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Abstract

The genome sequence of V. cholerae O1 Biovar Eltor strain N16961 has revealed a putative

antibiotic resistance (var) regulon that is predicted to encode a transcriptional activator

(VarR), which is divergently transcribed relative to the putative resistance genes for both a

metallo-β-lactamase (VarG) and an antibiotic efflux-pump (VarABCDEF). We sought to test

whether these genes could confer antibiotic resistance and are organised as a regulon

under the control of VarR. VarG was overexpressed and purified and shown to have β-lacta-

mase activity against penicillins, cephalosporins and carbapenems, having the highest

activity against meropenem. The expression of VarABCDEF in the Escherichia coli

(ΔacrAB) strain KAM3 conferred resistance to a range of drugs, but most significant resis-

tance was to the macrolide spiramycin. A gel-shift analysis was used to determine if VarR

bound to the promoter regions of the resistance genes. Consistent with the regulation of

these resistance genes, VarR binds to three distinct intergenic regions, varRG, varGA and

varBC located upstream and adjacent to varG, varA and varC, respectively. VarR can act as

a repressor at the varRG promoter region; whilst this repression was relieved upon addition

of β-lactams, these did not dissociate the VarR/varRG-DNA complex, indicating that the de-

repression of varR by β-lactams is indirect. Considering that the genomic arrangement of

VarR-VarG is strikingly similar to that of AmpR-AmpC system, it is possible that V. cholerae

has evolved a system for resistance to the newer β-lactams that would prove more benefi-

cial to the bacterium in light of current selective pressures.
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Introduction

The Gram-negative pathogen Vibrio cholerae is the aetiological agent of the acute and poten-

tially fatal diarrhoeal disease, cholera, which is estimated to infect up to 4.3 million people and

cause up to 142 000 deaths worldwide yearly [1]. Cholera is contracted when contaminated

food or water is ingested [2]. The bacterium then colonizes the small intestine, where a com-

plex regulatory cascade is induced [3], resulting in the production of several important viru-

lence factors, including cholera toxin (CT), an AB-type enterotoxin that is responsible for the

secretory diarrhoea that is characteristic of cholera [4].

Treatment of cholera typically entails intensive re-hydration therapy by the intravenous or

oral supply of fluids. However, there is a growing concern for the development of antibiotic

resistance in V. cholerae because cholera tends to develop at epidemic levels in developing

countries where supplies and assistance is limited. Therefore, the use of antibiotics in these

countries is essential to greatly reduce the duration of illness [5], the chances of re-infection

[2] and to reduce mortality rates. Moreover, V. cholerae, which can readily acquire resistance

genes, may act as a reservoir for these resistance genes that can be passed onto other patho-

genic bacteria by lateral gene transfer [6]. Consequently, it is important to understand the

mechanisms of antibiotic resistance in V. cholerae if we are to develop strategies to circumvent

resistance, retaining our capacity to effectively curtail cholera epidemics and the transfer of

resistance genes to other pathogenic bacteria.

An analysis of the genome sequence of V. cholerae O1 Biovar El Tor strain N16961 revealed

a putative antibiotic resistance regulon (which we term var, for Vibrio Antibiotic Resistance;

Fig 1), apparently consisting of a transcriptional activator (encoded by varR), belonging to the

LysR family [7], which is divergently transcribed relative to resistance genes for a β-lactamase

(encoded by varG) and an efflux-pump (encoded by the varACDEF genes). A BLAST search

revealed that the var regulon is not unique to the El Tor strain but is also present in other non-

O1 strains. The organisation of the promoters of the varR and varG genes is similar to that of

the well characterised Enterobacteriacae β-lactamase ampR-ampC regulatory systems of

C. freundii [8–9], E. cloacae [10] and P. aeruginosa [11]. An important distinction between the

Fig 1. A diagrammatic representation of the var operon. The locality of the β-lactamase, varG, the MDR varABCDEF

transporter complex and the divergently transcribed regulatory varR genes are shown. Arrows indicate orientation of

transcription. Three intergenic regions varRG, varGA and varBC to which VarR is hypothesised to regulate transcription

are also illustrated.

https://doi.org/10.1371/journal.pone.0184255.g001
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AmpR-AmpC and the VarR-VarG systems is the type of β-lactamase regulated: AmpC belongs

to the class of serine-β-lactamases (Sβl, Ambler class C), whereas VarG belongs to the class of

metallo-β-lactamases (Mβl, Ambler class B), which target two very different classes of β-lactam

antibiotics. Mβls are of fast emerging clinical importance [12–13] owing to their ability to

hydrolyse all existing β-lactams, including the newer generation cephalosporins and carbape-

nems [14]. To exacerbate the situation, the activity of these enzymes cannot be neutralized by

current β-lactamase inhibitors and the implementation of such therapeutic inhibitors may

take several years [14–16].

That the var resistance regulon also incorporates an efflux pump is a novel feature because,

although efflux pumps can extrude β-lactams [17–19], this appears to be the first example of

both a β-lactamase and an efflux pump occurring in the same regulon. Furthermore, whilst the

expression of many antibiotic efflux pumps are regulated by transcriptional regulators, these

are generally repressors, which are de-repressed by binding of the same substrates as the pump

[20–22]. The genes encoding components of the efflux pump in the var regulon are located

downstream of VarR, a LysR transcriptional activator (TA). Interestingly, a number of other

antibiotic pumps in V. cholerae have been shown to be regulated by LysR TAs (LTTRs), located

upstream of the genes encoding the pumps [23], suggesting that such pumps are regulated by

additional factors, possibly secreted by the host.

In general, efflux pumps play an important role in the resistance and virulence of V. cho-
lerae, since they assist the bacterium in colonizing the small intestine, by providing resistance

to toxic antibacterial compounds, such as antimicrobial peptides and bile acids present in the

gastrointestinal tract [23–26], and can confer resistance to a range of antibiotics [27–34].

Those belonging to the RND (Resistance-Nodulation-cell Division) superfamily have been

studied extensively in V. cholerae [24,33,34]. There are six RND systems, each of which is sepa-

rately encoded in an operon structure wherein the RND transporter has at least one associated

MFP (membrane fusion protein), whose gene is located upstream of the RND transporter

gene. It appears that all six RND efflux systems work with the same OMP (outer-membrane

protein), TolC, which is encoded separately on the chromosome [24]. Together these proteins

form a tripartite efflux pump that can extrude substrates from the cell. Whilst most of these are

involved in conferring resistance, the RND transporters VexH, VexF and VexM appear to

have a role in the production of virulence factors, including the cholera toxin and the toxin co-

regulated pilus, but this seems to be indirect, possibly by transporting ligands that control

expression of these virulence factors [26]. The var regulon is also predicted to encode a tripar-

tite efflux pump, but it consists of an inner-membrane ABC (ATP Binding Casssette) trans-

porter, composed of two membrane translocase subunits (VarD and VarE) and an ATPase

subunit (VarF), a membrane fusion protein (VarA) and an outer-membrane channel (VarC).

The membrane translocase subunits resemble the macrolide transporter MacB and a number

of permeases for antimicrobial peptides [35,36]. In E. coli, MacB, which incorporates both

membrane translocase and ABC domains, works with the MFP MacA and the OMP TolC to

confer resistance to macrolides [35,36] and is implicated in the secretion of lipopolysaccha-

rides [37], protophorins [38] and protein toxins [39]. MacB has a novel architecture [35,40],

consisting of a four transmembrane domain, an N-terminal nucleotide-binding domain

(NBD), and a large periplasmic domain, with a structure that resembles that of the periplasmic

domain of RND transporters [41]. Whilst MacB forms homodimers [42], MacA has been

shown to form hexamers [43] and TolC trimers [44], suggesting that the pump assembles with

an IMP:MFP:OMP stoichiometry of 2:6:3. Within the assembled tripartite pump, MacA has

been shown to have a functional role in activating MacB [36,42,45,46]. Similarly, RND trans-

porters form trimers [47,48], which are thought to be assembled into a tripartite pump with a

stoichiometry of 3:6:3 [49,50].
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Herein, we report on the characterization of the var-regulon, establishing that VarG is a

carbapenemase, that the VarACDEF proteins function as macrolide pump and that the genes

encoding these resistance determinants are organised as a regulon under the control of VarR.

Materials and methods

Strains and plasmids

V. cholerae strain CVD101 was used as the source of chromosomal DNA for PCR. The primers

used to make constructs and the bacterial strains used to propogate them are given in S1, S2

and S3 Tables, respectively.

pSMART-IRvarRG-varG construct. A pSMART-IRvarRG-varG construct was made to test

the β-lactam substrate specificity of VarG. Primers were designed with modified 5’ phosphate

ends to enable blunt ended cloning into the pSMART plasmid (Lucigen). The IRvarRG-varG
DNA fragment was amplified using primers var1 and 2. The PCR product was ligated into

pSMART and transformed into E. coli E. cloni (Lucigen) for propagation. The pSMART-

IRvarRG-varG construct was further transformed into E. coli KAM3 cells [51] for minimal

inhibitory concentration (MIC) experiments.

pQE100-VarR construct. The varR gene was PCR amplified using the primers var3 and

var4, which incorporated BamHI and HindIII restriction sites, enabling unidirectional cloning

of the varR gene into the pQE-100 vector (Qiagen), to give pQE100-varR, and ensuring expres-

sion of VarR was in-frame with the His6 tag. pQE100-varR was transformed into E. coliM15

(pREP4) (Qiagen). A single colony of M15/pREP4/pQE100-varR was used to inoculate 5 ml of

2xYT, supplemented with 25 μg/ml kanamycin (KM) and 100 μg/ml carbenicillin (CB), and

cultured overnight. A litre of 2xYT media/ 25 μg/ml KM/ 100 μg/ml CB was inoculated with 3

ml of this overnight culture and grown at 37˚C with 180 rpm agitation until an absorbance at

600 nm (A600) of 0.5 was reached, then IPTG was added to a final concentration of 0.1mM and

growth continued for a further 3.5 hours at 25˚C. The culture was harvested by centrifugation

(at 6,300 rpm for 8 minutes) and the pellet re-suspended in buffer A (50 ml/ 2 litres of culture)

consisting of 20 mM Tris-HCl (pH 8.0), 300 mM NaCl, 10% glycerol (v/v) and 1 mM THP

(pre-cooled to 4˚C). To a 50 ml cell suspension, 500 units of DNaseI (Sigma) and half a prote-

ase inhibitor tablet (Roche) were added. This suspension was passed through a cell disruptor

three times at 15 Kpsi and placed on ice for 5 minutes. The cell debris and membranes were

separated by ultracentrifugation (at 43K rpm for 1 hour at 4˚C). The supernatant was carefully

decanted and 300 mM NaCl and 10 mM imidazole (cooled to 4˚C) added and rotated for 5

minutes until fully dissolved. One ml of Ni2+-agarose (Qiagen) was added to 50 ml supernatant

and rotated for 1.5 hours (at 4˚C). The Ni2+/protein mixture was loaded onto a gravity flow

column (BioRad) and the flow through collected. This process was repeated 3 times. The

packed column was washed with 20 ml of buffer A supplemented with 50 mM imidazole, and

the VarR eluted in 1 ml fractions (up to 8 ml) with buffer A supplemented with 500 mM imid-

azole. VarR was dialysed against buffer B 20 mM Tris-HCl (pH 8.0), 300 mM NaCl, 10% glyc-

erol, 1 mM THP. VarR was snap frozen and stored at -80˚C or used immediately for EMSAs.

pET-VarG construct. The varG (VC1562) gene was PCR amplified using the primers

var5 and var6, which incorporated EcoRI and XhoI restriction sites, respectively, and a

sequence encoding an hexahistidine (His6) tag downstream. This enabled unidirectional clon-

ing of the varG gene into the vector pET-26b(+) (Novagen) to give pET-VarG. pET-VarG was

transformed into E. coli C43(DE3) (Lucigen). The induced cells harboring pET-VarG were col-

lected and re-suspended in 50 mM Tris-HCl (pH 8.0) buffer containing 20% sucrose and

EDTA; the cells were pelleted again and re-suspended and incubated in Tris-HCl buffer con-

taining 5 mM MgSO4 for 30 min. The recombinant VarG was released into the buffer, and
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purified and desalted using a Nickel affinity column (Qiagen) and a PD-10 column (Amer-

sham), respectively. VarG was used immediately for β-lactamase assays.

pBAD-VarF construct. The varF (VC1568) gene was PCR amplified using the primers

var7 and var8, which incorporated NcoI and BglII restriction sites, respectively, and a

sequence encoding an hexahistidine (His6) tag. This enabled unidirectional cloning of the

varF gene into the vector pBAD-B (Life Technologies), to give pBAD-VarF. pBAD-VarF was

transformed into E. coli LMG194 (Life Technologies). An overnight culture was prepared by

inoculating 5 ml RM media, supplemented with 100 μg/ml carbenicillin (CB), with a single

colony of LMG194/pBAD-VarR. A litre of RM media/ 100 μg/ml CB was inoculated with 3

ml of this overnight culture and grown at 37˚C with 180 rpm agitation until an A600 of 0.5.

At this point IPTG was added to a final concentration of 1 mM and the culture allowed to

grow for a further 3.5 hours. The VarF was then purified according to the same protocol

used to purify VarR. VarF was desalted using PD-10 columns (Amersham) equilibrated as

per manufacturers instruction with buffer B 20 mM Tris-HCl pH 8.25, 50 mM NaCl, 10%

glycerol, 1 mM THP. VarF was snap frozen and stored at -80˚C or used immediately for fur-

ther studies.

pQE100-VarDEF construct. The varDEF (VC1566-VC1568) gene cluster was PCR ampli-

fied using the primers var9 and var10, which incorporated SacI and SmaI restriction sites,

respectively, enabling unidirectional cloning of the genes into the vector pQE100 (Novagen),

to give pQE100-varDEF. pQE100-varDEF was transformed into E. coli KAM3 [51] and

(ΔtolC) TG1 [52].

pSYC-VarABCDEF construct. The vaABCDEF (VC1563-VC1568) gene cluster was PCR

amplified using the primers var11 NdeI-varABCDEF and var12 NotI-varABCDEF, which

incorporated NdeI and NotI restriction sites, respectively, enabling unidirectional cloning of

the genes into the vector pSYC, a derivative of pQE100 vector, to give pSYC-varABCDEF.

pSYC-varABCDEF was transformed into E. coli KAM3 [51] and (ΔtolC) TG1 [52].

Construction of a pSMART-varR-IRvarRG-CmR vector for MIC experiments. A varR-

IRvarRG-CmR construct was created, to test whether VarR would bind to the varR-varG IR

and repress the expression of CmR that confers resistance to chloramphenicol, in a 2 step

cloning process: the varR-IRvarRG part of the construct was amplified using primers var37

and var38, containing the restriction sites XbaI and NdeI, respectively. Primers were

designed with modified 5’ phosphate ends to enable blunt ended cloning into pSMART plas-

mid. The chloramphenicol resistance gene CmR was amplified using primers var39 and

var40, containing the restriction sites NdeI and XhoI, respectively. Both constructs were sub-

cloned into pET21a. The IRvarRG-CmR construct was amplified using primers var41 and

var42, using pET21a- varR-IRvarRG-CmR as template DNA, and ligated into pSMART. The

varR-IRvarRG-CmR construct was amplified using primers var42 and var43, using pET21a-

varR-IRvarRG-CmR as template DNA, and ligated into pSMART. The constructs were trans-

formed into E. coli E. cloni (Lucigen) for propagation and then E. coli KAM3 [51] for MIC

experiments.

Minimal inhibitory concentration (MIC) assays

MICs were performed and assessed by the Microdilution Broth Method established by the

National Committee for Clinical Laboratory Standards (NCCLS). In brief, a single colony

was used to inoculate 5 ml Mueller Hinton broth (supplemented with appropriate antibiotic)

and grown at 37˚C with 225 rpm shaking till an absorbance at 625 nm of 0.08–0.1 (0.5

McFarland standard or 1x108 CFU/ml) was reached. The suspension was diluted to 2.5x106

CFU/ml and a measured volume used to inoculate the wells of a 96-well Microtitre plate

The var antibiotic resistance regulon
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(final test density of bacteria of 5x104 CFU/well) containing serial dilutions of antibiotics to

be tested. Mueller Hinton media was supplemented with 1 mM IPTG if initiation of expres-

sion was required. Microtitre plates were incubated statically at 37˚C and bacterial growth

recorded after 16–20 hours.

Drug degradation assays

The β-lactamase activity of purified VarG was monitored as the decrease in β-lactam absor-

bance that results from opening of the β-lactam ring during hydrolysis. The reactions were

performed at 30˚C in a mixture containing purified VarG, 50 mM Tris-HCl (pH 7.2), 0.1 mg/

mL BSA, 100 μM ZnCl2 and β-lactam antibiotics, such as ampicillin and imipenem, and the

decrease in absorbance monitored. The extinction coefficients and measured wavelengths for

the drug degradation test are -820 M-1cm-1 and 235 nm for ampicillin and piperacillin, -6,500

M-1cm-1 and 260 nm for cephalothin, -7,600 M-1cm-1 and 260 nm for cefuroxime, -10,000

M-1cm-1 and 260 nm for cefepime, -4,000 M-1cm-1 and 265 nm for moxalactam, 10,940

M-1cm-1 and 300 nm for meropenem, and -9,000 M-1cm-1 and 300 nm for imipenem. The rate

of β-lactam hydrolysis was measured as a function of the β-lactam concentration and the data

fitted to either a hyperbolic or sigmoidal equation using SigmaPlot (Systat Software Inc).

Size Exclusion Chromatography (SEC)

SEC analyses were performed on an AKTA purifier (Amersham) using Supedex200 PrepGrade

HiLoad 16/60 column, equilibrated with 20mM Tris-HCl (pH 8.25), 50mM NaCl and 10%

(v/v) glycerol, and run at 1ml/minute. The proteinMr was calculated from a calibration curve

constructed using ribonuclease A (15.6KDa), chymotrypsinogen A (22.8KDa), ovalbumin

(48.9KDa), albumin (65.4KDa), aldolase (158KDa), catalase (232KDa), ferritin (440KDa) and

dextran blue (void volume) standards. The Kav values were calculated using their elution vol-

umes (Ve), total bed volume (Vt) and the void volume (Vo) in the equation Kav = (Ve-Vo)/(Vt-

Vo). A calibration curve was constructed by plotting the log of theMr of the standards against

their Kav values.

Sedimentation Velocity Analytical Ultra-centrifuge analysis (SV AUC)

Sedimentation velocity (SV) experiments were performed with a Beckman-Coulter XL-A ana-

lytical ultracentrifuge (Fullerton, CA, USA). For SV AUC, sample and buffer were loaded into

12-mm standard double-sector Epon charcoal-filled centrepieces and mounted in an An-60 Ti

rotor. SV experiments were performed at a rotor speed of 42,000 rpm at 20˚C. The sample sig-

nal was monitored at 280 nm, and the raw experimental data was analyzed by SEDFIT soft-

ware (www.analyticalultracentrifugation.com). Plots of c(s, fr) and c(s,M) were generated by

MATLAB 7.0 software (MathWork, Inc.). The differential distribution of the sedimentation

coefficient and fictional ratio c(s, fr) was calculated by a c(s,�) model with Eq 1 [53]:

aðr; tÞ ¼
ZZ

cðs; frÞxðs;Dðs; frÞ; r; tÞdsdfr ð1Þ

The c(s, fr) distribution could be transformed to a molar mass distribution for each s-value

by a c(s,M) distribution with Eq 2 [53]:

aðr; tÞ ¼
ZZ

cðs;MÞxðs;Dðs;MÞr; tÞdsdM ð2Þ
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Sedimentation Equilibrium Analytical Ultra-centrifugation analysis (SE

AUC)

Sediment-ation equilibrium (SE) experiment were performed with a Beckman-Coulter XL-A

analytical ultracentrifuge (Fullerton, CA, USA). For SE AUC, sample and buffer were loaded

into 12-mm standard six-sector Epon charcoal-filled centrepieces and mounted in an An-60

Ti rotor. SE experiments were performed at rotor speeds of 16,000, 20,000, 24,000, 28,000, and

32,000 rpm at 20˚C. The sample signal was monitored at 280 nm, and experimental data was

analyzed by SEDPHAT software (www.analyticalultracentrifugation.com). In SE AUC, the

averaged molar mass of a single ideal species is assumed by using the mass conservation model

with Eq 3 [54]:

Ar ¼ cr0εdexp Mð1 � �nr
o2

2RT
ðr2 � r2

0
Þ

� �

ð3Þ

Where r denotes the distance from center of rotation, r0 is an arbitrary reference radius, ω the

angular velocity, T is the absolute temperature of the rotor, R is the gas constant, �v is the par-

tial-specific volume, ρ is the solvent density, ε is the extinction coefficient (or analogous signal

increment), d is the optical pathlength, and cr0 is the concentration at the reference radius.

Mass Spectrometry Analysis

Intact protein LC-MS analyses were performed on a Waters Acquity nano-UPLC in line with a

Waters G2 Q-TOF mass spectrometer. Protein samples (10 μg/mL) were directly infused onto

a mass spectrometer through a syringe pump with flow rate 1 μL/min. The G2 Q-TOF mass

spectrometer was run in positive ion, high resolution mode with detection in the range of 600

to 2300 m/z. Source parameters were as follows: capillary voltage, 2.50 kV; source temperature,

90˚C; desolvation temperature, 200˚C; cone gas flow: 20 L/h; the desolvation gas flow, 500 L/h.

The protein peak was deconvoluted by the MassLynx MaxEnt1 function according to the fol-

lowing parameters: output resolution, 1.0 Da/channel; output mass range, 35–85 KDa; uni-

form Gaussian width at half height, 0.75 Da; minimum intensity ratios, 30% for left and right;

iteration to convergence for completion.

Dye-accumulation assay

One colony of E. coli KAM3, transformed with pQE100, pQE100-varDEF or pSYC-varABC-

DEF, was inoculated into Mueller Hinton broth and grown over-night (for approx. 8 to 10 h).

The cells were collected by centrifugation (at 6,300 rpm for 8 minutes) and washed twice and

finally re-suspended with PBS buffer (adjusting the cell density in PBS to an A600 of 0.6). The

E. coli cells (150 μl in PBS) were placed into the well of a 96-well plate (in triplicate), D-glucose

was added to a final concentration of 25 mM and left to incubate for 3 min, after which time

1 μM Hoechst 33342 (Sigma) was added and the fluorescence of the cells monitored with time

in a (BioTek) fluorescence plate reader (Excitation 360 nm, Emission 460 nm).

ATPase activity measurements

The ATPase activity of VarF was determined using a malachite green assay to monitor Pi pro-

duction [55]. The reaction mixture containing 20 mM Tris (pH 7.5), 200 mM NaCl, 10 mM

MgCl2 and 0.5 μM VarF, which was mixed with varying concentrations of adenosine 5’-tri-

phosphate disodium salt (ATP), and incubated at 37˚C. The ATPase reaction was initiated by

adding 5 mM MgCl2, and sample were removed from the reaction mixture, at 1 minute inter-

vals over 10 mininutes, and mixed with 0.5 M EDTA to stop the reaction. Malachite green
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solution (one vol of 4.2% (w/v) ammonium molybdate in 4 M HCl mixed with three vols of

0.045% (w/v) malachite green) was added to each sample and the 610 nm absorbance mea-

sured. The rate of ATP hydrolysis was measured as a function of the ATP concentration and

the data fitted to a sigmoidal equation using SigmaPlot (Systat Software Inc).

Electrophoretic mobility shift assays (EMSAs)

Gel-shift assays were used to detect the binding of VarR to the intergenic regions (IRs)

apparent within the var gene cluster and oligonucleotides derived from the sequences of IRs.

Typically, 100 ng of purified VarR was incubated on ice for ten minutes with 1 ng of labelled

PCR fragment or oligonucleotide in 50 mM Tris–HCl (pH 7.5), 5 mM EDTA, 1 mM DTT,

100 μgml-1 BSA, 5% glycerol. Samples were applied to a low ionic strength 4% polyacryl-

amide gel and electrophoresed for 1.5 hours at 190 V. The gel was dried and autoradio-

graphic profiles were produced. Specificity of binding was assayed by incubating VarR with

1 ng of labelled oligonucleotide and 1 ng (and increasing quantities) of unlabeled oligonucle-

otide to give the duplex probe. VarR was also incubated with drugs to test their modulatory

effect upon binding to target DNA. Approximate DNA concentrations of oligonucleotides

were calculated by liquid scintillation. DNA fragments spanning the different IRs were PCR

amplified as detailed below:

varR-varG IR. A 302 bp DNA fragment was amplified using primers var13 and 14. This

DNA fragment incorporated 120 bp from the 5’ ends of the varR (transcription factor) and

varG (β-lactamase) genes, encasing a 63 bp IR hypothesised to contain the promoters of these

respective genes. A 151bp DNA fragment was amplified using primers var13 and 15. This

DNA fragment incorporated 120 bp from the 5’ end of the varR and the first 31 bp of the 63 bp

IR. A 151 bp DNA fragment was amplified using primers var14 and 16. This DNA fragment

incorporated 120 bp from the 5’ end of the varG (β-lactamase) gene and the last 31 bp of the

63 bp IR. The duplex DNA fragments were labelled with γ-32P (ATP) (Amersham) using T4

polynucleotide kinase (Fermentas) and unincorporated nucleotides were removed using

Micro Bio-Spin columns (Bio-Rad). Labelled duplex-DNA was purified by electrophoresis at

190 V for 2.25 hours (Protean II, Bio-Rad) on a 10% (w/v) TBE polyacrylamide gel. A 31 bp

oligonucleotide incorporating the first half of the 63 bp IR was produced by labelling single

stranded oligonucleotide varR17 and then annealing (95˚C for 2 minutes) with three-fold of

its complimentary strand varR18. The annealed duplex DNA was allowed to cool, unaided, to

ambient temperature. A 32 bp oligonucleotide containing the second half of the 63 bp IR was

produced as described above using oligonucleotides, var19 and var20 respectively.

varG-varA IR. A 415 bp DNA fragment was amplified using primers var21 and 22. This

DNA fragment incorporated 120 bp from the 5’ ends of the varG (β-lactamase) and varA
(MFP) genes, encasing a 176 bp IR hypothesised to contain the promoters of the latter gene. A

207 bp DNA fragment was amplified using primers var21 and 23. This DNA fragment incor-

porated 120 bp from the 5’ end of the varR gene and the first 87 bp of the 176 bp IR. A 208bp

DNA fragment was amplified using primers var22 and 24. This DNA fragment incorporated

120 bp from the 5’ end of the varA gene and the last 88 bp of the 176 bp IR. A 176 bp DNA

fragment was amplified using primers var25 and 26. This DNA fragment encased a 176 bp IR

hypothesised to contain the promoter of the varA gene. An 88 bp DNA fragment was amplified

using primers var25 and 27. This DNA fragment incorporated the first 88 bp of the 176 bp IR.

An 88 bp DNA fragment was amplified using primers var26 and 28. This DNA fragment

incorporated the last 88 bp of the 176 bp IR. A 30 bp oligonucleotide containing the first 12 bp

of the 176 bp IR was produced using primers var29 and 30. A series of eight 30 bp oligonucleo-

tides (varGA1 –varGA8) spanning the varGA IR were used as probes for VarR binding.
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varB-varC IR. A 194 bp DNA fragment was amplified using primers var31 and 32. This

DNA fragment incorporated 50 bp from the 5’ end of the varB and 120 bp of the 5’ end of the

varC genes, encasing a 25 bp IR hypothesised to contain the promoter of the downstream

genes. A 97 bp DNA fragment was amplified using primers var31 and var33. This DNA frag-

ment incorporated 50 bp from the 3’ end of the varB gene, the 25 bp IR and 22 bp from the 5’

end of the varC gene. A 97 bp DNA fragment was amplified using primers var32 and var34.

This DNA fragment incorporated 97 bp from the 5’ end of the varC gene. A 25 bp oligonucleo-

tide containing the varB-varC IR was produced using primers var35 and 36.

A positive control was run using the transcriptional regulator MtrR binding to a 30 bp oli-

gonucleotide (VarPC) corresponding to themtr promoter [56], whilst a 30 bp non-specific oli-

gonucleotide (VarNC), which did not bind VarR, was run as a negative control. In negative

control titrations, the VarNC probe was used at concentrations upto three-orders of magni-

tude that of the specific labelled-probe: in all cases the VarNC probe, of unrelated sequence,

failed to displace the labelled-probe, indicating that the interactions were specific.

Ethics statement

This project did not include any work with live animals for which ethical approval is required.

Results

Identification of a novel antibiotic resistance operon in Vibrio cholerae

The database of the National Center for Biotechnology Information (NCBI) was used to exam-

ine the chromosomes of V. cholerae El Tor O1 Biovar Eltor strain N16961 in which the genome

has been sequenced [57]. A set of putative structural genes (open reading frames (ORFs)

VC1562-VC1568) were identified on chromosome I of the strain N16961, which were indica-

tive of a resistance regulon, consisting of a metallo-β-lactamase (Mβl) VarG (ORF VC1562)

and a multi-component tripartite ABC transport system VarACDEF (ORFs VC1563,VC1565-
VC1568). The latter efflux-pump, which resembles those involved in the transport of macro-

lides and antimicrobial peptides in other bacteria, consists of an inner-membrane ABC-trans-

porter, composed of two membrane translocase subunits (VarD and VarE) and an ATPase

subunit (VarF), a membrane fusion protein (VarA) and an outer-membrane channel (VarC).

Directly upstream of the regulon is the gene for a transcription factor VarR (VC1561) that

belongs to the LysR transcriptional regulatory protein (LTTR) family, which is divergently

transcribed relative to the putative resistance genes. The position of this regulatory protein

suggests that it may co-regulate the expression of these two distinct resistance mechanisms.

There are three intergenic regions within the var operon in which VarR could interact to regu-

late transcription, designated varRG, varGA and varBC in Fig 1. We sought to test whether

these genes could confer antibiotic resistance and are organised as a regulon under the control

of VarR.

VarG is a metallo-β-lactamase

A BLAST search and subsequent sequence alignment of the protein VarG (encoded by ORF

VC1562) indicated that it encodes an Mβl (Ambler class B) metallo-β-lactamase (GenBank

accession number AAF94716). Chromosome one of V. cholerae 01 Biovar Eltor strain N16961

was analysed for additional chromosomally encoded β-lactamases, however VarG was the only

β-lactamase to be found.

Although members of the Mβl family exhibit considerable sequence diversity, they do share

some degree of conserved sequences within the active sites of the enzyme [58]. The conserved
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nature of the active sites in Mβls is such that the architecture can be virtually superimposable

on one another. Conserved residues are involved in forming interactions with one (monozinc-

Mβls) or two (bizinc-Mβls) Zn2+ ions; and exhibit a hallmark consensus sequence for two

active sites (Zn1 and Zn2) of HXHXD(X)aH(X)bC(X)cH, where X indicates any amino acid,

a = 55–74, b = 18–24 and c = 37–41 intervening residues, respectively [58]. An amino acid

alignment of VarG with the sequences of other Mβls identified residues that have the same

consensus sequence: His152, His154, Asp156, His238, Asp257 and His301. In VarG, this zinc-

binding motif is hypothesized to form two metal-binding sites, with residues His152, His154

and His238 forming the Zn1 site and residues Asp156, Asp257 and His301 form the Zn2 site.

The absence of the single conserved cysteine in the consensus sequence of VarG (C257D) may

affect binding affinity for Zn2+ compared to other Mβls with the complete motif [59]. How-

ever, mutational analysis has suggested the irrelevance of this cysteine for binding and hydro-

lysis in the bi-zinc enzyme as the respective cysteine was substituted and still demonstrated the

ability of the derivative to bind two Zn2+ ions [60,61].

According to the Ambler classification Mβls are further classified into three subgroups, B1,

B2 and B3. Subgroups B1 and B2 are generally grouped together due to shared sequence

homology. Subgroup B3 on the other hand is grouped separately from B1 and B2 due to mini-

mal sequence homology. However, substitutions in the conserved residues of the Zn2+-binding

sites have enabled some distinction between the three subclasses. In Zn1, the standard consen-

sus sequence involving three histidines can be found in subclasses B1 and B3, but a histidine

residue is replaced by an asparagine in subclass B2. In Zn2, the cysteine in the aspartic acid-

cysteine-histidine triad is substituted by a histidine in the subclass B3 [61]. Analysis of the con-

served zinc-binding motif of VarG did not verify which subclass it belongs to, since it does not

show any of these substitutions. However, Mβls can also be sub-grouped on the basis of their

substrate specificity: the subclass B1 enzymes prefer penicillins and cephalosporins as sub-

strates, whilst the subclass B2 enzymes prefer carbapenems as substrates and the subclass B3

enzymes prefer penicillins as substrates [62].

The specificity of the VarG β-lactamase was assessed by expressing VarG, using the vector

pSMART-IRvarRG-varG, in E. coli KAM3 cells [51], which are hypersensitive to a range of anti-

biotics, and determining the MIC values for a range of β-lactams (Table 1). Expressing varG
conferred a modest resistance to penicillins and cephalosporins and a relatively high resistance

to carbapenems on the KAM3 cells (Table 1). Although VarG is predicted (using Signal

BLAST) to possess a signal-peptide, the level of resistance would reflect the amount of VarG

reaching the periplasm, which may be less than optimal in E. coli.

Table 1. MIC values for E. coli KAM3 cells expressing VarG.

β-lactam IC50 (μg/mL) Relative resistancea

KAM3/pSMART

(Control)

KAM3/pSMART-IRvarRG-VarG

Penicillin G 4 16 4

Ampicillin 0.5 2 4

Carbenicillin 0.5 2 4

Nafcillin 1 4 4

Cephalothin 1 4 8

Cefepime 0.25 2 8

Imipenem 0.125 8 64

Meropenem 0.025 8 320

aRelative resistance is the ratio of the IC50 for KAM3/pSMART-IRvarRG-VarG to the IC50 for KAM3/pSMART

https://doi.org/10.1371/journal.pone.0184255.t001
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Inorder to further characterize VarG, it was overexpressed, using a pET vector, and purified

as a His-tagged protein from E. coli C43 (DE3). Initially, using pET21a to overexpress VarG,

we found that VarG released from the cytoplasm had little activity, and so subsequent we used

pET26b, to fuse the pelB sequence to varG, to better target it to the periplasm. VarG in the peri-

plasm was released from the cells by osmotic shock. The identity of the purified protein was

confirmed by ESI-Q-TOF MS/MS protein sequencing; whilst size-exclusion chromatography,

analytical ultra-centrifugation and MS/MS mass-spectrometry all indicated that VarG forms a

dimer (S1 Fig). The ability of VarG to act as a β-lactamase was determined from drug degrada-

tion assays, in which the hydrolysis of β-lactam antibiotics, due to opening of the β-lactam

ring, is followed as a decrease in absorbance. In assays were (100 μM) ZnCl2 was omitted from

the assay buffer and (1 mM) EDTA was added, no activity was noted, indicating VarG had a

requirement for Zn2+ ions. Typically, a plot of the initial rate of β-lactam hydrolysis as a func-

tion of the β-lactam concentration was sigmoidal, indicating co-operativity between the sub-

units of dimeric VarG. As exemplified by the data for moxalactam and meropenem in Fig 2,

the data was best fitted by non-linear regression to curves with Hill coefficients of 2.4 ± 0.29

and 1.4 ± 0.17, respectively. This behavior is consistent with positive co-operativity between

the binding sites of dimeric VarG. The kcat and Km values for a range of substrates were deter-

mined (Table 2) indicating that VarG showed relatively high activity on carbapenems (i.e.

meropenem kcat/Km = 2.6 x 105 M-1s-1) and moderate activity on penicillins (i.e. ampicillin

kcat/Km = 1.8 x 103 M-1s-1) and cephalosporins (i.e. cefepime kcat/Km = 1.9 x 102 M-1s-1), and no

activity on monobactams (i.e. Aztreonam). This difference in catalytic activity did not arise

from a significant difference in the affinity for the different substrate, for which there was only

a 6-fold increase between the best substrate (e.g. meropenem Km = 0.34 mM) and the worst

(e.g. imipenem, Km = 1.7 mM). This data is consistent with VarG being catergorized as an

Ambler class B2 Mβl, which have a preference for carbapenem substrates [62].

In terms of its activity, VarG has about an order of magnitude lower catalytic activity with

meropenem (i.e. 1.8 x 105 M-1s-1) than NDM-1 (i.e. 2.6 x 106 M-1s-1) and ImiS (i.e. 2.4 x 106

M-1s-1), but nearly equivalent to that of CphA (2.1 x 105 M-1s-1) [61,62]. VarG had an affinity

for meropenem (i.e. 340 μM) that was lower than that of NDM-1 (i.e. 54 μM) but similar to

those of two Ambler class B2 enzymes, ImiS (i.e. 250 μM) and CphA (i.e. 308 μM). Although

VarG exhibited the highest catalytic activity (i.e. kcat/Km) for meropenem, it had the highest

kcat for imipenem (i.e. 233 s-1), but this was offset by a lower affinity/higher Km (i.e. 1.7 mM)

in the catalytic activity (i.e. 1.4 x 105 M-1s-1). NDM-1 displays similar behavior, in that it has

the highest kcat for penicillin (i.e. 720 s-1, compared to 195 s-1 for imipenem) but this is offset

by a lower affinity (i.e. 240 μM) [63,64].

VarDEF is an ABC-transporter of antibiotics

An analysis of the secondary structures of VarD and VarE (encoded by the ORFs VC1566
and VC1567) indicated that they are integral membrane proteins, each composed of a 4-helix

transmembrane segment and a large periplasmic domain. A BLAST search and subsequent

sequence alignment of the proteins revealed that they have homology with a number of antimi-

crobial peptide permeases and with the macrolide transporter MacB, which is also predicted to

have a similar topology but with an additional N-terminal nucleotide-binding domain (NBD)

[35,40]. An analysis of the secondary structure of VarF (encoded by the ORF VC1568) indi-

cated that it is an ABC protein, presumably serving a similar function to the NBD in MacB.

Whilst most ABC exporters tend to have an architecture in which the transmembrane- and

nucleotide-binding domains/subunits have fused into a single protein [65], there are a few

examples of those that use separate subunits (e.g. the Streptomyces peucetius DrrAB pump
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Fig 2. The steady-state kinetics of β-lactam degradation by the VarG β-lactamase. The β-lactamase

activity of purified VarG was monitored as the decrease in β-lactam absorbance that resulted from opening of

the β-lactam ring during hydrolysis. The rate of (A) moxalactam and (B) meropenem β-lactam hydrolysis was

measured as a function of the β-lactam concentration and the data fitted to a sigmoidal equation. The data

indicated that the β-lactams moxalactam and meropenem are hydrolysed by VarG with values for the Vmax,

Km and Hill Coefficient of 2.1 (± 0.22) and 18.6 (+ 1.92) μMmin-1, 0.6 (± 0.06) and 0.35 (± 0.063) mM, and 2.4

(± 0.29) and 1.4 (± 0.17), respectively.

https://doi.org/10.1371/journal.pone.0184255.g002
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[66]). In order to characterize VarF, it was overexpressed and purified as a His-tagged protein

from E. coli LMG194/pBAD-B-varF. VarF was shown to have ATPase activity, using a mala-

chite green assay, which increased sigmoidally with the ATP concentration (S2 Fig), indicating

a Km, Hill Coefficient and Vmax of 795 (± 81.2) μM, 1.87 (± 0.29) and 34.6 (± 2.3) nmoles

Pi/min/mg, respectively. Consistent with a SEC analysis, which revealed a significant popula-

tion of VarF dimers (S1 Fig), this data indicated that VarF forms a functional dimer in which

there is positive co-operativity between the nucleotide binding sites. In comparison, MacB

was characterized by a Km and Vmax of 374 μM and 8.9 nmol Pi/min/mg [42], respectively.

Although, co-operativity between the nucleotide binding sites of MacB was not detected, such

behavior has been reported for a number of ABC transporters [67]. Interestingly though, our

studies reveal that such co-operativity can exist between the soluble ATPase subunits of an

ABC exporter.

To determine if VarDEF form a functional pump for antibiotics, the proteins were

expressed from E. coli KAM3/pQE100-VarDEF. The resistance to a range of antibiotics was

determined for the KAM3 strain [51], which is hypersensitive to antibiotics due to deletion of

acrB, which encodes the inner-membrane RND transporter that is part of the AcrABTolC tri-

partite multidrug pump. This established that the proteins conferred resistance to a range of

antibiotics, but most noticeably to macrolides. The MIC for spiramycin was 8-fold higher for

cells expressing the VarDEF pump than for control cells without the pump (but transformed

with the empty plasmid) (Table 3).

VarDEF functions as part of a tripartite pump

The varDEF genes are found adjacent to the varA, varB and varC genes. A BLAST search and

subsequent sequence alignment of the proteins encoded by varA and varC indicated that these

genes encode a membrane fusion protein (MFP), with a single N-terminal α-helix, and an

outer membrane protein (OMP) channel. Interestingly, varB appears to encode a 40 amino

acid remnant of the C-terminal domain of an MFP.

Since VarDEF conferred resistance to macrolides in the E. coli (ΔacrB) KAM3 strain, we

tested whether it would confer resistance in the E. coli (ΔtolC) TG1 strain [52]: VarDEF did

not confer resistance to antibiotics when expressed in (ΔtolC) TG1 (S4 Table), suggesting that

VarDEF interacts with TolC in KAM3 cells. To further test this hypothesis we monitored the

uptake of the fluorescent dye Hoechst 33342 by both KAM3 and (ΔtolC) TG1 cells. The dye

was accumulated to lower levels in KAM3 cells expressing VarDEF than by control cells

Table 2. Steady state kinetic parameters for VarG hydrolysis of β-lactam antibiotics.

β-lactams Conc range (μM) Vmax

(μM/min)

Km

(mM)

kcat

(s-1)

kcat / Km

(M-1s-1)

Hill Coeff.

n

Ampicillin 250–2500 28.9±1.64 1.00±0.08 2.41 2.4 x 103 1.73

Piperacillin 100–1000 1.98±0.26 0.48±0.07 0.11 2.3 x 102 2.07

Cephalothin 50–800 0.76±0.09 0.33±0.05 0.06 1.8 x 102 1.95

Cefuroxime 50–1200 1.74±0.31 0.63±0.18 0.15 2.4 x 102 1.45

Cefepime 100–1200 2.51±1.63 1.11±0.81 0.21 1.9 x 102 1.75

Moxalactam 200–1200 1.83±0.09 0.52±0.03 0.15 2.9 x 102 2.40

Imipenem 250–2500 70.0±22.91 1.68±0.79 233.6 1.4 x 105 1.48

Meropenem 25–1000 18.64±1.92 0.34±0.06 62.13 1.8 x 105 1.39

Aztreonam 50–1500 ND ND ND ND ND

ND—not determined

https://doi.org/10.1371/journal.pone.0184255.t002
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without the pump (Fig 3A), consistent with extrusion of the dye from the cells by the VarDEF

pump. Furthermore, when the cells expressing VarDEF were treated with the ATPase inhibitor

sodium orthovanadate (NaV) they accumulated more dye, consistent with VarDEF acting as

an ABC exporter of the dye (Fig 3B). In contrast, the (ΔtolC) TG1 cells accumulated much

higher levels of the dye than KAM3 cells, with (ΔtolC) TG1 cells expressing varDEF accumulat-

ing the dye to the highest level, indicating that the VarDEF pump was unable to remove the

dye from the (ΔtolC) TG1 cells and might be acting as a leakage pathway for entry of the dye

into the cells (Fig 3A).

Subsequently, we found that E. coli KAM3/pQE100-varABCDEF cells, expressing varABC-
DEF, conferred a significantly higher resistance to macrolides than KAM3 cells expressing

varDEF (Table 4). The MIC for spiramycin was 32-fold higher for cells expressing the Var-

ABCDEF pump than for control cells without the pump (but transformed with the empty plas-

mid). Since we had previously found that in contrast to E. coli KAM3 cells, E. coli (ΔtolC) TG1

cells expressing VarDEF could not confer resistance to macrolides and accumulated more

Table 3. MIC values for E. coli KAM3 cells expressing VarDEF.

Drug group and drug IC50 (μg/mL) Relative resistancea

KAM3/pQE100

(Control)

KAM3/pQE100-varDEF

Macrolide

Azithromycin 1 4 4

Clarithromycin 2 8 4

Erythromycin 4 32 8

Spiramycin 17.25 138 8

Glycopeptide

Vancomycin 32 32 1

Nitrofuran

Furazolidone 21 42 2

Tetracycline

Doxycycline 4 8 2

Tetracycline 0.66 1.32 2

Quinolone

Ciprofloxacin 0.003 0.006 2

Norfloxacin 0.007 0.015 2

Ofloxacin 0.06 0.125 2

Sulfonamide

Co-trimoxazole 31.75 63.5 2

Aminoglycoside

Kanamycin 16 32 2

Streptomycin 101.56 203.12 2

Inhibitors

Reserpine 18.75 18.75 1

Others

Chloramphenicol 56.93 14.23 0.25

Rifampicin 16.25 16.25 1

Hochest 33342 2 4 2

aRelative resistance is the ratio of the IC50 for KAM3/pQE100-varF to the IC50 for KAM3/pQE100

N.D.: not determined

https://doi.org/10.1371/journal.pone.0184255.t003
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Hoechst 33342, we tested whether (ΔtolC) TG1 cells expressing varABCDEFwould accumulate

less Hoechst 33342. As shown in Fig 4, E. coli (ΔtolC) TG1/pQE-varDEF cells accumulated

more Hoechst 33342 than (ΔtolC) TG1/pQE100 cells, whilst (ΔtolC) TG1/pSYC-varABCDEF

cells accumulated less Hoechst 33342 than (ΔtolC) TG1/pSYC cells. We conclude that the Var-

DEF ABC transporter works as part of a tripartite drug pump in conjunction with the MFP

Fig 3. Accumulation of Hoechst 33342 by E. coli KAM3 and E. coli TG1 cells harboring pQE100-

varDEF. (A) The E. coli cells (150 μl in PBS) were placed into the well of a 96-well plate, D-glucose was added

to a final concentration of 25 mM and left to incubate for 3 min, after which 2.5 μM Hoechst 33342 (Sigma)

was added and the fluorescence of the cells monitored with time in a (BioTek) fluorescence plate reader

(Excitation 360 nm, Emission 460 nm). (B) Effect of the ATPase inhibitor sodium orthovanadate (NaV) on the

accumulation of Hoechst 33342 (2.5 μM) by E. coli KAM3 harboring pQE100-varDEF. Hoechst 33342 was

incubated for 38 min with E. coli KAM3 harboring pQE100-varDEF and 40 μg/ml NaV. Cells treated with NaV

accumulated substantially more Hoechst 33342 consistent with inactivation of the VarDEF ATP-driven efflux

pump. All assays were performed in triplicate.

https://doi.org/10.1371/journal.pone.0184255.g003
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VarA and the OMP VarC, which increase the efficiency of drug export from the cell. Consider-

ing that such a tripartite pump would have the capacity to confer resistance to antibiotics, such

as β-lactams, that target the periplasm, we tested but found that the pump did not confer

increased resistance to meropenem (Table 3).

VarR functions as a transcriptional regulator of the var operon

VarR binds to the varRG intergenic region. The intergenic region (IR) between the varR
and varG genes was analysed (Fig 5A). Identification of the initiation codons for the varR and

varGORFs indicated a 111 bp IR that accommodates two putative overlapping promoters, one

for varR and the other for varG, therefore VarR has the potential to control transcription in a

bidirectional manner. Within the 111 bp varRG IR, putative -10 and -35 sites and two T-N11-A

motifs were identified for each of the varR and varG promoters. Upstream from the initiation

codon of varG, a likely bacterial promoter was found with a -35 region (i.e. TTGATA) and a

-10 region (i.e. TATCTT) separated by 15 bp. Divergent to the varGORF, a putative promoter

was found upstream of the initiation codon of varR containing a -35 region (i.e. TACGTA)

and a -10 region (i.e. TCGTGC) separated by 17 bp. The base pair separation between these

putative promoter regions has been demonstrated to be optimal for promoter strength [68].

Within the varRG IR, a likely -65 LTTR recognition-binding site, incorporating a T-N11-A

motif, was identified for varG, which overlaps the -35 site for varR. Moreover, this site sits

within a putative operator site, identified by the presence of partial inverted repeat sequences,

which is hypothesized to be the repressor binding site for VarR; binding at this site may pre-

vent transcription of varG and its own expression through autoregulation.

To test whether VarR was able to bind to these sites, it was overexpressed and purified as a

His-tagged protein, from E. coliM15 (pREP4)/pQE-100-varR, and used in electrophoretic

mobility shift assays (EMSAs) with DNA fragments corresponding to the sequence of the IR

region. These assays confirmed that VarR was able to bind to the IR region, and the binding

site was mapped using a series of DNA fragments that spanned the IR region (S3 Fig). VarR

binds to the 30 bp varR-varG IR region that overlaps the -35 RNA polymerase transcriptional

initiation sites for both varG and varR (Fig 5). Consistent with this interaction being highly

specific, VarR was able to dissociate from the labelled 30 bp varR-varG IR DNA complex and

bind to an unlabelled 30bp varRG IR DNA fragment during competitive EMSAs (Fig 5C), but

did not bind a non-specific DNA sequence (Fig 5D). Therefore, VarR, by binding to this site,

may negatively regulate its own transcription and that of the varG.

Table 4. MIC values for E. coli KAM3 cells expressing VarABCDEF.

Drug group and drug IC50 (μg/ml) aRelative resistance

KAM3/pSYC

(control)

KAM3/pSYC-varABCDEF

Macrolide

Azithromycin 1 16 16

Clarithromycin 2 16 8

Erythromycin 4 32 8

Spiramycin 8.625 276 32

β-lactam

Meropenem 1 1 1

aRelative resistance is the ratio of the IC50 for Kam3/pSYC-varABCDEF to the IC50 for Kam3/pSYC

https://doi.org/10.1371/journal.pone.0184255.t004
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VarR acts as a repressor at the varR-varG promoter. Having identified that VarR binds

at the varR-varG IR with high specificity, we then sought to determine its regulatory role at

this site. As an LTTR, it was anticipated that VarR would repress transcription from the native

varRG promoter, and thus that of the varG gene. In order to avoid the potential complication

that β-lactams would be substrates for both VarG and VarR, the varG gene was substituted

Fig 4. Accumulation of Hoechst 33342 (2.5 μM) by E. coli TG1 cells harboring pQE100-VarDEF and

pSYC-VarABCDEF. The E. coli cells (150 μl in PBS) were placed into the well of a 96-well plate, D-glucose

was added to a final concentration of 25 mM and left to incubate for 3 min, after which 2.5 μM Hoechst 33342

(Sigma) was added and the fluorescence of the cells monitored with time in a (BioTek) fluorescence plate

reader (Excitation 360 nm, Emission 460 nm). Assays were performed in triplicate.

https://doi.org/10.1371/journal.pone.0184255.g004
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Fig 5. VarR binds to the varR-varC intergenic region. (A) The nucleotide sequence of the 111bp varRG

intergenic region containing the putative promoter sequences represented by -35 and -10 regions (highlighted

red). The Shine-Dalgarno sequence is highlighted blue. The operator site which is hypothesised to act as the

binding site for VarR is highlighted purple and/or underlined if overlapping with promoter sites. The start

codons and the deduced amino acid for VarR and VarG are highlighted in green. (B) EMSA using increasing

titrations of VarR with 30 bp putative operator varR-varG IR, including 30 bp non-specific DNA Lanes 1 to 9.

Titrations of VarR (0, 1.25, 2.5, 5, 10, 25, 50, 100, 200ng, respectively) with 0.08ng 30 bp varR-varG IR.

Lanes 10 to 15, titrations of VarR (0, 5, 10, 50, 100, 200ng, respectively) with 0.08ng 30 bp non-specific DNA.

(C) EMSA of 50 ng VarR/ 0.08ng 30 bp varR-varG IR DNA (labelled) complex with titrations of unlabelled 30
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with the chloramphenicol resistance gene (CmR) in constructs for antimicrobial susceptibility

testing. Antimicrobial susceptibility testing, using the microdilution broth method, was per-

formed using the following constructs pSMART/varRG-CmR and pSMART/varR-varRG-CmR

in E. coli KAM3. The assays yielded substantial differences in the MICs between the two con-

structs tested (Table 5). For cells harboring the pSMART-varRG-CmR construct, there was a

64-fold increase in resistance (MIC, 128 μg/ml) for chloramphenicol compared to cells harbor-

ing pSMART/varR-varRG-CmR (MIC, 2 μg/ml), implying that VarR represses the transcrip-

tion of the CmR gene at the varRG promoter. Consistent with this prediction, the addition

(25 μg/ml) of penicillin to the cells haboring pSMART-varR-varRG-CmR caused an increase

in their resistance to chloramphenicol (MIC, 32 μg/ml), implying that the β-lactam can de-

repress expression of the CmR gene. To determine if this was a direct effect of the penicillin on

VarR, we tested whether it could dissociate the VarR/varRG-DNA complex in EMSA assays; it

was unable to do so (see https://figshare.com/s/d745d45927b941f8e4f2), implying that the de-

repression is indirect.

VarR binds to the varG-varA intergenic region. A putative initiation codon for varA
was identified 176 bp downstream of the stop codon for varG (Fig 6A). A palindromic self-

complementary GC-rich region followed by a series of adenine nucleotides is located at the ter-

minating sequences of varG and may form a hairpin that corresponds to a rho-independent

terminator signal. The 176 bp varG-varA IR accommodates a putative promoter for varA with

putative -10 and -35 sites and three T-N11-A motifs. Upstream from the initiation codon of

varA, a likely promoter was found with a presumed -35 region (i.e. TTGATA) and a -10 region

(i.e. TATCTT) separated by 15 bp. Like the varR-varG promoter, these regions consist of base

pair substitutions that deviate from the general consensus sequence, which may affect pro-

moter strength. Similar to the varR-varG IR, putative operator sequences have been identified

which overlap the putative RNA polymerase initiation sites. Multiple putative -65 LTTR recog-

nition-binding sites incorporating the T-N11-A motif were also identified for varA. The rela-

tive length of the IR could mean that VarR may form multimeric species to span the length of

the promoter.

An EMSA analysis revealed that VarR binds to the varGA IR (Panel A in S4 Fig). To define

the region to which VarR binds specifically in the 176 bp varG-varA IR, 30 bp DNA fragments

that span the entire varR-varG IR were designed and used for EMSAs (Fig 6B). Interestingly,

and unexpectedly, VarR binds specifically to a 30 bp varG-varA1 IR DNA fragment, which

incorporates the last 12 bp of the varG gene and the first 18 bp of the varG-varA IR (Lane 4,

Fig 6B). Using lower titrations of VarR indicated that the binding of VarR to the 25 bp varG-
varA1 IR DNA is specific (Panel B in S4 Fig). Furthermore, consistent with this interaction

bp varR-varG IR DNA. Lane 1, 0.08ng 30 bp varR-varG IR DNA only. Lanes 2 to 10, competition assay of 50

ng VarR/ 0.08 ng 30 bp varR-varG IR DNA (labelled) complex with titrations of unlabelled 30 bp varR-varG IR

DNA (0, 0.125, 0.25, 0.5, 1, 2, 5, 10, 20ng, respectively).

https://doi.org/10.1371/journal.pone.0184255.g005

Table 5. VarR regulation of CmR expression.

E. coli KAM3 Chloramphenicol MIC (μg/ml)

pSMART only 1

pSMART/varRG-CmR 128

pSMART/varR-varRG-CmR 2

pSMART/varR-varRG-CmR + 25 μg/ml penicillin 32

https://doi.org/10.1371/journal.pone.0184255.t005
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Fig 6. VarR binds to the varG-varA intergenic region. (A) The nucleotide sequence of the 176bp varG-

varA intergenic region containing the putative promoter sequences represented by -35 and -10 regions

(highlighted red). The Shine-Dalgarno sequence is highlighted blue. An operator site is highlighted in purple or

underlined if overlapping with promoter sites. The terminator site is highlighted in grey. The start and stop

codons and the deduced amino acid for VarA and VarG, respectively, are highlighted in green. (B) EMSA of
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being highly specific, VarR was able to dissociate from the labelled 30 bp varR-varA1 IR DNA

complex and bind to an unlabelled 30 bp varR-varA1 IR DNA fragment during competitive

EMSAs (Panel C in S4 Fig). The binding of VarR at this site may negatively regulate transcrip-

tion of the varG gene. The binding of VarR to the varG-varA1 IR site was unexpected: the pre-

dicted binding site was expected to map to an area covered by the 30 bp varG-varA8 IR DNA

fragment, which incorporates the putative -35 and -10 sites of the 176 bp varG-varA IR.

Although, the reason why VarR binds to this region of varG-varA IR has yet to be established,

it could be that VarR binds to multiple regions of this large promoter.

To define the specificity to which VarR binds to the 30 bp varG-varA1 IR compared to the

varR-varG IR, a competitive assay was performed to determine the minimum concentration of

unlabelled 30 bp varR-varG IR DNA that is required to dissociate (50 ng) VarR from (0.08 ng)

labelled 30 bp varGA1 IR DNA. Fig 6C shows that VarR has an equal affinity for both the 30

bp varR-varG IR DNA and the 30 bp varG-varA1 IR DNA, with 1 ng of 30 bp varR-varG IR

DNA sufficient to dissociate VarR from the complex. This is comparable with the competitive

assays of VarR/ varG-varA1 IR DNA complex with unlabelled varG-varA1 IR DNA.

VarR binds to the varB-varC intergenic region. A putative initiation codon for varC was

identified 25 bp downstream of the stop codon for varB. (Fig 7A). There is a putative promoter

region upstream of the initiation codon, which appears to penetrate the terminal sequences of

the varB gene, with -10 (i.e. AATAAC) and -35 (i.e. AAGACA) elements that are separated by

12 bp. A putative -65 LTTR recognition-binding site, incorporating a T-N11-A motif, lies

within the 3’-end of varB. An EMSA analysis confirmed that VarR binds to the varB-varC IR

(Fig 7B) and that binding of VarR to the 25 bp varB-varC IR is specific (Fig 7C). Furthermore,

VarR was able to dissociate from the labelled 25 bp varB-varC IR DNA complex and bind to

an unlabelled 25 bp varB-varC IR DNA fragment during competitive EMSAs (see https://doi.

org/10.6084/m9.figshare.5346274.v1).

Considering that most efflux pumps involved in conferring antibiotic resistance are under

the control of transcriptional repressors that bind the same substrates as the pump, leading to

de-repression of the pump genes, we sought to test and found that the macrolide erythromycin

could not dissociate VarR from the varG-varA and varB-varC intergenic regions (see https://

doi.org/10.6084/m9.figshare.5346400.v1).

Discussion

We have identified a novel resistance regulon, in which a metallo-β-lactamase, with high activ-

ity against carbapenems, and an efflux pump, capable of extruding macrolides, have been

brought together under the control of a LysR family transcriptional activator in the pathogenic

bacteria Vibrio cholerae. The association of efflux pumps with other resistance determinants

has been observed previously; recent reports suggest that, they not only provide co-resistance,

but can enhance the resistance provided by other determinants, increasing resistance levels,

which can have a serious impact on antimicrobial therapy in the clinical setting [69]. Efflux

pumps not only expel a broad range of antibiotics owing to their poly-substrate specificity, but

VarR with varG-varA IR DNA. Lanes 1 and 2, 0 and 50 ng of VarR with 0.08 ng 30 bp varR-varG IR DNA

(positive control). Lanes 3 to 18, VarR (0 and 50 ng, respectively) with 0.08 ng 30 bp varG-varA IR DNA

fragments 1 to 8, respectively. VarR binds specifically to a 30 bp varG-varA1 IR DNA fragment, which

incorporates the last 12 bp of the varG gene and the first 18 bp of the varG-varA IR. (C) Competitive EMSA of

VarR/ 0.08 ng varG-varA1 DNA complex with unlabelled varR-varG IR DNA. Lane 1 and 2, 0 and 50 ng VarR

with 0.08 ng varG-varA1 IR DNA, respectively. Lanes 3 to 12, competitive assay of 50 ng VarR/ 0.08 ng varG-

varA1 IR DNA complex with titrations of unlabelled 30 bp varR-varG IR DNA (0.125, 0.25, 0.5, 1, 2, 4, 8, 16,

32, 64 ng, respectively).

https://doi.org/10.1371/journal.pone.0184255.g006
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also drive the acquisition of additional resistance mechanisms by lowering intracellular antibi-

otic concentrations and promoting mutation accumulation. For example, recent studies indi-

cate that the expression of efflux pumps increases the resistance to β-lactams, afforded by β-

lactamases, in both Pseudomonas aeruginosa [18,70] and Klebsiella pneumonia [71]. Although

these studies revealed an interaction in these resistance determinants; to our knowledge, our

study is the first report of a system where both a β-lactamase and an efflux pump occur in the

same regulon and are regulated by the same transcriptional regulator.

Carbapenem antibiotics are often considered as the last resort drugs for treating a wide

range of bacterial infections [72]. However, resistance to carbapenems can occur and is often

multifactorial, arising from the synergistic effects of a decrease in the expression of outer-

membrane porins (OMP) that facilitate carbapenem entry into cells; the overexpression of tri-

partite pumps, responsible for carbapenem extrusion; and, most importantly, the production

of metallo-β-lactamases, which can degrade carbapenems [18,73,74]. Indeed, Enterobacteria-

caea, such as Klebsiella pneumonia, that can produce metallo-β-lactamases, such as NDM-1

Fig 7. VarR binds to the varB-varC intergenic region. (A) The nucleotide sequence of the varB-varC

intergenic region containing the putative promoter sequences represented by -35 and -10 regions (highlighted

red). The Shine-Dalgarno sequence is highlighted blue. The start and stop codons and the deduced amino

acid for VarC and VarB, respectively, are highlighted in green. An operator site is highlighted in purple or

underlined if overlapping with promoter sites. (B) EMSA using increasing titrations of VarR with the 25 bp

varB-varC IR DNA. Lanes 1 to 10, titrations of VarR (0, 1.25, 2.5, 5, 10, 25, 50, 100, 200, 400 ng, respectively)

with 0.08 ng 25 bp varB-varC IR DNA. Lanes 11 to 13, titrations of VarR (0, 50 and 200ng, respectively) with

0.08ng 30 bp non-specific DNA (negative control). Lanes 14 and 15, 0 and 50 ng VarR with 0.08 ng 30 bp

varR-varG IR DNA (positive control).

https://doi.org/10.1371/journal.pone.0184255.g007
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[75], have emerged worldwide as important pathogens of nosocomial infections because of the

difficulty in treating the infections they cause [16,72]. Carbapenems are also an important

therapeutic for treating infections due to Pseudomonas aeruginosa, because they are effective

when other β-lactams are not due to production of the serine β-lactamase AmpC [76]. How-

ever, resistance can still occur due to down-regulation of the OMP OprD and/or up-regulation

of the MexAB-OprM tripartite efflux pump [18,19,73]. It has been reported that β-lactamase,

AmpC, resistance is coupled to other MDR mechanisms such as efflux via MexAB-OprM in

P. aeruginosa [18,19,77]. However, these have not been explicitly linked as being co-expressed

from the same operon or by the same regulatory system. Rather resistance is initiated by the

presence of substrate or mutation in a regulatory gene, MexR, resulting in over-expression of

the MexAB-OrpM efflux pump [77,78]. The Var resistance determinant is novel in that a β-

lactamase and an efflux pump occur in the same regulon and are apparently co-regulated by

the same transcription factor, VarR. It is interesting though to note that the varG, varAB and

varCDEF genes are not organized into a single operon; but instead organized as a regulon,

with binding sites for VarR in each of the IRs preceding these genes. This would suggest that

expression of these genes is differentially regulated.

The Var resistance determinant may have developed for, and has the potential to provide,

high-level resistance to carbapenems, by enabling both their degradation and extrusion from

the cell. The use of an LTTR to regulate the regulon would be consistent with this system hav-

ing evolved a primary role in β-lactam, and specifically carbapenem, resistance. Indeed, peni-

cillin G was able to de-repress expression of VarG, but not by directly inducing the release of

VarR from the varG promoter. The arrangement of the varR and varG genes is strikingly simi-

lar to the well-documented ampR-ampC system, composed of the LTTR AmpR and the serine

β-lactamase AmpC, which is found in many pathogenic bacteria [8–11]. The mechanism of

AmpC induction by AmpR is a complex process that is intricately linked to peptidoglycan (or

murein) cell wall recycling [8–10,79–81]. Bacterial peptidoglycan is a dynamic surface and is

continuously remodelled through synthesis and degradation as the bacterium grows and

divides [82,83]. Bactericidal β-lactam antibiotics were developed specifically to disrupt this bal-

ance, which has ultimately led to the evolution of bacterial defence mechanisms, such as β-lac-

tamase production against these agents [82]. AmpC synthesis is therefore activated in the

presence of β-lactam antibiotics as a result of AmpR derepression. However, β-lactams, which

are not known to enter the cytoplasm [84], do not directly activate AmpR [79]. This mecha-

nism involves disruption of the peptidoglycan by β-lactams that leads to increased periplasmic

accumulation of cell wall precursors and degradation products (muropeptides). A cytoplasmic

membrane permease, AmpG, has specificity for these muropeptides and transports them into

the cytoplasm. Within the cytoplasm, muropeptides derepress AmpR leading to induction of

AmpC [82,85]. A cytosolic protein, AmpD, encoded on a different operon from the ampR and
ampC genes [86], is responsible for degradation of these muropeptides, regenerating precur-

sors for peptidoglycan synthesis. However, both AmpD and AmpG are also essential for the

regulation of β-lactamase activity [87]. A mutation in ampD leads to an accumulation of muro-

peptides that continually activates AmpR leading to continued AmpC expression [86–90].

Mutational inactivation of AmpG renders the bacterium AmpC non-inducible due to the

absence of these activating muropeptides [81,87,91]. This demonstrates a close association

between β-lactamase induction and peptidoglycan recycling [87]. Similarly, muropeptides

could bind to VarR to induce expression of the VarG β-lactamase. Our experiments revealed

that the expression of CmR is blocked from a varR-IRvarRG-CmR construct, presumably due to

VarR binding to the varR-varG IR, but is expressed when cells with this construct are exposed

to penicillin G. Since penicillin G would not be expected to penetrate the cytoplasm, and our

studies confirmed that it is incapable of directly interacting with VarR to cause its release from
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the varR-varG IR, the derepression caused by penicillin G must be indirect, possibly by inhibit-

ing peptidoglycan synthesis. Why has such a resistance determinant become linked to an efflux

pump? The MexAB-OprM pump in P. aeruginosa has been shown to confer resistance to mer-

openem and other β-lactams [92] and that this arises due to meropenem interacting with the

RND transporter MexB [93]. It is conceivable that the VarG Mβl and the VarACDEF pump

have become linked to give enhanced resistance to β-lactams, with these also being extruded

by the pump. It is notable that the VarD and VarE proteins are predicted to possess large peri-

plasmic domains, similar to those found in RND transporter, which could provide the binding

sites for β-lactams and catalyzing their removal from the periplasm. However, we were unable

to establish that the efflux pump confers resistance to meropenem. Further work will be neces-

sary to define if VarR is similarly regulated by muropeptides; and specifically, if other sub-

strates act as co-effectors differentially regulating the interaction of VarR with the varRG,

varGA and varBC IRs. Recent studies revealed a group of MF drug transporters that are also

apparently regulated by an upstream LysR type transcription factors [23], leading to the sug-

gestion that such pumps are regulated by additional factors, possibly secreted by the host.

The coupling of enzymatic and efflux resistance mechanism in the var regulon is of concern

because it could also provide co-resistance that would undermine the use of other antibiotics

in combination with β-lactams. In the case of carbapenem-resistant K. pneumoniae, these

strains are still susceptible to a few antibiotics, such as tigercycline and the cyclic peptide poly-

mixin, but they can utilize tripartite pumps, such as the AcrABTolC pump, to confer resistance

to both of these drugs [94]. A sequence analysis revealed that both VarD and VarE resemble

ABC-type permeases that confer resistance to macrolides and antimicrobial peptides. Our

studies revealed that the VarACDEF pump can confer resistance to a range of substrates,

including macrolides, which, like tigercycline, target the bacterial ribosome. Consequently, the

possibility of the var resistance determinant arising in other bacterial species, by horizontal

gene transfer, is also of concern. V. cholerae and enteric bacteria can both reside within the

intestinal tract, providing an opportunity for horizontal gene transfer between strains.
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S1 Fig. The metallo- β-lactamase VarG forms dimers. The SEC elution profile for VarG.

(A) The elution profile revealed two peaks, the first peak (with an elution volume of 70.07 ml)

corresponding to the putative VarG dimer and the second peak (with an elutyion volume of

78.86 ml) to the monomer. Samples from the two peaks ran at identical positions on an SDS-

PAGE gel and were confirmed by mass spectrometry as VarG. Analytical ultracentrifugation

analyses of the oligomeric state of VarG. SV AUC experiments were performed at a rotor

speed of 42,000 rpm at 20˚C. Plots of c(s, fr) and c(s,M) were generated by MATLAB 7.0 soft-

ware. The calculated c(s, fr) distribution is plotted in two dimensions with grid lines
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representing the s and fr grids in the thermograph (B). A contour plot from the c(s, fr) surface

was projected into the s-fr plane, where the magnitude of c(s, fr) is indicated by the contour

lines at constant c(s, fr), in equidistant intervals of c. c(s,M), and the distribution was trans-

formed from the calculated c(s, fr) distribution (C). The dotted lines indicated lines of fr (fric-

tional ratio). The signal of the c(s,M) distribution is indicated by the color temperature (C).

This SV AUC analysis indicated that VarG forms dimers, with a calculated molecular mass of

86.9 kDa. SE AUC experiments were performed at rotor speeds of 16,000, 20,000, 24,000,

28,000, and 32,000 rpm at 20˚C. The experimental data was analyzed by SEDPHAT software

and the data is shown as a plot of sample signal versus its distance from the center of rotation

at each rotor speed (D). This SE AUC analysis indicated that VarG forms dimers with a pre-

dicted molecular mass of 75.8 kDa. Deconvolution high resolution ESI mass spectrum of the

putative VarG dimer from SEC. n proton masses have been subtracted from each (M+nH)n+

ion to yield the corresponding zero-charge mass in the deconvolved spectrum. This analysis

(using 50 μg/mL of protein) revealed a major peak, with a molecular mass of 41,679 Da, and a

minor peak, with a molecular mass of 83,359 Da protein, corresponding to the VarG monomer

and dimer.

(TIFF)

S2 Fig. VarF is an ATPase. The ATPase activity of VarF was determined using a malachite

green assay to monitor Pi production. The rate of ATP hydrolysis was measured as a function

of the ATP concentration and the data fitted to a sigmoidal equation, indicating values for the

Vmax, Km and Hill Coefficient of 34.6 (± 2.3) nmoles Pi/min/mg, 795 (± 81.2) μM and 1.87

(± 0.29), respectively.

(TIFF)

S3 Fig. EMSA analysis of VarR binding to varR-varG IR. EMSA analysis of VarR binding to

varR-varG IR with (0.08 ng) 302 bp, 1st and 2nd 151 bp, 1st 31 bp, 2nd 32 bp of the varR-varG
IR. Titrations of VarR (0, 50, 200ng, respectively) with 0.08ng of 302 bp varR-varG IR (Lanes 1

to 3), 1st 151 bp varR-varG IR (Lanes 4 to 6), 2nd 151 bp varR-varG IR (Lanes 7 to 9), 1st 31 bp

varR-varG IR (Lanes 10 to 12), and 2nd 31 bp varR-varG IR (13 to 15). Lanes 16 and 17, 0.08ng

31bp Mtr1 DNA with 0ng and 200ng MtrR, respectively (positive control). Retardation of the

302 bp, the 1st and 2nd 151 bp and the 2nd 32 bp varR-varG IR DNA fragments following incu-

bation with 50 and 200ng VarR, respectively. However, the 1st 31bp varR-varG IR was not

retarded by VarR.

(TIFF)

S4 Fig. EMSA analysis of VarR binding to varG-varA IR. (A) EMSA analysis of VarR bind-

ing to varG-varA IR with 415 bp, 1st 207 bp, 2nd 208 bp, 176 bp, 1st and 2nd 88 bp of the varG-
varA IR. Lanes 1 and 2, VarR (0 ng and 50 ng, respectively) with 0.08 ng 30 bp varR-varG IR

DNA (positive control). VarR (0, 50, 100 ng, respectively) with 415 bp (Lanes 3 to 5), 1st 207

bp (Lanes 6 to 8), 2nd 208 bp (Lanes 9 to 11), 176 bp (Lanes 12 to 14), 1st 88 bp (lanes 15 to 17)

and 2nd 88 bp varGA IR DNA (lanes 18 to 20). Retardations with 0.08 ng 415 bp, 1st 207 bp,

2nd 208 bp, 176 bp, 1st and 2nd 88 bp varG-varA IR DNA fragments following incubation with

0, 50, 200ng VarR, respectively, are observed. (B) EMSA using increasing titrations of VarR

with 30 bp varG-varA1 IR DNA including 30 bp non-specific DNA. Lanes 1 and 2, VarR (0

and 50 ng) with 0.08 ng 30 bp varRG IR DNA (positive control). Lanes 3 to 11, titrations of

VarR (0, 1.25, 2.5, 5, 10, 25, 50, 100, 200 ng, respectively) with 0.08 ng 30 bp varG-varA1 IR

DNA. Lanes 12 to 17, titrations of VarR (0, 5, 10, 50, 100, 200 ng, respectively) with 0.08 ng 30

bp non-specific DNA. (C) Competitive EMSA of VarR/ 0.08 ng varG-varA1DNA complex

with unlabelled varR-varG IR DNA. Lane 1 and 2, 0 and 50 ng VarR with 0.08 ng varG-varA1
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IR DNA, respectively. Lanes 3 to 12, competitive assay of 50 ng VarR/ 0.08 ng varG-varA1 IR

DNA complex with titrations of unlabelled 30 bp varR-varG IR DNA (0.125, 0.25, 0.5, 1, 2, 4,

8, 16, 32, 64 ng, respectively).

(TIFF)

S5 Fig. VarR binds to the varB-varC IR. EMSA of VarR with 195 bp, 1st 97 bp, 2nd 98 bp and

25 bp of the varB-varC IR. Titrations of VarR (0, 50 and 200 ng, respectively) with 0.08 ng 195

bp varB-varC IR DNA (Lanes 1 to 3), 1st 97 bp varB-varC IR DNA (Lanes 4 to 6), 2nd 98 bp

varB-varC IR DNA (Lanes 7 to 9), and 25 bp varB-varC IR DNA (Lanes 10 to 12). Lanes 13

and 14, 0 ng and 50 ng VarR with 0.08 ng 30 bp varR-varG IR DNA (positive control), respec-

tively. Retardations with 0.08 ng 195 bp, 1st 97 bp, 2nd 98 bp and 25 bp varB-varC IR DNA frag-

ments following incubation with 50 and 200 ng VarR are observed.

(TIFF)
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