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1 Introduction

RR Lyrae stars play a crucial role in our understanding of astrophysics, providing both
standard candles and tests for stellar evolution (Jurcsik et al. 2006). Some aspects of the
physics governing their pulsation behaviour are still under investigation and discussion,
in particular, the Blazhko effect. The Blazhko effect is a periodic modulation in the
pulsation amplitude of light curves (Jurcsik et al. 2009, Kovács 2009).

This paper aims to contribute to a better understanding of the Blazhko effect by
studying SS Cancri (SS Cnc). SS Cnc (α2000 = 08h06m25.s56, δ2000 = +23◦15′05.′8) is a
pulsating variable star belonging to the RRab-type star Lyrae, with a pulsation period
of 0.367337 d and a metallicity corresponding to [Fe/H] = −0.03 (Elmasli et al. 2006,
Jurcsik et al. 2006).

SS Cnc is characterised by the shortest known Blazhko period (Jurcsik et al. 2006),
and hence may provide fundamental constraint for theoretical models of the Blazhko effect
(Gillet 2013).

Models have been proposed to explain the Blazkho effect. They include resonance be-
tween a radial mode and a non-radial mode (Dziembowski and Cassisi 1999, Nowakowski
and Dziembowski 2001) and the influence of a magnetic oblique rotator on the stellar
pulsations (Cousens 1983, Shibahashi 2000). However, these require a regular variation
in the light and radial velocity curves, yet the observations show more irregular variations
(Smolec et al. 2011, Gillet 2013). Also, the magnetic oblique rotator model is not sup-
ported by any clear evidence of a strong magnetic field in RR Lyrae stars (Chadid et al.
2004, Kolenberg and Bagnulo 2009). Two other models have been recently proposed to ex-
plain short period Blazhko effect. Stothers (2010) suggested that the Blazhko modulation
would be mainly caused by irregular changes of the magnetic field determining structural
variations in the outer convective zone. In order to confirm this model, a quantitative
model capable of reproducing the light modulation must be produced, in particular for
the case of a very short modulation Blazhko period (Gillet 2013). Alternatively, Buchler
and Kolláth (2011) suggested that the modulation can be caused by resonance coupling
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between a low order (typically fundamental) radial mode and a high order radial (the
so-called strange) mode (Benkő et al. 2014). Having the shortest Blazhko period so far
reported (Jurcsik et al.2006), SS Cnc represents an ideal object to investigate the validity
of these two models.

In this paper, we report a study of the light curve modulation of SS Cnc in the B, V

and R bands. We use the data to study the periodic modulation of the light curve, the
variation in the maxima and search for periodic changes in the other regions of the light
curve.

Figure 1. Light curves observed in the B, V and R bands. In order to improve readability, an offset of

−0.5 and −1.5 has been applied to the V and B data, respectively. V and B band observational data

were taken on 2015 February 07 using Draco-2 telescope and East-14 telescope, respectively. R-band

observational data were taken on 2015 February 08 using West-12 telescope. All telescopes are in

Durham, UK.

2 Observations

The observations were carried out with 14” telescopes, located in Durham, UK (Durham
Astrolab 2015), and a 0.5 m in La Palma, Canary Islands (Hardy et al. 2015). Images are
processed using standard correction and optimization techniques (Durham Astrolab 2015).
Photometric measurements are made relative to two reference stars whose magnitude is
reported by the AAVSO Photometric All-Sky Survey1 (APASS, Henden and Munari 2014)
and by VizieR catalogue (Ochsenbein et al. 2000, Zacharias et al. 2012). The two stars

1https://www.aavso.org/apass



IBVS 6213 3

are: UCAC4 567-041675, located at α2000 = 08h06m24s, δ2000 = 23◦16′54′′; and UCAC4
567-041673, located at α2000 = 08h06m21s, δ2000 = 23◦12′16′′.

The observation interval is between 2015 January 04 and 2015 March 04 in 31 separate
runs, each lasting 1–9 hours. Individual exposures are 30 s. In total 10,250 frames have
been obtained. After correcting images, the observational data are discarded if they are
affected by an instrumental magnitude error twice larger than the average (± 0.015 mag),
or if they are collected under poor observing conditions (FWHM > 5′′). Fig. 1 shows the
portion of the greatest interest of the light curve in the B, V and R pass-bands within
approximately the same observation time. Each of these light curves represents data taken
during a single observational session. In order to improve readability, an offset of −0.5
and −1.5 mag has been applied to the V and B band data, respectively.

3 Results

3.1 Light curve minima and maxima

Table 1 shows the values for maximum, minimum and average magnitude in the B, V and
R bands; the last column shows the average magnitude values from the Simbad database
(Wenger et al. 2000).

Min Mag Max Mag Avg Mag Avg Mag (Simbad)
B 13.35 ± 0.02 11.56 ± 0.03 12.48 ± 0.02 12.40 ± 0.16
V 12.76 ± 0.02 11.42 ± 0.01 12.21 ± 0.01 12.11 ± 0.15
R 12.64 ± 0.01 11.51 ± 0.02 12.15 ± 0.01 n.a.

Table 1: The values of maximum, minimum and average magnitude for each of the three band filters
used, compared with the literature data from the Simbad database for the average magnitude.

3.2 Period

The period is obtained using V STAR software which uses Date Compensated Discrete
Fourier Transform (DCDFT)2. The error on the period is computed using the jackknife
method (Efron 1982). V-Star software returns a period of 0.367405 ± 0.000002 d, which
is within 0.02% of that of 0.367337 d reported by Jurcsik et al. (2006).

The period is also determined using Period04 software which performs multiple-frequency
fits with a combination of least-squares fitting and the Discrete Fourier Transform algo-
rithm. The uncertainty is calculated using a Monte Carlo simulation (Lenz and Breger
2005, Hughes and Hase 2010). The algorithm returns the error on the frequency, αf , and
that on the amplitude; the error on the period, αP , is calculated using the functional
approach (Hughes and Hase 2010). Period04 algorithm returns a value of 0.36731 ±

0.00004 d, which is in good agreement with that of 0.367337 d reported by Jurcsik et al.
(2006), the difference between the former and the latter being smaller than 0.01%. It also
confirms the value obtained from the VSTAR algorithm.

Using Period04 algorithm, 9 harmonics of the pulsation frequency are detected, as
shown in Table 2.

The period is compared with the available literature data to search any long-term
change in the times of the light curve maxima. This is done using an observed-minus-
calculated (O − C) diagram. The observed maximum peak times, tmaxpeak, are obtained

2https://www.aavso.org/vstar-overview
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Harmonics Frequency Period Amplitude
(cycles/d) (d) (mag)

f0 2.7225 ± 0.0003 0.36731 ± 0.00004 0.420 ± 0.010
2f0 5.4443 ± 0.0002 0.18368 ± 0.00001 0.242 ± 0.002
3f0 8.1700 ± 0.0200 0.12250 ± 0.00030 0.140 ± 0.010
4f0 10.8870 ± 0.0010 0.09185 ± 0.00001 0.096 ± 0.008
5f0 13.6090 ± 0.0090 0.07348 ± 0.00005 0.060 ± 0.004
6f0 16.3000 ± 0.2000 0.06120 ± 0.00080 0.043 ± 0.009
7f0 19.0560 ± 0.0030 0.05248 ± 0.00001 0.035 ± 0.003
8f0 21.7800 ± 0.0200 0.04592 ± 0.00004 0.026 ± 0.003
9f0 24.4970 ± 0.0030 0.04080 ± 0.00001 0.021 ± 0.003

Table 2: 9 harmonics of the pulsation frequency are detected. The table shows the frequency components
and corresponding periods and amplitudes for each harmonic.

from the GEOS RR Lyr database3 (Boninsegna et al. 2002) and the calculated ones are
given by:

tmax calc = t0 + nP, (1)

where t0 is the time of a chosen reference observed maximum, n is an integer and P is the
period, which is taken to be value of 0.367337 d reported by Jurcsik (2006). No change in
period is discernible over the last 80 years (Fig. 8 in Appendix 7). There is a significant
scatter, probably due the Blazhko effect: an O−C variation of 0.011 ± 0.003 d is, indeed,
observed over the Blazhko period of 5.313 d (Fig. 9 in Appendix 7). Further pieces of
information are available in the Appendix.

3.3 The Blazhko effect

For each V -band light curve, the maximum and the minimum are calculated by fitting
a 3rd degree polynomial curve to the region around the peak ± 0.5 hours. The fitting
procedure is performed at least 5 times, and shifting the area of interest. Amplitude
and time values are calculated as the mean of the repeated measurements. The standard
errors are taken to be the associated uncertainties (Hughes and Hase 2010).

Table 3 shows the V -band maxima and the relative times when they are observed.
Time is expressed as RHJ day (RHJD = HJD − 2400000.0). The model, which describes
the maximum brightness variation, is given by:

Pvar(t) = A sin(
2πt

T
+ φ) + A0, (2)

where A is the amplitude, t is the time, T is the period and φ is the phase. A0 is a
fixed offset given by the mean of the peaks, which is not varied; hence, it is not a free
parameter. The errors on the free parameters of the model, that are, amplitude, period
and phase, are obtained minimising χ2 (Hughes and Hase 2010).

Fig. 2 shows the change of the V -band maximum magnitude over time. This confirms
Jurcsik’s study (2006), according to which SS Cnc exhibits Blazhko modulation period.
In Fig. 2, the fitting model used to characterise the peak variation is given by Eq. 2.
The numerical values of the free parameters in the model are: A = 0.019 ± 0.014 mag,
T = 5.41 ± 0.06 d, and φ = 1400 ± 700. Our Blazhko period of 5.41 ± 0.06 d is in good
agreement with the value calculated by Jurcsik et al. (2006) of 5.309 d, the difference

3http://www.ast.obs-mip.fr/users/leborgne/dbRR/
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Time Amplitude
(day) (mag)

57051.035 ± 0.005 11.482 ± 0.020
57052.867 ± 0.001 11.462 ± 0.008
57053.970 ± 0.080 11.444 ± 0.007
57055.072 ± 0.003 11.436 ± 0.008
57058.010 ± 0.004 11.466 ± 0.007
57062.055 ± 0.004 11.461 ± 0.009
57070.132 ± 0.004 11.430 ± 0.008
57073.072 ± 0.003 11.466 ± 0.010
57074.909 ± 0.002 11.444 ± 0.006
57077.844 ± 0.004 11.454 ± 0.020
57080.045 ± 0.002 11.459 ± 0.008
57082.991 ± 0.003 11.436 ± 0.009
57084.824 ± 0.002 11.465 ± 0.020
57085.927 ± 0.002 11.445 ± 0.009

Table 3: Observed V -band peaks and relative times. Time is expressed as Reduced Heliocentric Julian
Date (RHJD = HJD − 2400000.0).

being about 2 standard errors. The amplitude is also in agreement with that reported by
Jurcsik (2006); considering the peak to peak variation, our amplitude differs, by about 2
standard deviations, from the value of about 0.1 mag found by Jurcsik. The discrepancy
may depend on the very extreme values of the Blazhko cycle not taking place during the
times of observation.

The fitting model is tested using χ2 as a hypothesis test, the error bars on the data
being heteroscedastic (Hughes and Hase 2010). χ2

min, that is, the minimised sum of the
squared normalised residuals, is 9.86; ν, that is, the number of degrees of freedom of the
system, is 11 (14 data points minus the 3 free parameters, A, T , and φ in Eq. 2); dividing
the former by the latter, χ2

ν is calculated to be 0.90, which is very close to the ideal value
of 1, suggesting that the null hypothesis, which is that the model holds true, should not be
rejected. The associated probability density function, P(χ2

min; ν), is calculated to remove
any ambiguity in whether or not to reject the null hypothesis. P(9.86; 11) is 0.54, which is
slightly greater than the ideal value of 0.5; hence, it is confirmed that the null hypothesis
should not be rejected (Hughes and Hase 2010).

The difference in the peaks being small, the data are also fitted using a flat line model.
This returns a value of χ2

ν of 2.29 and P(χ2
min; ν) of 0.005. Both these two values indicate

a poor fit. Furthermore, the Bayesian information criterion (BIC) for model selection is
applied to confirm the hypothesis that the sinusoidal model is a better fit in comparison
with a flat line model. BIC is defined as

BIC = χ2 + k ln(n), (3)

where k and n are the model free parameters and the data points, respectively (Kass
and Raftery 1995). For the flat line model, BIC is 32.37, whereas the sinusoidal model is
characterised by a BIC of 17.78. The difference between the two BICs being larger than
10, there is a very strong evidence against the model with the highest BIC, that is, the
flat line model (Kass and Raftery 1995).

It should be noted that, both here and in the data analysis presented in the following
sections, the errors on the brightness are taken into account, as they have a significantly
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Figure 2. Blazhko modulation period is calculated to be 5.41 ± 0.06 d. Observational data correspond

to the V -band light curve peaks. Errors on the time are too small to be clearly seen. In the bottom

subplot, the normalised residuals are shown. RHJ Date stands for Reduced Heliocentric Julian Date.

Given the convention of a decreasing scale for increasing brightness, normalised residuals are plotted on

an inverse y-scale, in order to improve readability and visual comparison between the two subplots.

larger influence on the corresponding variable in comparison with the errors on time; this
assumption is also tested comparing ordinary least-squares algorithms and orthogonal
distance regression ones (Hughes and Hase 2010). The differences between the outputs of
the two fitting procedures tend to be small, if not negligible.

Fig. 3 shows the Blazhko effect in the phase-folded plot: the data points are folded,
and after a period the next peak is plotted at day zero. The phase-folded plot confirms the
sinusoidal nature of the Blazhko effect, and returns a more precise value for the Blazhko
period, that is, 5.313 ± 0.018 d (χ2

ν = 1.15 and P(12.63; 11) = 0.32). The amplitude
of the modulation is 0.016 ± 0.003 mag. Furthermore, the phase-folded data analysis
shows no clear structure in the distribution of the normalised residuals, which fluctuate
randomly around the zero. This suggests that even if the normalised residuals in Fig. 2
do not appear to be completely randomly distributed, this could be due to chance rather
than any actual structure. The period used to phase-fold the data is taken to be 5.3 d,
as it allows obtaining the most precise period and a value for χ2

ν very close to the ideal
one of 1.

An analysis is performed to assess whether V -band minimum magnitude exhibits any
significant change over time and any correlation with the maximum variation. No clear
evolution is found in the modulation of the minima, and no correlation seems to be present
between the maxima and the minima variations (see Appendix 8).

3.4 Periodic modulation in the ascending and descending gradients

As shown in Fig. 1, the light curve exhibits two almost linear gradients, where particular
features, such as humps, bumps or changing slope tend to be absent. The first gradient
is ascending and starts after the quadratic like curve following the minimum, and fin-
ishes before the inflection point leading to the maximum region. The second gradient
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Figure 3. Blazhko modulation period: phase folded data. V -band light curve peaks are phase-folded.

In the bottom subplot, the normalised residuals are shown. The phase-folded plot confirms the

sinusoidal nature of the Blazhko effect, and returns a value for the Blazhko period of 5.313 ± 0.018 d.

is descending and follows the straight line after the maximum region. The two gradi-
ents are fitted with a straight line. The values of the gradients for each light curve, and
the associated standard errors are computed using the same procedure described in the
previous section with regards to the maxima and minima. The light curves, where the
ascending gradient is calculated, have to meet the condition that both the maximum and
the minimum are present in the same observation.

The time evolution of the two gradients is analysed, as shown in Fig. 4 and Fig.
5. The model, used to describe the observational data, is represented by Eq. 2. The
ascending gradient varies with a periodicity of 3.80 ± 0.01 d, an amplitude of 0.09 ±

0.03 mag h−1 and a phase φ = 3.5 ± 0.1. Statistical analysis of the model is performed.
P(10.98; 4) returns a value of about 0.03, suggesting that the model should not be rejected.
Furthermore, χ2

ν is 2.75, which is smaller than the largest acceptable value for a system
with ν ≤ 5, that is, 2.9 (Hughes and Hase 2010).

The descending gradient shows a periodicity of 4.01 ± 0.07 d and an amplitude of 0.01
± 0.08 mag h−1, with φ = 7000 ± 2000. In this case, Eq. 2 is a good model to fit the
data, as χ2

ν is 1.60 and P(χ2
ν ; ν) 0.11 (Hughes and Hase 2010). The residuals, however,

are not completely randomly distributed with respect to the zero line (bottom subplot of
Fig. 5), but there is a slight tendency to have negative values for the values relative to
the last observations.

Further studies performed on a larger data set and with more sensitive instruments
are needed to confirm the behaviour of the gradients.

To assess whether there is any relationship between the descending and ascending
gradients, only the light curves, where both the gradients are observed within the same
night, are studied. Even if the analysis is based on a small number of points, the two
gradients do not seem to be proportional, as shown in Fig. 6. When the descending
gradient has low values, the ascending gradient may have high or low values. Similarly,
when the ascending gradient has low values, the descending gradient may have high or



8 IBVS 6213

Figure 4. Modulation period of the V -band light curve ascending gradient: 3.80 ± 0.01 d. In the

bottom subplot, the normalised residuals are shown. RHJ Date stands for Reduced Heliocentric Julian

Date.

Figure 5. Modulation period of the V -band light curve descending gradient: 4.01 ± 0.07 d. In the

bottom subplot, the normalised residuals are shown. RHJ Date stands for Reduced Heliocentric Julian

Date.
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low values. The magnitude variations of the two gradients being ambiguously related to
each other, a hysteresis mechanism may be present. If this were the case, they would
change in different points on the Blazhko phase.

To assess the validity of this hypothesis, the two gradients are analysed with respect
to the maxima in the Blazhko curve (Fig. 7). The ascending gradient seems to be
greater when closer to the peak in the Blazhko maxima curve. The minimum values for
the ascending gradient are, instead, reached close to the mimimum value in the Blazhko
maxima curve. The descending gradient increases its value only after the minimum in
the Blazhko maxima sine curve. The descending gradient tends to remain the same
when considering the other parts of the Blazhko maxima curve. A hysteresis behaviour
may characterise the modulation of the two gradients. As the data set is limited, this
investigation should be, however, considered only as a pilot study and hence further
analyses are needed to validate the pattern presented here.

Figure 6. The V -band light curves, where both the gradients are observed within the same night, are

studied. No linear relationship seems to be present between the ascending and the descending gradients.

For low values of the descending gradient, the ascending gradient may take both high and low values.

The ascending gradient is unambiguously characterised by low values only for high values of the

descending gradient.

4 Discussion

As mentioned in the Introduction, physical models for the Blazhko effect have been under
intense discussion in the literature.

With the main period being observed to be stable over time, the pulsating mechanism
in SS Cnc is unlikely to be produced by the light travel time effect of a binary, or by
tides generated by the binary system, as proposed by Elmasli et al. (2006). Alternatively,
models explaining the Blazhko effect as due to the resonance between radial and non-
radial modes predict that the light curve would have specific features in the frequency
spectra (a triplet structure). These features, however, have not been detected in satellite
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Figure 7. Phase folded observational data of the V -band light curve ascending and descending

gradients, taken during the same day, are compared to the Blazhko modulation period of the V -band

light curve maxima. The ascending gradient seems to mirror the behaviour of the maxima. The

descending gradient period may be characterised by a hysteresis pattern with respect to the maxima

modulation.

data. In addition, observations have found higher order components than those predicted
by this model (Smolec et al. 2011). New advances in explaining the phenomenon have
been proposed by Buchler & Kolláth (2011) using the amplitude equation formalism.
According to this model, the mechanism responsible for the modulation period would be
a resonance coupling between a low order and a high order radial mode. This model
has been also supported by Kepler space telescope data for 15 Blazhko RR Lyrae stars
(Benkő et al. 2014). On the other hand, it has been suggested that the Blazhko effect
is connected to the cyclic strengthening and weakening of turbulent convection in the
outer stellar layers, caused by a transient magnetic field, which would have an irregular
amplitude. When the magnetic field decays, the turbulent convection would become
more vigorous. The magnetic field would decay cyclically and be substituted by a new
one, produced by the turbulent-rotational dynamo (Smolec et al. 2011, Gillet 2013).
However, this theory is unlikely to be the sole mechanism behind the Blazhko effect as
it would be only effective for long modulation periods, typically for more than 100 d, in
agreement with the thermal time-scales of the pulsation in RR Lyrae stars (Molnár et
al. 2012). Therefore, it does not adequately describe the observed short-period Blazhko
modulation such as that found in SS Cnc. Indeed, using hydrodynamic simulations, it
was not possible to reproduce the Blazhko phenomenon through changes in convection
unless implausible variations in the convective parameters on short time-scales take place
(Molnár et al. 2012). Instead, numerical hydrodynamical simulations (Szabó et al. 2010,
Kolláth et al. 2011) point to the Blazhko effect being associated with the half-integer
(9:2) resonance between the fundamental pulsation mode and a destabilizing overtone.
Further studies have also pointed out that irregular amplitude modulations can occur
as a result of the nonlinear, resonant mode coupling between the 9th overtone and the
fundamental mode. Hence, some of the irregular features observed in this paper may be
due to irregular destabilization of the fundamental pulsation (Buchler & Kolláth 2011,



IBVS 6213 11

Benkő et al. 2014). Furthermore, Buchler & Kolláth model presents some advantages
in comparison with other resonance coupling models, such as the one proposed by Gillet
(2013). The latter model is based on the interaction between the shocks generated by
the fundamental mode and the first overtone. The first overtone is, however, observed
only in a minority of RR-ab type star Lyrae, even with the precision of Kepler (Benkő et
al. 2014, Molnár et al. 2017). Our observations highlighting the hysteresis-like variation
in the ascending and descending gradients and the lack of any significant variation in
the magnitude of the minima over the Blazhko period provide an additional test of the
competing models for the mechanisms driving the Blazhko effect. Further observations
are needed to confirm the results presented in this paper and investigate if a resonance
between the fundamental pulsation mode and a destabilizing overtone is present.

5 Conclusions

The characteristics of SS Cnc have been studied in order to better understand the Blazhko
effect. The Blazhko effect has been studied in the V -band. The Blazhko period is found
to be 5.313 ± 0.018 d; the amplitude of the Blazhko effect is 0.016 ± 0.003 mag. The peak
variation exhibits a sinusoidal pattern. The ascending and descending gradients show a
sinusoidal periodic modulation. The variation in the maxima, within some limitations,
seems to be associated with a corresponding variation in the ascending and descending
gradient behaviour. The minimum magnitude seems to be constant over time. The find-
ings may support the theory of resonance coupling between a low order radial mode and a
high order radial mode, which would give rise to a regular, either single or multiperiodic,
variation.
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7 Appendix. O − C

Figure 8. Observed minus calculated (O − C) diagram. Black points correspond to the observational

data collected by the authors. Excluding the data before 27000 RHJD, no significant change overt time

would be clearly observable.

The O − C diagram (Fig. 8) shows a change of the pulsation period over time. When
constructing the O − C diagram, t0 is taken to be 48289.40200 RHJD (i.e. 1991 A.D).
The choice is based on the fact that the observed maxima, available in the literature
immediately before 48289.40200 RHJD, were recorded in 1966 A.D. CCD devices being
invented in 1969, instruments before this date were, probably, not so sensitive as the ones
developed in the last 30 years.

It should be noted that the data taken before 15000 RHJD (i.e. pre-1900 A.D.) are
excluded due to the timing uncertainties of maxima from visual observations. The analysis
of the reduced data set seems apparently to confirm Elmasli’s hypothesis: the pulsation
period shows a variation, which could be due to the light travel time variation expected
in a binary system (Elmasli et al. 2006). However, given the large gaps in the O − C

data, the analysis does not lead to completely reliable conclusions.
In addition, if the data before 27000 RHJD, that is, before ≈ 1934 A.D., were not

considered, no change over time would be clearly observable. The decision not to include
data from the beginning of the last century could be justified given the limited accuracy
and precision of the detecting systems available at that time. Within this further reduced
data set, the difference between the lowest and highest value of the O − C would give
a variation of 0.031 d, that is, a negligible gradient in comparison with SS Cnc period.
The measurement of this gradient has no corresponding error, as the two values used
to compute it are retrieved from the GEOS RR Lyr database, where no errors appear
available. The data after 27000 RHJD are, however, not on a straight gradient, but
seem to fluctuate with no definite structure. Fluctuations could be due to imprecision in
the measurements. Hence, further studies of the pulsation period, alongside with radial
velocity measurements, are needed to definitely reject the hypothesis of a companion star
for SS Cnc. Further observations are needed also to assess whether the tendency of the
values to lie below the zero is due to chance, or whether there is any sinusoidal structure,
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whose minima values the literature has so far highlighted.
Fig. 9 shows a change of the pulsation period over time, considering the phase folded

V -band maxima observed in the present study. The period of 5.313 d is used to phase
fold the data. A sinusoidal modulation (Fitting model 1) may seem to be present. This
hypothesis should not be rejected as χ2

ν is 0.76, which is close to the ideal value of 1.
P (χ2

ν ; ν) is, however, 0.68, that is, slightly higher than the ideal value of 0.5; hence, the
null hypothesis may be questioned (Hughes and Hase 2010). It should be, also, noted
that the O−C variation (−0.011 ± 0.003 d) is close to the average error on the observed
peak times, that is, ± 0.003 d. In light of this and of the aforementioned value of P (χ2

ν; ν)
for the sinusoidal model, a flat line model is tested (Fitting model 2). χ2

ν and P (χ2
ν; ν)

for this flat line model are 1.78 and 0.04, respectively. These values may suggest that
the null hypothesis should not be rejected and the flat line model fits the data (Hughes
and Hase 2010). Bayesian information criterion (BIC) is, then, used to compare the two
fitting models. BIC is 25.81 for the flat line model and 16.29 for the sinusoidal one. The
difference between the two BICs being 9.52, there is a strong evidence against the model
with the highest BIC, that is, the flat line model (Kass and Raftery 1995).

Figure 9. Observed minus calculated (O − C) diagram for the phase folded V -band maxima observed

in the present study.

8 Appendix. Minima

The fitting model, given by Eq. 2 and represented by the green curve in Fig. 10, is used
to fit the data. The periodicity, T , is 5.40 ± 0.09 d. Statistical analysis of the model
is performed. ν is 4, the data points being 7 and the free parameters 3, χ2

ν is 0.17 and
P(χ2

ν ; ν) returns a value bigger than 0.5, that is 0.95, suggesting that the null hypothesis
should be, at least, questioned (Hughes and Hase 2010). The reason for this is mainly
due to the fact that the magnitude variation is of the same order of magnitude as the
errors on the data points. This is caused by the observations not being sensitive enough.
Another limitation is represented by the analysis being based on a very small data set,
which resulted in a low value of ν; this was due to long periods of bad weather. The
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two limitations can also explain the minima period being different from the maxima one.
Further investigations appear necessary to assess whether also the light curve minima
exhibit a modulation period. A flat line model is also tested (Fitting model 2). In this
case, χ2

ν is 0.74 and P(χ2
ν ; ν) is 0.62. These values suggest that the null hypothesis should

be questioned, that is, the flat model does not fit the data perfectly. The lower value
of P suggests, however, that the linear fit may be slightly better than the sinusoidal one
(Hughes and Hase 2010).

An analysis of the phase folded data is performed, confirming, for the flat line model,
a value for P(χ2

ν ; ν) of 0.62, which is close to the ideal threshold of 0.5 (Hughes and Hase
2010). The P(χ2

ν ; ν) of 0.95 for the sinusoidal model is, also, confirmed, suggesting that
this model should be rejected. The value of P(χ2

ν ; ν) for the sinusoidal model is, probably,
due to the fact that the amplitude variation is of the same order of magnitude as the
errors on the data points.

The analysis is suggestive of no significant change of the minima over time.
The modulation period of the minima seems independent from that of the maxima, as

shown in Fig. 11 and in Fig. 12.

Figure 10. The modulation period of the V -band light curve minima. In the bottom subplot, the

normalised residuals, with respecft to the sinusoidal fitting model, are shown. The minima do not seem

to show any periodic modulation. The flat line model (Fitting model 2), with P(0.74; 6) = 0.62, seems

to be slightly better than the sinusoidal one (Fitting model), characterised by P(0.17; 4) = 0.95 and

with respect to which the normalised residuals are plotted in the bottom suplot.
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Figure 11. The V -band light curve minima are shown as dots and do not show any clear correlation

with the modulation period of the maxima. The modulation period of the V -band light curve maxima

(Blazhko Model) is plotted as a continuous green line. An offset of 1.28 mag has been applied to the

Blazhko Model in order to improve readability.

Figure 12. Phase folded data points of the V -band light curve minima are shown as dots. The period

of 5.40 d is used to phase fold the minima. Phase folded modulation period of the V -band light curve

maxima is the continuous green curve, labelled as Blazhko Model. No clear correlation seems to be

present between the minima and the sinusoidal model obtained by fitting the maxima. An offset of 1.28

mag has been applied to the Blazhko Model in order to improve readability.
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