;mwy; + Vv rpa; — ap(||7))? = t)pas + ajub; + by, (22)
ajr1 = AUS — V2057 ud; + V2A e — ay (|71 — Opics + ayud; + Biney,  (23)
Aj1 = AjUAL — V20,7 pAl + V2A 0l — of(||7)1* — ) pad + ojuBy + Biucs, (24)
Bt = AjUvj — V207" pvy + V24 mpa; — (|71 — O + apb; + Bipag,  (25)
cir1 = ;U — 257 uby + V2851 — o (|7I1° — t)ue; + cjud; + djpie;, (26)
Sjv1 = AUS; —V2A5mre; + V205078 — oy |IT|* + t)e; + B + aymd;,  (27)
dip1 = 05U~ — V207w + V285t — ¢ (|171]° — t) paj + cjpb; + djpa;. (28)
We also define §j+1 = Sj_lT S; and we denote its entries a;41 and so on. We will only need
Cir1=a;Uaj — V2e,7* o + \/ia;fTucj — G (|ITI? = t)pej + jua; + a;pc;. (29)

These recurrence relations are rather complicated. We want to simplify them by extracting
geometrical information. Specifically, we want to find relations between the radii of the isometric
spheres of Sjj-E1 and Sjjjrll, the Cygan translation lengths of T' at the centres of these isometric
spheres and the Euclidean translation lengths of T' at the vertical projections of these centres.
Suppose Sj_l(oo) and S;(oo) have Heisenberg coordinates ((j,7;) and (wj, s;) respectively. So:

) —[I¢511% + 7 33‘5{1 —[lwi|I* + s; ajcfll
S (00) = V2(; = |95 |, Sj(oc0) = V2w; = | ajc; |- (30)
1 1 1 1

We now show how to relate c¢;q; to ¢; and (¢j,7;) = Sj_l(oo) and how to relate ¢4 to ¢; and

(wj,s85) = Sj(00). Geometrically, this enables us to relate the radius of the isometric spheres of
S;ElTSJj-El to the radius and centres of the isometric spheres of S; and Sj_l. Specifically, using
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(26) and (29) we have:

cileje ! = 2GUG =21 uG + 2G T — I+t = 20\G 1P+ pry — i, (31)

Gl Ge = 2wiUw) — 20wy + 2wt — |2+t — 2wy P+ sy — s (32)

Furthermore, the vertical projections of the centres of the isometric spheres of S; and Sj_ !
are H(Sj_l(oo)) = (5 and II(S;00)) = w;. Their images under the vertical projection of T are
H(TS;l(oo)) =U(n+ 7 and II(T'S;(00)) = Uw;ii + 7. We define

& = I(TS;*(00)) —TI(S;(00)) = UGTi+ 7 — ¢ = %(Uéjcjlu— 5j6;1) +7, (33)
1

n; = I(TSj(00)) —II(Sj(c0)) =Uwji + 7 —wj = \/i(Uaj J 7 — aje j > +7, (34)

Bj = A]’ - ajcj_ld;-‘. (35)

Note that Lemma 2.1 implies B; € Sp(n —1). Also, ||&;|| and ||n;|| are the Euclidean translation
lengths of the vertical projection of T" at the vertical projections of the centres of the isometric
spheres of S; and Sj_l, respectively. The next lemma enables us to get information about the

these translation lengths in terms of the radii of the isometric spheres of S; and SjﬂTde.
Lemma 4.1 Ifcj, ¢;, § and n; are given by (26), (29), (33) and (34), then
0 = 2(|§[* + 2Re(cj '¢jie; 'H), 0= 2|n;]1 + 2Re(€; ey ).

Proof: We only prove the first identity. Writing out 2Re(cj_ Cj+1C; 177) from (31) we obtain

2Re(clejiT 1) = 2CTUGTH — 20 WG+ 26T — 17l + £ — 201G 12 + oyt — 7,
+2uG UG = 2uG T + 277G — 7l — ¢ = 201G1* = s + 7
= 2(uGU + 1" = GIUGE+T — (),
where we have used 7" = 7*U. The result follows since §; = Ui + 7 — ;. O

We now find the centres of the isometric spheres of S; i and S 41 in terms of the other
geometric quantities we have discussed above.

Lemma 4.2 Let S’;l(oo) = (¢j,r5) and S;j(00) = (wj,s5). Let & and n; be given by (33) and
(34). Then
1

G = ﬁ%@il = wj = BjU*¢eier (36)
—NGralP+rj = dinc)y, = —lwll® +s5+¢ mee ) + 205 (BiU¢ec ), (37)
Wit = \}i%ﬂcjlll = wj + Biguejci (38)
—lwinllP+ 5501 = ajacily = —llwsll® + 55+ ¢ tueierly — 2wl (Bi&ucier ). (39)

In particular,

v = UGup+1—CGa = 0 —UWBU" 5]637;&1)!1‘F (B;U"¢5¢; j+1) (40)
ni+1 = M tUwjp+71—wjt1 = U(Bjuc; j+1) — (Bj&;c; ]+1) (41)
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Proof: We have

ajr1 = YU — V2a;7ud; + V2T — a; (|7||* — t)ue; + ajpd; + bjuc;
= a;c; ' cip + (7] — aic; ' 65)(USe; ' — 855 + V2r)ue;
—I—(W;éjéj_l - ajcj_lé;*éjéj_l +bj — ajcj_ldj)uéj,
= ajc; e+ e — ¢ ol Bi(Udje; i — 85, + V27 iy

In the last line we used (10) and (15) to substitute for 77d; and 676; and Lemma 2.1 to write

—74_104*

;ajB;. Now using the definitions of s;, w; and §; from (30) and (33) we

'y; — ajcj_lé; =
obtain (39).
The other identities follow similarly. When proving the identities for ¢j 11 and —||j41]|*+7j41

we also use U*rT = pur. g

The following corollary, along with Proposition 2.5, will enable us to compare the Cygan
translation length of T" at Sj_jl(oo) and Sj41(oco) with its Cygan translation lengths at Sj_l(oo)
and S;(c0).

Corollary 4.3 Write Sj_l(oo) = (¢j,7j) and S;j(00) = (wj, s;) in Heisenberg coordinates. Then

(i) (Ganrir) = (~BU e, (e meeh) ),

(wj, 85) " (W1, 8541) = (ngjﬂéjcj_-&p Im(Ej—lMEjCj_—:l)>‘

4.2 Translation lengths of 7" at Sj_l(oo) and S;(oc0)

We are now ready to define the main quantities which we use for defining the recurrence relation
between S;11 and S;. Recall that S; and Sj_l have isometric spheres of radius rg; with centres
S;l(oo) and Sj(oco0) respectively. We write {7 (Sfl(oo)) for the Cygan translation length of
T at the centres of these isometric spheres and |[IIT S;-Fl (00) — HS;El(oo)H for the Euclidean
translation of T' at the images of these centres under the vertical projection. The quantities
Xj, X j» Y; and }~/j are each the ratio of one of these translation lengths with the radius of the
isometric sphere. Specifically, they are defined by:

o) TS e - 1157 o)
T rs; ’ T rs; ’
X, = KT(S]'(OO))7 v, — IT17°S5(00) — 1155 (00) |

r S; T S;
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Observe that Corollary 2.4 immediately implies ¥; < X; and }7] < )N(j. Using (16), (31) and
(32), we see that in terms of the matrix entries they are given by:

X7 = lejleie; el
= 2GUG =27 G+ 2G T — (112 = O = 206120+ pry =i legl,  (42)
X2 = [ e ol

= ‘2w;ij — 27" pwy + 2wl T — (I7]1% = ) — 2l|wjl| P + ps; —sju‘ lcjl,  (43)
Y2 o= 112l = 10GE+T = Gllel, (44)
7P = njlPleyl = 10wz +7 —wjil®lel. (45)

In Section 6 we will show that if the condition (6) of our main theorem does not hold then
the sequence Sjy1 = S;T Sj_1 converges to T in the topology induced by the Hilbert-Schmidt

norm on PSp(n,1). To do so, we need the following two lemmas giving X411, X411, Y41 and
Y;41 in terms of X;, X;, Y; and Y.

Lemma 4.4 We claim that

X7, < X7X744Y;Y; 42Ny, + Ny, (46)
X7, < X;X7 +4Y;Y; 42Ny, + Ny (47)

Proof: Writing S;l(oo) and Sj(c0) in Heisenberg coordinates and using Proposition 2.5 and
Corollary 4.3, we have

-1 2
gT(Sj—O—l(OO))
2 o
< ET(Sj(oo)) + 4HHTSj(oo) — HSj(oo)H H—B]-U ﬁjcjcjilH
+2N || =B, U &5 |* + Nyt (e e ey )|
2 _ _ _
< Lr(8(00))” + Al 111 el lejeal ™ + 2Nu €517 e Plejn |72 + Nulejn|
Now, multiply on the left and right by |cj+1] = 1/T'%j+l and use ET(Sfl(oo)) = Xjrs; and
lp(Sj(00)) = Xjrgj. This gives
X1 < Rlegiallegl ™ + Al g5l es| + 2N, Ples Plegal ™ + N
Finally, we use |cj+1]]c;|™t = X]z, 1&1] [e;1M/? = Y5 and ||n;]| |e;]"/? = }7] This gives
2 2 52 v 2y —2
The inequality (46) follows since Y; < X;. The inequality (47) follows similarly. O

We now estimate Y;;q and ?jﬂ in terms of Xj, )?j, Y; and }73

Lemma 4.5 We claim that

~
+l\2
IN

VPX] + 2N Y3 + NG (48)
Y2X? + 2Ny, Y;Y; + NE .. (49)

=
T
IN
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Proof: Using the definition of Y; from (44) and the identity for £ from (40), we have:

Yier = lGalllel'?
|nj = UB;U* g8 1 )i + (BiU e, )l e |2

< Yilej| 7 Pleal 2 + NuYilei Plejia 72
v —1
= VX + NuuViX;
Squaring and using Y; < X gives (48). A similar argument gives the inequality (49). O

Therefore we have recurrence relations bounding X1, X j+1, Yjy1 and 1734.1 (that is transla-
tion lengths and radii) in terms of the same quantities for the index j. In the next section, we
find a basin of attraction for this dynamical system.

5 Convergence of the dynamical system

In this section we interpret the condition (6) of Theorem 1.1 in terms of our dynamical system
involving translation lengths, and we show that if (6) does not hold then X, X;, Y; and Y; are
all bounded. Broadly speaking the argument will be based on the argument of Parker in [21]
for subgroups of SU(n, 1) containing a Heisenberg translation. This argument was used by Kim
and Parker in [16] for subgroups of Sp(n, 1) containing a Heisenberg translation. If Ny, = 0
then T is a Heisenberg translation, since p = £1 and U = pul,—;. Moreover, K = 1. These
conditions make the inequalities from Lemmas 4.4 and 4.5 much simpler (see [16, p. 307]), and
so Theorem 1.1 reduces to [16, Thm. 4.8].

Recall the definition of K from (5). The only properties of K that we need are that
2Ny, < (14+2Ny,)/2 < K <1—-2Ny, <1 and that K satisfies the equation:

(K —2Ny,)(1 - K) =2Ny, + N,. (50)
Observe that (46), (47), (48) and (49) together with (50) imply
max{X?,,, X2} < X2X?44Y;Y; + (K —2Ny,)(1 - K), (51)

max{Y7, Vi) < XFVE 42Ny, VY + Nuu(K - 2Ng,)(1- K)/2. - (52)

Our goal in this section is to prove the following theorem.
Theorem 5.1 Assume that Ny, # 0. Suppose X, )N(j, Y; and EN/] satisfy (51) and (52). If

= 1YYy
XoXo+ ——" <K
0%0 + K 2Ny, < (53)

then for all € > 0 there exists J. so that for all j > Jg:

max{X?, X?} <1-K +e, max{V2 Y}} < Ny,(l-K)/2+e. (54)

Note that (53) is simply the statement that (6) fails written in terms of X, Xo, Yy and Y. In
the case where T'is a Heisenberg translation, that is Ny, = 0 and K = 1, the theorem implies

that X, X j» Y; and ffj all converge to 0. In the general case we have the weaker conclusion that
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these sequences are uniformly bounded. In particular, we can find a compact set containing X,
X Y; and Y for all 5 > J.. Hence there is a subsequence on which we have convergence of
each of these Varlables

In order to simply the notation, for each j > 1 we define

xj = maX{XJZ, )N(JQ}, yj = maX{YjQ, }7]2}
It is clear that (51) and (52) imply that for j > 1 we have:

23 +4y; + (K — 2Ny,) (1 - K), (55)
zjyj + 2Ny,uyj + Nuuw(K — 2Ny,) (1 = K) /2. (56)

Tjt1 <
Yji+1 <

The proof of Theorem 5.1 will be by way of three lemmas. The first one converts the hypothesis
(53) of Theorem 5.1 to an initial condition for this dynamical system involving x; and yj.
Assuming this initial condition, the second and third lemmas, respectively, show that for each
€ > 0 there is J. so that for j > J

r; <1—-K+e, yj<NU,#(1—K)/2+€.

This is just a restatement of the conclusion of Theorem 5.1.

Before giving the proof, we give a geometrical interpretation of Theorem 5.1. Consider the
dynamical system where we impose equality in (55) and (56) for each j. This dynamical system
has an attractive fixed point at (z,y) = ((1 - K), Ny,(1— K)/2) and a saddle fixed point at
(z,y) = ((K — 2Ny,), Nuu(K —2Ny,,)/2). Points on the line

4y

—J_ —K
K 2Ny,

are attracted to the saddle point and points below this line are attracted to the attractive fixed
point. Since we only have inequalities, we cannot describe fixed points. However, our main result
says that points below the line accumulate in a neighbourhood of the rectangle z < (1 — K),

y < Ny,(l-K)/2.

Lemma 5.2 Suppose that X3, X’%, Y32 and 3712 satisfy the recursive inequalities (51) and (52).
If (53) holds, that is:

- 1YY,
XoXo+ ——02) <K
040 F 77 2N, 5
then _
4y 2 T2 4maX{Y127 Y12}
=l = X2 X K.
T K Ny, max{ Xy, Xi}+ K—2Np,

Proof: Suppose that (53) holds. Interchanging S and S, L if necessary, we also suppose that



5 CONVERGENCE OF THE DYNAMICAL SYSTEM 18

XoYy < XoYp. Using (51) and (52) we have:

4y

T+ K 9N 2Nu,

4max{Y?, Y}

= max{X?, X2} +

K — 2Ny,
- ~ ~ ~ 4
< (XBXE +4Yo¥o + 2Nuy + N ) + (XFVE + 2NuYo¥o + N3, ) o
’ ’ P K — 2NU,,u
- - -~ - 4
< (ngg +4YoYy + 2Ny, + NM) n (XOXoYoYo + 2Ny, YoYo + N2 )7
’ ’ P K — QNUJL
~ 4Y,Yo ~ 4KYyY, 2K Ny,
= [ XoXo+ —2% ) XX, ] N
( 0 “+K—2NU#> 00T K — 2Ny, K—2NUM+ w
- 4Y,Y, 2K N, KN,
< K| XoXo+ 0°9 Up 4 =
K—-2Ny,)  K-2Ny, K—-2Ny,
< K*+K(1-K)
- K.
This proves the lemma. O

We now use this lemma to give an upper bound on x;.

Lemma 5.3 Suppose that x; and y; satisfy the recursive inequalities (55) and (56) and also

that

4y,
— < K.
T+ K — 2Ny, <

Then for any €; > 0 there exists J, € N so that for all j > J, we have
r; <1—K+¢,.
Proof: Using (55) and (56) we have

4y
T K T oN,,
4
< af 44y + (K —2Np,)(1 - K) + m(%‘yj + 2Nuuy;) + 2Nuu(1 — K)
g
4 .
W

Since x1 + 4y1/(K — 2Ny,,) < K, the above inequality implies that, for each j > 2, we have

i1

4y, 4y ]
Koz U V> (g —2 4 K) > 0.
( v K—2NU7M>—( n K—zNU)g(’:ﬁ ) >0

If there exists € > 0 so that z; > (1 — K +¢) for all but finitely many values of j then the right
hand side of the above inequality tends to infinity as j tends to infinity. However, the left hand
side is at most K, which is a contradiction. ]

Finally, we use the upper bound on z; to obtain an upper bound on y;.
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Lemma 5.4 Suppose that y; satisfies the recursive inequality (56) and also that for all e, > 0
there exists J, € N so that for all j > J, we have x; <1 — K +¢e,. Then for any €, > 0 there
exists Jy > J, so that for all j > J, we have

yj < Nupu(l = K)/2+¢y.
Proof: Given ¢, > 0 choose ¢, with 0 <&, < K — 2Ny, so that

NU,u(K - 2NU,#)(1 - K)
K — QNU# — &

Using (56) for j > J, we have

zjyj + 2Nuuyj + Nup(K = 2Ny,)(1 - K)/2
zjy; + 2Nuuy; + (K = 2Ny = ) (Nu(1 = K) /2 + 2, /2)
Nyu(1-K)/2+¢ey/2

+(1= K + 2Ny, + ) (yj — Ny,(1—K)/2 - 5y/2).

Yji+1 <
<

If y; < Ny (1l — K)/2+¢€,/2 then so is y;j41 and the result follows. Otherwise, we have

yj+1 — Nowu(l — K)/2 — gy /2
< (1-K+2Ny,+ea) <yj — Nuu(l - K)/2 - €y/2)

< (1-K+2Np,+e,) " (sz — Ny,(1-K)/2— 5y/2>.

Since K — 2Ny, + &, > 0 we see that the right hand side tends to Ny/,(1 — K)/2 + g,/2.
Therefore, we can find J, > J, so that for all j > J, we have

(1 — K+ 2Ny, + 5~T)j+lﬂ]z (sz — Nyu(l—K)/2— Ey/2> <gy/2.

This gives the result. O

Finally, Theorem 5.1 follows by taking ¢ = min{e,, ,} and J. = max{J,, J,} = J,. This
completes the proof.

6 Convergence of 5; to T

We are now ready to prove that the S; converge to 1" as j tends to infinity under the condition
(53) of Theorem 5.1. We claim that the sequence {S;} is not eventually constant and so this
convergence implies that the group (S, T') is not discrete.

In order to verify the claim, suppose the sequence {S;} converges to 7' and is eventually
constant. Then S; = T' for sufficiently large j, and so Sj41 fixes oo for some j > 0. Since oo is
the only fixed point of 7" then S;(oc0) is the only fixed point of Sj;1 = SjTSj_l. Hence, if Sj41
fixes oo then so does S;. Repeating this argument, we see that all the S; must fix co. However,
by hypothesis Sy = S does not fix co, which is a contradiction.

In this section we will show that the condition (53) implies that each of the nine entries of S;
converges to the corresponding entry of T. We divide our proof into subsections, each containing
convergence of certain entries. The main steps are:
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e We will first show that ¢; tends to zero as j tends to infinity (Proposition 6.2).

e After showing [loc; 1/2H, |\5jE;1/2|| are bounded (Lemma 6.3), we can show that «; and
&; both tend to 0 € H"! as j tends to infinity (Proposition 6.4).

e We then show the remaining matrix entries are bounded (Lemmas 6.6, 6.7 and Corollaries
6.8, 6.9).

e Using the results obtained so far, we can show that a; and d; both tend to i and A; tends
to U as j tends to infinity (Propositions 6.10 and 6.11).

e TFinally, we show that 3;, v; and b; tend to v/27u, —v/2fir and (—||7||? + ¢)u respectively
as j tends to infinity (Propositions 6.12 and 6.13).

Throughout this proof we use Theorem 5.1 to show that the hypothesis (53) implies that (54)
holds, that is for large enough j:

max{X?, X?} <1- K +e, max{Y?, Y’} < Ny,(1-K)/2+e.

We will repeatedly use the following elementary lemma to show certain entries are bounded and
others converge.

Lemma 6.1 Let A1, A2, D be positive real constants with A; <1 and A\ # Xa. Let C; € RT be
defined iteratively.

(i) If Cj11 < MCj+ D for j >0 then
C; <D/ - M)+ N (co ~D/(1- )\1)).
In particular, given € > 0 there exists J. so that for all j > J. we have
C; <D/(1—-X\)+e.
(i) If Cj11 < MCj+ XD for j >0 then
C; < XCo+ DN, — X))/ (A2 — A1)
In particular, C; < C’o)\{ + max{)\{, A%}D/|>\1 — Aa.

6.1 Convergence of ¢;

The easiest case is to show that ¢; tends to zero. Geometrically, this means that the isometric
spheres of S; have radii tending to infinity as j tends to infinity.

Proposition 6.2 Suppose that (53) holds. Then c; tends to zero as j tends to infinity.

Proof: Using Theorem 5.1, given € > 0, the hypothesis (53) implies that for large enough j
we have X]2 <1— K +e¢. Since K > 1/2 we can choose € so that 0 < ¢ < K —1/2. Then there
exists J; so that XJ2 <(1-K)+e<1/2forall j > J.. From (42) and (54) for j > J. we have

|Cj+1’ = X]Z|Cj‘ < ’Cj‘/Z < e <& ’CJE|/2j—Jg+1'

Thus that ¢; tends to zero as j tends to infinity. O
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6.2 Convergence of o; and J;

In this section we show that o; and ¢; both tend to the zero vector as j tends to infinity. To do
so, we first show their norms are bounded by a constant multiple of |¢;|'/2.

Lemma 6.3 Suppose that (53) holds. For any e > 0 there ezists J. > 0 so that
—1/2 V2 V2

laje; 7l < ——F—= —

1-vV1-K 1-vV1-K

_—1/2
; e llsg <
Proof: Again, using Theorem 5.1, given 1 > 0 there exists J; so that for j > J;

+e.
X7 <(1-K)+er
Observe that ajcj_l/ g ﬂch;/ ?. Therefore equation (38) implies that for j > J; we have
~1/2 1/2
logiei il = Velwsil lejal

V2 ij + ijjMEjCILH ]2

< V2llwjll lejal 2 + V2081 lejl lejpa 72

= llage; 1 el ™2 lejaa Y2 + V20 ejl lejea |72
= Xjllaje; Pl + VRY X

< VI-K +erlaje; I+ V2.

Therefore, using Lemma 6.1, given €5 > 0 we can find Jy > J; so that for j > Jo we have

-1/2 V2
laje; 2| <
1—V1I-K+¢

Given any ¢ > 0 it is possible to find €1 > 0 and €2 > 0 so that

V2 V2

Ly — Y2 L
1-Vi-K+¢  *T1-V1-K

This proves the first part. A similar argument holds for ||5j6j_1/ 2H O

+ &9.

Proposition 6.4 Suppose that (53) holds. Then «; and 6; both tend to 0 € H"1 as j tends to
nfinity.

—-1/2

Proof: Clearly [loj|| = [laje; /?| |e;|'/? and ||6]] = [|6;¢; "/?|/|ej|/2. Using Proposition 6.2

and Lemma 6.3 we see that ¢; tends to zero and Hajc;1/2|| and ||5jE;1/2|| are bounded. Thus
a; and ¢; both tend to 0 € H" ! as j tends to infinity. O

The following estimate will be useful later.

Corollary 6.5 Suppose that (53) holds. Given € > 0 there exists Jy so that for j > Jy we have

VN
V2-1

—-1/2

Yillage; 2| < +e.
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Proof: From (54) we have
2Y? < Nyu(1 - K) + &1,

and from Lemma 6.3 we have

—1/2 9 2
a; <+
H J H — (1 _ M)Q 2
Given € > 0, combining these inequalities for suitable €1, €2 > 0, we obtain
_ Ny,(1-K
Village; 2 < VL 28D
1-vV1—-K
Since (1 — K) < 1/2 we have
Nuuy(1-K) _ Nou(1/2) _ Ny,
I-VI—K? (1-122 (V217
This completes the proof. O

6.3 The remaining matrix entries are bounded

In this section we show that the norms of the remaining matrix entries are bounded. Later, this
will enable us to show they converge. We begin by showing |a;| and |b;| are bounded.

Lemma 6.6 Suppose that (53) holds. There exists J € N so that for j > J we have
laj| <4, |d;] <4.
Proof: We use (39) to obtain
lajr1l = |ajej e ¢t ue — V2e af (B uey)
< lagllegallesl ™ + 1+ V21& 1 es | 2llage; 2|
= Xjla;| +1+ V2Yjllaje; 2.

Using (54) and Corollary 6.5, since 1 — K < 1/2, for any £; > 0 we can find J; so that for j > .J;

we have
2Ny,
. V2Y; aic; <7+5
)H J1%5 H \/§_1 1.

Therefore, using Lemma 6.1 (i) with Ay =1/2and D =1+ V}NUM + ¢1, for any €2 > 0 there is
a Jo > Ji so that for all j > Jo we have

1—|—\/ U,u/ +€1+ 2\/2NU7#

g9 =2+

Now, using our assumptions about Ny, and N,, we have:

3 — 2«/2+N V2 —1)?2
Ny, <

2

2
X2 <

| =

+ 2e1 + e2.
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Therefore we can choose €1 and €9 so that

V2N,

u+€1+€2/2<1.

V2-1

Hence |aj| < 4 for j > Jo. A similar argument shows that |d;| < 4 for large enough j. O

Lemma 6.7 Suppose that (53) holds. Then |bj| is bounded above as j tends to infinity.
Proof: If a; = 0 then 7; = 0 and so bj;1 = 0. Hence we take a; # 0. Then (11) gives
0 = (ab; +~; +bjay)a; wa; = ajbja;  pa; +;v5a;  aj + bjpia;,
lGll* = —(azb; + b;d;) < 2ag|[b;].
Hence, using (22), we have
b1 = U — V2a;mwy; + V2yirua; — aj(||7))* — t)paj + ajpbj + bjpa;
= YU (ya; a; — V27" pyy + V2 Taa; — a;(||711* — t)pa; + aju(bia; a; + b
—; (va; pas — aj(bja; ') pa; — bjpa;
= 7 (Uysa;t = ysa; tpa; — V2a;7m g + V2 Tuag — ap(|r|? — ¢
+a; (/ngaj_l — Ejaj_lu)aj.
Using Lemma 6.6 we suppose j is large enough that |a;| < 4. Then we have

b1l < by Urayt = yga; wag] + V2lagr pyl + V2l ]+ a7 - t) ]
+aj (ubjas ' — bja; p)aj|

Nullvill? + 2v2las 17l 111+ lag P71 = ] + Nylag] 6]

< (2Nuy + No)lag o] + 4lag 27| 16517 + las PlI7]1* = ¢|

< 4(2Nuy + N)lbj| + 320|7 [b;112 + 16] 171> — 1]

IN

A

Observe that our hypotheses N, < 1/4 and Ny, < (3 —24/2 + N,,)/2 imply that
2Ny, + Ny <Ny +3—-2y/2+ N, = (\/W— 1)2 < (3/2-12=1/4. (57)
Hence we can find A > 0 with 4(2Ny, + N,) < A\* < 1 and
bj41] < A%[b | + 3217 b1/ + 16[1712 — ] < (A2 + 1617 4!”%)2.
Then, using Lemma 6.6 (i), given £; > 0 we can find J; so that for j > J; we have

16] 1712 — ¢]'/? /2
1—A

|b;[1/% <
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Corollary 6.8 Suppose that (53) holds. Then ||3;| and ||v;|| are bounded above as j tends to
infinity.
Proof: Note that ||v;]|* = —(a;b; + b;d;) < 2|a;[|b;| and [|3;]]* = —(bjd; + d;bj) < 2[b;lld;].
Thus Lemmas 6.6 and 6.7 imply that ||5;|| and ||v;| are bounded. O
Finally, we show that ||A;|| and ||A; — U|| are bounded.

Corollary 6.9 Suppose that (53) holds. Then ||A;|| and ||A; — U|| are bounded as j tends to
00.

Proof: Using (13) we have
I,-1 = AJA;( + Oéjﬁ; + ﬁja;
= (A4 -U)A; -U")+UA; =U") + (4; = U)U" + In-1 + ;8 + Bja;.

Therefore
1A% < Waall + 2l 1851, 145 = UIIP < 20145 = Ul + 2]lo5]l 1851
The latter implies that
[A; = Ul <1+ /14 2ay [ 15]]- (58)
Hence ||[A; — U|| and [|A;|| are bounded. O

6.4 Convergence of a; and d;

Having now shown that all the entries of S; are bounded as j tends to infinity, we can now show
that the matrix entries of S} tend to the corresponding entries of T'. Recall that we have already
shown, Proposition 6.2, that c¢; tends to 0 € H and in Proposition 6.4 that «; and J; tend to
the zero vector in H" 1.

We now show a; and d; both tend to p.

Proposition 6.10 Suppose that (53) holds. Then both aj and d; tend to p as j tends to infinity.
Proof: Recall from (10) that 1 = a;d; + 776 + b;c;. Using (20), we have
a1 —p = U8 = V2a57 ud; + V2 e — aj (|71 = t)pc; + ajud; + bjue
—p; 85 — pajd; — pbjc;
= (U = ;)85 — V2a;7" pb; + V25 mpes — a; (|| 7|° — )
+((a5 — i — plag — p)d; + (bjp — pbj)e;.
Using Lemma 6.6, we suppose that j is large enough that |d;| < 4. Then:

agr1—ul < Noglll 160+ V21l lag 160+ V21l el Il + 1712 = 2] Jag e
+Nyuldjlaj — pl + Nplbj| |c;l
< Nuldslla; = il + (Noglgll+ V2lirilagl) 10582 e 2
+(V2lrl sl + (712 = ] ol + Nl e
< ANuJa; — pl+ (Noalgl + V2lirilas) ) 165 e 2

+(Valrl Il + 1712 = ] lag] + Nl b



6 CONVERGENCE OF S; TOT 25

Note that 4N, < 1. Moreover, for j > J; we have Xj2 < 1/2. Therefore |c;| < |, |/27771. Also,

vl H(Sjéj_l/QH, laj| and |b;| are all bounded. Then using Lemma 6.1 with A\; = 4N,, < 1 and

A2 = |¢;|1/% < 1/+/2 we see that |a; — p| tends to 0 as j tends to infinity.
Similarly |d; — p| tends to zero as j tends to infinity. O

6.5 Convergence of A;
We now show that A; tends to U.
Proposition 6.11 Suppose that (53) holds. Then Aj; tends to U as j tends to infinity.

Proof: Recall from Corollary 6.9 that ||A;| and ||A; — U|| are bounded. Note that
AU =UAj = (A =) = u(A; = U)) + (u(A; = U) = (4; = U)p) = (U(Aj—U)—(Aj—U)M>-
Therefore
[A;U = UA;|l < (2Nuu + Nu)l|l 45 = U

Hence

JAUA —UAA = [(AU = UA)A" —U) + (AU — UA)U|

< 14U - UA;lI(I14; - Ul +1)
< (2Nuyu+ N4 = Ul(l14; = Ul +1).

From (58) we have

(2N ) (14 = U1 +1) < @iy + 8,) (2415 2Dyl 1551
Since 2Ny, + N, < 1/4 by (57), ||5;]| is bounded and ||a;|| tends to zero, we can find J so that
for all j > J we have

2
|A;UAS —UA; A5 < 25 fHA —ull.
Noting that U = U« 87 + UA; A} + UB;ja, we use (24) to find that
Ajp1 —U = AUAS — V20,7 uAs + V2A 005 — aj(|I7)1* = H)pads + o By + Bjucs
—UA]'A;|f — Ua]ﬂ; — U,Bj()d;
= AUAL = UAGAS — V20um (A5 — U*) + V2(A; — U)rpas — aj(|I7)° — t)pes
—V2a;7" + V2UTpaj — (Uaj — o) B; = (UB; = B
Note, we have used 7*U = 7*u. Thus for j > J,
1A4j11 = Ul < | 4UA; = UAAS| + 220145 = Ul gl Il + 711> = ¢ [l
+2v2|7| le | + 2Nu s | 114
2 + V2

—1/2
145 = UL+ 1712 = #] e 1211
—1/2
(M 145 = Ul I7ll + 2v2017 | + 2Nu Bl lase; 2 el 2

Suppose that J is large enough that for j > J we have |¢;| < |cs|/2/~7. Now apply Lemma 6.1
with A = (2 +v/2)/4 and A2 = 1/v/2, and so ||A; — U|| tends to zero as j tends to infinity. O
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6.6 Convergence of 3; and v;
We are now ready to show convergence of 8; and ~;.

Proposition 6.12 Suppose that (53) holds. Then f;, and v; tend to V211 and —/ 20T respec-
tively as j tends to infinity.

Proof: Using UB;ja; + UA;v; + Ua;b; = 0, which follows from (14), we have

Bjy1— V2rp
= AU — V20,7 wy; + V2A 7 pa; — aj(|I71* — t)pa; + aub; + Biua; — V21
= AUy~ \/ﬁaﬂ*/{w + V24 g — o(||7||* — t)pay + ajub; + Bjpa; — V2rp
—UAjy; —Ua;b; = Upja,
= (AU —UAj)y; — V20,7 v — o (||7)1* = t)pa; — (Uay — a;n)b;
+V2(A; — Uyrpag — (U(B) — V2rp) — (B — V2rp)p)a; + vV2ru’(a; — n).
Therefore
18j+1 = V2rull < Nuglas| 18 — V2ru| + (2!le| + V2|7 \ajl) 14; = U]
~1/2

+ (V2U I 3l + (1712 = ] lagl + Noales]) ey e /2

Using Lemma 6.6, suppose j is large enough that |a;| < 4 and so Ny ,laj| < 4Ny,. Note that
4Ny, <2(3-2\/2+N,) <2(vV2-1)2 < 1.

Since |c;|'/? and ||A; — U|| are bounded by a constant multiple of 2/ we can apply Lemma 6.1
(ii) to show that ||3; — v27ul| tends to zero as j tends to infinity. A similar argument shows
that ||v; + V27| tends to zero as j tends to infinity. This argument uses U*T = fir. O

6.7 Convergence of b;

Finally, we show that b; converges as j tends to infinity.
Proposition 6.13 Suppose that (53) holds. Then b; tends to —(||7||*—t)p as j tends to infinity.

Proof: Note that if b; tends to —(||7]|* — t)x then b; tends to —z(||7[|? +¢).
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Using 0 = vjyjp + a;jbjp + bjaju, we have

b1+ (171> —t)p

= U — V2a;7" vy + V2 i — ag (|71 = t) s + ajubs + by

—Yvim— ajbip = bjaju+ (|7]* = t)p

= YUy +V207) = 7 (v + V2 + V2(7) + Vet pamu — 2| 7|

—V2a;7* u(y; + V207) + 205 |7|* + V27 T(@; — )

—a; (|71 = t)w(@; — m) — a; (111> — t) + aju(b; + w71 + ) — a; (I7]]* +¢)

+bjp(@; — 1) — aj (b + B(I7I* + )+ am (71> + ) p = bj(@; — Wp + (71> — )
vi(U(y; + V2ar) — (35 + V20m) 1) + V2(7; + V2 p)imp — V2a;7* u(y; + V27r)

V2@ — ) — a; (I71* = t) (@ — 7) + b (u(@; — 7) — (@; — i)

+ag = wE(IT1? + ) p + aj(u(b; + E(IT1* + 1)) = (b5 + m(lI7I° + 1)) ).

Therefore

b+ (1712 = )u] < (Nugllvll + V20l (ail + D) |1y + V20T
+(V2Iysll 71+ 1712 = ¢ (lag] + 1) + Nulbjl) lag — gl
+Ny|aj) ‘bj + (”TH2 — t),u’.

We can take j large enough that N,|aj| < 4N, < 1. Also, we know that H’yj + ﬂﬁTH and

laj — p| are bounded by constant multiples of 26=7)/2 Therefore, we can apply Lemma 6.1 to
conclude that |b; + (||7]|* — t),u| tends to zero. O

Propositions 6.2 to 6.13 imply that S; tends to 7" as j tends to infinity, which completes the
proof of Theorem 1.1.
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