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Abstract

For a random walk Sn on Rd we study the asymptotic behaviour of the associated
centre of mass process Gn = n−1

∑n
i=1 Si. For lattice distributions we give conditions

for a local limit theorem to hold. We prove that if the increments of the walk have zero
mean and finite second moment, Gn is recurrent if d = 1 and transient if d ≥ 2. In
the transient case we show that Gn has a diffusive rate of escape. These results extend
work of Grill, who considered simple symmetric random walk. We also give a class
of random walks with symmetric heavy-tailed increments for which Gn is transient in
d = 1.
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local central limit theorem; rate of escape.

2010 Mathematics Subject Classifications: 60G50 (Primary) 60F05, 60J10 (Secondary).

1 Introduction and main results

Let d be a positive integer. Suppose that X,X1, X2, . . . is a sequence of i.i.d. random vari-
ables on Rd. We consider the random walk (Sn, n ∈ Z+) in Rd defined by S0 := 0 and
Sn :=

∑n
i=1Xi (n ≥ 1). Our object of interest is the centre of mass process (Gn, n ∈ Z+)

corresponding to the random walk, defined by G0 := 0 and Gn := 1
n

∑n
i=1 Si (n ≥ 1). The

question of the asymptotic behaviour of Gn was raised by P. Erdős (see [10]). We view
vectors in Rd as column vectors throughout; 0 denotes the zero vector. We write ‖ · ‖ for
the Euclidean norm on Rd. Throughout we use the notation

µ := EX, M := E[(X − µ)(X − µ)>]

whenever the expectations exist; when defined, M is a symmetric d by d matrix.
The strong law of large numbers for Sn yields the following strong law for Gn, whose

proof can be found in Appendix B.

Proposition 1.1. Suppose that E ‖X‖ <∞. Then n−1Gn → 1
2
µ, a.s., as n→∞.

To go further we typically assume the following.

(M) Suppose that E[‖X‖2] <∞ and M is positive-definite.
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Note that

Gn =
n∑
i=1

(
n− i+ 1

n

)
Xi. (1.1)

The representation (1.1) leads via the Lindeberg–Feller theorem for triangular arrays to the

following central limit theorem; again, see Appendix B for the proof. We write ‘
d−→’ for

convergence in distribution, and Nd(m,Σ) for a d-dimensional normal random variable with
mean m and covariance Σ.

Proposition 1.2. If (M) holds, then, as n→∞,

n−1/2
(
Gn −

n

2
µ
)

d−→ Nd(0,M/3).

Our first main result is a local central limit theorem. We assume that X has a non-
degenerate d-dimensional lattice distribution. Thus (see [1, Ch. 5]) there is a unique minimal
subgroup L := HZd of Rd, where H is a d by d matrix, such that P(X ∈ b + L) = 1 for
some b ∈ Rd, with the property that if P(X ∈ x + L′) = 1 for some closed subgroup L′ and
x ∈ Rd, then L ⊆ L′, and with h := | detH| ∈ (0,∞). In other words, we make the following
assumption.

(L) Suppose that the minimal subgroup associated with X is L := HZd with h := | detH| >
0.

See Appendix A for background on lattice distributions. Equivalent conditions to (L) can
be formulated in terms of the characteristic function of X or in terms of the maximality of
h: see Lemma A.4 below. Note that there may be many matrices H for which HZd is equal
to (unique) L, but for all of these | detH| is the same. Also note that symmetric simple
random walk (SSRW) does not satisfy (L) with the obvious choice H = I (the identity), but
does satisfy (L) for an H with h = 2, the maximal | detH| for which P(X ∈ x + HZd) = 1
for some x ∈ Rd: see Section 2 and Appendix A for details.

Notice that P(X ∈ b + HZd) = 1 implies P(Sn ∈ nb + HZd) = 1, which shows that
P(n−1/2Gn ∈ Ln) = 1, where we define

Ln :=
{
n−3/2

(
1
2
n(n+ 1)b +HZd

)}
.

For x ∈ Rd, define pn(x) := P(n−1/2Gn = x), and

ν(x) :=
exp{−3

2
x>M−1x}

(2π)d/2
√

det(M/3)
, (1.2)

the density of Nd(0,M/3).
Here is our local limit theorem.

Theorem 1.3. Suppose that (L) and (M) hold. Then we have

lim
n→∞

sup
x∈Ln

∣∣∣∣n3d/2

h
pn(x)− ν

(
x− (n+ 1)

2n1/2
µ

)∣∣∣∣ = 0. (1.3)

2



Remarks 1.4. (i) In the case d = 1, versions of Theorem 1.3 are given in [13, Lemma 4.3],
in [4, Proposition 2.3], and in [10, Lemma 1]; the latter result deals only with the special case
of SSRW and only bounds pn(x) up to constant factors. See Section 2 for a demonstration
that our assumptions are indeed satisfied by SSRW on Zd for appropriate choice of H with
h = 2. The proof in [13] is a sketch, and the statement that “it is enough to apply the
usual analytical methods” [13, p. 515] does not quite tell the whole story, even in the one-
dimensional case. The papers [4, 10, 13] also give bivariate local limit theorems for (Sn, Gn)
(in the case d = 1). Related results can be found in [7, Theorem 4.2] and [6].

(ii) If Zn := Sn − Gn, then (1.1) shows that Zn+1 = n
n+1

∑n
i=1(i/n)Xi+1, which implies

that Zn+1
d
= n

n+1
Gn, where ‘

d
=’ stands for equality in distribution. Thus Theorem 1.3 also

yields a local limit theorem for Zn. However, the processes Zn and Gn may behave very
differently: see [3, Remark 1.1].

We turn to the almost-sure asymptotic behaviour of Gn. First we have a recurrence result
for d = 1 that does not require the lattice assumption; in the case of SSRW the fact that Gn

returns i.o. (infinitely often) to a neighbourhood of the origin is due to Grill [10, Theorem 1].

Theorem 1.5. Suppose that d = 1 and that either of the following two conditions holds.

(i) Suppose that E |X| ∈ (0,∞) and X
d
= −X.

(ii) Suppose that (M) holds and that EX = 0.

Then lim infn→∞Gn = −∞, lim supn→∞Gn = +∞, and lim infn→∞ |Gn − x| = 0 for any
x ∈ R.

In contrast to Theorem 1.5, we will show that in the case where E |X| =∞, Gn may be
transient. The condition we assume is as follows.

(S) Suppose that X
d
= −X and X is in the domain of normal attraction of a symmetric

α-stable distribution with α ∈ (0, 1).

Theorem 1.6. Suppose that d = 1 and (L) holds, i.e., P(X ∈ b + hZ) = 1 for b ∈ R and
h > 0 maximal. Suppose also that (S) holds. Then lim infn→∞Gn = −∞, lim supn→∞Gn =
+∞, and limn→∞ |Gn| =∞.

Remark 1.7. The transience here fails in the natural continuum version of this model. The
analogous continuum model, a symmetric α-stable Lévy process for α ∈ (0, 1), st, has centre
of mass gt = 1

t

∫ t
0
sudu, and it is surely true that gt again changes sign i.o., but in this case

continuity of gt implies that gt = 0 i.o.

We have the following transience result in dimensions greater than one. In particular,
Theorem 1.8 says that limn→∞ ‖Gn‖ = +∞, a.s., and gives a diffusive rate of escape; in the
case of SSRW the result is due to Grill [10, Theorem 1].

Theorem 1.8. Suppose that d ≥ 2 and that (L) and (M) hold, and that µ = 0. Then

lim
n→∞

log ‖Gn‖
log n

=
1

2
, a.s.
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Obtaining necessary and sufficient conditions for recurrence and transience of Gn is an
open problem. For d ≥ 2, we expect that Gn is always ‘at least as transient’ as the situation
in Theorem 1.8:

Conjecture 1.9. Suppose that suppX is not contained in a one-dimensional subspace of
Rd. Then

lim inf
n→∞

log ‖Gn‖
log n

≥ 1

2
, a.s.

Section 2 verifies our main assumptions for a couple of simple examples. The proof
of Theorem 1.3 is given in Section 3. The proof of Theorem 1.5 uses Proposition 1.2,
some observations following from the Hewitt–Savage zero–one law, and the fact that in the
case where EX = 0 oscillating behaviour is sufficient for lim infn→∞ |Gn − x| = 0: see
Section 4. The proof of Theorem 1.6 uses another local limit theorem (Theorem 4.5) and is
also presented in Section 4. The proof of Theorem 1.8 relies on Theorem 1.3: see Section 5.
Appendix A collects auxiliary results on lattice distributions and characteristic functions
that we need for the proofs of our local limit theorems. For completeness we include the
proofs of Propositions 1.1 and 1.2 in Appendix B.

2 Examples

We use the notation ϕ(t) := E[eit
>X ] for the characteristic function of X. Set U := {t ∈

Rd : |ϕ(t)| = 1}, and given an invertible d by d matrix H, set SH := 2π(H>)−1Zd.

Example 2.1 (Lazy SSRW on Zd). Let e1, . . . , ed be the standard orthonormal basis vectors
of Rd, and suppose that P(X = ei) = P(X = −ei) = 1

4d
for all i, and P(X = 0) = 1

2
. Then

for b = 0 and H = I, the d by d identity matrix, we have P(X ∈ Zd) = 1. To verify
that L = Zd is minimal, it is sufficient (see Lemma A.4) to check that U = SH = 2πZd. If
t = (t1, . . . , td) ∈ Rd,

ϕ(t) =
1

2
+

1

4d

d∑
j=1

(
eitj + e−itj

)
=

1

2
+

1

2d

d∑
j=1

cos tj.

Thus t ∈ U if and only if cos tj = 1 for all j, i.e., U = 2πZd = SH , as required. Note that
we could alternatively use the bound in Lemma A.2 to check that h = 1 is maximal. 4

Example 2.2 (SSRW on Zd). Suppose that P(X = ei) = P(X = −ei) = 1
2d

for all i. For
SSRW the construction of H for which (L) holds is non-trivial. For d = 1, we take b = −1
and h = 2. In general d ≥ 2, we take H = (hij) and b = (bi) defined as follows. If d = 2n−1
for n ≥ 2, n ∈ Z, we take

bi = −1 for all i = 1, 2, . . . , d;

hij =

{
1 if i− j ≡ 0 or n (mod 2n− 1),

0 otherwise.
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If d = 2n for n ≥ 1, n ∈ Z, we take

bi =

{
0 if i = 2n,

−1 otherwise;

hij =


−1 if (i, j) = (2n, 1),

1 if j − i ≡ 0 or 1 (mod 2n) and (i, j) 6= (2n, 1),

0 otherwise.

For example, for d = 2 we have

b =

(
−1
0

)
and H =

(
1 1
−1 1

)
.

For d = 3, we have

b =

−1
−1
−1

 and H =

1 1 0
0 1 1
1 0 1

 .

For d = 4, we have

b =


−1
−1
−1
0

 and H =


1 1 0 0
0 1 1 0
0 0 1 1
−1 0 0 1

 .

For d = 5, we have

b =


−1
−1
−1
−1
−1

 and H =


1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
0 1 0 0 1

 ,

and so on. Note that h = 2 for all such H. It is elementary to verify that P(X ∈ b +
H{0, 1}d) = 1. It suffices to check that H−1(x−b) ∈ {0, 1}d for any x = ±ei. For example,
in the case d = 2n− 1 we have that H−1 has elements h−1ij given by

h−1ij =

{
1
2

if i− j = 0, 1, . . . , n− 1 (mod 2n− 1),

−1
2

otherwise,

and then one checks that, for example, H−1(ei − b) = a where a has all components zero
apart from ai = · · · = ai+n−1 = 1 (for i ≤ n). The other cases are similar.

We show that (L) holds for SSRW with this choice of H, by checking (see Lemma A.4)
that U = SH . Since Lemma A.3 shows that SH ⊆ U , it suffices to show that U ⊆ SH . For
SSRW on Zd, if t = (t1, . . . , td) ∈ Rd,

ϕ(t) =
1

2d

d∑
j=1

(
eitj + e−itj

)
=

1

d

d∑
j=1

cos tj.
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So t ∈ U if and only if |
∑d

j=1 cos tj| = d, which occurs if and only if either (i) cos tj = 1 for

all j, or (ii) cos tj = −1 for all j. Case (i) is equivalent to t ∈ 2πZd and case (ii) is equivalent
to t ∈ π1 + 2πZd, where 1 is the vector of all 1s. Hence

U = (2πZd) ∪ (π1 + 2πZd).

Consider x ∈ U . Then for some a ∈ Zd, either (i) x = 2πa, or (ii) x = π1 + 2πa.
In case (i), let z = H>a; then since all entries in H are integers, we have z ∈ Zd and
2π(H>)−1z = 2πa = x, so x ∈ SH . In case (ii), let z = H>(1

2
1 + a). Note that if d is odd

then 1
2
H>1 = 1 while if d is even, 1

2
H>1 = (0, 1, 1, . . . , 1)>; in any case it follows that z ∈ Zd.

Then 2π(H>)−1z = π1 + 2πa = x, so x ∈ SH . Thus U ⊆ SH . 4

3 Local central limit theorem

This section is devoted to the proof of Theorem 1.3. The outline of the proof mirrors
the standard Fourier-analytic proof of the local central limit theorem for the random walk:
compare e.g. [9, Ch. 9], [8, §3.5], or [11, Ch. 4] for the one-dimensional case, and [12, §§2.2–
2.3] for the case of walks on Zd. The details of the proof require some extra effort, however.

First we show that it suffices to establish Theorem 1.3 in the case where b = 0 and
H = I (the identity). To see this, suppose that X ∈ b + HZd and set X̃ = H−1(X − b).
Then X̃ ∈ Zd. By linearity of expectation, we have

µ̃ := E X̃ = H−1(µ− b), and M̃ := E[(X̃ − µ̃)(X̃ − µ̃)>] = H−1M(H−1)>.

Note that (H−1)> is nonsingular, so (H−1)>x 6= 0 for all x 6= 0. Hence for x 6= 0, x>M̃x =
y>My where y = (H−1)>x 6= 0, so that sinceM is positive definite we have x>M̃x > 0; hence
M̃ is also positive definite. Also, S̃n :=

∑n
i=1 X̃i = H−1(Sn − nb) and G̃n := n−1

∑n
i=1 S̃i =

H−1(Gn − n+1
2
b). The assumption that HZd is minimal for X implies that Zd is minimal

for X̃. Thus the process defined by X̃ satisfies the hypotheses of Theorem 1.3 in the case
where b = 0 and H = I, with mean µ̃ and covariance M̃ , and that result yields

lim
n→∞

sup
x∈n−3/2Zd

∣∣∣∣n3d/2P(n−1/2G̃n = x)− ν̃
(
x− (n+ 1)

2n1/2
µ̃

)∣∣∣∣ = 0, (3.1)

where

ν̃(z) :=
(det M̃/3)−1/2

(2π)d/2
exp

{
−3

2
z>M̃−1z

}
.

But

P(n−1/2G̃n = x) = P
(
n−1/2Gn =

(n+ 1)

2n1/2
b +Hx

)
= P(n−1/2Gn = y)

where y = (n+1)

2n1/2 b +Hx so y ∈ n−3/2(1
2
n(n+ 1)b +HZd). Also,

x− (n+ 1)

2n1/2
µ̃ =

(
H−1y − (n+ 1)

2n1/2
H−1b

)
− (n+ 1)

2n1/2
H−1(µ− b)
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= H−1y − (n+ 1)

2n1/2
H−1µ.

Hence, since M̃−1 = H>M−1H and det M̃ = h−2 detM ,

ν̃

(
x− (n+ 1)

2n1/2
µ̃

)
=

(det M̃/3)−1/2

(2π)d/2
exp

{
−3

2

(
y − (n+ 1)

2n1/2
µ

)>
M−1

(
y − (n+ 1)

2n1/2
µ

)}

= hν

(
y − (n+ 1)

2n1/2
µ

)
.

It follows that (3.1) is equivalent to

lim
n→∞

sup
y∈n−3/2( 1

2
n(n+1)b+HZd)

∣∣∣∣n3d/2

h
P(n−1/2Gn = y)− ν

(
y − (n+ 1)

2n1/2
µ

)∣∣∣∣ = 0,

which is the general statement of Theorem 1.3. Thus for the remainder of this section we
suppose that b = 0 and H = I; hence Ln = n−3/2Zd.

Let Yn :=
∑n

i=1 Si and thus Gn = Yn/n. Recall that ϕ denotes the characteristic function
(ch.f.) of X, and let Φn be the ch.f. of n−3/2Yn, i.e., for t ∈ Rd,

ϕ(t) := E eit
>X , and Φn(t) := E ein

−3/2t>Yn .

Denoting the smallest eigenvalue of M by λmin(M) and writing t̂ := t/‖t‖ for t 6= 0, we
have that

inf
t6=0

t̂>M t̂ = λmin(M) > 0, (3.2)

since λmin(M) is an eigenvalue of a positive-definite matrix under assumption (M). Define

fn(t) := exp

{
i(n+ 1)t>µ

2n1/2
− t>Mt

6

}
. (3.3)

For ` ∈ (0,∞) set R1 := [−`, `]d. Our starting point for the proof of the local limit theorem
is the following.

Lemma 3.1. Suppose that (M) holds and that P(X ∈ Zd) = 1. Then, for any ` ∈ (0,∞),

sup
x∈Ln

∣∣∣∣n3d/2pn(x)− ν
(
x− (n+ 1)

2n1/2
µ

)∣∣∣∣ ≤ ∫
R1

|Dn(t)| dt +

∫
R(n)\R1

|Φn(t)|dt

+

∫
Rd\R1

exp

{
−λmin(M)

6
‖t‖2

}
dt,

where R(n) := [−πn3/2, πn3/2]d and Dn(t) := Φn(t)− fn(t).

Proof. For a random variable W ∈ Zd, by the inversion formula for the characteristic function
(see e.g. [12, Corollary 2.2.3, p. 29]) we have that

P(W = y) =
1

(2π)d

∫
[−π,π]d

e−iu
>y E

[
eiu
>W ]du, (3.4)
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for y ∈ Zd. Now we have for x ∈ Ln, pn(x) = P(Yn = n3/2x), so applying (3.4) with
W = Yn ∈ Zd, we get for x ∈ Ln that

pn(x) =
1

(2π)d

∫
[−π,π]d

e−in
3/2u>x E

[
eiu
>Yn
]
du.

Using the substitution u = n−3/2t, we obtain

n3d/2pn(x) =
1

(2π)d

∫
[−πn3/2,πn3/2]d

e−it
>xΦn(t)dt. (3.5)

On the other hand, since the probability density ν(x − (n+1)

2n1/2 µ), with ν as defined at (1.2),
corresponds to the ch.f. fn(t) as defined at (3.3), the inversion formula for densities yields

ν

(
x− (n+ 1)

2n1/2
µ

)
=

1

(2π)d

∫
Rd

e−it
>xfn(t)dt, (3.6)

for x ∈ Rd. Now we subtract (3.6) from (3.5) to get

n3d/2pn(x)− ν
(
x− (n+ 1)

2n1/2
µ

)
=

1

(2π)d

∫
R1

e−it
>xDn(t)dt +

1

(2π)d

∫
R(n)\R1

e−it
>xΦn(t)dt

− 1

(2π)d

∫
Rd\R1

e−it
>xfn(t)dt.

Thus, by (3.3) and the triangle inequality with the estimates π > 1 and |e−it>x| ≤ 1,

sup
x∈Ln

∣∣∣∣n3d/2pn(x)− ν
(
x− (n+ 1)

2n1/2
µ

)∣∣∣∣ ≤ ∫
R1

|Dn(t)| dt +

∫
R(n)\R1

|Φn(t)|dt

+

∫
Rd\R1

exp

{
−t>Mt

6

}
dt,

which with (3.2) yields the statement in the lemma.

To prove Theorem 1.3 we must show that the right-hand side of the expression in
Lemma 3.1 approaches 0 when n → ∞. To do so, we bound |Φn(t)| and |Dn(t)| for ap-
propriate regions of t. Observing that Yn =

∑n
i=1 Si =

∑n
j=1(n− j + 1)Xj, we see

Φn(t) = E
[
exp

{
in−3/2t>Yn

}]
= E

[
exp

{
in−3/2

n∑
j=1

(n− j + 1)t>Xj

}]
.

For fixed n,
∑n

j=1(n− j + 1)t>Xj
d
=
∑n

j=1 jt
>Xj, so that, by independence,

Φn(t) = E

[
exp

{
in−3/2

n∑
j=1

jt>Xj

}]
=

n∏
j=1

E
[
exp

{
in−3/2jt>Xj

}]
.
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Hence we conclude that for t ∈ Rd,

Φn(t) =
n∏
j=1

ϕ(n−3/2jt). (3.7)

To study Φn we require certain characteristic function estimates, presented in Appendix A.
Recall that R(n) = [−πn3/2, πn3/2]d and R1 = [−`, `]d. Also define the regions

R2(n) := [−δ
√
n, δ
√
n]d \R1

R3(n) := [−π
√
n, π
√
n]d \ (R1 ∪R2(n))

R4(n) := R(n) \ (R1 ∪R2(n) ∪R3(n))

where the constant δ ∈ (0, π) will be chosen later. We denote the corresponding integrals by

I1(n) :=

∫
R1

|Dn(t)|dt, and Ik(n) :=

∫
Rk(n)

|Φn(t)| dt, for k ∈ {2, 3, 4}.

Lemma 3.2. For δ > 0 sufficiently small, the following statements are true.

(i) For any ` ∈ (0,∞), limn→∞ I1(n) = 0,

(ii) lim`→∞ supn I2(n) = 0,

(iii) limn→∞ I3(n) = 0,

(iv) limn→∞ I4(n) = 0.

We will combine all the estimates at the end of the argument.

Proof of Lemma 3.2. First we aim to show that

lim
n→∞

sup
t∈R1

|Dn(t)| = 0. (3.8)

Since EX = µ and E[(X − µ)(X − µ)>] = M , we have E[XX>] = M + µµ>, so that
Lemma A.1 implies, uniformly over t ∈ R1, as n→∞,

n∏
j=1

ϕ(n−3/2jt) = exp

{
n∑
j=1

log
[
1 + A(n, j, t) + o(n−1)

]}
,

where

A(n, j, t) := in−3/2jt>µ− 1

2
n−3j2t>(M + µµ>)t. (3.9)

Taylor’s theorem for a complex variable shows that for a constant C <∞,∣∣∣∣log(1 + z)−
(
z − z2

2

)∣∣∣∣ ≤ C|z|3, (3.10)
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for all z with |z| < 1/2. Note from (3.9) that

A(n, j, t)2 = −n−3j2t>µµ>t + ∆0(n, j, t), (3.11)

where max1≤j≤n supt∈R1
|∆0(n, j, t)| = O(n−3/2). Then, by (3.7), (3.10), (3.11), and the fact

that max1≤j≤n supt∈R1
|A(n, j, t)| = O(n−1/2), it follows that

Φn(t) = exp

{
n∑
j=1

(
in−3/2jt>µ− 1

2
n−3j2t>Mt

)
+ ∆0(n, t)

}
,

where supt∈R1
|∆0(n, t)| → 0. Elementary algebra gives

∑n
j=1 j = 1

2
n(n+ 1) and

∑n
j=1 j

2 =
1
6
n(n+ 1)(2n+ 1), so we obtain the estimate

Φn(t) = exp

{
i(n+ 1)t>µ

2n1/2
− t>Mt

6
+ ∆1(n, t)

}
,

where supt∈R1
|∆1(n, t)| → 0 as n→∞. Hence, by (3.3),

|Dn(t)| = |Φn(t)− fn(t)| ≤ |1− exp{∆1(n, t)}| ,

which establishes (3.8) and proves part (i) of the lemma.
Fix ε ∈ (0, λmin(M)/12). Suppose that t ∈ [0, δn1/2]d. Then for 1 ≤ j ≤ n, we have

‖n−3/2jt‖ ≤ δd1/2. Thus, from Lemma A.1,

ϕ(n−3/2jt) = 1 + A(n, j, t) + ∆1(n, j, t),

where A(n, j, t) is as defined at (3.9), and |∆1(n, j, t)| ≤ εn−1‖t‖2 for all t ∈ [0, δn1/2]d and
δ sufficiently small. Also note that |A(n, j, t)| ≤ Cn−1/2‖t‖, so that

|A(n, j, t)|3 ≤ Cn−3/2‖t‖3 ≤ C ′δn−1‖t‖2 ≤ εn−1‖t‖2, (3.12)

for δ sufficiently small; here C and C ′ are constants that do not depend on δ. Thus we may
apply (3.10) to obtain

n∏
j=1

ϕ(n−3/2jt) = exp

{
n∑
j=1

log [1 + A(n, j, t) + ∆1(n, j, t)]

}

= exp

{
n∑
j=1

(
A(n, j, t)− 1

2
A(n, j, t)2

)
+ ∆1(n, t)

}
,

where |∆1(n, t)| ≤ ε‖t‖2 for δ sufficiently small. Here (3.11) holds, where now, for all
t ∈ [0, δn1/2]d, similarly to (3.12), |∆0(n, j, t)| ≤ εn−1‖t‖2 for δ sufficiently small (depending
on ε). So, for δ sufficiently small, for t ∈ R2(n),

n∏
j=1

ϕ(n−3/2jt) = exp

{
i(n+ 1)t>µ

2n1/2
− t>Mt

6
+ ∆2(n, t)

}
,
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where |∆2(n, t)| ≤ ε‖t‖2 for all n sufficiently large. Then, by (3.2) and choice of ε, t>Mt ≥
12ε‖t‖2, so that, by choice of δ,

|Φn(t)| =
∣∣∣∣exp

{
−t>Mt

6
+ ∆2(n, t)

}∣∣∣∣ ≤ exp{−ε‖t‖2}, for all t ∈ R2(n).

So we have

I2(n) =

∫
R2(n)

|Φn(t)|dt ≤
∫
Rd\R1

exp
{
−ε‖t‖2

}
dt,

for δ sufficiently small and n sufficiently large. This yields part (ii) of the lemma.
Now we proceed to estimate I3(n). First note that, by (3.7),

|Φn(t)| =
n∏
j=1

|ϕ(n−3/2jt)| ≤
n∏

j=dn/2e

|ϕ(n−3/2jt)|. (3.13)

For any t ∈ R3(n), we have n−3/2jt ∈ [−πj/n, πj/n]d \ [−δj/n, δj/n]d. In particular

n⋃
j=dn/2e

{n−3/2jt} ⊂ [−π, π]d \ [−δ/2, δ/2]d.

Thus we may apply the final statement in Lemma A.4 for some ρ sufficiently small to obtain

sup
t∈R3(n)

sup
dn/2e≤j≤n

|ϕ(n−3/2jt)| ≤ e−cρ ,

for some cρ > 0. Hence from (3.13) we have supt∈R3(n) |Φn(t)| ≤ e−ncρ/2. It follows that

I3(n) ≤
∫
[−π
√
n,π
√
n]d

e−ncρ/2 ≤ (2π)dnd/2e−ncρ/2.

This gives part (iii) of the lemma.
It remains to estimate I4(n). Fix t ∈ R4(n), and consider sets

Λn(t) =
{
n−3/2jt : j ∈ {1, 2, . . . , n}

}
, and Ln(t) =

{
n−3/2ut : 1 ≤ u ≤ n

}
.

Recall that SH := 2πZd in the case H = I, and, for ρ > 0, define SH(ρ) := ∪y∈SB(y; ρ),
where B(y; ρ) is the open Euclidean ball of radius ρ centred at y ∈ Rd. Define Nn(t) :=
|Λn(t) \ SH(ρ)|. Lemma A.4 and (3.7) show that

|Φn(t)| =
n∏
j=1

|ϕ(n−3/2jt)| ≤ exp{−cρNn(t)}, (3.14)

for some positive constant cρ. We aim to show that Nn(t) is bounded below by a constant
times n. To do this we use a counting argument related to one used in [7, Lemma 4.4].

11



Let Kn(t) be the number of x ∈ SH such that B(x; ρ) ∩ Ln(t) 6= ∅. Set κ := n−3/2‖t‖.
As t ∈ [−πn3/2, πn3/2]d \ [−πn1/2, πn1/2]d, we have

π

n
≤ κ ≤ π

√
d. (3.15)

Take ρ = π/8. We claim that between any two balls of SH(ρ) that intersect Ln(t) there
is at least one point of Λn(t) \ SH(ρ). Write yj = n−3/2jt for j ∈ {1, . . . , n}. Suppose
i1, i2 ∈ {1, . . . , n} with i1 < i2 and x1,x2 ∈ SH with x1 6= x2 are such that yi1 ∈ B(x1; ρ)
and yi2 ∈ B(x2, ρ). To prove the claim we need to show that there exists j with i1 < j < i2
such that yj /∈ SH(ρ). First note that since n−3/2t ∈ [−π, π]d and yi1 ∈ B(x1; ρ), the point
yi1+1 must lie in the box Q(x1) = x1 + [−9π/8, 9π/8]d. As 9π/8 < 15π/8 = 2π − ρ, the box
Q(x1) does not intersect any balls in SH(ρ) other than B(x1; ρ). There are two cases. Either
(i) yi1+1 /∈ B(x1; ρ), or (ii) yi1+1 ∈ B(x1; ρ). In case (i) the claim is proved. In case (ii), we
have κ ≤ 2ρ, and since B(x1; 3ρ) is contained in Q(x1), there is some j with i1 + 1 < j < i2
such that yj /∈ SH(ρ), proving the claim. Hence

Nn(t) ≥ Kn(t)− 1. (3.16)

The total length of the line Ln(t) is less than κn, and each segment of Ln(t) between
neighbouring balls that intersect Ln(t) has length at least 2π−2ρ, so (Kn(t)−1)(2π−2ρ) ≤
κn, or, equivalently,

Kn(t) ≤ 4κn

7π
+ 1. (3.17)

Moreover, each ball of SH(ρ) that intersects Ln(t) contains at most 1+2ρ/κ points of Λn(t),
so that the number of points in Λn(t) ∩ SH(ρ) satisfies

n−Nn(t) ≤ Kn(t)
( π

4κ
+ 1
)
. (3.18)

Let ε > 0 be a constant. We consider the following two cases.
Case 1: Kn(t) ≤ εnκ. In this case we have from (3.18) and (3.15) that

Nn(t) ≥ n− πε

4
n− εnκ ≥ n− π

4
εn− εnπ

√
d ≥ εn,

for ε small enough.
Case 2: Kn(t) > εnκ. If κ ≥ 1

2
, then we have from (3.16) that,

Nn(t) ≥ Kn(t)− 1 ≥ (ε/3)n,

for n sufficiently large. On the other hand, if κ < 1
2
, then (3.18) and (3.17) show that

Nn(t) ≥ n−
(

4κn

7π
+ 1

)( π
4κ

+ 1
)

=
6n

7
− π

4κ
− 4κn

7π
− 1

≥ 6n

7
− n

4
− 2n

7π
− 1,
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by (3.15) and the assumption κ < 1
2
. Thus we have shown that, in any case, Nn(t) ≥ εn for

some constant ε > 0 and all n sufficiently large. Thus from (3.14) we conclude that

I4(n) =

∫
R4(n)

|Φn(t)|dt ≤ (2πn3/2)d exp {−εcρn} .

Hence we have proved the last statement in Lemma 3.2.

Now we can gather all our estimates and complete the proof of Theorem 1.3.

Proof of Theorem 1.3. As explained at the start of this section, it suffices to prove the case
where b = 0 and H = I (so h = 1). Then we have from Lemma 3.1 that

sup
x∈Ln

∣∣∣∣n3d/2pn(x)− ν
(
x− (n+ 1)

2n1/2
µ

)∣∣∣∣ ≤ 4∑
k=1

Ik(n) +

∫
Rd\R1

exp

{
−λmin(M)

6
‖t‖2

}
dt.

Fix ε > 0. Then we can choose ` sufficiently large such that the integral in the above display
is less than ε, and, by Lemma 3.2, also I2(n) ≤ ε for all n; fix such an `. Then Lemma 3.2
shows that I1(n) + I3(n) + I4(n)→ 0 as n→∞. Since ε > 0 was arbitrary, the proof of the
theorem is completed.

4 One dimension

We start with a couple of general observations. Recall that an event defined in terms of a
sequence of random variables X1, X2, . . . is permutable if its occurrence is a.s. invariant under
any finite permutation of X1, X2, . . .: see [5, p. 232] for a formal definition.

Lemma 4.1. Let d = 1. For any x ∈ R, the event {lim supn→∞Gn ≥ x} is permutable.

Proof. For any x ∈ R, we notice that for any positive integer k,{
lim sup
n→∞

Gn ≥ x

}
=

{
lim sup
n→∞

[
1

n
(S1 + S2 + · · ·+ Sk) +

1

n
(Sk+1 + Sk+2 + · · ·+ Sn)

]
≥ x

}
=

{
lim sup
n→∞

1

n
(Sk+1 + Sk+2 + · · ·+ Sn) ≥ x

}
, (4.1)

up to events of probability 0, since limn→∞
1
n
(S1 + · · · + Sk) = 0, a.s. But the event on the

right-hand side of (4.1) is invariant under permutations of X1, X2, . . . , Xk.

Lemma 4.2. Let d = 1. One and only one of the following will occur with probability 1.

(i) Gn = 0 for all n.

(ii) Gn →∞.

(iii) Gn → −∞.

(iv) −∞ = lim infn→∞Gn < lim supn→∞Gn =∞.
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Proof. We adapt the proof of Theorem 4.1.2 in [8]. Lemma 4.1 and the Hewitt–Savage zero–
one law (see e.g. [5, p. 238]) imply lim supn→∞Gn = λ, a.s., for some λ ∈ [−∞,∞]. Let
G′n := n+1

n
(Gn+1−X1) =

∑n
i=1

n−i+1
n

Xi+1. Recalling (1.1), we see the sequence (G′n) has the
same distribution as (Gn). So taking n→∞ in n

n+1
G′n = Gn+1 −X1 we obtain λ = λ−X1,

a.s., implying X1 = 0 a.s. if λ is finite, which is case (i). Otherwise, λ = −∞ or +∞. A
similar argument applies to lim infn→∞Gn. The 3 possible combinations (lim supn→∞Gn =
−∞ and lim infn→∞Gn =∞ being impossible) give (ii), (iii), and (iv).

Clearly cases (ii) and (iii) of Lemma 4.2 are transient; case (iv), when the walk oscillates,
is the most interesting case. The next result shows that oscillating behaviour is enough to
ensure recurrence provided that EX = 0.

Lemma 4.3. Suppose that d = 1 and EX = 0. Suppose that lim supn→∞Gn = +∞ and
lim infn→∞Gn = −∞. Then, for any x ∈ R, lim infn→∞ |Gn − x| = 0, a.s.

Proof. Fix ε > 0. Since Sn/n→ 0 a.s. and, by Proposition 1.1, Gn/n→ 0 a.s., we have

Gn+1 −Gn =
Sn+1 −Gn

n+ 1
→ 0, a.s.

Hence |Gn+1 − Gn| < ε for all but finitely many n. For any x ∈ R, lim supn→∞Gn = +∞
and lim infn→∞Gn = −∞ implies that there are infinitely many n for which Gn − x and
Gn+1 − x have opposite signs. Hence |Gn − x| < ε i.o.

The next result shows that Gn does oscillate when (M) holds.

Lemma 4.4. Suppose that d = 1, that E[X2] ∈ (0,∞), and that EX = 0. Then
lim supn→∞Gn = +∞ and lim infn→∞Gn = −∞.

Proof. For any x ∈ R, we have that

P
(

lim sup
n→∞

Gn ≥ x

)
≥ P (Gn ≥ x i.o.)

= P

(
∞⋂
m=1

⋃
n≥m

{Gn ≥ x}

)

= lim
m→∞

P

(⋃
n≥m

{Gn ≥ x}

)
≥ lim

m→∞
P (Gm ≥ x)

=
1

2
,

by the central limit theorem, Proposition 1.2. With Lemma 4.1 and the Hewitt–Savage zero–
one law (see e.g. [5, p. 238]), it follows that lim supn→∞Gn ≥ x, a.s., and since x ∈ R was
arbitrary, we get lim supn→∞Gn = +∞. A similar argument gives lim infn→∞Gn = −∞.
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Proof of Theorem 1.5. Under the conditions in part (i) of the theorem, the process (Gn) has
the same distribution as the process (−Gn), and so we must be in either case (i) or (iv) of
Lemma 4.2. The trivial case (i) is ruled out since E |X| > 0. Thus case (iv) applies, and Gn

changes sign i.o., so by Lemma 4.3 we obtain the desired conclusion.
Under the conditions in part (ii), Lemma 4.4 applies, so Lemma 4.2(iv) applies again,

and the same argument gives the result.

For the remainder of this section we work towards a proof of Theorem 1.6. The proof
rests on the following local limit theorem. We use the notation

Ln :=
{
n−1−1/α

(
1
2
n(n+ 1)b+ hZ

)}
,

and pn(x) := P(Gn = n1/αx).

Theorem 4.5. Suppose that d = 1 and (L) holds, i.e., P(X ∈ b + hZ) = 1 for b ∈ R and
h > 0 maximal. Suppose also that (S) holds. Then

lim
n→∞

sup
x∈Ln

∣∣∣∣n1+1/α

h
pn(x)− (α + 1)1/αg

(
(α + 1)1/αx

)∣∣∣∣ = 0, (4.2)

where g(x) is the density of the stable distribution in (S).

Proof. The proof is similar to that of Theorem 1.3, and can also be compared to the proof
of the local limit theorem for sums of i.i.d. random variables in the domain of attraction of
a stable law: see [11, §4.2].

Assumption (S) implies that n−1/αSn converges in distribution to a (constant multiple
of) a random variable with characteristic function s(t) = e−c|t|

α
, where c > 0 and α ∈ (0, 1);

see Theorems 2.2.2 and 2.6.7 of [11]. It also follows, by an examination of the statements
of Theorems 2.6.1 and 2.6.7 of [11] and the proof of Theorem 2.6.5 of [11], that for t in a
neighbourhood of 0,

logϕ(t) = −c|t|α (1 + ε(t)) , (4.3)

where |ε(t)| → 0 as t→ 0.
Define Yn =

∑n
i=1 Si and let

Φn(t) := E ein
−1−1/αtYn .

Using the d = 1 case of the inversion formula (3.4) with W =
(
Yn − n(n+1)

2
b
)
/h ∈ Z, we get

pn(x) =
1

2π

∫ π

−π
e−

iu
h (n1+1/αx−n(n+1)

2
b) E

[
e
iu
h (Yn−n(n+1)

2
b)
]

du, for x ∈ Ln.

Using the substitution t = un1+1/α/h, we obtain

n1+1/α

h
pn(x) =

1

2π

∫ πn1+1/α/h

−πn1+1/α/h

e−itxΦn(t)dt. (4.4)
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On the other hand, from the inversion formula for densities we have that

g(x) =
1

2π

∫ ∞
−∞

e−itxs(t)dt, (4.5)

where g is the density corresponding to s. It follows that

(α + 1)1/αg
(
(α + 1)1/αx

)
=

1

2π

∫ ∞
−∞

(α + 1)1/αe−it(α+1)1/αxs (t) dt

=
1

2π

∫ ∞
−∞

e−iuxs

(
u

(α + 1)1/α

)
du,

using the substitution u = (α + 1)1/αt. Since s(t) = e−c|t|
α
, we get

(α + 1)1/αg
(
(α + 1)1/αx

)
=

1

2π

∫ ∞
−∞

e−itx−
c|t|α
α+1 dt. (4.6)

Subtracting equation (4.6) from equation (4.4) we obtain

sup
x∈Ln

∣∣∣∣n1+1/α

h
pn(x)− (α + 1)1/αg

(
(α + 1)1/αx

)∣∣∣∣ ≤ 4∑
k=1

Jk(n) + J5,

where

J1(n) :=

∫ `

−`

∣∣∣Φn(t)− e−
c|t|α
α+1

∣∣∣ dt
J2(n) :=

∫
`≤|t|≤δn1/α

|Φn(t)| dt

J3(n) :=

∫
δn1/α≤|t|≤πn1/α/h

|Φn(t)| dt

J4(n) :=

∫
πn1/α/h≤|t|≤πn1+1/α/h

|Φn(t)| dt

J5 :=

∫
|t|>`

∣∣∣e− c|t|αα+1

∣∣∣ dt
for some constants ` and δ to be determined later. The statement of the theorem will follow
once we show that

lim
`→∞

lim sup
n→∞

(
4∑

k=1

Jk(n) + J5

)
= 0.

Thus it remains to establish this fact.
Since Yn has the same distribution as

∑n
j=1 jXj, we get

log Φn(t) = log
n∏
j=1

ϕ

(
jt

n1+1/α

)
=

n∑
j=1

logϕ

(
jt

n1+1/α

)
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= − c|t|
α

nα+1

n∑
j=1

jα
(

1 + ε

(
jt

n1+1/α

))
, (4.7)

using (4.3). Since |ε(t)| → 0 as t→ 0, we have

lim
n→∞

sup
t∈[−`,`]

max
j∈{1,2,...,n}

∣∣∣∣ε( jt

n1+1/α

)∣∣∣∣ = 0. (4.8)

A simple consequence of the fact that
∑n−1

k=0 k
α ≤

∫ n
0
uαdu ≤

∑n
k=1 k

α for α > 0 is

n∑
j=1

jα =
nα+1

α + 1
+O(nα). (4.9)

It follows from (4.7), (4.8) and (4.9) that

log Φn(t) = − c|t|α

α + 1
+ ∆(n, t), (4.10)

where supt∈[−`,`] |∆(n, t)| → 0 as n→∞. It follows that limn→∞ J1(n) = 0 for any ` ∈ (0,∞).
For J2(n), we see that

lim
δ→0

sup
n

sup
t∈[−δn1/α,δn1/α]

max
j∈{1,2,...,n}

∣∣∣∣ε( jt

n1+1/α

)∣∣∣∣ = 0.

So by (4.7) and (4.9) we have that (4.10) holds for t ∈ [−δn1/α, δn1/α] where, choosing
δ sufficiently small, we have that for all n sufficiently large and all t ∈ [−δn1/α, δn1/α],

|∆(n, t)| ≤ 1
2
c|t|α
α+1

. Hence for sufficiently large n, for all t ∈ [−δn1/α, δn1/α],

|Φn(t)| ≤ exp

{
−1

2

c|t|α

α + 1

}
.

It follows that, for all n sufficiently large,

sup
n
J2(n) ≤

∫
|t|≥`

e−
1
2
c|t|α
α+1 dt,

which tends to 0 as `→∞.
Next we consider J3(n). First observe that

|Φn(t)| =
n∏
j=1

∣∣∣∣ϕ( jt

n1+1/α

)∣∣∣∣ ≤ n∏
j=dn/2e

∣∣∣∣ϕ( jt

n1+1/α

)∣∣∣∣ .
Now for any δn1/α ≤ |t| ≤ πn1/α/h and any dn/2e ≤ j ≤ n, we have

δ

2
≤
∣∣∣∣ jt

n1+1/α

∣∣∣∣ ≤ π

h
.
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We can take ρ sufficiently small so that

ρ <
δ

2
≤
∣∣∣∣ jt

n1+1/α

∣∣∣∣ ≤ π

h
<

2π

h
− ρ.

So an application of the d = 1 case of Lemma A.4 gives, for all n,

sup
δn1/α≤|t|≤πn1/α/h

sup
dn/2e≤j≤n

∣∣∣∣ϕ( jt

n1+1/α

)∣∣∣∣ ≤ e−cρ ,

for some cρ > 0. Hence we have

sup
δn1/α≤|t|≤πn1/α/h

|Φn(t)| ≤ e−ncρ/2,

and hence

J3(n) =

∫
δn1/α≤|t|≤πn1/α/h

|Φn(t)| dt ≤ 2π

h
n1/αe−ncρ/2 → 0,

as n→∞.
For J4(n), we follow essentially the same counting argument as that used for I4(n) in

Section 3. Let t′ = t/h. Define

Λ′(t′) :=
{
n−1−1/αjt′ : j ∈ {1, 2, . . . , n}

}
and L′n(t′) :=

{
n−1−1/αut′ : 1 ≤ u ≤ n

}
Let κ := n−1−1/α|t′| denote the spacing of the points of Λ′(t′). Set Nn(t′) := |Λ′(t′) \ S(ρ)|,
where S(ρ) := ∪x∈2πZ(x− ρ, x+ ρ). Since πn1/α ≤ |t′| ≤ πn1+1/α, we have π

n
≤ κ ≤ π, which

is just the d = 1 case of (3.15). The counting argument in Section 3 is based on the fact that
there are n points with spacing satisfying (3.15), so the argument goes through unchanged
to give Nn(t′) ≥ εn, and we get

J4(n) =

∫
πn1/α/h≤|t|≤πn1+1/α/h

|Φn(t)| dt ≤ 2π

h
n1+1/α exp {−εcρn} → 0,

as n→ 0.
Finally, it is clear that lim`→∞ supn J5 = 0.

Proof of Theorem 1.6. First note that the assumption (S) implies that we are in case (iv) of
Lemma 4.2, so that lim infn→∞Gn = −∞ and lim supn→∞Gn = +∞.

It remains to prove that |Gn| → ∞. Fix x ∈ (0,∞) and consider the interval I = (−x, x).
Then P(Gn ∈ I) = P(n−1/αGn ∈ n−1/αI). Since the lattice spacing of Ln is of order n−1−1/α,
the interval n−1/αI contains O(n) lattice points of Ln. Theorem 4.5 and the fact that,
by (4.5), supx g(x) < ∞, shows that each such lattice point is associated with probability
O(n−1−1/α). So we get P(Gn ∈ I) = O(n−1/α), which is summable for α ∈ (0, 1). Hence the
Borel–Cantelli lemma implies that lim infn→∞ |Gn| ≥ x, a.s., and since x was arbitrary the
result follows.
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5 Transience and rate of escape

This section is devoted to the proof of Theorem 1.8 for d ≥ 2. The idea is to use the
local limit theorem to control (via Borel–Cantelli) the visits of Gn to a growing ball, along
a subsequence of times suitably chosen so that the slow movement of the centre of mass
controls the trajectory between the times of the subsequence as well. Here is our estimate
on the deviations, which is valid for any d ∈ N.

Lemma 5.1. Suppose that (M) holds and that µ = 0. Let an = dnβe for some β > 1. Then,
for any ε > 0, a.s. for all but finitely many n,

max
an≤m≤an+1

‖Gm −Gan‖ ≤ n
β
2
−1+ε.

Proof. We use the crude bound that for any ε > 0, ‖Sn‖ ≤ n(1/2)+ε all but finitely often
(f.o.), a.s. From this and the triangle inequality, it follows that

‖Gn‖ ≤
1

n

n∑
i=1

‖Si‖ ≤ max
1≤i≤n

‖Si‖ ≤ n(1/2)+ε, (5.1)

all but f.o., a.s. Next, by the triangle inequality again, for any ε > 0, a.s., all but f.o.,

‖Gn+1 −Gn‖ =

∥∥∥∥Sn+1 −Gn

n+ 1

∥∥∥∥ ≤ ‖Sn+1‖
n+ 1

+
‖Gn‖
n+ 1

≤ n−(1/2)+ε. (5.2)

It follows that for any ε > 0, a.s., all but f.o.,

max
an≤m≤an+1

‖Gm −Gan‖ = max
an≤m≤an+1

∥∥∥∥∥
m−1∑
j=an

(Gj+1 −Gj)

∥∥∥∥∥
≤ (an+1 − an) max

an≤m≤an+1−1
‖Gm+1 −Gm‖,

where an+1 − an ≤ (n+ 1)β − nβ + 1 = O(nβ−1), and, a.s., all but f.o., by (5.2),

max
an≤m≤an+1−1

‖Gm+1 −Gm‖ ≤ a−(1/2)+εn = O(n−(β/2)+βε).

Since ε > 0 was arbitrary, the result follows.

Now we are ready to prove Theorem 1.8.

Proof of Theorem 1.8. First, given the upper bound in equation (5.1), we only need to show
that for any ε > 0, a.s., for all but finitely many n,

‖Gn‖ ≥ n(1/2)−ε. (5.3)

Let B(r) denote the closed Euclidean ball, centred at the origin, of radius r > 0. We show
that for any γ ∈ (0, 1/2), Gn will return to the ball B(nγ) only f.o. To do this, we show that
along a suitable subsequence an = dnβe, β > 1, Gan returns to the ball B(2aγn) only f.o., and
Lemma 5.1 controls the trajectory between the instants of the subsequence.
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First, we claim that

P(Gn ∈ B(2nγ)) ≤ Cnd(γ−
1
2), (5.4)

for sufficiently large n and some constant C. Then

∞∑
n=1

P(Gan ∈ B(2aγn)) ≤ C

∞∑
n=1

nβd(γ−
1
2).

Assuming that

β >
2

d(1− 2γ)
(5.5)

this sum converges, so the Borel–Cantelli lemma shows that Gan /∈ B(2aγn) for all but finitely
many n, a.s. It then follows from Lemma 5.1 that between any an and an+1 with n sufficiently
large, the trajectory deviates by at most n(β/2)−1+ε. In particular, the trajectory between
times an and an+1 will not visit B(aγn) if we ensure that n(β/2)−1+ε < aγn. (See Figure 1.) The
latter condition can be achieved (for sufficiently small choice of ε) if (β/2) − 1 < βγ, i.e.,
β < (1

2
− γ)−1. Combined with (5.5) we see that we must choose β such that

max

{
1,

2

d(1− 2γ)

}
< β <

2

(1− 2γ)
,

which is possible for any γ ∈ (0, 1/2), provided d ≥ 2.
Consider n such that am ≤ n < am+1; then we have shown that a.s., for all but finitely

many n,

‖Gn‖ ≥ aγm ≥ mβγ ≥
(

mβγ

2(m+ 1)βγ

)
aγm+1.

In particular, for all n sufficiently large, ‖Gn‖ ≥ (1/4)nγ, which establishes (5.3).

Figure 1: Controlling Gn along a subsequence.

It remains to prove the claim (5.4); here we use our local limit theorem. First note that

P(Gn ∈ B(2nγ)) = P(n−1/2Gn ∈ n−1/2B(2nγ)).
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Since | detH| ∈ (0,∞), the set nH−1B(2nγ) is contained in a hypercube of side length
O(nγ+1), and this hypercube contains O(nd(γ+1)) points of any translation of Zd. Hence
n−1/2B(2nγ) contains O(nd(γ+1)) lattice points of Ln. From Theorem 1.3, we also know that
for all x ∈ Ln, P(n−1/2Gn = x) = O(n−3d/2). Summing up over all x ∈ n−1/2B(2nγ) we get

P(n−1/2Gn ∈ n−1/2B(2nγ)) = O
(
n−3d/2 × nd(γ+1)

)
= O

(
nd(γ−

1
2)
)
,

establishing (5.4). This completes the proof.

A Lattice distributions and characteristic functions

Recall that ϕ(t) := E eit
>X is the ch.f. of X.

Lemma A.1. Suppose that E[‖X‖2] <∞. For any t ∈ Rd,

ϕ(t) = 1 + it> EX − 1

2
t> E[XX>]t + ‖t‖2W (t), (A.1)

where for any ε > 0, there exists δ > 0 such that |W (t)| ≤ ε for all t with ‖t‖ ≤ δ.

Proof. Applying [8, Lemma 3.3.7] with x = t>X, we get that if E[‖X‖n] <∞, then∣∣∣∣∣E eit
>X −

n∑
m=0

E
(it>X)m

m!

∣∣∣∣∣ ≤ E

∣∣∣∣∣eit>X −
n∑

m=0

(it>X)m

m!

∣∣∣∣∣
≤ Emin

(
|t>X|n+1

(n+ 1)!
,
2|t>X|n

n!

)
.

Taking n = 2 and rearranging, we get equation (A.1), and |W (t)| ≤ EZ(t), where Z(t) =
min{‖t‖‖X‖3, ‖X‖2}. Now |Z(t)| ≤ ‖X‖2 and E[‖X‖2] < ∞. Also we have |Z(t)| ≤
‖t‖‖X‖3 → 0 a.s. as ‖t‖ → 0. So the dominated convergence theorem implies that EZ(t)→
0 as ‖t‖ → 0.

We collect some facts about lattice distributions: for reference see [1, Ch. 5] and [14, §7].
Let

H := {H : P(X ∈ b +HZd) = 1 for some b ∈ Rd}.

If X has a lattice distribution, then H is nonempty, and if X is non-degenerate then any
H ∈ H has | detH| > 0. (Here and elsewhere, ‘non-degenerate’ means not supported on any
(d − 1)-dimensional hyperplane.) Let K := {| detH| : H ∈ H}. The next result gives an
upper bound on h ∈ K; note that this bound is sharp in both of the examples in Section 2.

Lemma A.2. Suppose that X has a non-degenerate lattice distribution. Then K ⊆ (0,∞)
is bounded, and inf K = 0.

Proof. Since X has a non-degenerate lattice distribution, we have that (i) H is non-empty
and | detH| > 0 for all H ∈ H; and (ii) there exists X := {x0,x1, . . . ,xd} such that
x0, . . . ,xd are affinely independent, and P(X = xi) > 0 for each i. Statement (i) shows
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that K ⊆ (0,∞) is nonempty, and statement (ii) shows that K is bounded. Indeed, for
any H ∈ H we have that there exists b such that X ⊂ b + HZd, i.e., H−1(X − b) ⊂ Zd.
For i ∈ {1, . . . , d} let λi = xi − x0. Then the linearly independent vectors λ1, . . . , λd define
a parallelepiped P with volume | det Λ| ∈ (0,∞), where Λ denotes the d × d matrix whose
columns are λ1, . . . , λd. Since H−1(X−b) are points of Zd, we have that all the vertices of the
parallelepiped P ′ := H−1(x0 + P − b) are points of Zd. Now P ′ has volume h−1| det Λ| > 0,
but, as a parallelepiped of positive volume whose vertices are in Zd, must have volume at
least 1. Thus h−1| det Λ| ≥ 1, i.e., h ≤ | det Λ| < ∞. Also, we see that if H ∈ H, then
H/2 ∈ H as well, so if h ∈ K then h/2d ∈ K too.

Define U := {t ∈ Rd : |ϕ(t)| = 1}. Given an invertible d by d matrix H, set SH :=
2π(H>)−1Zd. The next result shows that if H ∈ H, then SH ⊆ U .

Lemma A.3. Suppose that H ∈ H. Then |ϕ(u)| = 1 for all u ∈ SH .

Proof. First observe that the norm of the characteristic function is invariant under translation
by any vector of the form of 2π(H>)−1k with k ∈ Zd. To see this, note that for any k ∈ Zd,∣∣ϕ(t + 2π(H>)−1k)

∣∣ =
∣∣∣E [eit>X · e2πik>H−1X

]∣∣∣ .
Since H ∈ H, we may write X = b +HW , where b ∈ Rd is constant and W ∈ Zd. Hence∣∣ϕ(t + 2π(H>)−1k)

∣∣ =
∣∣∣e2πik>H−1b

∣∣∣ · ∣∣∣E [eit>X · e2πik>W]∣∣∣ ,
because k>H−1b is a non-random scalar. Then, since | exp{2πik>H−1b}| = 1 and k>W ∈ Z,
so that exp{2πik>W} = 1, it follows that for any k ∈ Zd,∣∣ϕ(t + 2π(H>)−1k)

∣∣ = |ϕ(t)| . (A.2)

In particular, the case t = 0 of (A.2) shows that |ϕ(u)| = 1 if u ∈ SH .

If P(X ∈ b+HZd) = 1 and P(X = x) > 0, then x−b ∈ HZd so that x+HZd = b+HZd,
and so if H ∈ H then P(X ∈ x +HZd) = 1 for any x with P(X = x) > 0.

Lemma 21.4 of [1] shows that there is a unique minimal subgroup L of Rd such that
P(X ∈ x + L) = 1 for any x with P(X = x) > 0 and if H ∈ H then L ⊆ HZd. Moreover,
the discrete subgroup L is generated by {ξ : P(X = x + ξ) > 0} for any given x with
P(X = x) > 0. We have L = H0Zd for some (not necessarily unique) H0 ∈ H; let H0 :=
{H ∈ H : L = HZd}.

The next result gives equivalent formulations of the fundamental assumption (L). For
ρ > 0, define SH(ρ) := ∪y∈SHB(y; ρ), where B(y; ρ) is the open Euclidean ball of radius ρ
centred at y ∈ Rd.

Lemma A.4. Suppose that X is non-degenerate and H ∈ H. The following are equivalent.

(i) H ∈ H0.

(ii) | detH| is the maximal element of K.
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(iii) SH = U .

Moreover, if any one of these conditions holds then, for any ρ > 0, there exists a positive
constant cρ such that

|ϕ(u)| ≤ e−cρ , for any u /∈ SH(ρ).

Proof. Suppose that H0 ∈ H0 and H ∈ H. Let h0 = | detH0| and h = | detH|. Then,
by minimality, H0Zd ⊆ HZd, i.e., H−1H0Zd ⊆ Zd. Thus H−1H0[0, 1]d is a parallelepiped
whose vertices are all in Zd, and necessarily this parallelepiped has volume at least 1. Hence
h0/h ≥ 1, i.e., h ≤ h0. Thus if H ∈ H0 then | detH| is maximal. On the other hand,
suppose H ∈ H \ H0 and H0 ∈ H0. Then H0Zd ⊂ HZd are not equal, so there is some
x ∈ HZd with x /∈ H0Zd. Thus for y = H−1x ∈ Zd, we have that H−1H0Zd ⊂ Zd with
y /∈ H−1H0Zd. For z ∈ Zd we have y = H−1H0(z + α) where α ∈ [0, 1]d is not a vertex;
but then y − H−1H0z ∈ Zd as well. Thus β = H−1H0α is a point of Zd contained in the
parallelepiped P = H−1H0[0, 1]d, and moreover all the vertices of P are in Zd, and β is not a
vertex. Hence the parallelepiped P has volume strictly greater than 1 (see [14, p. 69]), and
so h0/h > 1. Thus if H /∈ H0 then | detH| is not maximal. Thus (i) and (ii) are equivalent.

We show that (i) implies (iii). For H ∈ H set

RH := {t ∈ Rd : x>t ∈ 2πZ for all x ∈ HZd}
= {t ∈ Rd : z>H>t ∈ 2πZ for all z ∈ Zd}.

It follows that

RH = 2π(H>)−1{y ∈ Rd : z>y ∈ Z for all z ∈ Zd} = 2π(H>)−1Zd = SH .

So RH = SH for any H ∈ H with | detH| > 0. Moreover, Lemma 21.6 of [1] shows that
RH = U if HZd is minimal. Thus (i) implies (iii).

Next we show that (iii) implies (ii). Let h? := supK, which, by Lemma A.2 is finite and
positive. Suppose that H ∈ H with | detH| = h ∈ (0, h?). Then for any ε > 0 sufficiently
small, we can find H1 ∈ H with | detH1| = h1 ∈ (h, h?] such that h1 > (1 + 2ε)h and
h1 > (1− ε)h?. Let S = 2π(H>)−1Zd and S1 = 2π(H>1 )−1Zd.

Consider x with P(X = x) > 0. Then there exist b,b1 ∈ Rd (not depending on x) and
z, z1 ∈ Zd (depending on x) such that

x = b +Hz = b1 +H1z1,

and hence
z = H−1(b1 − b) +H−1H1z1. (A.3)

Take s = 2π(H>1 )−1z1 ∈ S1. Assume, for the purpose of deriving a contradiction, that
S1 ⊆ S. Then s ∈ S, i.e., there exists z2 ∈ Zd such that

s = 2π(H>1 )−1z1 = 2π(H>)−1z2.

Together with (A.3), this implies that

z = H−1H1H
>
1 (H>)−1z2 +H−1(b1 − b).
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It follows that

x = b +Hz = b1 +H1H
>
1 (H>)−1z2.

Now if we take b2 = b1 and H2 = H1H
>
1 (H>)−1, we have shown that every x for which

P(X = x) > 0 has x ∈ b2 +H2Zd, i.e., H2 ∈ H. But

|detH2| = |detH1|
∣∣detH>1

∣∣ ∣∣det(H>)−1
∣∣ =

h21
h

> (1 + 2ε)(1− ε)h? > h?,

for ε sufficiently small, which contradicts the definition of h?. Thus there exists some x ∈ S1

with x /∈ S.
From Lemma A.3, we have S1 ⊆ U ; hence there is some x ∈ U with x /∈ S. In other

words, we have shown that if h ∈ (0, h?) then S 6= U . Thus if we assume that S = U , the
only possibility is h = h? ∈ K. Thus (iii) implies (ii).

To prove the final statement in the lemma, we may suppose that (iii) holds. Then |ϕ(u)| <
1 if u /∈ SH . To finish the proof of the lemma, it suffices to show that supu/∈SH(ρ) |ϕ(u)| < 1.
But, by the periodicity of |ϕ(u)| from (A.2), we have supu/∈SH(ρ) |ϕ(u)| = supu∈TH(ρ) |ϕ(u)|
where TH(ρ) := 2π(H>)−1[−1

2
, 1
2
]d \ B(0; ρ). Suppose that supu∈TH(ρ) |ϕ(u)| = 1; then by

the continuity of |ϕ(u)|, the supremum is attained at a point u in the compact set TH(ρ),
contradicting the fact that |ϕ(u)| < 1 for all u /∈ SH . Hence supu∈TH(ρ) |ϕ(u)| < 1, and the
proof is completed.

B Proofs of Propositions 1.1 and 1.2

Proof of Proposition 1.1. By the strong law for Sn, we have that for any ε > 0 there exists
Nε with P(Nε < ∞) = 1 such that ‖Sn − nµ‖ ≤ nε for all n ≥ Nε. Then, by the triangle
inequality,

‖Gn − (n+ 1)(µ/2)‖ =
1

n

∥∥∥∥∥
n∑
i=1

(Si − iµ)

∥∥∥∥∥
≤ 1

n

Nε∑
i=1

‖Si − iµ‖+
1

n

n∑
i=Nε

‖Si − iµ‖

≤ 1

n

Nε∑
i=1

‖Si − iµ‖+
1

n

n∑
i=1

iε.

It follows that
lim sup
n→∞

n−1 ‖Gn − (n+ 1)(µ/2)‖ ≤ ε/2,

and since ε > 0 was arbitrary we get the result.

Proof of Proposition 1.2. For any unit vector e ∈ Rd, e ·Gn is the centre-of-mass associated
with the one-dimensional random walk with increments e · Xi; thus, by the Cramer–Wold
device (see e.g [8, Theorem 3.9.5]), it suffices to establish the central limit theorem for d = 1.
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So take d = 1 and write µ = µ, M = σ2 ∈ (0,∞). It follows from (1.1) that for fixed n,
Gn has the same distribution as

G′n :=
n∑
i=1

(
i

n

)
Xi.

It thus suffices to show that n−1/2(G′n − n
2
µ) converges in distribution to N1(0, σ

2/3). We
show that this follows from [2, Corollary 8.4.1]. Define Tn,i := i

n3/2 (Xi − µ), so that

n∑
i=1

Tn,i − n−1/2
(
G′n −

n

2
µ
)
→ 0, a.s.

Then
n∑
i=1

Var(Tn,i) =
n∑
i=1

i2

n3
σ2 → σ2

3
.

It remains to verify the Lindeberg condition for triangular arrays: for every ε > 0,

lim
n→∞

n∑
i=1

E
[
T 2
n,i1{|Tn,i| > ε}

]
= 0.

But we have that

n∑
i=1

E
[
T 2
n,i1{|Tn,i| > ε}

]
≤

n∑
i=1

E
[
T 2
n,n1{|Tn,n| > ε}

]
=

n∑
i=1

1

n
E
[
(X − µ)21{|X − µ| > ε

√
n}
]

= E
[
(X − µ)21{|X − µ| > ε

√
n}
]
.

Now (X − µ)21{|X − µ| > ε
√
n} → 0 a.s. as n → ∞ and |(X − µ)21{|X − µ| > ε

√
n}| ≤

(X − µ)2 which has E[(X − µ)2] < ∞. Thus the dominated convergence theorem yields
E[(X − µ)21{|X − µ| > ε

√
n}] → 0 as n → ∞ and the Lindeberg condition is verified,

and [2, Corollary 8.4.1] shows that
∑n

i=1 Tn,i converges in distribution to N1(0, σ
2/3).
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