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We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to
predict the abundance of cosmic voids in the context of general relativity as well as fðRÞ and symmetron
models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity
theories and compare the measured void abundance to theory predictions. We find that our model correctly
describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals
in the literature based on static barriers. We use the simulation abundance results to fit for the abundance
model free parameters as a function of modified gravity parameters, and show that counts of dark matter
voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to
optical observations, we find that constraining modified gravity from void abundance alone may be
significantly more challenging. In the context of current and upcoming galaxy surveys, the combination of
void and halo statistics including their abundances, profiles and correlations should be effective in
distinguishing modified gravity models that display different screening mechanisms.
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I. INTRODUCTION

The large scale structure of the Universe offers a
promising means of probing alternative gravity theories
[1,2]. Many models of modified gravity can be para-
metrized by a scalar degree of freedom that propagates an
extra force on cosmologically relevant scales. Viable
gravity theories must produce a background expansion
that is close to that of a Lambda Cold Dark Matter
(ΛCDM) model in order to satisfy current geometry
and clustering constraints, and reduce to general relativity
(GR) locally in order to satisfy solar system tests. The first
feature may be imposed by construction or restriction of
the parameter space whereas the latter feature relies on a
nonlinear screening mechanism operating e.g. on regions
of large density or deep potentials [3]. Examples include
fðRÞ models with the chameleon mechanism [4–9],
braneworld models which display the Vainshtein mecha-
nism [10–12], and the symmetron model with a symmetry
breaking of the scalar potential [13–16]. Most viable
models of cosmic acceleration via modified gravity are
nearly indistinguishable at the background level and may
be quite degenerate, even when considering linear per-
turbation effects. However, different screening mecha-
nisms operating on nonlinear scales are quite unique
features of each model. It is therefore highly desirable
to explore observational consequences that help expose
these differences, despite the fact that nonlinear physics

and baryonic effects must also be known to similar
accuracy at these scales.
Investigating the nonlinear regime of modified

gravity models requires N-body simulations [15,17–38],
in which one must solve nonlinear equations for the extra
scalar field in order to properly account for screening
mechanisms. From simulations one may extract the
matter power spectrum on linear and nonlinear scales
[18,20,21,23,30,39,40] as well as properties of dark matter
halos, such as their abundance [19–21,27,30,39,41,42],
bias [19,25,27,30] and profiles [19,20,27,43].
From the theoretical perspective, estimating e.g. the

power spectrum in the nonlinear regime is nontrivial even
for GR, and more so for modified gravity [40,44], as the
screening mechanisms must be properly accounted for in
the evolution equations [45]. The halo model [46] provides
an alternative to study these nonlinearities [19,25], but it
has its limitations even in standard GR. Moreover, it
requires accurate knowledge of various halo properties,
including abundance, bias and profiles.
In GR the halo mass function may be estimated from the

linear power spectrum and spherical collapse within the
Press-Schechter [47] formalism and its extensions [48,49]
or from empirical fits to simulations for higher precision
[50,51]. However for modified gravity screening mecha-
nisms operate effectively within the most massive halos,
and must be properly accounted for [39]. In addition,
massive clusters have observational complications such as
the determination of their mass-observable relation [52],
which must be known to good accuracy in order for us to*rodrigo.voivodic@usp.br
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use cluster abundance for cosmological purposes. These
relations may also change in modified gravity [31].
Cosmological voids, i.e. regions of low density and

shallow potentials, offer yet another interesting observable
to investigate modified gravity models [53]. Screening
mechanisms operate weakly within voids, making them
potentially more sensitive to modified gravity effects
[54–56]. One of the main issues for using voids is their
very definition, which is not unique both theoretically and
observationally. Compared to halos, the properties of voids
have not been discussed in as much detail, although there
have been a number of recent developments on the theory,
simulations and observations of voids [57–66].
Despite ambiguities in their exact definition, it has been

observed in simulations that voids are quite spherical
[67,68], and therefore it is expected that the spherical
expansion model for their abundance must work well
(differently from halos, for which spherical collapse alone
is not a very good approximation [69]). In this work, we
use N-body simulations of ΛCDM as well as fðRÞ and
symmetron models of modified gravity in order to identify
cosmic voids and study their abundance distribution. In
order to interpret the simulation results, we use a spherical
model and an extended excursion set formalism with
underdense initial conditions to construct the void distri-
bution function. Our extended model includes two drifting
diffusive barriers in a similar fashion to the work from
[70,71] to describe halo abundance. As a result, our model
accounts for the void-in-cloud effect and generalizes
models with static barriers [72].
We start in Sec. II describing the parametrization of

perturbations in fðRÞ and symmetron gravity as well as the
spherical model equations. In Sec. III we use the excursion
set formalism to model void abundance and in Sec. IV we
describe the procedure for void identification from simu-
lations. Importantly, we define spherical voids in simula-
tions with a criterium that is self-consistent with our
predictions. In Sec. V we present our main results, using
simulations to fit for the model free parameters and
studying constraints on modified gravity from ideal dark
matter voids. We also study the possibility of using our
model to describe galaxy voids. Finally, in Sec. VI we
discuss our results and conclude.

II. PERTURBATIONS

The spherical evolution model is usually the first step to
investigate the abundance of virialized objects tracing the
Universe structure, such as halos, and likewise it is a
promising tool for voids. It also offers a starting point to
study the collapse of nonspherical structures [69,73] and
the parameters required to quantify the abundance of these
objects within extended models [74].
The large scale structure of the Universe is well

characterized by the evolution of dark matter, which
interacts only gravitationally and can be approximated

by a pressureless perfect fluid. The line element for a
perturbed Friedmann-Lemaître-Robertson-Walker (FLRW)
metric in the Newtonian gauge is given by

ds2 ¼ −a2ð1þ 2ΨÞdτ2 þ a2ð1 − 2ΦÞdl2; ð1Þ

where a is the scale factor, τ is the conformal time related to
the physical time t by adτ ¼ dt, dl2 is the line element for
the spatial metric in a homogeneous and isotropic Universe
and Ψ and Φ are the gravitational potentials.
For a large class of modified gravity models, the

perturbed fluid equations in Fourier space are given by [45]

_δ ¼ −ð1þ δÞθ; ð2Þ

_θ þ 2Hθ þ 1

3
θ2 ¼ k2Φ; ð3Þ

−k2Φ ¼ 4πGμðk; aÞρ̄mδ; ð4Þ

where δ ¼ ðρm − ρ̄mÞ=ρ̄m is the matter density contrast, θ is
the velocity divergence, H ¼ _a=a is the Hubble parameter
and dots denote derivatives with respect to physical time t.
The first is the continuity equation, the second the Euler

equation and the last is the modified Poisson equation,
where modified gravity effects are incorporated within the
function μða; kÞ. In general this function depends on scale
factor a as well as physical scale or wave number k in
Fourier space.
Combining these equations we obtain an evolution

equation for spherical perturbations in modified gravity
[75] given by

δ00 þ
�
3

a
þ E0

E

�
δ0 −

4

3

ðδ0Þ2
1þ δ

¼ 3

2

Ωm

a5E2
μðk; aÞδð1þ δÞ; ð5Þ

where primes denote derivatives with respect to the scale
factor a, EðaÞ ¼ HðaÞ=H0, HðaÞ is the Hubble parameter
at a,H0 is the Hubble constant andΩm is the present matter
density relative to critical. Clearly the growth of perturba-
tions is scale-dependent—a general feature of modified
theories of gravity.
The linearized version of Eq. (5) is given by

δ00 þ
�
3

a
þ E0

E

�
δ0 ¼ 3

2

Ωm

a5E2
μðk; aÞδ; ð6Þ

and can be used to determine linear quantities, such as
the linear power spectrum. Notice that this matter linear
equation is valid more generally and does not not require
spherical perturbations.
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The function μðk; aÞ above is given by [45]

μðk; aÞ ¼ ð1þ 2β2Þk2 þm2a2

k2 þm2a2
; ð7Þ

where β is the coupling between matter and the fifth force
and m is the mass of the scalar field propagating the
extra force.
It is important to stress that the parametrization in Eq. (7)

does not fully account for modified gravity perturbative
effects, containing only effects of the background and
linear perturbations for extra fields related to modified
gravity. This is enough for the linearized Eq. (6), but is only
an approximation in Eq. (5). For instance the parametriza-
tion in Eq. (7) does not contain effects from the screening
mechanisms, which would turn μ into a function not only
of scale k, but of e.g. the local density or gravitational
potential.

A. f ðRÞ gravity
The action for fðRÞ gravity is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ fðRÞ

�
þ Sm½gμν;ψ i�; ð8Þ

where gμν is the Jordan frame metric, g is the metric
determinant,M2

pl ¼ ð8πGÞ−1, G is Newton’s constant, R is
the Ricci scalar and Sm is the action for the matter fields ψ i
minimally coupled to the metric. For concreteness, we
will employ the parametrization of Hu and Sawicki [76],
which in the large curvature regime can be expanded in
powers of R−1 as

fðRÞ ≈ −16πGρΛ −
fR0
n

Rnþ1
0

Rn ; ð9Þ

where the first constant term is chosen to match a ΛCDM
expansion, such that ρΛ is the effective dark energy density
(of a cosmological constant Λ in this case) in the late-
time Universe, and fR0 and n are free parameters. Here
fR ≡ df=dR represents an extra scalar degree of freedom
propagating a fifth force, such that fR0 denotes the back-
ground value of this scalar field at z ¼ 0. We fix Λ such that
ΩΛ ¼ 0.733 and n ¼ 1 to reflect the values used in the
simulations to be described in Sec. IV.
It can be shown that fðRÞ models are a particular class

of scalar-tensor theories, for which the parameters from
Eq. (7) are [45]

β ¼ 1ffiffiffi
6

p ;

mðaÞ ¼ m0

�
Ωma3 þ 4ΩΛ

Ωm þ 4ΩΛ

�ðnþ2Þ=2
; ð10Þ

where

m0 ¼
H0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm þ 4ΩΛ

ðnþ 1ÞfR0

s
: ð11Þ

Solving Eqs. (5) and (6) numerically given initial
conditions where the Universe evolution was similar to
that from GR, it is possible to compute important param-
eters for characterizing the abundance of cosmic voids.

B. Symmetron

The symmetron model is described by the action [16]

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
Mpl2

2
~R −

1

2
∂μϕ∂μϕ − VðϕÞ

�
þ Sm½gμν;ψ i�; ð12Þ

where ϕ is the symmetron field, VðϕÞ is the field potential,
Sm½gμν;ψ i� is the action for the matter fields ψ i and ~gμν is
the Einstein frame metric related with the Jordan frame
metric via the conformal rescaling

gμν ¼ A2ðϕÞ~gμν; ð13Þ

and ~R is the corresponding Einstein frame Ricci scalar.
The coupling function AðϕÞ and the field potential

VðϕÞ are chosen to be polynomials satisfying the parity
symmetry ϕ → −ϕ

AðϕÞ ¼ 1þ 1

2

�
ϕ

M

�
2

; ð14Þ

VðϕÞ ¼ V0 −
1

2
μ2ϕ2 þ 1

4
λϕ4; ð15Þ

where M and μ have dimensions of mass and λ is
dimensionless. We assume that ðϕ=MÞ2 ≪ 1, so that the
coupling function can indeed be expanded up to sec-
ond order.
The mass and coupling parameters of the field [see

Eq. (7)] are [16]

m2
ϕðaÞ ¼

8>><
>>:

μ2
�
ρ̄mðaÞ
ρSSB

− 1
�
; ρ̄m > ρSSB

2μ2
�
1 − ρ̄mðaÞ

ρSSB

�
; ρ̄m < ρSSB

βðaÞ ¼ β0
ϕðaÞ
ϕ0

; ð16Þ

where ρSSB ¼ 3H2
0M

2
plΩmð1þ zSSBÞ3 is the background

density at the redshift zSSB of spontaneous symmetry
breaking (SSB), β0 is a model parameter and ϕ0 is the
symmetry breaking vacuum expectation value (VEV) of the
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field for ρm → 0.1 We define L ¼ H0=μ, and fix β0 ¼
L ¼ 1 to reflect simulated values, leaving only zSSB as a
free parameter in our analysis.

C. Linear power spectrum

We start by defining the linear density contrast field δðRÞ
smoothed on a scale R around x ¼ 0

2

δðRÞ ¼
Z

d3k
ð2πÞ3

~δðkÞ ~Wðk; RÞ; ð17Þ

where tildes denote quantities in Fourier space andWðx; RÞ
is the window function that smooths the original field δðxÞ
on scale R.
The variance SðRÞ ¼ σ2ðRÞ of the linear density field

can be written as

SðRÞ ¼ hjδðRÞj2i ¼
Z

dk
2π2

k2PðkÞj ~Wðk; RÞj2; ð18Þ

where PðkÞ is the linear power spectrum defined via

h~δðkÞ~δðk0Þi ¼ ð2πÞ3δDðk − k0ÞPðkÞ; ð19Þ

and δDðk − k0Þ is a Dirac delta function. Clearly the linear
power spectrum will play a key role in describing the
effects of modified gravity on void properties. For GR
computations, we use CAMB [77] to compute the linear
power spectrum. For modified gravity, we may use
MGCAMB [78,79], a modified version of CAMB which
generates the linear spectrum for a number of alternative
models, such as the Hu and Sawicki fðRÞ model [76] in
Eq. (9) and others. However it does not compute the
linear spectrum for instance for the symmetron model.
Therefore we also construct the linear power spectrum
independently for an arbitrary gravity theory parametrized
by Eqs. (6) and (7).
Our independent estimation of the spectrum is accom-

plished by evolving Eqs. (6) and (7) with parameters from
specific gravity theories [e.g. Eq. (10) for fðRÞ and Eq. (16)
for symmetron models] for a set of initial conditions at
matter domination. Since at sufficiently high redshifts
viable gravity models reduce to GR, we take initial
conditions given by CAMB at high redshifts (z ≈ 100),
when gravity is not yet modified and the Universe is deep
into matter domination. We also compute initial conditions
for _δ numerically by using the ΛCDM power spectrum at
two close by redshifts, e.g. at z ¼ 99 and z ¼ 100.
The results of using this procedure are shown (open

dots) on the left panel of Fig. 1 and compared with the
results from MGCAMB (lines) for the Hu and Sawicki
model with n ¼ 1 and three values of the parameter
jfR0j ¼ 10−4; 10−5; 10−6. We can see that solving Eq. (6)
for the power spectrum produces results nearly identical
to the full solution from MGCAMB on all scales of interest.

FIG. 1. (Left): Relative percent deviation in the linear matter power spectrum PðkÞ at z ¼ 0 of fðRÞ modified gravity with respect to
the GR spectrum PGRðkÞ in ΛCDM. Results are shown for spectra obtained from MGCAMB (lines) as well as from evolving Eq. (6) for
dark matter perturbations (open dots), for jfR0j ¼ 10−4 (blue solid line and circles), 10−5 (green dashed line and triangles) and 10−6 (red
dot-dashed line and squares). (Right): Percent deviation with respect to GR of the mean square density σðRÞ ¼ SðRÞ1=2 smoothed at
scale R, computed from Eq. (18) at z ¼ 0 for the fðRÞ model. In this case, the power spectrum was evaluated from Eq. (6).

1Since ϕðaÞ ∝ ϕ0, linear perturbations do not depend on the
VEV value, and we do not need to specify ϕ0.

2The choice x ¼ 0 is irrelevant because of translational
invariance in a homogeneous Universe, and is used for simplicity
here, as we are interested in the behavior of δ as a function of
scale R.
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The percent level differences may be traced to the fact
that the simplified equation solved does not contain
information about photons and baryons, but only dark
matter. For our purposes, this procedure can be used to
compute the linear power spectrum for other modified
gravity models that reduce to GR at high redshifts, such as
the symmetron model.
On the right panel of Fig. 1 we see that the relative

difference of σðRÞ ¼ SðRÞ1=2 for the fðRÞ model with
respect to GR can be significant on the scales of interest
(1 Mpc=h < R < 20 Mpc=h). Therefore we expect a sim-
ilar impact on void properties derived from σ and the linear
power spectrum.

D. Spherical collapse

Because of the void-in-cloud effect,3 the linearly
extrapolated density contrast δc for the formation of halos
is important in describing the properties of voids as both
are clearly connected. Within theoretical calculations of the
void abundance using the excursion set formalism, δc
corresponds to another absorbing barrier, whose equivalent
is not present for halo abundance. Therefore calculating δc
in the gravity theory of interest gives us important hints into
the properties of both halos and voids.
The computation of δc is done similarly to that of the

GR case, but using Eqs. (5) and (6) with the appropriate
modified gravity parameterization μðk; aÞ [GR is recovered
with μðk; aÞ ¼ 1].

Here we followed the procedure described in [75]. We
start with appropriate initial conditions4 for δ and _δ and
evolve the linear Eq. (6) until ac. The value of δ obtained
is δc, the density contrast linearly extrapolated for halo
formation at a ¼ ac. In this work, since we only study
simulation outputs at z ¼ 0, we take ac ¼ 1 in all calcu-
lations. The only modification introduced by a nontrivial
parametrization μðk; aÞ is that the collapse parameters will
depend on the scale k of the halo. As mentioned previously,
the parametrization of Eq. (7) only takes into account the
evolution of the scalar field in the background,5 and does
not account for the dependence of the collapse parameters
on screening effects. Even though our calculation is
approximated, it does approach the correct limits at
sufficiently large and small scales.
For a Universe with only cold dark matter (CDM) under

GR, the collapse equations can be solved analytically
yielding δc ¼ 1.686. For a ΛCDM Universe, still within
GR, δc changes to a slightly lower value, whereas for
stronger gravity it becomes slightly larger. In Fig. 2 we
show δc as function of scale for the fðRÞ model. The
value of δc starts at its ΛCDM value δc ¼ 1.675 on scales
larger than the Compton scale (k=a ≪ m; weak field limit
where μ ≈ 1) and approaches the totally modified value
δc ¼ 1.693 on smaller scales (k=a ≫ m; strong field limit

FIG. 2. (Left): The critical density δc for collapse of a halo at z ¼ 0 as a function of halo scale k in fðRÞ modified gravity
parameterized by Eq. (10) with jfR0j ¼ 10−4 (blue dotted line), 10−5 (green dashed line) and 10−6 (red dot-dashed line). The upper
horizontal black line is the value expected for the strong field limit (μ ¼ 4=3) and the lower line for the weak field limit, i.e. GR (μ ¼ 1).
The vertical lines indicate the Compton scales for each gravity with the same corresponding line colors. (Right): Same for the critical
density δv for void formation at z ¼ 0.

3The fact that voids inside halos are eventually swallowed and
disappear.

4This initial condition is actually determined by a shooting
method, evolving the nonlinear Eq. (5) for multiple initial values
and checking when collapse happens (δ → ∞) at a ¼ ac.

5For instance, the scalar field mass in Eq. (10) depends only on
scale factor a, not on the local potential or the environment as
would be expected in a full chameleon calculation for fðRÞ.
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where μ ≈ 1þ 2β2 ¼ 4=3) where the modification to the
strength of gravitational force is maximal. These values
were computed at the background cosmology described in
Sec. IV. They are similar to those of [19], though the
cosmology is slightly different. Note that δc reaches its
strong field limit faster for larger values of jfR0j (value of
the extra scalar field today), as expected. In the approxi-
mation of Eq. (5), δc varies with k less than in the full
collapse [80,81], indicating that the no-screening approxi-
mation may not be sufficient. As a full exact calculation is
beyond the scope of this work and given that δc does
not change appreciably, in our abundance models we will
fix δc to its ΛCDM value and encapsulate modified gravity
effects on the linear power spectrum and on other model
parameters.

E. Spherical expansion

We now compute δv, the analog of δc for voids, i.e. the
density contrast linearly extrapolated to today for the
formation of a void. We follow a procedure similar to
spherical collapse, but in this case the initial values for δi
are negative. We also set a criterium in the nonlinear
field δ for the formation of a void to be6 δsc ¼ −0.8 or
equivalently Δsc ¼ 1þ δsc ¼ 0.2 [72]. This quantity is
somewhat the analogue for voids of the virial overdensity
Δvir ≈ 180 for halo formation in an Einstein-de-Sitter (EdS)
Universe. Despite the value of Δvir being only strictly
appropriate for an EdS Universe, halos are often defined
with this overdensity or other arbitrary values that may be
more appropriate for specific observations. Similarly,
δsc ¼ −0.8 is only strictly appropriate for shell-crossing
in an EdS Universe. Here we will employ δsc ¼ −0.8,
but we should keep in mind that this is an arbitrary
definition of our spherical voids. When we fix this
criterium for void formation we also fix the factor by
which the void radius R expands with respect to its linear
theory radius RL. This factor is given by R=RL ¼ ð1þ
δscÞ−1=3 ¼ 1.717 [72], and comes about from mass con-
servation throughout the expansion. Differently from halos,
voids are not virialized structures and continue to expand
faster than the background. Again environmental depend-
ences are not incorporated in our computations as these
values will depend only on scale factor a and the scale k or
size of the void.
The right panel of Fig. 2 displays the behavior of δv as a

function of k, which is very similar to that of δc. This is
important when modeling the absorbing barriers used
for evaluating the void abundance distribution function.
Again the values of δv vary with k less than in the full
calculation [53].
In Table I, we show the values of δc and δv in the weak

and strong field limits of fðRÞ gravity. We see that the

parameters are not very much affected by the strong change
in gravity (1% for δc and 0.8% for δv) compared with the
change induced in the linear variance (see Fig. 1). Even
though these collapse/expansion parameters come inside
exponentials in the modeling of void abundance, these
results indicate that the main contribution from gravity
effects appear in the linear spectrum.
The spherical collapse and expansion calculations can be

performed similarly for the symmetron model, with the
appropriate change in the expression for the mass and
coupling of the scalar field, as given by the Eq. (16). For
fðRÞ gravity the change in parameters does not seem to be
relevant and we fix these parameters to their ΛCDM values.
In order to treat both gravity models in the sameway, we do
the same for the symmetron model. Therefore we do not
show explicit calculations of δc and δv for symmetron.

III. VOID ABUNDANCE FUNCTION

We now compute the void abundance distribution func-
tion as a function of void size using an extended excursion
set formalism [70], which consists in solving the Fokker-
Planck equation with appropriate boundary conditions7

Differently from the halo description, for voids it is
necessary to use two boundary conditions, because of
the void-in-cloud effect [67]. In this case we use two
Markovian stochastic barriers with linear dependence in
the density variance S, which is a simple generalization
from the conventional problem with a constant barrier.
The barriers can be described statistically as

hBcðSÞi ¼ δc þ βcS;

hBcðSÞBcðS0Þi ¼ Dc minðS; S0Þ;
hBvðSÞi ¼ δv þ βvS;

hBvðSÞBvðS0Þi ¼ Dv minðS; S0Þ; ð20Þ

where BcðSÞ is the barrier associated with halos and BvðSÞ
the barrier associated with voids. Notice that the two
barriers are uncorrelated, i.e. hBcðSÞBvðS0Þi ¼ 0. Here βc
describes the linear relation between the mean barrier and
the variance S, δc;v is the mean barrier as S → 0 (R → ∞),
and Dc;v describes the barrier diffusion coefficient.

TABLE I. Critical densities for the spherical collapse and
expansion in the weak and strong field limits in fðRÞ gravity.
Limit μ δc δv

Weak Field 1 1.675 −2.788
Strong Field 4=3 1.693 −2.765

6δsc ¼ −0.8 is the density contrast in which shell-crossing (sc)
occurs in an Einstein-de-Sitter (EdS) Universe [72].

7This procedure is valid when the barrier (boundary
conditions) is linear in S and the random walk motion is
Markovian.
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As we consider different scales R, the smoothed density
field δðRÞ performs a random walk with respect to a time
coordinate S, and we have8

hδðSÞi ¼ 0;

hδðSÞδðS0Þi ¼ minðS; S0Þ: ð21Þ

The field δ satisfies a Langevin equation with white
noise and therefore the probability density Πðδ; SÞ to find
the value δ at variance S is a solution of the Fokker-Planck
equation

∂Π
∂S ¼ 1

2

∂2Π
∂δ2 ; ð22Þ

with boundary conditions

Πðδ ¼ BcðSÞ; SÞ ¼ 0 and

Πðδ ¼ BvðSÞ; SÞ ¼ 0; ð23Þ

and initial condition

Πðδ; S ¼ 0Þ ¼ δDðδÞ; ð24Þ

where δD is a Dirac delta function and notice that S → 0
corresponds to void radius R → ∞. In order to solve this
problem, it is convenient to introduce the variable [69]

YðSÞ ¼ BvðSÞ − δðSÞ: ð25Þ

Making the simplifying assumption that β≡ βc ¼ βv
9

and using the fact that all variances can be added in
quadrature, the Fokker-Planck Eq. (22) becomes

∂Π
∂S ¼ −β

∂Π
∂Y þ 1þD

2

∂2Π
∂Y2

ð26Þ

where D ¼ Dv þDc.
We define δT ¼ jδvj þ δc and notice that δðSÞ ¼ BvðSÞ

implies YðSÞ ¼ 0, δðSÞ ¼ BcðSÞ implies YðSÞ ¼ −δT (only
occurs because we set βc ¼ βv) and δð0Þ ¼ 0 implies
Yð0Þ ¼ δv. Therefore the boundary conditions become

ΠðY ¼ 0; SÞ ¼ 0 and ΠðY ¼ −δT; SÞ ¼ 0; ð27Þ

and the initial conditions

ΠðY; 0Þ ¼ δDðY − δvÞ: ð28Þ

Rescaling the variable Y → ~Y ¼ Y=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
and factor-

ing the solution in the form Πð ~Y; SÞ ¼ Uð ~Y; SÞ exp½cð ~Y −
cS=2 − ~Y0Þ� where c ¼ β=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
and ~Y0 ¼ δv=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
.

The function Uð ~Y; SÞ obeys a Fokker-Planck equation like
Eq. (22), for which the solution is known [67]. Putting it all
together the probability distribution function becomes

ΠðY; SÞ ¼ exp

�
β

1þD

�
Y −

βS
2
− δv

��

×
X∞
n¼1

2

δT
sin

�
nπδv
δT

�
sin

�
nπ
δT

Y

�

× exp

�
−
n2π2ð1þDÞ

2δ2T
S

�
: ð29Þ

The ratio of walkers that cross the barrier BvðSÞ is then
given by

F ðSÞ ¼ ∂
∂S

Z
0

∞
dYΠðY; SÞ ¼ 1þD

2

∂Π
∂Y

				
Y¼0

; ð30Þ

where we used the modified Fokker-Planck equation
Eq. (26) and the first boundary condition from Eq. (27).
The void abundance function, defined as fðSÞ ¼ 2SF ðSÞ,
for this model is then given by

fðSÞ ¼ 2ð1þDÞ exp
�
−

β2S
2ð1þDÞ þ

βδv
ð1þDÞ

�

×
X∞
n¼1

nπ
δ2T

S sin

�
nπδv
δT

�
exp

�
−
n2π2ð1þDÞ

2δ2T
S

�

ð31Þ

There are four important limiting cases to consider:
(i) D ¼ β ¼ 0: This is the simplest case of two static

barriers. The expression in this case was first
obtained in [67] and compared to simulations in
[72]. It is given by

fD¼β¼0ðSÞ ¼ 2
X∞
n¼1

nπ
δ2T

S sin

�
nπδv
δT

�

× exp

�
−
n2π2

2δ2T
S

�
: ð32Þ

This is one of the functional forms tested in this
work and the only case with no free parameters. We
refer to this case as that of 2 static barriers (2SB).

(ii) D ¼ 0 and β ≠ 0: This case considers that the
barriers depend linearly on S but are not diffusive.
In this case the expression is given by

8This occurs when the window function in Eq. (17) S is sharp
in k-space. For a window that is sharp in real space the motion of
δ is not Markovian and the second equation in (21) is not true. In
that case a more sophisticated method is necessary (see [70] for
details), and the solution presented here represents the zero-
order approximation for the full solution.

9Notice that β here should not be confused with the coupling
between matter and the extra scalar in Eq. (7).
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fD¼0ðSÞ ¼ 2e−
β2S
2 eβδv

X∞
n¼1

nπ
δ2T

S sin

�
nπδv
δT

�

× exp

�
−
n2π2

2δ2T
S

�
: ð33Þ

This expression recovers Eq. (C10) from [67]. Note
that these authors define the barrier with a negative
slope, therefore our β is equal to their −β, but δv < 0
in our case;

(iii) β ¼ 0 and D ≠ 0: Here we have a barrier that does
not depend on S but which is diffusive. In this case
we have

fβ¼0ðSÞ ¼ 2ð1þDÞ
X∞
n¼1

nπ
δ2T

S sin

�
nπδv
δT

�

× exp

�
−
n2π2ð1þDÞ

2δ2T
S

�
: ð34Þ

This expression is the same as the original formula
from [67], but changing S→ ð1þDÞS or ðδv; δvÞ →
ðδv; δcÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
, as expected when the constant

barrier becomes diffusive [71];
(iv) Large void radius: As discussed in [67] and [72],

for large radii R the void-in-cloud effect is not
important as we do not expected to find big voids
inside halos. In others words, when S → 0ðR → ∞Þ
the abundance becomes equal to that of a one-barrier
problem. Even though we do not attempt to properly
consider the limit of Eq. (31) when S → 0, this
expression can be directly compared to the function
of the problem with one linear diffusive barrier
(1LDB), given by [82,83]

f1LDBðSÞ ¼
jδvjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sð1þDvÞ
p

ffiffiffi
2

π

r
exp

�
−
ðjδvj þ βvSÞ2
2Sð1þDvÞ

�
:

ð35Þ

In Fig. 3, we compare the void abundance from
multiple cases by taking their ratio with respect to the
abundance of the 2SB model. The abundance of the
model with D ≠ 0 is substantially higher than 2SB,
whereas that of the model with β ≠ 0 is significantly
lower. The cases with two linear diffusive barriers (2LDB)
Eq. (31) and one linear diffusive barrier (1LDB) Eq. (35)
are the main models considered in this work. The void
abundance of the 1LDB and 2LDB models are nearly
identical for R > 4 Mpc=h, when the same values of β and
D are used. Table II summarizes the properties of the three
main models considered and how they generalize
each other.
Given the ratio of walkers that cross the barrier BvðSÞ

with a radius given by SðRÞ, the number density of voids

with radius between RL and RL þ dRL in linear theory is
given by

dnL
d lnRL

¼ fðσÞ
VðRLÞ

d ln σ−1

d lnRL

				
RLðRÞ

ð36Þ

where the subscript L denotes linear theory quantities,
VðRLÞ is the volume of the spherical void of linear radius
RL and recall S ¼ σ2.
Whereas for halos the number density in linear theory is

equal to the final nonlinear number density, for voids this is
not the case. In fact, Jennings et al. [72] shows that such
criterium produces nonphysical void abundances, in which
the volume fraction of the Universe occupied by voids
becomes larger than unity. Instead, to ensure that the void
volume fraction is physical (less than unity) the authors
of [72] impose that the volume density is the conserved
quantity when going from the linear-theory calculation to
the nonlinear abundance. Therefore, when a void expands
from RL → R it combines with its neighbors to conserve

FIG. 3. Ratio of multiple models for void abundance relative to
the model with two static barriers (2SB) Eq. (32) (β ¼ D ¼ 0).
We show models with only D ≠ 0 (green solid line), with only
β ≠ 0 (red dotted line), the 1LDB model (purple dotted-dashed
line) and the 2LDB model (blue dashed line). The latter two cases
are the main models considered in this work and differ only at
small radii (R≲ 4 Mpc=h), as a manifestation of the void-in-
cloud effect.

TABLE II. Abundance models for voids considered in this
work. Voids require two barriers to avoid the void-in-cloud effect.

Model Barriers Nonzero Params Equation

2SB 2 (static) δc, δv Eq. (32)
1LDB 1 (linear þ diffusive) δv, βv, Dv Eq. (35)
2LDBa 2 (linear þ diffusive) δc, δv, β, D Eq. (31)

aFor 2LDB, β ¼ βc ¼ βv and D ¼ Dc þDv.
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volume and not number. This assumption is quantified by
the equation

VðRÞdn ¼ VðRLÞdnLjRLðRÞ; ð37Þ

which implies

dn
d lnR

¼ fðσÞ
VðRÞ

d ln σ−1

d lnRL

d lnRL

d lnR

				
RLðRÞ

; ð38Þ

where recall in our case R ¼ ð1þ δscÞ−1=3RL ¼ 1.717RL is
the expansion factor for voids. Therefore we have trivially
d lnRL=d lnR ¼ 1 above.
The expression in Eq. (38)—referred as the Vdn

model—along with the function in Eq. (31) provide the
theoretical prediction for the void abundance distribution in
terms of void radius, which will be compared to the
abundance of spherical voids found in N-body simulations
of GR and modified gravity.

IV. VOIDS FROM SIMULATIONS

We used the N-body simulations that were run with the
Isis code [84] for ΛCDM, fðRÞ Hu-Sawicki and symme-
tron cosmological models. For the fðRÞ case we fixed
n ¼ 1 and considered jfR0j ¼ 10−4, 10−5 and 10−6. For
symmetron, we fix β0 ¼ 1 and L ¼ 1 and used simulations
SymmA, SymmB, SymmD, which have zSSB ¼ 1, 2, 3
respectively. Each simulation has 5123 particles in a box of
size 256 Mpc=h, and cosmological parameters ðΩb;Ωdm;
ΩΛ;Ων; h; TCMB; ns; σ8Þ ¼ ð0.045; 0.222; 0.733; 0.0; 0.72;
2.726K; 1.0; 0.8Þ. These represent the baryon density
relative to critical, dark matter density, effective cosmo-
logical constant density, neutrino density, Hubble constant,
CMB temperature, scalar spectrum index and spectrum
normalization. The normalization is actually fixed at high
redshifts, so that σ8 ¼ 0.8 is derived for the ΛCDM
simulation, but is larger for the modified gravity simula-
tions. In terms of spatial resolution, seven levels of refine-
ment were employed on top of a uniform grid with 512
nodes per dimension. This gives an effective resolution
of 32,678 nodes per dimension, which corresponds to
7.8 kpc=h. The particle mass is 9.26 × 109 M⊙=h.
We ran the ZOBOV void-finder algorithm [85]—based on

Voronoi tessellation—on the simulation outputs at z ¼ 0 in
order to find underdense regions and define voids, and
compared our findings to the Vdn model of Eq. (38) [72]
with the various multiplicity functions fðσÞ proposed
above (2SB, 1LDB and 2LDB models).
First, we used ZOBOV to determine the position of the

density minima locations within the simulations and rank
them by signal-to-noise S/N significance. Next, we
started from the minimum density point of highest
significance and grew a sphere around this point, adding
one particle at a time in each step, until the overdensity

Δ ¼ 1þ δ enclosed within the sphere was 0.2 times the
mean background density of the simulation at z ¼ 0.
Therefore we defined spherical voids, which are more
closely related to our theoretical predictions based on
spherical expansion.
We also considered growing voids around the center-of-

volume from the central Voronoi zones. The center-of-
volume is defined similarly to the center-of-mass, but each
particle position is weighted by the volume of the Voronoi
cell enclosing the particle, instead of the particle mass.
Using the center-of-volume produces results very similar to
the previous prescription, so we only present results for the
centers fixed at the density minima.
In Fig. 4 we compare the void abundance inferred from

simulations for the three fðRÞ and the three symmetron
theories relative to the ΛCDM model. Since the differential
abundance as a function of void radius is denoted by
dn=d lnR, we denote the relative difference between the
fðRÞ and ΛCDM abundances by dnfðRÞ=dnΛCDM − 1 and
show the results in terms of percent differences. The error
bars shown here reflect shot-noise from voids counts in
the simulation runs. In the fðRÞ simulation this relative
difference is around 100% at radii R > 10 Mpc=h (for
the jfR0j ¼ 10−4 case). In the symmetron simulation, the
difference is around 40% (for the zSSB ¼ 3 case), for radii
R ∼ 8 Mpc=h. This indicates that void abundance is a
potentially powerful tool for constraining modified gravity
parameters.

V. RESULTS

A. Fitting β and D from simulations

In order to use the theoretical expression in Eq. (31) to
predict the void abundance we need values for the param-
eters β and D. The usual interpretation of β is that it
encodes, at the linear level, the fact that the true barrier in
real cases is not constant. In other words, the contrast
density for the void (or halo) formation depends on its
size/scale. This can occur because halos/voids are not
perfectly spherical and/or because the expansion (or col-
lapse) intrinsically depends on scale (Birkhoff’s theorem is
generally not valid in modified gravity). The scale depend-
ency induced by modified gravity can be calculated using
our model for spherical collapse (expansion), described in
Secs. II C and II D, by fitting a linear relationship between
δc (δv) or average barrier hBci (hBvi) as a function of the
variance SðRÞ. Here we use k ¼ 2π=R to convert wave
number to scale R.
In Fig. 5 we show the average barriers hBci, hBvi as

functions of variance S for multiple gravity theories,
and empirical fits for the parameters δc, δv, βc, βv from
Eqs. (20). These fits indicate that the barriers depend
weakly on scale in the range of interest. The values of
δc, δv are nearly constant and those of βc, βv are of order
10−3 while the corresponding values for halos in ΛCDM
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are of order 10−1 [73]. Even though voids are quite
spherical, the small values of β indicate that the main
contribution to β may come from more general aspects of
nonspherical evolution. The small fitted values of β can
also be due to errors induced by the approximations in the
nonlinear equation Eq. (5), which does not capture screen-
ing effects of modified gravity.
Given these issues, and as it is beyond the scope of this

work to consider more general collapse models or study the
exact modified gravity equations, we will instead keep the

values of δc and δv fixed to their ΛCDM values and treat β
as a free parameter to be fitted from the abundance of voids
detected in the simulations.
Likewise, the usual interpretation of D is that it encodes

stochastic effects of possible problems in our void (halo)
finder [71], such as an intrinsic incompleteness or impurity
of the void sample, or other peculiarities of the finder,
which may even differ from one algorithm to another.
Therefore D is also taken as a free parameter in our
abundance models.

FIG. 5. (Left): Average barrier hBci for halos as a function of variance S, for the fðRÞ parameters: jfR0j ¼ 10−6 (red squares), 10−5

(green triangles) and 10−4 (blue circles), and corresponding fits for each case in same colors and with dotted-dashed, dashed and solid
lines respectively. Vertical lines indicate the limits used for the fits, which also correspond to the range of interest for the study of voids in
our case (2.0–14.0 Mpc=h). (Right): Same for the void barrier hBvi.

FIG. 4. Relative difference between void abundance in modified gravity models and in standard GR (ΛCDM model). (Left): Relative
difference of fðRÞ theories, for parameters jfR0j ¼ 10−6 (red squares with dotted-dashed line), 10−5 (green triangles with dashed line)
and 10−4 (blue circles with solid line). (Right): Relative difference of symmetron theories, for parameters zSSB ¼ 1 (red squares with
dotted-dashed line), 2 (green triangles with dashed line) and 3 (blue circles with solid line).
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We jointly fit for the parameters β and D using the voids
detected in the N-body simulations described in Sec. IV,
with the values of δc and δv fixed to their ΛCDM values
(the non-constant barrier introduced by modified gravity is
therefore encoded by β).
We use the EMCEE algorithm [86] to produce a

Monte Carlo Markov Chain (MCMC) and map the posterior
distribution of these parameters. The results for these fits
using the 2LDB model Eq. (31) the 1LDB model Eq. (35)
are shown in Table III, for fðRÞ and symmetron gravity. The
table shows the mean values and 1σ errors around the mean,
as inferred from the marginalized posteriors.
In Fig. 6 we show the abundance of voids dn=d lnR as

measured from simulations (open dots), as well as three
theoretical models, namely the 2SB[72], 1LDB Eq. (35)
and 2LDB Eq. (31) models. Multiple panels show results
for ΛCDM and fðRÞ models. In Fig. 7 we show the same
for ΛCDM and symmetron models.
We can see that linear-diffusive-barrier models (1LDB

and 2LDB) work best in all gravities, relative to the static
barriers model (2SB). In fact, these two models describe
the void abundance distribution within 10% precision for
R≲ 10 Mpc=h. As expected, the model with two linear
diffusive barriers (2LDB) better describes the abundance of
small voids (R≲ 3 Mpc=h), due to the void-in-cloud effect,
more relevant for small voids [67].
In Table IV we show the reduced χ2 for GR, the three

fðRÞ models and three symmetron models, This shows

again that models with linear diffusive barriers provide a
better fit to the simulation data—with χ2 one order of
magnitude smaller—and that the 2LDB model gives the
overall best fits. Another interesting feature for the main
model presented in this work (2LDB) is that its reduced χ2

grows with the intensity of modified gravity. This may
indicate that, despite being the best model considered, it
may not capture all important features in modified gravity
at all orders. We also find that the fðRÞ model is better
fitted than the symmetron model. Since the linear treatment
is the same for both gravity models, the 2LDB model may
be more appropriate to describe the chameleon screening of
fðRÞ than symmetron screening. Nonetheless, the 2LDB
model provides a reasonable representation of the data from
both gravity theories in the range considered here.
As both parameters β andD have an explicit dependence

on the modified gravity strength, next we fit a relationship
between the abundance parameters β and D and the
gravity parameters log10 jfR0j and zSSB. In these fits we
set the value log10 jfR0j ¼ −8 to represent the case of
ΛCDM cosmology, as this is indeed nearly identical to
ΛCDM for purposes of large-scale structure observables,
i.e. log10 jfR0j ¼ −8≃ −∞.
As we expect β and D to depend monotonically on the

modified gravity parameters, we fit for them using simple
two-parameter functions. For β case we use a straight line,
and for D a second order polynomial with maximum fixed
by the ΛCDM value. These fits are shown in the multiple
panels of Fig. 8.
Our values of β andD as a function of gravity parameters

fluctuate considerably around the best fit. This occurs at
least partially because we have used only one simulation
for each gravity model, and we expect this oscillation to be
reduced with a larger number of simulations. At present,
the use of the fits is likely more robust than the use of exact
values obtained for each parameter/case.

B. Constraining modified gravity

Given the fits for β andD obtained in the last subsection,
we now check for the power of constraining modified
gravity from the void distribution function in each of the
three void abundance models considered, namely 2SB,
1LDB and 2LDB. We take the abundance of voids actually
found in simulations (described in Sec. IV) to represent a
hypothetical real measurement of voids and compare it to
the model predictions, evaluating the posterior for
log10jfR0j and zSSB, thus assessing the constraining power
of each abundance model in each gravity theory. Obviously
the constraints obtained in this comparison are optimistic—
since we are taking as real data the same simulations used to
fit for the abundance model parameters—but they provide
us with idealized constraints similar in spirit to a Fisher
analysis around a fiducial model.
The posteriors for the gravity parameters are shown in

Figs. 9 and 10, as well as the mean values and 1σ errors in

TABLE III. Mean values and 1σ errors for β and D, fitted from
void abundance in N-body simulations for GR, fðRÞ and
symmetron gravity and for the 1LDB and 2LDB models of void
abundance. For 1LDB, β ¼ βv and D ¼ Dv. For 2LDB, β ¼
βc ¼ βv and D ¼ Dc þDv.

Gravity Parameter Model β D

GR � � � 1LDB 0.0160.0040.004 0.1850.0210.021

fðRÞ jfR0j ¼ 10−6 1LDB 0.0290.0330.032 0.1680.0200.021

fðRÞ jfR0j ¼ 10−5 1LDB 0.0340.0030.003 0.1460.0210.021

fðRÞ jfR0j ¼ 10−4 1LDB 0.0440.0030.003 0.0760.0210.021

Symmetron zSSB ¼ 1 1LDB 0.0100.0030.003 0.1500.0200.020

Symmetron zSSB ¼ 2 1LDB 0.0250.0020.002 −0.0110.0160.017

Symmetron zSSB ¼ 3 1LDB 0.0340.0020.002 −0.1490.0140.014

GR � � � 2LDB −0.0340.0020.002 0.0570.0140.014

fðRÞ jfR0j ¼ 10−6 2LDB −0.0320.0020.002 −0.0030.0120.011

fðRÞ jfR0j ¼ 10−5 2LDB −0.0300.0020.002 −0.0650.0110.012

fðRÞ jfR0j ¼ 10−4 2LDB −0.0260.0020.002 −0.1550.0100.010

Symmetron zSSB ¼ 1 2LDB −0.0450.0020.002 0.0010.0120.012

Symmetron zSSB ¼ 2 2LDB −0.0320.0020.002 −0.1850.0090.009

Symmetron zSSB ¼ 3 2LDB −0.0240.0010.001 −0.3470.0060.006
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each case. For the results shown here all cosmological
parameters from Sec. IV have been fixed to their true
values. We also considered the case where we apply Planck
priors [87] on Ωdm and h and let them vary freely in the
MCMC, keeping other parameters fixed. In the latter case,
the mean values and errors found for log10 jfR0j are slightly
worse, but the errors remain less than twice those found
for the case of all fixed parameters. Moreover, the errors
derived forΩdm and h reduce to half of their original Planck
priors.
In Fig. 9 we can see that the 2SB model predicts values

for the fðRÞ parameter (log10 jfR0j) which are incorrect by
more than 3σ for all cases. In fact, this model predicts
incorrect values even for general relativity. This is not

surprising given the bad χ2 fits from Table IV. Therefore we
find this model to be highly inappropriate to describe the
abundance of dark matter voids, and focus on models with
linear diffusive barriers.
Both the 1LDB and 2LDB models predict correct values

for the gravity parameters within 1σ in most cases. We find
that the 1LDB model presents results similar to 2LDB,
despite being a simpler model and providing a worse fit
to the data (larger reduced χ2). For ΛCDM both posteriors
go to log10 jfR0j ¼ 10−8, which represents the GR case by
assumption. This shows that within the fðRÞ framework,
we can also constrain GR with reasonable precision from
void abundance, using one of these two abundance models
with diffusive barriers (1LDB, 2LDB).

FIG. 6. (Top Left): The upper sub-panel shows the void differential abundance distribution dn=d lnR as a function of void radius R for
GR (ΛCDM) from simulations (open dots), along with theory predictions from the 2SB model [72] (red solid curve), from the 1LDB
Eq. (35) (purple dotted-dashed curve) and the 2LDB model Eq. (31) (blue dashed line). The lower sub-panel shows the relative
difference between simulation data and each theory model. (Top Right): Same for fðRÞ modified gravity with jfR0j ¼ 10−6. (Bottom
Left): Same for jfR0j ¼ 10−5 (Bottom Right): Same for jfR0j ¼ 10−4.
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For the symmetron model, we can see in Fig. 10 that
the parameter zSSB is also well constrained, similarly to
fR0 in fðRÞ. Again the 2SB model has the worst result in
all cases, and the 1LDB and 2LDB models produce
similar results.

In Table V we show the best-fit values, mean values
and 1σ errors from the posteriors distributions of Figs. 9, 10
for the fðRÞ and symmetron theories. It becomes again
clear that our proposed models with linear diffusive barriers
(1LDB and 2LDB) give results much closer to the correct
true values, compared to the original static barriers case
2SB [72]. In particular, the 2LDB is within 1-3σ concord-
ance for all cases.

C. Voids in galaxy samples

In real observations it is much harder to have direct
access to the dark matter density field. Instead we observe
the galaxy field, a biased tracer of the dark matter.
Therefore it is important to investigate the abundance of
voids defined by galaxies and the possibility of con-
straining cosmology and modified gravity in this case.
We introduce galaxies in the original dark matter simu-

lations using the halo occupation distribution (HOD) model

FIG. 7. Same as Fig. 6, but for the symmetron model with zSSB ¼ 1 (top right), 2 (bottom left) and 3 (bottom right).

TABLE IV. Reduced χ2 for each gravity model and for the three
models of void abundance considered.

Gravity 2SB 1LDB 2LDB

GR 15.76 3.45 1.59
jfR0j ¼ 10−6 13.10 3.97 1.67
jfR0j ¼ 10−5 21.10 5.52 2.11
jfR0j ¼ 10−4 34.86 5.66 2.78
zSSB ¼ 1 22.20 3.64 1.12
zSSB ¼ 2 49.06 4.75 2.57
zSSB ¼ 3 209.05 8.10 4.77
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from [88]. In [64] the authors investigated similar void
properties but did not considered spherical voids, using
instead the direct outputs of the VIDE [89] void finder.
In our implementation, first we find the dark matter

halos in the simulations using the overdensities out-
putted by ZOBOV. We grow a sphere around each of the
densest particles until its enclosed density is 200 times
the mean density of the simulation. This process is the
reverse analog of the spherical void finder described in
Sec. IV, the only difference being the criterium used to
sort the list of potential halo centers. Here we sort them
using the value of the point density, not a S/N signifi-
cance, as the latter is not provided by ZOBOV in the case
of halos.
We populate these halos with galaxies using the HOD

model of [88]. This model consist of a mean occupation
function of central galaxies given by

hNcenðMÞi ¼ 1

2

�
1þ erf

�
logM − logMmin

σlogM

��
; ð39Þ

with a nearest-integer distribution. The satellite galaxies
follow a Poisson distribution with mean given by

hNsatðMÞi ¼ hNcenðMÞi
�
M −M0

M0
1

�
α

: ð40Þ

Central galaxies are put in the center of halo, and the
satellite galaxies are distributed following a Navarro Frenk
and White [90][(NFW),90] profile.
We use parameter values representing the sampleMain 1

of [64], namely: ðlogMmin; σlogM; logM0; logM0
1; αÞ ¼

ð12.14; 0.17; 11.62; 13.43; 1.15Þ. These parameters give a
mock galaxy catalogue with galaxy bias bg ¼ 1.3 and mean
galaxy density n̄g ¼ 5.55 × 10−3ðh=MpcÞ3 in ΛCDM.
We then find voids in this galaxy catalogue using the

same algorithm applied to the dark matter catalogue
(described in Sec. IV). We use the same criterium that a
void is a spherical, nonoverlapping structure with over-
density equal to 0.2 times the background galaxy density.
However, as the galaxies are a biased tracer of the dark
matter field, if we find galaxy voids with 0.2 times the mean
density, we are really finding regions which are denser
in the dark matter field. In fact, if δg ¼ bgδ is the galaxy
overdensity, with galaxy bias bg and δ is the dark matter
overdensity we have

Δ ¼ 1þ δ ¼ 1þ δg
bg

; ð41Þ

Therefore, if we find voids with δg ¼ −0.8 and bg ¼ 1.3
we have Δ ¼ 0.38, i.e. the galaxy voids enclose a region of
density 0.38 times the mean density of the dark matter field.

FIG. 8. (Top Row): Fits of D and β as a function of log10 jfR0j in fðRÞ gravity. These fits are shown for D in the 1LDB and 2LDB
models, and for β in the 1LDB and 2LDB models respectively from left to right. (Bottom Row): Same for fits as a function of zSSB in
symmetron gravity.
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Therefore it is this value that must be used in the previous
theoretical predictions.
Using this value, the relation between linear and non-

linear radii is R ¼ 1.37RL, and the density parameter for
the spherical void formation—calculated using the spheri-
cal expansion equations (Sec. II D)—is δv ¼ −1.33. We
insert these new values into the theoretical predictions and
compare to the measured galaxy void abundance. The
result is shown in Fig. 11 for the ΛCDM case. We see that
both original models, 2SB and 2LDB (blue curves), with
R ¼ 1.71RL and δv ¼ −2.788, provide incorrect predic-
tions for the abundance of galaxy voids. However when
corrected for the galaxy bias (red curves), these models are

in good agreement with the data. We also see that the 2LDB
provides a slightly better fit, which is not significant given
the error bars.
The main problem of our galaxy catalogues is the low

number density of objects. Larger box sizes (or a galaxy
population intrinsically denser) might help decrease the
error bars sufficiently in order to constrain modified gravity
parameters. In Fig. 12 we show the relative difference
between the abundance for the three modified gravity
models and GR as inferred from our simulations. We
see that it is not possible to constrain the gravity model
using the abundance of galaxy voids, as extracted from
mock galaxy catalogues of the size considered here, due to

FIG. 9. Posterior distribution for log10 jfR0j and for the three abundance models considered in the text, 2SB model [72] (red
continuous line), 2LDB model Eq. (31) (blue dashed line) and 1LDB model Eq. (35) (purple dotted dashed line). The mean and 1σ
values of log10 jfR0j in each case are indicated in the legend. (Top Left): Posterior for the ΛCDM simulation. (Top Right): Posterior for
the jfR0j ¼ 10−6. (Bottom Left): Posterior for the jfR0j ¼ 10−5. (Bottom Right): Posterior for the jfR0j ¼ 10−4.
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FIG. 10. Same as Fig. 9, but for the symmetron model with zSSB ¼ 1 (top right), 2 (bottom left) and 3 (bottom right).

TABLE V. Values for best-fit, mean and 1σ errors in the modified gravity parameters (fR0 and zSSB) for the three void abundance
models 2SB, 1LDB and 2LDB.

Best-Fit Mean � (1σ error)

Gravity parameters 2SB 1LDB 2LDB 2SB 1LDB 2LDB

log10jfR0j ¼ −8 (ΛCDM) −6.24 −8.00 −8.00 −6.24� 0.09 −7.94� 0.08 −7.92� 0.10
log10 jfR0j ¼ −6 −5.78 −5.88 −6.04 −5.79� 0.07 −5.89� 0.15 −6.04� 0.14
log10 jfR0j ¼ −5 −5.51 −4.95 −5.10 −5.51� 0.07 −4.95� 0.16 −5.09� 0.19
log10 jfR0j ¼ −4 −5.36 −4.01 −4.00 −5.36� 0.08 −4.09� 0.11 −4.16� 0.20
zSSB ¼ 0 (ΛCDM) 1.14 0.32 0.21 1.14� 0.04 0.27� 0.19 0.20� 0.16
zSSB ¼ 1 1.46 1.17 1.16 1.46� 0.03 1.17� 0.05 1.17� 0.06
zSSB ¼ 2 1.63 1.89 1.88 2.31� 0.03 1.89� 0.07 1.87� 0.07
zSSB ¼ 3 1.77 3.00 2.81 2.59� 0.03 2.97� 0.05 2.81� 0.08
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limited statistics. Further investigations using larger or
multiple boxes, or else considering a galaxy population
with larger intrinsic number density should decrease
Poisson errors significantly, allowing for a better inves-
tigation of void abundance in the large data sets expected
for current and upcoming surveys, such as the SDSS-IV,
DES, DESI, Euclid and LSST.

VI. DISCUSSION AND CONCLUSION

We have used a suite of N-body simulations from the Isis
code [84] for GR and modified gravity models to define
spherical voids from underdensities detected by ZOBOV

[85], a void-finder based on Voronoi tesselation. We find
that the void abundance in modified gravity and ΛCDM
may differ by ∼100% for the largest void radii in our
simulations.
We interpreted the void abundance results through a

spherical expansion model and extended excursion set
approach. The most general theoretical model considered
has two drifting diffusive barriers, with a linear dependence
on the density variance (2LDB, see Sec. III). This model
depends on the theory linear power spectrum PðkÞ and in
principle has multiple parameters, namely δc and δv (the
critical densities for collapse and expansion), βc and βv
(the barrier slopes for halos and voids) and Dc and Dv (the
diffusion coefficients for halos and voids). Fixing δc and δv
to their GR values and under the simplifying assumption
that β ¼ βc ¼ βv, the model depends on two free param-
eters: β and D ¼ Dc þDv. Interestingly, our model
accounts for the void-in-cloud effect and generalizes
previous models for void abundance based on static barriers
[72]. The generalizations proposed here are similar to those
made by [70,71] in the context of halos.
Since our model requires the linear power spectrum in

modified gravity, we have implemented a numerical evo-
lution of the linear perturbation equations for general
theories of modified gravity parametrized by Eq. (6). We
compared our computation to that from MGCAMB for fðRÞ
gravity and found very good agreement. We then use this
implementation to compute the linear spectrum for both
fðRÞ and symmetron gravity.
We also considered approximate equations for spherical

collapse and spherical expansion and derived the spherical
collapse parameters δc and δv as a function of scale,
recovering in particular the values in the strong and weak
field regimes of fðRÞ gravity—the latter corresponding to
the GR solution. We then estimated the dependence of
barriers Bc and Bv with the variance S and derived values
for βc;v and δc;v. The values found did not however seem to
correctly describe the void abundance from simulations,
which may be due to the approximated equations used to
study the expansion/collapse.
We also found that the variations on PðkÞ, β and D as a

function of modified gravity were much stronger than
those from δc and δv. Therefore, in our modeling of void
abundance we kept δc and δv fixed to their GR values, and
took β and D as free parameters to be fit from simulations.
Although beyond the scope of this work, we envision that it
should be possible to derive the model parameters from first
principles in the future.
By comparing the measured void abundance from the

simulations to the theoretical models considered, we found
the best fit values for β and D in each gravity theory and

FIG. 11. Void abundance distribution as a function of void
radius for voids detected in the galaxymock catalogue for ΛCDM
(open circles). Also shown are the abundance predictions from
the 2SB and 2LDB models with no corrections due to galaxy bias
(blue solid and dashed lines respectively), as well as the same
model predictions with the bias corrections (red dotted dashes
and dotted lines respectively).

FIG. 12. Relative difference in galaxy void abundance as
measured in fðRÞ gravity simulations and GR simulations.
The difference is shown for jfR0j ¼ 10−6 (red squares), 10−5

(green triangles) and 10−6 (blue circles).
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each abundance model. In particular, we found that these
parameters were best-fit for models with linear diffusive
barriers (see Figs. 6, 7 and Table IV), indicating that the
addition of these features is important to describe modified
gravity effects on void abundance. This allowed us to then
fit for β andD as a function of modified gravity parameters,
namely jfR0j in the case of fðRÞ gravity, and zSSB in the
case of symmetron.
Next we used these fits to check how well the calibrated

models could recover the modified gravity parameters from
hypothetical and idealized void abundance observations.
We compared the void abundance measured in simulations
to the model predictions and performed an MCMC search
for the gravity parameters. Since the predictions were
calibrated from the simulations themselves, our results
may be highly optimistic. Nonetheless, we found that the
models with linear diffusive barriers recover the modified
gravity parameters better than the model with static barriers
for all gravity theories (see Figs. 9, 10 and Table V). We
also found that when using voids found in the GR
simulation to fit for modified gravity parameters, we seem
to properly recover the GR limit at the 2σ level. Since we
only used one simulation for each gravity model consid-
ered, our results have considerable uncertainties. We expect
these to improve significantly with the use of multiple and
larger simulations.
Finally, we populated the dark matter halos found in the

simulations with galaxies in order to access the possibility
of modeling the abundance of galaxy voids. For the GR
case, we found that the same model with linear diffusive
barriers properly describes the abundance of galaxy voids,
provided we use the galaxy bias to correct for the effective
overdensity Δ used for void detection. However, the error

bars were too large to allow for any signal in the modified
gravity case relative to GR. Again since we used a single
simulation for each gravity, our results for galaxy voids are
even more affected by shot noise and unknown sample
variance effects.
Current and upcoming spectroscopic and photometric

galaxy surveys will produce large catalogs of galaxies,
clusters and voids. Observed void properties from real data
are affected by nontrivial effects such as surveys masks and
depth variations in the sky. One could partially characterize
these effects from realistic simulations and understand their
possible consequences, such as inappropriately breaking
large voids into multiple smaller ones or vice-versa (i.e.
merging small voids into larger ones). Assuming that such
effects can be understood and characterized, we expect
that the properties of voids, including their abundance,
clustering properties and profiles, will be very important
to constrain cosmological models, especially modified
gravity. In particular, since voids and halos respond differ-
ently to screening effects present in viable modified gravity
theories, a combination of voids and halo properties should
be particularly effective in constraining and distinguishing
alternative gravity models.
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