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ABSTRACT

Bedforms related to Froude-supercritical flow, such as cyclic steps, are
increasingly frequently observed in contemporary fluvial and marine sedimen-
tary systems. However, the number of observations of sedimentary structures
formed by supercritical-flow bedforms remains limited. The low number of
observations might be caused by poor constraints on criteria to recognize these
associated deposits. This study provides a detailed quantification on the
mechanics of a fluvial cyclic step system, and their depositional signature. A
computational fluid-dynamics model is employed to acquire a depth-resolved
image of a cyclic step system. New insights into the mechanics of cyclic steps
shows that: (i) the hydraulic jump is, in itself, erosional; (ii) there are periods
over which the flow is supercritical throughout and there is no hydraulic
jump, which plays a significant role in the morphodynamic behaviour of cyclic
steps; and (iii) that the depositional signature of cyclic steps varies with rate of
aggradation. Previous work has shown that strongly aggradational cyclic steps,
where most of the deposited sediment is not reworked, create packages of
backsets, bound upstream and downstream by erosive surfaces. Here, the mod-
elling work is focussed on less aggradational conditions and more transporta-
tional systems. The depositional signature in such systems is dominated by an
amalgamation of concave-up erosional surfaces and low-angle foresets and
backsets creating lenticular bodies. The difference between highly aggrada-
tional cyclic steps and low-aggradation steps can be visible in outcrop both by
the amount of erosional surfaces, as well as the ratio of foreset to backset, with
backsets being indicative of more aggradation.

Keywords Aggradation, backset, bedform, cyclic steps, Froude, scour, super-

critical.
INTRODUCTION jokulhlaup (Nordin & Beverage, 1965). Such
events are prone to Froude-supercritical flow,
Large quantities of sediment are transported by where surface waves cannot migrate upstream
high-discharge events, such as floods or because the flow velocity exceeds the wave-
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propagation velocity. Froude-supercritical unidi-
rectional sediment-laden flow over an erodible
sediment bed leads to the formation of bedforms,
such as antidunes (Kennedy, 1969; Alexander
et al., 2001), and at higher Froude numbers cyclic
steps (Winterwerp et al., 1992; Parker, 1996; Taki
& Parker, 2005; Kostic et al., 2010; Cartigny et al.,
2014). Transitional bedforms, such as unstable
antidunes and ‘chutes and pools’, populate the
bedform stability diagram at flow-intensities
between antidunes and cyclic steps (Alexander
et al., 2001; Cartigny et al., 2014; Kostic, 2014).
Supercritical-flow conditions in fluvial settings
(which are open-channel flows) creating super-
critical-flow bedforms have been reported in
mountain streams (Kostic et al., 2010), on glacial
outwash planes (Lang & Winsemann, 2013), and
on beaches and dredging disposal sites (Winterw-
erp et al., 1992). Froude-supercritical conditions
are reached more quickly in sediment gravity
flows, such as turbidity currents and pyroclastic
flows, due to the small density contrast between
the flow and the ambient fluid that reduces the
wave-propagation velocity. The large number of
observations of Froude-supercritical flow related
bedforms on the sea floor, mainly found in sub-
marine canyons and steep delta slopes, reaffirms
the prevalence of Froude-supercritical flows in
marine settings (Symons et al., 2016).
Developments in physical and numerical
modelling of supercritical-flow bedforms (Ken-
nedy, 1969; Jorritsma, 1973; Foley, 1977; Winter-
werp et al, 1992; Parker & Izumi, 2000;
Alexander et al., 2001; Fagherazzi & Sun, 2003;
Sun & Parker, 2005; Taki & Parker, 2005; Fildani
et al., 2006; Kostic & Parker, 2006; Alexander,
2008; Sequeiros et al., 2009; Spinewine et al.,
2009 Kostic et al., 2010; Paull et al., 2010; Car-
tigny et al., 2011, 2014; Kostic, 2011; Balmforth
& Vakil, 2012) have sparked a large number of
observations of supercritical-flow bedforms in
modern systems (Fildani et al., 2006; Lamb
et al., 2008; Duarte et al., 2010; Jobe et al., 2011;
Babonneau et al., 2013; Maier et al., 2013; Cov-
ault et al.,, 2014; Hughes Clarke et al., 2014;
Fricke et al., 2015; Tubau et al., 2015; Zhong
et al., 2015; Normandeau et al., 2016; Symons
et al., 2016). Despite this common and well-
documented occurrence of supercritical-flow
bedforms, outcrop examples of deposits indicat-
ing these flow conditions in a fluvial setting
(Fielding, 2006; Duller et al., 2008; Fielding
et al., 2009; Ghienne et al., 2010; Lang & Winse-
mann, 2013) or in a (deltaic-) marine setting
(Postma et al., 2009, 2014; Ventra et al., 2015;
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Dietrich et al., 2016) are sparse. The recent
flurry of recognition of supercritical bedforms in
modern environments makes it implausible that
sedimentary structures indicative of these bed-
forms should be rare in deposits formed in com-
parable ancient environments.

The sparsity of supercritical sedimentary struc-
tures is often attributed to poor preservation
potential of supercritical-flow regime deposits,
due to reworking by subcritical flows in the wan-
ing stages of high-discharge events. Froude-super-
critical flows also tend to form in parts of the
sedimentary system that are net-erosive on a geo-
logical timescale, such as mountainous terrains
(Middleton, 1965; Foley, 1977; Yagishita & Taira,
1989; Wynn & Stow, 2002; Fielding, 2006; Duller
et al., 2008; Ponce & Carmona, 2011; Lang & Win-
semann, 2013; Macdonald et al., 2013; Cartigny
et al., 2014; Postma et al., 2014; Ventra et al.,
2015). An alternative explanation for the sparse
recognition of supercritical regime facies is that
their depositional signature is poorly understood.

Transportational cyclic steps in open-channel
flows, which are neither net-erosive nor net-
depositional (Parker & Izumi, 2000), have been
modelled experimentally in flume tanks (Taki &
Parker, 2005; Cartigny et al., 2014) and modelled
numerically using depth-averaged models
(Fagherazzi & Sun, 2003). Cyclic steps in sub-
aqueous settings have been modelled in flume
experiments (Spinewine et al., 2009) and with
depth-averaging numerical models (Fildani et al.,
2006; Kostic & Parker, 2006; Kostic et al., 2010;
Cartigny et al., 2011; Kostic, 2011, 2014; Covault
et al., 2014, 2016). These studies have provided
valuable insight into the development and
mechanics of cyclic steps, by exploring how aver-
age flow velocity, sediment concentration and
flow thickness vary over the length of the bed-
form wavelength (Fig. 1). These depth-averaged
studies have also shown how the covariation of
these three average properties leads to upstream
migrating cyclic steps, caused by erosion beneath
the accelerating supercritical flow over the lee
side, and deposition beneath the subcritical flow
over the stoss side. The transition between the
supercritical-flow regime and the subcritical-flow
regime is characterized by a hydraulic jump,
where the flow abruptly expands and decelerates.
Little is known about the vertical variation in
flow velocity, sediment concentration, and turbu-
lence, that occur over a cyclic step bedform,
because this variation is hard to constrain with
experimental measurements and averaged out in
depth-averaged modelling studies. These
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Fig. 1. A schematic drawing of a cyclic step system. The stoss side of the cyclic step is associated with a subcriti-
cal (Fr < 1) and depositional flow. The lee side of cyclic step bedform is characterized by supercritical (Fr > 1)
and erosive flow. The transition between supercritical and subcritical flow is marked by a hydraulic jump.

parameters is, however, crucial to linking flow
dynamics to the sedimentary architecture and
facies variation over time and space. Moreover,
interpreting supercritical-flow processes from
outcrops and cores is strongly dependent on dis-
tinguishing small-scale facies characteristics.

The aim of this study was two-fold: (i) quanti-
fying flow properties in a depth-resolved man-
ner to understand the mechanics of a fluvial
cyclic step system; and (ii) linking the flow
dynamics of a cyclic step system to the deposi-
tional signature to predict what type of deposits
are expected to be associated with cyclic steps.

METHODS

Linking large-scale bedforms and associated
facies to flow dynamics in a numerical model is
possible if the depositional and erosive pro-
cesses are fully resolved. Ideally such a model
would include a three-dimensional distribution
of all fluid and grain velocities, sediment con-
centrations and grain sizes. Such a model would
also take into account intergranular interactions
between individual grains and have a two-way
coupling, in which sediment is affected by fluid
motion and vice versa. Direct numerical simula-
tions (DNS) are now capable of resolving all of
these processes to the individual grain scale
(e.g. Cantero et al., 2008; Soldati and Marchioli,
2012; Kidanemariam and Uhlmann, 2014). How-
ever, DNS is presently only viable for a small
number of grains, in a relatively small spatial
domain, and at low Reynolds numbers, due to
the high computational power required for DNS.
Because of the computational limitation on
DNS, it is not a feasible method to model cyclic
steps in natural flows, which have high Rey-
nolds numbers, a large number of grains and are
to be simulated over a longer timescale.

Reynolds-Averaging Navier-Stokes (RANS)
models, like DNS models, employ the Navier-
Stokes equations: the mass-conservation and
momentum-conservation equations that
describe the motion of fluids (Egs 1.1 to 1.4 in
the Appendix). Unlike DNS, RANS models do
not solve the Navier-Stokes equations to the
smallest spatial and temporal scale at which
eddies can occur, the Kolmogorov scale, but
solve time-averaged equations and use a turbu-
lence model to approximate the small-scale
turbulence. Using a RANS-approach, the com-
putational time can be greatly reduced. Verti-
cal wvariation is however maintained, in
contrast to previous depth-averaging models. In
this study, the RANS model FLOW-3D® (Flow
Science, Santa Fe, New Mexico, USA) is used,
in combination with a two-equation k-¢ renor-
malization group (RNG) turbulence model,
applying the turbulent viscosity assumption,
for details see Appendix. Basani et al. (2014)
and Ge et al. (2017) use the same model to
simulate turbidity currents and can provide
further detail.

Sediment transport models

Individual sediment transport models are used
to compute bed-load transport and suspended-
load transport. Grain—grain interactions are not
incorporated into the suspension model, some-
thing which starts to play a significant role at
sediment concentrations >9 vol.% (Bagnold,
1954). Neither does the model take into account
any turbulence modification as a result of sus-
pended sediment.

The onset of sediment movement depends on
the shear stress exerted on the bed, which mobi-
lizes the sediment, and the submerged weight of
the grains, resisting mobilization. The bed shear
stress is non-dimensionalized in the Shields
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parameter (0), using sediment particle scales and
fluid scales (Eq. 2.1 in the Appendix). Sediment
is transported if the local Shields parameter
exceeds the critical Shields parameter (fcr). The
critical Shields parameter is described by the
Shields curve, which is approximated by an
algebraic expression as formulated in Guo (2002)
(Eq. 2.2). The critical Shields parameter is cor-
rected for slope effects (Eq. 2.4) because slopes
in cyclic step systems can reach up to 15
degrees.

Bed-load transport

Bed-load transport consists of the saltation and
rolling of sediment along the bed, and is mod-
elled using the empirical equation (Eq. 2.5) of
Meyer-Peter & Miiller (1948). The scalar quantity
of bed-load transport is converted into a
bed-load velocity vector, which is required to
compute a directional bed-load flux (Eq. 2.6).
This is done using the bed-load thickness
(Eq. 2.7), as approximated by Van Rijn (1984),
and by assuming that the direction of transport
is the same as the flow direction of the fluid cell
closest to the bed.

Suspended-load transport
Three aspects of suspended-load transport are
simulated as follows: (i) sediment entrainment
into suspension; (ii) sediment settling out of sus-
pension - these two opposing processes occur
simultaneously; and (iii) advection and turbu-
lent diffusion of sediment.

A sediment-entrainment flux is expressed as a
lift velocity (Eq. 2.8) which is the flux divided

(e IIIIIIIIII
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by the computational cell area (Mastbergen &
Van Den Berg, 2003). Similarly, the settling
mass-flux of sediment is calculated using Eq. 2.9
(Soulsby, 1997). The sediment velocity is calcu-
lated using the settling velocity and bulk flow
velocity (Eq. 2.10). The suspended sediment
concentration at a given location is computed by
solving a transport equation (Eq. 2.11). The
transport equation for suspended sediment
incorporates both advection, using the sediment
velocity from Eq. 2.10, and diffusion through
turbulence.

Simulation set-up

To validate the model, the simulations are com-
pared to an experimental study on fluvial cyclic
steps (Cartigny et al., 2014); this flume set-up in
the EUROTANK flume laboratory is reproduced
here numerically. The focus is on two experi-
mental runs (9 and 15) which produced a stable
train of cyclic steps.

The experimental flume is modelled using a
meshed volume (Fig. 2) of 12:0 m by 0-15 m by
1-0 m, in the x, y and z-directions (Table 1). The
width in the flow-normal y-direction has been
downsized to save computational time. Bound-
ary conditions consist of: an inflow condition,
with a specified discharge, at the x =0 m, an
outflow at x = 12 m, a no-slip wall condition on
the Ypnin and Y. boundaries, the sides of the
flume tank, and a wall on the Z.;, boundary,
the flume tank bottom.

A smooth sediment bed of 350 ym diameter
grains (medium sand) was placed on the bottom

Outflow

[ nlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIlIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllIIIIIIIIIIIIIIlIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIII[IIIIIIIIIIIIIIIIIIIIIIIIIIIlIlIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIu 'IIIIIIIIIIII
II

I Packed sediment bed
B solid surface
EEH Model grid cells

12m

Fig. 2. The model set-up as used for the simulations, flow over the bed is from left to right. The experimental
setup used in Cartigny et al. (2014) has a similar geometry. The packed sediment bed is indicated in red, non-

erodible components are indicated in blue.
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Table 1. Details on the generated mesh of the simu-
lated domain

Number Cell size
Direction Size of cells (minimum — maximum)

+

0-01*

0-01+

Turbulent
length scale (m)

X 12.0 m 360 3-0 cm
y 0-15 m 3 5-0 cm
Z 1-0 m 38 1-8 to 8:5 cm

of the modelled flume tank with a slope of 05
degrees. Near the outflow boundary a non-erod-
ible wedge is introduced to mimic a standing
body of water located at the flume expansion
tank, which prevents excessive erosion. The ini-
tially smooth sediment bed interacts dynami-
cally to the flow conditions by erosion and
deposition.

Numerical simulation 1 reproduced run 9 per-
formed in the laboratory, with a specific dis-
charge of 0-077 m?> s~ " and grain size of 350 ym.
Simulation 2 reproduced run 15, with a specific
discharge of 0-093 m*s™!, and grain size of
350 um (see Table 2 for details).

inclination (deg)
0-5
0-5

Packing Initial bed

fraction
0-64
0-64

Angle of
coefficient repose (deg)

32

32

Drag

Validation of the model

The evolution of bed and water surface eleva-
tions displays qualitative and quantitative agree-
ments between physical and numerical
simulations (Table 3 and Fig. 3). A series of cyc-
lic steps formed spontaneously from the initially
smooth bed. Erosion and deposition in the
model are validated by comparing the rates at
which the cyclic steps migrate. The period of
bedform migration is 109 seconds in the numeri-
cal model (numerical simulation 1), and 85 sec-
onds in the experimental results. Cartigny et al.
(2014) suggest that the period of migration of
cyclic steps in the simulations was generally
between 80 and 120 seconds, a range consistent
with the numerical results.

Because flow over a cyclic step is variable by
nature, a comparison is made between both the
median and 90th percentile of the Froude num-
ber from the Froude number time series. Froude
numbers of the numerical simulations appear to
be in close correspondence with the experimen-
tal models (Fig. 3), the Froude numbers are gen-
erally <10% higher; there is, however, a 21%
increase in median Froude number in simula-
tion 1. Based on the similarity in migration per-
iod and Froude number variation, the numerical
model is assumed to give a valid representation
of the cyclic step process.

coefficient’

coefficient*
0-018
0-018

Sediment concentration Entrainment Bed-load
5-6
5-6

Specific
Simulation discharge (m® s™') at inlet (vol. %)

Details on parameterization of the simulations
0-77
0-93

"Meyer-Peter and Muller relation, value based on Wong & Parker (2006).

*Based on Mastbergen & Van Den Berg, 2003.
*Based on FLOW-3D release notes and manual.

Table 2.

— N
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Table 3. Comparison Froude numbers and migration
period of experimental and numerical results

Simulation/ Period
Experiment  Fr50 Froo migration (s)
Experimental 1-15 207 85

Run 9

Simulation 1  1-46 (+21%) 2-25 (+9%) 109 (+30%)

Experimental 1-31 2-06 n/a
Run 15

Simulation 2 1-39 (+6%) 2:21 (+7%) 118

FLOW CHARACTERISTICS

The interactions between the flow dynamics and
the bedforms morphology in simulation 2 are
described here in detail. The focus is on simula-
tion 2, because the data in Table 3 show that
simulation 2 is the closest match to the physical
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and the interaction with the bed, and visually
complements the sections on Flow characteris-
tics and Morphodynamics.

General character

Observation

The simulated flow creates cyclic steps that are
typically 1-5 to 2-0 m in wavelength and 10 to
15 cm in amplitude, and are associated with
flows 5 to 15 cm thick (for example, Fig. 4). The
flow character shows that a hydraulic jump is
located in or around the trough of the bedform,
separating a supercritical flow on the lee side of
the bedform from a subcritical flow over the
stoss side (Fig. 4). In the simulations, it is
observed that the hydraulic jump is present
89% of the time, which is here referred to as
state 1. Flow is supercritical from crest to crest
during the remaining 11% of the time (state 2).
When present, the hydraulic jump is located

observations. Video S1 shows the flow character upstream of the trough centre 50% of the time,
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Fig. 3. Time series comparison between the experimental results of Cartigny et al. (2014), run 9, and numerical
simulation 1 of this study. The point of reference is a stationary location in the flume; as the sediment waves
migrate a time series is created. (A) The bed-surface and free-surface elevation time series in the laboratory experi-
ment. (B) The bed-surface and free-surface elevation in the numerical simulation. (C) The Froude numbers of the
experimental observations (D) The Froude numbers of the numerical simulation in this study.
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Flow velocity

Downstream velocity (m sec-)
-05 012 075 1-38 20

Flow accelerates

Flow direction Hydraulic jump

Higher flow velocities near the bed

Sediment concentration

Sediment concentration (kg m-3)
0 125 250 375 500

Flow direction Sediment picked up by erosion
p— l Settling sediment

Turbulence

c Turbulent kinetic energy (J kg-1)
0 0-025 0-05 0-075 01

Flow direction

I Slight increase in turbulence
High turbulence at hydraulic jump

Shear stress
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Excess shear stress (Pa)
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Distance from inlet (m)

Fig. 4. Snapshots of the flow conditions in a cyclic step system, please note 2 x vertical exaggeration in the fig-
ures. (A) The downstream-velocity field over a cyclic step. (B) The sediment concentration over a cyclic step. (C)
The turbulent kinetic energy over a cyclic step. (D) The excess shear stresses over a cyclic step in Pa (black dots),
fitted with a 5 pt. moving average curve in red.
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at the trough centre 35% of the time, and down-
stream of the trough centre 15% of the time.
The hydraulic jump is associated with coherent
flow structures, such as stationary eddies and
rollers, where the water ‘rolls’ around and
changes direction (Fig. 1). These rollers are asso-
ciated with the hydraulic jump, and typically
(80% of the time) located in the upper half of
the flow. The remaining 20% of the time a roller
forms in the lower half of the flow. The area in
which rollers form is <50 cm long, starting at
the initiation of the hydraulic jump, with the
rollers themselves being 10 to 20 cm long and
less than 10 cm high. A transition from subcriti-
cal flow to supercritical flow is present close the
crest of the bedform on the stoss side of the cyc-
lic step. The average Froude number at the crest
of the bedform in the simulation was 1.22
(£0-15), based on an analysis of 29 individual
cyclic steps.

Interpretation

The character of the flow over a cyclic step gen-
erally corresponds with that of conceptual mod-
els based on laboratory experiments and field
observations (Fig. 1; Winterwerp et al., 1992;
Parker, 1996; Taki & Parker, 2005; Cartigny
et al., 2014). The transition from the subcritical-
flow regime to supercritical-flow regime, at a
Froude number of unity, is commonly presumed
to be at the crest of a cyclic step (Winterwerp
et al., 1992; Parker, 1996; Taki & Parker, 2005;
Cartigny et al., 2014). The observations in simu-
lations herein are, however, more in line with
classical hydraulic work which shows that the
Froude number at the crest of a curvilinear con-
vex feature is expected to occur at Fr = 1-19
(Rouse, 1936).

Velocity field

Observation

The flow accelerates over the bedform from just
after the hydraulic jump up to the next hydrau-
lic jump. In the supercritical part of the flow
velocities of 2 m s~ are reached on the lee side
of the bedform, and the velocity maximum is
located near the free-surface. Within the region
of the hydraulic jump a specific flow pattern
develops; a high velocity layer located near the
bed and a roller, associated with negative down-
stream flow velocities, is located on top of this
layer (Figs 4A and 5B1). In the subcritical part
of the flow the flow velocities on the stoss side
range from 0-5 to 1-0 m s~ .
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Interpretation

The supercritical flow over the lee side of the
bedform has a convex-downstream velocity
profile with a large velocity gradient, creating
significant shear on the sediment bed (Fig. 5B4
and 5B5). In the region of the hydraulic jump,
the velocity profile is convex-downstream at
the lowest section of the flow, and curved con-
vex-upstream at the top section of the flow
(Fig. 5B1); this flow structure is related to the
rollers that develop in the hydraulic jump.
The velocity profile downstream of the
hydraulic jump (Fig. 5B2 and 5B3) is not typi-
cal for open-channel flow as it inherits the
unusual velocity profile caused by the hydrau-
lic jump.

Sediment concentration

Observation

The average sediment concentration in the flow
is 5:6% by volume. A clear increase in sediment
concentration over the supercritical lee side of
the cyclic steps is not observed (Figs 4B and
5C). At the region of the hydraulic jump, there
is a clear difference in sediment concentration
between the fast-flowing near-bed layer, with
concentrations between 5% and 10%, and the
upper part of the flow, where sediment concen-
trations within the roller are less than 1%
(Fig. 5C1 and 5C2). In the subcritical part of the
flow the near-bed sediment concentrations range
from 5 to 10% by volume. Sediment concentra-
tions decrease towards the free surface, where
they reach near-zero values (Fig. 4B).

Interpretation

The lack of increase in sediment concentration
over the lee side of the cyclic steps is counter-
intuitive, as one might think that entrainment
of sediment into the flow increases the sedi-
ment concentration. However, the sediment dis-
charge is the product of the sediment
concentration and flow velocity. And while
depth-average sediment concentration only
increases from 7 to 9%, the sediment discharge
doubles over the lee side (Fig. 6F). This dou-
bling shows that an increasing velocity forms
the dominant control on the sediment discharge
and explains the counter-intuitive sediment
concentration trend. There is in an increase in
stratification in the subcritical part of the flow,
the sediment settles, causing higher sediment
concentrations near the bed (Figs 4B, 5C2 and
5C3).
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Fig. 5. Profiles through the flow, one cyclic step wavelength (A), based on time series data, showing downstream
velocity (B), sediment concentration in (C) and turbulent kinetic energy (D).

Turbulence

Observation

Turbulent kinetic energy (TKE), the mean kinetic
energy per unit-mass associated with turbulent
eddies, is of the order of 0-01 to 0-03 | kg*l in the
supercritical part of the flow, with peak values
near the bed where shear is highest (Fig. 5D4 and
5D5). These TKE levels are equivalent to 8 to
14 cm s~ of turbulent velocity fluctuations

assuming isotropic turbulence. TKE is three to
ten times higher (0-1 ] kg™") in the region of the
hydraulic jump (Figs 4C and 5D1). The subcriti-
cal region has the lowest turbulent kinetic energy,
generally less than 0-01 ] kg™ .

Interpretation
Turbulence is generated in flow regions where
shear within the flow is high (i.e. the velocity
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gradient), such as the case at a hydraulic
jump. Turbulence is the mechanism through
which sediment is suspended and dispersed in
the flow. Hence, in regions of high turbulence
sediment is not prone to settle, despite having
relatively high sediment concentrations. The
combination of high turbulent energy, inhibit-
ing settling, and a relatively high shear on the
bed at the hydraulic jump is a likely cause for
entrainment to outpace settling, causing the
hydraulic jump region itself to be erosive.

MORPHODYNAMICS

Relating the flow dynamics to bed-surface evolu-
tion is crucial to understand how cyclic steps
maintain their morphodynamic equilibrium.
Described here are two states observed in a cyclic
step system between which the system alternates
(Fig. 7). State 1 (89% of the time): there is a
hydraulic jump present in the trough of the bed-
form, the flow is supercritical at the lee side of
the cyclic step, and subcritical at the stoss side of
the cyclic step. State 2 (11% of the time): the flow
is supercritical over the whole bedform and a
hydraulic jump is absent, the flow over the stoss
side of the bedform decelerates and thickens, but
not enough to form a hydraulic jump. In state 2,
the flow is still erosive over the lee side of the
bedform, and depositional over the stoss side.
The topographic difference between the trough of
the bedform and the crest is lower in state 2 than
in state 1. Videos S1 and S2 help to visualize and
understand the morphodynamics more clearly.

Flow state 1

Observation
Supercritical flow is limited to the crest and lee
side of the cyclic step in flow state 1. The excess
shear stress, the shear stress that exceeds critical
shear stress for movement on the bed (here
0-25 Pa), increases from 5 Pa at the crest of the
bedform, to 13 Pa just before the hydraulic jump
(Fig. 6C). An excess shear stress larger than 0
does not mean that there is overall erosion, but
simply that there is some sediment entrainment.
It is the local balance between the sediment-
entrainment flux, which increases with shear
stress, and the settling flux, which determines
whether there is net erosion or net deposition.
The start of the hydraulic jump is typically
located at the downstream end of the lee side and
is associated with the transition from the lee side

to the stoss side. The hydraulic jump is mildly
erosive, illustrated by its location on the lee side
(Fig. 6A). The excess shear stress decreases grad-
ually from about 13 Pa to 5 Pa within the region
of a hydraulic jump (Figs 4D and 6C).

After the flow has decelerated at the hydraulic
jump, the flow slowly thins and accelerates
again, while depositing sediment at the stoss
side. The shear stress in the subcritical part of
the flow is 4 to 5 Pa (Fig. 6C). Both the increase
in bed height and the decrease in sediment dis-
charge (Fig. 6A and F) illustrate that the Froude-
subcritical region is depositional.

In state 1, more sediment is deposited nearer
the trough of the bedform than at its crest, caus-
ing the topography to decrease (Fig. 7D and E).
As the topography decreases, the hydraulic
jump is washed out and disappears.

Interpretation

In state 1, the continuous acceleration of the
supercritical flow over the lee side of the bed-
form leads to increased bed shear stress.
Upstream of the crest of the bedform (0-95 to 1-0
on Fig. 6), shear stresses on the bed are low
enough to allow the settling of sediment to out-
pace entrainment of sediment. Downstream of
the crest of the bedform shear stress continu-
ously increases, resulting in the sediment-
entrainment flux exceeding the settling flux,
making the flow erosive, as indicated by an
increase in sediment discharge (Fig. 6F). The
morphological effect of the supercritical flow is
a curve at the crest of the bedform towards a lin-
ear lee side of the bedform.

At the hydraulic jump, erosion is caused by
high shear stresses and increased turbulence.
High shear stress is explained by relatively high
velocities near the bed in the hydraulic jump
region (Figs 4A and 5A1). Increased turbulence
in this region, caused by coherent flow structures,
allows sediment to remain in suspension and
inhibits settling. The amount of sediment stored
in the water column increases over the hydraulic
jump region (Fig. 6D). As a result, the morpholog-
ical effect of the hydraulic jump is a transition
from a steep and strongly erosive lee side,
through a concave trough, and to a depositional
upstream-dipping stoss side.

In the subcritical flow region, the sediment-
entrainment flux is smaller than that of sedi-
ment settling flux, as low bed shear stresses
limit the entrainment. The low turbulence levels
in the subcritical region cause the sediment
picked up on the lee side to settle. Sediment
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grains collect at the base of the flow before set-
tling (Fig. 6E), thereby causing flow stratification
as a result of limited mixing. The morphological

response to this depositional subcritical flow
region is an increase in bed elevation over the
stoss side, with more sediment being deposited
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close to the trough than near the crest, effec-
tively decreasing the topography between crest
and trough, setting up the system to change to
flow state 2.

Flow state 2

Observation

In state 2, supercritical flow prevails over the entire
bedform. Even though the flow thickens over the
stoss side of the bedform towards the crest, the
flow remains supercritical. The thicker supercriti-
cal flow on the stoss side is still depositional with
excess shear stresses ranging from 5 to 7 Pa.

More sediment is deposited at the crest than
in the trough in flow state 2, thereby increasing
the topography (Fig. 7B). Such increased topo-
graphy caused by deepening of the trough and
deposition on the crest triggers the formation of
a new hydraulic jump (Fig. 7B and C).

Interpretation

In state 2, the lee side of the cyclic step remains
erosive. Notwithstanding the supercritical-flow
conditions, the stoss side of the bedform is still
depositional as the settling flux exceeds the sed-
iment-entrainment flux.

The morphological behaviour in state 2 is not
unlike that of antidunes, because more sediment
is deposited near the crest than at the trough the
topography of the bedform to increases. When
comparing the flow parameters with the bedform
geometry through the empirical equations of Ken-
nedy (1960) and Alexander et al. (2001), it is clear
that the bedforms are, however, not antidunes.
An increase in topography in flow state 2 sets up
the system to create a new hydraulic jump and
return to flow state 1. The hydraulic jump forms
at the crest of the bedforms and migrates towards
the trough. This alteration between two flow
states, with depositional patterns that inherently
require an alteration from one state to another, is
also described in a carbonate ramp setting which
is interpreted to have backset beds formed by cyc-
lic steps (Slootman et al., 2016). The cycle alter-
nating between flow states 1 and 2 appears to be
an autogenous interplay between bed topography
and the flow, and is inherent to the depositional
pattern of the two flow states.

DEPOSITIONAL SIGNATURE

Sedimentary structures can be indicative of
palaeoflow conditions and therefore provide an

aid to reconstruct the palaeoenvironment.
Hence, it is important to understand the forma-
tive processes of bedforms and their associated
sedimentary structures. Here, the modelling
results are used to directly link the flow process
to the depositional product. The cyclic step sim-
ulations provide flow conditions at the moment
of deposition for each subgridded sediment par-
cel at every time step, and hence the model not
only builds up a series of sedimentary struc-
tures, but is also able to link the individual parts
of these sedimentary structures with their flow
conditions during deposition.

Discussed herein is the development of the
depositional architecture (Fig. 8A to E) and the
parameters that control the sedimentary facies.
Video S2 visually complements the subsection
regarding Architecture. The discussed parame-
ters are as follows: (i) the sediment concentra-
tion near the bed (Fig. 8F); (ii) the flow regime,
represented by Froude number (Fig. 8G); and
(iii) the bed shear stress (Fig. 8H), an important
factor in how erosive or depositional the flow is,
and responsible for grain-size trends.

Architecture

The architecture of the deposit associated with a
cyclic step system is dependent on the rate of
aggradation. In an aggradational system, the
architecture consists of upstream-dipping lami-
nations (<10°), called backsets, which form on
the depositional stoss side of the bedform
(Fig. 9A) (Kostic & Parker, 2006; Spinewine
et al., 2009; Yokokawa et al., 2009; Lang & Win-
semann, 2013). The backsets onlap onto a com-
posite erosional surface at their upstream side,
which forms the lower set-boundary. The back-
sets are truncated at their downstream side by a
similar erosive surface, forming the upper set-
boundary. The simulations in this study are not
aggradational but transportational; this is
reflected by a different depositional architecture
(Fig. 9B). The resulting depositional architecture
is an amalgamation of concave-up erosion sur-
faces and small portions of preserved low-angle
backsets and foresets creating mostly concave-
up lenticular bodies (Fig. 9B).

The development of the architecture of trans-
portational cyclic steps in Fig. 9B is seen in
Fig. 8A to E. A deep trough that formed during
washout of the hydraulic jump is filled by sedi-
ment (Fig. 8B). The sediment laps onto the ero-
sion surface as a foreset with a downstream
transition into a backset (<5°). This creates a
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concave-up deposit (Fig. 8B). A large portion of
the deposited backsets is eroded by the upslope
migration of the successive bedform (Fig. 8A to
E). The deposits shown in Fig. 8B are mostly
reworked in Fig. 8C, and only the deepest trough
infill near the initial onlap is preserved. These
deepest trough deposits form below the hydraulic
jump. If the flow is supercritical throughout (state
2), steeper backsets and more tabular backsets are
formed (Fig. 8D). These steeper, tabular backsets
(<10°) are less likely to be preserved because they
form near the crest, which is more prone to ero-
sion. During the transition from state 2 (supercrit-
ical throughout), to state 1 (with hydraulic jump),
erosion can occur on the stoss side, leading to
upstream truncation of the laminations.

Sediment concentration

The sediment concentration at the moment of
deposition over a cyclic step (Fig. 8F) is gener-
ally lower than 9% by volume. Deposits that
form under subcritical flow form at lower near-
bed sediment concentration (ca 5%) than the
deposits formed under supercritical flow (ca

8%) (Fig. 8F). The flow is generally dilute (<9
vol.%) in all regions (Fig. 5C), implying that tur-
bulence is the dominant grain support mecha-
nism (Bagnold, 1954).

Flow regime

Even though a cyclic step is characterized by
supercritical flow over the lee side, the deposits
are predominantly formed in the subcritical-flow
regime (Fig. 8G). Traces of bedforms associated
with the subcritical-flow regime, such as current
ripples, superimposed on the larger scale bed-
form, could therefore be formed as a conse-
quence. Bedform stability diagrams indicate that
flow over proximal backset deposits are within
the ripple regime (Van den Berg & Van Gelder,
1993). Ripples have been associated with subcrit-
ical flow after a hydraulic jump in the distal part
of hydraulic jump bars (Macdonald et al., 2013).
Given the high settling rate following the
hydraulic jump such current ripples could ini-
tially be climbing. Ripples are, however, not sim-
ulated in the numerical model due to a lack of
resolution. Deposition during supercritical-flow
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conditions (state 2) also results in a backset
(Fig. 8G). Backsets deposited during supercriti-
cal flow onlap further downstream than those
formed at subcritical conditions and are steeper.

Shear stress

Cyclic step deposits show alternation in bed
shear stress over time and space (Fig. 8H). Vari-
ability in shear stress over time would lead to a
variation in grain size from one backset stratum
to another, creating lamination, and thereby
delineating individual backset strata. In general,
shear stresses at the moment of deposition
decrease from trough to crest (Fig. 9B). Deposits
that form directly after the rapid erosion have
the lowest shear stresses as a roller forms below
the main flow (20% of the time), see Fig. 9B. In
the absence of a hydraulic jump, shear stresses
over the stoss side are relatively high, and there
is increased traction on the bed where the
deposits form (Fig 9B).

The simulations in this study show a decrease
in shear stress over the stoss side of the bedform
(Fig. 6C). A downstream fining over individual
backsets can be caused by a decrease of flow
competence to carry sediment (i.e. a decrease in
shear stress), or can be due to a decrease in flow
capacity to carry sediment. Submarine cyclic
steps are suggested to be downstream fining, but
not due a decrease in shear stress, because shear
stress is suggested to increase over the stoss side
(Postma & Cartigny, 2014). The downstream fin-
ing, as described by Postma & Cartigny (2014),
would be caused by a decrease in the capacity
of the flow to carry sediment. Both the capacity
and competence arguments can be used to
explain downstream fining (Hiscott, 1994).
Open-channel flows and turbidity currents both
can create cyclic steps, but are different in many
ways, in velocity profile and concentration pro-
file to start with, and in shear stress pattern as a
consequence. Both a decrease in flow capacity
and a decrease in flow competence can produce
downstream fining, and it is possible that the
two mechanisms play different roles in marine
and fluvial systems, but ultimately lead to a sim-
ilar result; a downstream fining.

CONSEQUENCES FOR OUTCROP
STUDIES

Recognition of cyclic step deposits in outcrop is
strongly dependent on the preservation potential

Morpodynamics and deposits of cyclic steps 555

of the deposits, and whether cyclic step systems
are aggradational or transportational (Fig. 9).
Deposits associated with strongly aggradational
cyclic steps have a different depositional signa-
ture than deposits resulting from transporta-
tional cyclic steps.

A highly aggradational cyclic step system in
outcrop may resemble the deposit such as seen
in Fig. 9A, which represents an idealized
deposit. There is a clear sequence of backsets
that are separated by set boundaries at the
upstream side and at the downstream side.
Downstream fining within sets results in a nor-
mal grading in the vertical due to progressively
upstream emplacement of the backsets. Such
depositional signatures of aggradational cyclic
step systems are, however, uncommon in fluvial
outcrops, where clear sequences of continuously
stacked backsets are absent due to a lack of
accommodation space. In marine and deltaic set-
tings, accommodation space is more readily
available, and the character described above is
observed in outcrop (Ventra et al., 2015; Dietrich
et al., 2016) and in shallow seismic imagery
(Migeon et al., 2000, 2001, 2006; Normark et al.,
2002; Fildani et al., 2006; Flood et al., 2009; Gil-
bert & Crookshanks, 2009; Heinio & Davies,
2009; Zhong et al., 2015).

Cyclic steps that are transportational have a
different depositional signature (Fig. 9B) than
aggradational ones. The overall depositional sig-
nature is an amalgamation of lenticular bodies
bound by erosion surfaces. Similar to the back-
sets formed in an aggradational setting, backsets
formed in a transportational setting are down-
stream fining. The deposited backsets are
reworked for a large part; on the downstream
side by upstream migrating erosion, and on the
upstream side when the hydraulic jump gets
washed out. At the washout stage of a hydraulic
jump the trough migrates upstream rapidly and
erodes underlying sediments creating a deep
new trough. Sediments deposited in this trough
create a concave-up lens, with the best preserva-
tion potential of the flow, as the trough cuts
deep into the substrate, out of reach of subse-
quent erosion. The concave-up bodies formed at
low shear stress conditions may be associated
with suspension fallout due to a decrease in
flow capacity. Backsets that form when the flow
is supercritical throughout (state 2) are steepest,
as they enhance the existing topography. These
backsets also form under relatively high shear
stress where there is traction on the bed, grain
sizes in these backsets are likely to be larger
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than average as fines will not be able to settle
under these conditions (decrease in flow compe-
tence). These transportational cyclic step depos-
its resemble those observed in small-scale
laboratory experiments (Yokokawa et al., 2009).

When comparing the simulated depositional
signature to that in the geological record, it is
important to appreciate differences of scale. Cyc-
lic step facies have been interpreted in outcrops
of deltaic settings (Dietrich et al., 2016) and gla-
cial flood outbursts (Duller et al., 2008; Lang &
Winsemann, 2013). In these settings, concave-up
troughs are filled with diffusely laminated back-
sets. The troughs are typically several metres
long and the backsets within them vary in steep-
ness between 5° and 20° (Duller et al., 2008;
Lang & Winsemann, 2013; Dietrich et al., 2016).
The numerical results show a very similar archi-
tecture, but on a smaller scale. Both in this
study and in outcrop, distinct concave-up
troughs are filled by diffusely laminated foresets
and backsets that dip 5° to 15° (Fig. 9B); Erosion
surfaces in the simulations dip in the order of 5°
to 15° (Fig. 9B); their abundance and the size of
the preserved backsets are dependent on the rate
of aggradation. The faint stratification described
in Duller et al. (2008) and Lang & Winsemann
(2013) is probably due to a change in shear
stress on the bed related to the stages in which
the flow is supercritical throughout. Dietrich
et al. (2016) show a series of upstream-dipping
backsets that are indicative of more aggrada-
tional cyclic steps, as these backsets are not
cross-cut by an erosive surface but rather a more
continuous stack of backsets such as seen in
Fig. 9A. More aggradation yields fewer erosional
surfaces as well as more preservation of backsets
relative to foresets.

CONCLUSIONS

The depth-resolved numerical model allows a
unique insight into the mechanics of a cyclic step
system, and the modelling results can be used to
link the mechanics to the depositional signature.
The simulated cyclic steps generally adhere to
existing conceptual models, with Froude-super-
critical flow over the lee side and Froude-subcri-
tical flow over the stoss side of the bedform. The
hydraulic jump affects a large flow region and is
often itself erosive. A hydraulic jump is not
always present, and occasionally the flow is only
supercritical, but still deposits at the stoss side.
In absence of a hydraulic jump, the bedform

amplitude is enhanced and leads to the formation
of a new hydraulic jump.

The depositional signature of a cyclic step sys-
tem is dependent on the rate of aggradation. In
the case of a high aggradation rate, a package of
backsets, bound upstream and downstream by
erosion surfaces, can be found. In more trans-
portational systems, the deposited backsets will
be reworked to a large degree. The depositional
signature of cyclic steps is dominated by an
amalgamation of concave-up erosional surfaces
and low-angle foresets and backsets creating len-
ticular bodies. This depositional signature is
determined to a large extent by the transient
nature of the hydraulic jump as it migrates
upstream and downstream with respect to the
trough location, and is occasionally washed out
entirely. Similar geometries are visible over a
range of scales in outcrop studies. Variation in
shear stress at the moment of deposition, prob-
ably related to the presence or absence of a
hydraulic jump, results in more pronounced
backsets of a distinct grain size.
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APPENDIX

Governing equations Reynolds-Averaging
Navier-Stokes (RANS) and turbulence
models

Mass balance equation:

dp 0 d 0 B
a-ka(pu)—&—d—y(pv)—ka(l)w) =0 (1.1)

Momentum Balance equations:
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Ay v S 2P G (12
ot U Ty T o pax T O A (12)

Morpodynamics and deposits of cyclic steps 559

Turbulent kinetic energy balance:

Okt n ( Okt okt 6_]<T>
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ot " \"ox TV oy TV oz T Dk —er

(1.5)

Turbulent dissipation balance:

Ger (O, Oor ., Oor
ot 0x oy 0z (1.6)
Ca et &% '
kT PT+D8 - Cf:ZPT
From turbulence to dynamic viscosity:
2
VT:0.085ﬁ (1.7)
1= p(vm + 7 (18)

Further details on the k-epsilon RNG turbu-
lence model can be found in (Basani et al.,
2014).

Equations governing sediment transport
model

Shields numbers:

o=—* (2.1)
gd(:oq - Pf)
Ocr = Hol%.‘zd* +0.55(1 — e 00%d") (2.2)
N 1/3
d. = d(M) (2.3)
vf

0=

] cos(x//)sin(x)+\/Cosz(x)tanz(w)—sinz(x//)sinz(x)

tan(e)

Bed-load transport:

Qb = fB(0; — 0c)"® [g (”S;fpf ) dS] (2.5)

§=d[0-3d>7(0/0c —1)°°] (2.6)
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RMSC Inverse Schmidt number

Upedload = B B (2.7)
o ||al| ug Velocity of the suspended sediment
u Mean velocity of water-sediment mixture,
Suspended-load transport: obtained via Navier-Stokes
Wpin Lift velocity
gl ‘d(Ps - Pf) Upedloaa Bed-load velocit
Wift = O‘insdg's(ei - ch)l's - (2'8) . . Y
Pr Ugertle  Sediment settling mass-flux
’ o Entrainment coefficient
1/2
Ugettle = g [(10 +36% 4+ 1-049d°) > _10- 36} Ef B Bed-load coefficient
(2.9) 3 Thickness bed-load layer
er Turbulent dissipation
9c Ug = U + Ugettte Crol (2.10) 0 Local Shields number
E + V- (usCass) = V- V(DCrass) (2.11) Ocr Critical Shields number
i Dynamic viscosity
D= RMSC - p =+ CMSC (2.12) \; Kinematic viscosity of water
Py Pr Ps Density of the sediment
Cinass Jor: Density of the fluid
Cvol = Ps (2.13) D Mean density fluid-sediment mixture
Shear stress
Ter Critical shear stress
List of symbols x Angle slope of bed
Ayy, Fractional area Vs Angle between flow and upslope direction
Cmass  Suspended sediment mass-concentration o Angle of repose
Cyol Suspended sediment volume concentration
CMSC Coefficient of diffusion
Ce1c2  Dimensionless parameter Manuscript received 17 August 2016; revision
con . accepted 19 May 2017
D Diffusion coefficient
Dk Turbulent kinetic energy diffusion term
D, Diffusion of dissipation of turbulence term Supporting Information
d Grain size
. ) ) Additional Supporting Information may be found in
d- Dimensionless grain parameter the online version of this article:
fiy.z Viscous accelerations
v Froud b Video S1. A video of simulation 2. The video shows
T roude number the behaviour of the cyclic step system. Both in terms
g Gravitational acceleration of fluid character as well as in sediment bed develop-
Gyy- Body accelerations ment. . . . .
o o Video S2. A video of simulation 2. The video shows
Kk Turbulent kinetic energy the internal structure of the cyclic step bedforms with
Pr Turbulent kinetic energy production term two-second timelines, and the water surface.

b Bed-load transport rate
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