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Abstract. To a special type of grope embedded in 4-space, that we call a branch-
symmetric grope, we associate a length function for each real number q ≥ 1. This
gives rise to a family of pseudo-metrics dq, refining the slice genus metric, on the set
of concordance classes of knots, as the infimum of the length function taken over all
possible grope concordances between two knots. We investigate the properties of these
metrics. The main theorem is that the topology induced by this metric on the knot
concordance set is not discrete for all q > 1. The analogous statement for links also
holds for q = 1. In addition we translate much previous work on knot concordance
into distance statements. In particular, we show that winding number zero satellite
operators are contractions in many cases, and we give lower bounds on our metrics
arising from knot signatures and higher order signatures. This gives further evidence
in favor of the conjecture that the knot concordance group has a fractal structure.

1. Introduction

Let C be the set of smooth concordance classes of knots. This is in fact a group under
connected sum, but in this paper we will primarily consider C as a real valued metric
space, and study satellite-type operators on C which are typically not homomorphisms.

An explicit study of metrics on the set of concordance classes of knots was begun by
the first and second authors [CH14]. Metrics were studied arising from the slice genus,
and the homology norm, which measures the second Betti number of a 4-manifold in
which two knots K and J cobound an annulus. One drawback of this study is that
distances between knots are all integer valued.

Below we define, for each real number q ≥ 1, a new pseudo-metric, dq, which refines
the slice genus by taking advantage of deeper, higher order geometric information in
order to define rational (and potentially real) valued notions of distance. A length is
associated to a special type of grope that is built out of symmetric gropes, by counting
the genera of the component surfaces. The distance between two knots is then defined
as the infimum of the lengths of all possible grope concordances between the two knots.
We will often omit the adjective “pseudo.”
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We show that our metrics capture much subtlety of knot concordance, in the following
sense. Let U be the unknot, and let Ctop be the set of topologically locally flat concor-
dance classes of knots. For q > 1, the distance between two topologically concordant
knots vanishes, whence we obtain an induced pseudo-metric dqtop on Ctop.

Theorem 2.13. For any q > 1 there exist uncountably many sequences of knots {Ki}i≥0

such that dq(Ki, U) > 0 for all i but dq(Ki, U) → 0 as i→ ∞. In particular, if q > 1 then
neither of the topologies on C and Ctop, induced by dq and dqtop respectively, are discrete.

For links of at least two components, the analogous result holds for q = 1 as well in
the smooth case; see Section 7.

We stated the second sentence of the theorem for both the smooth and topological
cases, but the proof for the smooth case is relatively straightforward. A pseudo-metric
that is not a metric certainly does not induce a discrete topology, and for q > 1, every
topologically slice knot has distance zero from the unknot (see Remark 2.8), so in fact
dq only induces a pseudo-metric on C, and not a metric. Thus in the smooth case the
second sentence of Theorem 2.13 can be deduced without the first sentence, whereas in
the topological case one of the sequences of knots from the first sentence of the theorem
seems to be required. Even for Ctop, we are not able to show that dq is an honest
metric. However, in order to show non-discreteness in this way, one would have to find
a non-topologically slice knot that lies in the intersection of the grope filtration of knot
concordance i.e. that bounds a height n symmetric grope for every n. Since this latter
question remains open, one needs the sequences of knots of Theorem 2.13 to show that
Ctop is non-discrete when q > 1.

Next, in addition to studying the metric space, we consider the action of natural oper-
ators on (C, dq) called satellite operators. We show that winding number zero operators
are often contraction operators. This gives further evidence that C has the structure of
a fractal space as conjectured in [CHL11].

Let Cℓ be the set of concordance classes of m-component links with all pairwise linking
numbers vanishing. We will extend our metric to this set. Let Cm

SL be the concordance
group of m-component string links, also with pairwise linking numbers vanishing.

Proposition 5.11. For any winding number zero string link operator R(−, η) there is
an N , depending only on the geometric winding numbers of R(−, η), such that for each
q > N , R : (Cm

SL, d
q) → (Cℓ, dq) is a contraction mapping. In particular, for any winding

number zero pattern knot P , and any q greater than the geometric winding number of P ,
the satellite operator P : (C, dq) → (C, dq) is a contraction mapping.

The same holds if R is a string link, and the codomain of the operator R(−, η) becomes
Cℓ
SL.
Of course there are many possible metrics of this character which one could define on

the knot concordance set; perhaps the reader will come up with his or her own. However,
we think that any reasonable notion ought to satisfy certain meta-properties, which are
satisfied by our metrics. These are as follows.

• Refines the slice genus metric. In particular the slice genus is an upper bound.
• Winding number zero operators are contractions.
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• Reflects the known complexity of knot concordance; has a relation to the algebraic
concordance group, Casson-Gordon invariants, and the n-solvable filtration.

• Induces a non-discrete topology.

One may wonder why we do not consider metrics defined using half-gropes rather than
symmetric gropes. After all, in order to surger a surface to a disk, one only requires
that a half basis of curves bounds framed disjointly embedded disks; the other half of
first homology need not bound any surface at all. However beware that all knots with
Arf invariant zero bound half-gropes of arbitrarily large order [Sch05], therefore all Arf
invariant zero knots would likely have very small norm in such a metric space. Also,
the construction of topological disks in Freedman-Quinn [FQ90] uses symmetric gropes.
Dual spheres have an extra significance in dimension 4: the slogan of [FQ90, Chapter 5]
is that disks can be embedded topologically when there is a good fundamental group,
in the presence of dual spheres. So it seems to be natural to only consider symmetric
gropes as being close approximations to disks.

Another refinement of the slice genus already in the literature is the stable slice genus
of C. Livingston [Liv10]. However this is not known to satisfy the properties above other
than the first. In particular, no knot is known to have nonzero stable slice genus less
than 1/2.

In a future paper we will consider another metric on the smooth knot concordance
group which has a closer relationship to the bipolar filtration [CHH13] and “smooth
invariants” of knot concordance, which do not necessarily vanish on topologically slice
knots, such as those invariants arising from Heegaard Floer theory, Khovanov homology,
and contact topology.

Organization of the paper. Section 2 gives the definition of our metrics and many of
their important properties. Section 3 proves that the knot signatures give lower bounds.
Section 4 gives definitions involving string links and string link infections which are
needed for the rest of the paper. Section 5 investigates the effect of string link infections
and satellite operators on the metrics. It is shown that winding number zero operators
are contractions whenever q is larger than the geometric winding number of the operator.
Examples of knots which yield sequences of knots exhibiting the non-discrete behaviour
of C are constructed in Section 6. The analogous examples for the link case are given in
Section 7. Section 8 then proves lower bounds arising from higher order L(2) ρ-invariants.
Finally Section 9 shows that the identity map is not a quasi-isometry between our metric
spaces and knot concordance with the slice genus metric.

Concerning Tim Cochran. We are saddened by the loss of the first author, Tim
Cochran, who passed away on December 16, 2014, before the completion of this paper.
Tim played an extremely important role in this paper and wrote a large portion of it.
However, since he was neither able to verify nor influence the final version, any errors in
the paper should be attributed to the other two authors.

Acknowledgements. We would like to thank Maciej Borodzik, Jae Choon Cha, Stefan
Friedl, Kent Orr, Rob Schneiderman, Peter Teichner, and Diego Vela for their valuable
input during discussions on our grope metrics. We thank the referee for a careful reading
and many excellent, thoughtful comments that helped us to improve the exposition.
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We are grateful to the Max Planck Institute for Mathematics in Bonn, as many of the
results were obtained while all three of us were visitors there, and the paper was written
while the third author was a visitor.

2. Definition of the metric

A grope is a special type of 2-complex, with a decomposition into a union of finitely
many stages

∪
k Xk, and a specified boundary. Each stage Xk is a union of surfaces

with boundary, whose interiors are disjoint. When k ≥ 2 each surface has exactly
one boundary component. The boundary of X1 is the boundary of the grope. The
intersection Xk ∩Xj = ∅ for |k − j| > 1, and the intersection Xk ∩Xk+1, for k ≥ 1, is
equal to the boundary of Xk+1 and forms a subset of a standard symplectic basis for the
first homology of Xk.

We will work with two types of gropes. First we define symmetric gropes, then we
use these to define branch-symmetric gropes. A symmetric grope has a height n ∈ N.
For n = 1 a symmetric grope is precisely a compact, oriented surface G1 with a single
boundary component on each connected component; the boundary components are called
the base circles. A symmetric grope Gn+1 of height n+1 is defined inductively as follows:
take a height one symmetric grope G1 and let {αj | j = 1, . . . , 2g(G1)} be a standard
symplectic basis of circles for the first homology of G1 where g(G1) = genus(G1). Then
a symmetric grope of height n+ 1 is formed by attaching a connected symmetric grope

Gj
n of height n to each αj along its base circle; the base circles of Gn+1 are the boundary

components of G1. The kth stage of the symmetric grope is the union of the surfaces
that were introduced by the (n − k + 1)th inductive step in the construction, where
taking a height one symmetric grope counts as the first step. We denote the stages of a
symmetric grope from p through q inclusive by Gp:q.

Next we define a branch-symmetric grope. Let Σ1:1 be a compact oriented surface
with either one or two boundary components on each connected component and let
{αj | j = 1, . . . , 2g(Σ1:1)} be a standard symplectic basis of circles for the first homology
of Σ1:1 where α2i−1and α2i form a dual pair for each 1 ≤ i ≤ g(Σ1:1). For each αj for

j = 1, . . . , 2g(Σ1:1), attach a connected symmetric grope Gj
mj of some height mj ≥ 0 to

αj , no subsurface of which is a disk, and such that m2i = m2i−1 for 1 ≤ i ≤ g(Σ1:1). For
this purpose we take a grope of height 0 to be the empty set. This defines a branch-
symmetric grope Σ. It may be that Σ is not a symmetric grope.

In the above definition, we call the union of the two gropes attached to a single dual
pair of basis curves α2i and α2i−1 a branch of Σ. Let mj(Σ) be the height of the grope
attached to αj . We define the length of the branch to be ni(Σ) := m2i(Σ) = m2i−1(Σ).
When it is clear, we write nj instead of nj(Σ). Note that for each i, α2i−1 and α2i must
each have a grope of the same height attached to them, but the various surface stages
may have different genera (they do not have to be the homeomorphic gropes). We say

that the (k − 1)th stage surfaces Gj
(k−1):(k−1) of the symmetric gropes Gj

nj are the kth

stage surfaces Σk:k of Σ.
For a branch-symmetric grope Σ, let g1(Σ) be the genus of Σ1:1. For each i =

1, . . . , g1(Σ), we have a dual pair of basis curves α2i−1 and αi. Define gi2(Σ) to be
the sum of the genera of the two second stage surfaces which are attached to these basis
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curves α2i−1 and α2i. We denote the union of these two surfaces by Σi
2:2. If ni(Σ) = 0

then gi2(Σ) = 0. Suppose ni(Σ) ≥ 1. Note that in this case gi2(Σ) ≥ 2 since we do not
allow disks. Inductively let gik(Σ), for 3 ≤ k ≤ ni(Σ) + 1, be the sum of the genera
of the surfaces at the kth stage which are attached to the basis curves of Σi

(k−1):(k−1).

Since gik−1(Σ) is the genus of the collection Σi
(k−1):(k−1), there are precisely 2gik−1(Σ)

surfaces at the kth stage which are attached to the basis curves of Σi
(k−1):(k−1). We

denote the union of these surfaces by Σi
k:k. When it is clear, we will drop the Σ and

write gik (respectively g1) instead of gik(Σ) (respectively g1(Σ)).

Lemma 2.1. Let Σ be a branch-symmetric grope. For each 1 ≤ i ≤ g1(Σ) and 2 ≤ k ≤
ni(Σ) + 1 we have

gik(Σ) ≥ 2gik−1(Σ) ≥ 2k−1.

Proof. Each surface has genus at least one. The second inequality follows from induction.
�

We say that two oriented knots K and J in S3 cobound a branch-symmetric grope Σ
if Σ is a branch-symmetric grope, Σ1:1 has two boundary components, and we have a
framed smooth embedding ι : Σ ↩→ S3×I where ι−1(∂(S3×I)) = ∂Σ1:1, ι|ι−1(S3×{0}) = K
and ι|ι−1(S3×{1}) = −J . We also say that K and J are grope concordant via Σ.

Let q ≥ 1 be a real number. We define a metric for each q ≥ 1 as follows. For a
branch-symmetric grope Σ, define

(2.2) ∥Σ∥q :=
g1(Σ)∑
i=1

1

qni(Σ)

(
1−

ni(Σ)+1∑
k=2

1

gik(Σ)

)
.

Now we set

dq(K,J) := inf
Σ
{∥Σ∥q | K and J cobound a branch-symmetric grope Σ in S3}.

Remark 2.3.

(1) As a basic example, a surface Σ of genus g, with no higher surfaces, has ∥Σ∥q = g
for any q ≥ 1. In particular the slice genus of K is an upper bound for dq(K,U),
where U is the unknot. Any slice genus one knot with Arf invariant one has
distance one from the unknot, since the Arf invariant obstructs the knot from
bounding any height 2 grope by [COT03, Theorem 8.11 and Remark 8.2].

(2) Note that for constant g1(Σ), and q > 1, the metric dqΣ approaches zero for high
height gropes. For q > 1, the same is true if every surface has genus one, since
then the grope distance is

1− 1

2
− 1

4
− 1

8
− · · · − 1

2ni(Σ)
.

Here is a concrete example a computation of ∥Σ∥q. Consider the grope Σ
shown in Figure 1

The first stage surface has genus three, so g1 = 3. Enumerate the holes/symplectic
basis pairs from left to right. The first pair α1, α2 has no higher stage surfaces
attached to it, so n1 = 0. The second pair α3, α4 has height 2 symmetric gropes
attached, and the third pair α5, α6 has height one gropes attached. Thus n2 = 2
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...

α1

.

α2

.

α3

.

α4

.

α5

.

α6

Figure 1. A branch-symmetric grope Σ.

and n3 = 1. Next, the second stage surfaces attached to α3 and α4 are of genus
two and one respectively. Therefore g22 = 2 + 1 = 3. The third stage surfaces
have the sum of their genera g23 = (1+1)+(1+1+2+3) = 9. Finally the second
stage surfaces attached to α5 and α6 both have genus two, so g32 = 4. We can
therefore compute the length of Σ to be

∥Σ∥q = 1

q0
(1) +

1

q2

(
1− 1

3
− 1

9

)
+

1

q

(
1− 1

4

)
= 1 +

5

9q2
+

3

4q
.

Remark 2.4. There is a natural trade off between the height of gropes versus the genus
of the first stage surface. One can often increase the height of the grope at the expense
of increasing the genus of the first or subsequent stages; constructions can be found in,
for example, [CT07, Hor10], and our Proposition 5.3. For a high q parameter a high
grope is valued more, whereas for a low q parameter a low genus of the first stage has
more value. Here “more value” means: gives rise to smaller distance.

We also remark on the operation of grope splitting [Kru00, Lemma 4]. Iterating this
operation can make every surface at the second stage or higher of genus one, at the cost
of a huge increase in the first stage genus. An example is shown in Figure 2. On the left
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the first stage surface has genus one, one of the second stage surfaces has genus two and

the other has genus one. The length with q = 1 is 1− 1

3
=

2

3
. On the right, after grope

splitting, the first stage surface is genus two, and there are now four genus one surfaces
in the second stage. Two come from parallel copies of the genus one second stage surface
from the original grope, and two come from splitting the genus two second stage surface
of the original grope into two genus one second stage surfaces for the new split group,
via a tube that adds a handle to the original first stage surface. The length with q = 1

is
(
1− 1

2

)
+
(
1− 1

2

)
= 1. So we have arranged all higher surfaces to be genus one, but it

has increased the genus of the first stage and increased the length of the grope. Setting
q > 1 simply divides both lengths by q.

..

Figure 2. Grope splitting.

Lemma 2.5. For every q ≥ 1, the function dq determines a pseudo metric on the set of
concordance classes of knots C.

Proof. If two knots are concordant then they cobound an annulus, which is a grope Σ
with g1 = 0, and consequently the sum in the equation for dqΣ(K,J) is vacuous. We
note that the function dqΣ(K,J) is always nonnegative, since all the grope attached to
the first stage must be symmetric. It is helpful to consider each hole (i.e. dual pair of
curves in a symplectic basis) of Σ1:1 separately, to begin with for q = 1. For each hole
the contribution is 1 minus the contribution from higher surfaces attached to the two
associated dual curves. On the other hand the highest that each term 1/gik can be is

1/2k−1. Thus
ni+1∑
k=2

1

gik
≤

ni+1∑
k=2

1

2k−1
≤

∞∑
k=1

1

2k
= 1.

As a consequence, the infimum of ∥Σ∥1 over all possible grope concordances between
concordant knots K and J is indeed zero. When q > 1, the entire contribution of a hole
is multiplied by a positive constant 1/qni . Thus the infimum of ∥Σ∥q, over all Σ bounded
by K and J , is also zero for any q > 1. This shows that the distance function dqG is
well-defined and that it is a pseudo-metric.



8

Symmetry is apparent from the definition. The triangle inequality is also straightfor-
ward. To see this suppose K0 and K1 are grope concordant via Σ01 while K1 and K2 are
grope concordant via Σ12. Glue the two gropes together along K1 to yield a new grope
Σ02 = Σ01∪K1 Σ12 in S3× I whose distance function satisfies ∥Σ02∥q = ∥Σ01∥q +∥Σ12∥q.
By considering the infima over all possible gropes we obtain triangle inequality for dq. �
Remark 2.6. It is possible for the q = 1 distance function to vanish for knots which
cobound the simplest possible infinite grope, i.e. every surface is genus one. It is an open
question whether such knots are necessarily concordant.

We call dq : C → R≥0 the q-grope pseudo-metric. We can also define a pseudo-norm
which gives rise to the pseudo-metric.

Definition 2.7. We say that an oriented knot K in S3 bounds a branch-symmetric grope
Σ if Σ is a branch-symmetric grope, and we have a framed smooth embedding ι : Σ ↩→ B4

where ι−1(∂B4) = ∂Σ1:1 and ι|ι−1(∂B4) = K. Define ∥Σ∥q as the quantity on the right
hand side of Equation 2.2 let

∥K∥q := inf
Σ
{∥Σ∥q |K bounds a branch-symmetric grope Σ}.

Equivalently, we could define the grope q-norm of a knot K to be ∥K∥q := dq(K,U).

We note that, for knots K and J ,

∥K#− J∥q = dq(K,J).

Remark 2.8. While a topologically slice knot bounds an arbitrary height smoothly
embedded grope, the genera of the higher stages grow exponentially with the height in
the known proofs [Qui82, Proposition 2.2.4], [Gom05, Theorem 5.2]. We do not know
how to prove, and indeed doubt that it is true, that a topologically slice knot bounds
the simplest infinite grope. Thus it is possible that with the q = 1 pseudo-metric,
topologically slice knots are positive distance from the unknot, meaning that dq is a
metric instead of a pseudo-metric. On the other hand topologically slice knots have zero
distance from the unknot for q > 1, since they bound gropes with arbitrarily large height,
all of which have the same first stage genus. As mentioned in the introduction, we have
also been investigating metrics which, by taking signs into account, connect much more
closely with the known obstructions for topologically slice knots to be smoothly slice.

Example 2.9. The trefoil and the figure eight knot are not algebraically concordant,
therefore they do not cobound any grope of height 3. We will see shortly that this implies
that the distance dq(31, 41) ≥ 1/2q. The purpose of this example is to explain how to
compute an upper bound for the distance between the trefoil 31 and the figure eight knot
41. First, the connect sum is genus two, so 2 is certainly an upper bound. A standard
Seifert surface for K := 31# − 41 has an unknotted curve of self-linking zero on it, so
the slice genus of K is one, and so in fact dq(31, 41) ≤ 1. However the sum 31#41 is also
Arf invariant zero, and so therefore bounds a grope of height two, as we shall see. We
are not able to extend the genus one surface just constructed to a grope of height two.
Instead we will find a grope of height two based on a genus two first stage surface, by
finding second stage surfaces to attach to the pushed in Seifert surface F . For suitably
high values of q, this will reduce our upper bound.
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A Seifert form for K is given by

A =


1 0 0 0
1 1 0 0
0 0 −1 0
0 0 1 1


We can change basis using

B =


−2 1 1 −1
1 0 1 1
3 −1 0 1
−1 1 1 0


so that

BTAB =


−8 2 −1 −2
3 0 2 1
−1 2 4 0
−2 1 1 0


Now all diagonal entries have even self intersections. The corresponding curves bound
on F bound immersed disks further into the 4-ball than the Seifert surface F . We will
construct these disks and then improve them into framed embedded surfaces.

Draw a link (with intersections between dual curves) on the Seifert surface for 31#41
representing the curves in the new basis. Push them off the Seifert surface so that
they become disjoint. The self-linking numbers correspond to the difference between
the framing of the surfaces’ normal bundles and the desired framing in order to have a
framed grope. Since the diagonal entries of BTAB are even, the failure of second stage
surfaces to be correctly framed will be rectified by adding local cusps, which change the
framing on the boundary by ±2. The resulting self intersections will then be resolved
into additional genus.

Find a null-homotopy of the link components, ignoring the Seifert surface, recording
each time one component crosses another. This determines immersed caps for the Seifert
surface, further into the 4-ball. Add cusps to fix the framings as above. Convert all self-
intersections into genus in the standard way, adding a Seifert surface for the Hopf link,
a twisted annulus instead of a neighborhood of the intersection point. We then remove
the intersections between different surfaces, following [COT03, Theorem 8.13]. There
is a linking torus Tαi in a neighborhood of each basis curve αi ⊂ F , the boundary of
a regular neighborhood ∂(cl(ναi)), which is disjoint from the surface attached to αi, is
disjoint from F , but intersects the surface Σβi

attached to βi, where βi is the basis curve
on F (in the new basis) that is symplectically dual to αi. Tube each intersection of
another surface into (a parallel copy of) Tαi . This removes the intersection at the cost
of increasing the genus. Repeat this operation to obtain disjointly embedded framed
second stage surfaces.

It thus remains to determine upper bounds for the second stage surface genera. If we
show the sum of the genera to be at most (k1, k2) for the first and second symplectic
basis pair respectively, then

∥K∥q ≤ 1

q

(
2− 1

k1
− 1

k2

)
.
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We found a height 2 grope with k1 = 16, k2 = 4, which gives an upper bound of 27/16q.
For q sufficiently high, this upper bound improves on the genus one surface realizing the
slice genus constructed at the beginning of this example. Note that for a better upper
bound, if a certain amount of second stage genus seems inevitable, one should arrange
for as much of the genus as possible to appear above one basis pair.

While the height two grope constructed above starts with a pushed in Seifert surface,
we remark that all known constructions of higher gropes do not proceed in this way.
Instead they construct high gropes at the expense of increasing first stage genus. If this
difficulty could be circumvented, we could prove the smooth case of Theorem 2.13 with
q = 1.

We can extend our metrics to links which have all pairwise linking numbers vanishing.
We say that two ordered, oriented links K and J cobound a branch-symmetric grope Σ
if there is a framed smooth embedding of ι : Σ = ⊔jΣj ↩→ S3 × I where Σj is a branch-
symmetric grope for 1 ≤ j ≤ m, with ι−1(∂(S3 × I)) = ∂Σ1:1, ι|ι−1(S3×{0}) = K and
ι|ι−1(S3×{1}) = −J . We also say that K and J are grope concordant via Σ. Then define

∥Σ∥q :=
m∑
j=1

g1(Σj)∑
i=1

1

qnji(Σ)

(
1−

nji(Σ)+1∑
k=2

1

gjik (Σ)

)
where gjik (Σ) := gik(Σj) and nji(Σ) = ni(Σj). Now we can define

dq(K,J) = inf
Σ
{∥Σ∥q |K and J cobound a branch-symmetric grope Σ in S3 × I}.

Similarly we can define the notion of an m-component link L, with vanishing pairwise
linking numbers, bounding a branch-symmetric grope, just like we did for knots, and use
this to define the q-norm ∥L∥q of the link L. It is easy to see that ∥L∥q = dq(L,U),
where U is the m-component unlink.

Recall that an ordered, oriented, m-component link L bounds a symmetric grope G of
height n if G = G1 ⊔ · · · ⊔ Gm is a disjoint union of height n symmetric gropes Gi for
i = 1, . . . ,m, and we have a framed smooth embedding ι : G ↩→ B4 where ι−1(∂B4) = ∂G
and ι|∂Gi

= Li for all i. Here ∂Gi is the boundary of the first stage surface of Gi and
∂G = ⊔i∂Gi. In this case, we say that L ∈ Gn.

Proposition 2.10. Let L be a link and n ≥ 2. If L bounds a branch-symmetric grope Σ
that has a branch of length at most n− 1 then ∥Σ∥q ≥ 1

qn−22(n−2) . Thus, if L /∈ Gn, then

∥L∥q ≥ 1
qn−22(n−2) .

Proof. Let Σ = (Σ1, . . . ,Σm) be a branch-symmetric grope bounding L with a branch
that has length at most n − 1. Without loss of generality assume that it is the first

branch of Σ1, so n11 ≤ n− 2. By Lemma 2.1, gjik ≥ 2k−1. Therefore

∥Σ∥q ≥ ∥Σ1∥q =
g1(Σ1)∑
i=1

1

qn11

(
1−

n1i+1∑
k=2

1

g1ik

)
≥ 1

qn11

(
1−

n11+1∑
k=2

1

2k−1

)

=
1

qn112n11
≥ 1

qn−22(n−2)
=

1

(2q)n−2
.
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Thus ∥L∥q ≥ 1
qn−22(n−2) . �

Obstructions to a knot or link being (n + 2)-solvable are obstructions to the knot or
link bounding a grope of height n, so the preceding proposition translates many results
from the literature on the solvable filtration into statements about the distance between
knots in our grope metric. For the convenience of the reader we recall the definition
of n-solvability for knots, originating from [COT03], and reformulated as given below
in [CHL11, Definition 2.3].

Definition 2.11. We say that a knot K is (n)-solvable if the zero surgery manifold MK

bounds a compact oriented 4-manifold W with the inclusion induced map Hi(MK ;Z) →
Hi(W ;Z) an isomorphism for i = 0, 1, and such that H2(W ;Z) has a basis consisting of
2k embedded, connected, compact, oriented surfaces L1, . . . , Lk, D1, . . . , Dk with trivial
normal bundles satisfying:

(i) π1(Li) ⊂ π1(W )(n) and π1(Dj) ⊂ π1(W )(n) for all i, j = 1, . . . , k;
(ii) the geometric intersection numbers are Li · Lj = 0 = Di ·Dj and Li ·Dj = δij for

all i, j = 1, . . . , k.

The subgroup of C of (n)-solvable knots is denoted F(n). Such a 4-manifoldW is called
an n-solution. It is not too hard to see that an (n)-solvable knot in the sense above is
(n)-solvable in the sense of [COT03].

The following was proved in [COT03].

Theorem 2.12 (Theorem 8.11 of [COT03].). For all n ≥ 0,

Gn+2 ⊆ F(n).

Next we state our main theorem, and give the proof modulo Proposition 6.1, which
actually constructs the sequence of knots with decreasing but nonzero norms.

Theorem 2.13. For any q > 1 there exist uncountably many sequences of knots {Ki}i≥0

such that dq(Ki, U) > 0 for all i but dq(Ki, U) → 0 as i→ ∞. In particular, if q > 1 then
neither of the topologies on C and Ctop, induced by dq and dqtop respectively, are discrete.

As remarked in the introduction, there is a straightforward proof for the second sen-
tence in the smooth case, due to the fact that our q > 1 pseudo-metrics on C are not
metrics.

Proof. In Proposition 6.1 we will exhibit a family of knotsKn for each n ≥ 0 that satisfies
the following hypotheses. The knot Kn bounds a symmetric height n + 2 grope, whose
first stage has genus 2n and whose higher stages have genus one. Suppose also that
Kn /∈ Gn+3. Then these knots represent distinct concordance classes and

1

q(n+1)2(n+1)
≤ ∥Kn∥q ≤

1

2qn+1
,

where the lower bound is from Proposition 2.10 and the upper bound is by virtue of the
hypothesized height n + 2 grope. Therefore, for any q > 1, Kn converges to the class
of the trivial knot since ∥Kn∥q → 0. We will also show in the proof of Proposition 6.1
how to modify the construction to obtain infinitely many different such sequences of
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knots. This completes the proof of Theorem 2.13 modulo the rather large caveat of
Proposition 6.1. �

3. Relations to knot signatures

Theorem 3.1. Suppose that K bounds a branch-symmetric grope Σ in B4. Let g be
the number of branches of Σ for which the branch length ni is less than 2. Then the
Levine-Tristram signature σK(z) satisfies

(3.2) |σK(z)| ≤ 2g,

for any complex number z of norm one that is not a root of the Alexander polynomial
∆K .

Proof. From the branch-symmetric grope Σ, we will construct a simply connected 4-
manifold V , with ∂V ∼= S3, in which K bounds a (null-homologous) slice disk ∆. Recall
that, by definition, Σ comes equipped with an identification of its tubular neighborhood
with the product Σ × D2. For each branch of Σ for which ni is less than 2, perform
surgery on B4 along a push off α′

i of one of the two circles, αi, out of the two dual
attaching circles for that branch. For each branch of Σ for which ni is at least 2, perform
surgery on B4 along circles, α′

i, β
′
i, which are push-offs of both of the two dual attaching

circles αi, βi for that branch. Here α′
i, β

′
i are push-offs of αi, βi respectively, into the

second stage surfaces of grope that they bound. The framings for these surgeries are
dictated by the product structure on the tubular neighborhoods.

Since any link in the interior of B4 bounds a collection of disjointly embedded disks,
the result of such surgeries is a manifold V that is diffeomorphic to a punctured connected
sum of copies of either S2 × S2 or S2×̃S2. In particular σ(V ) = 0 and H2(V ) is free
abelian of rank 2g+4e, where e is the number of branches of Σ for which ni is at least 2.
Since, after surgery, the corresponding circles bound embedded disks whose interiors are
disjoint from Σ, the slice disk ∆ is essentially Σ surgered ambiently using two copies of
each of these disks. It follows that ∆ is null homologous and H2(V −∆;Z) ∼= H2(V ;Z).
In the cases α′

i, β
′
i, the process of forming ∆ is called symmetric surgery, and is described

in the proof of [COT03, Theorem 8.11, h = 1] (see also [FQ90, Section 2.3]). Moreover,
in the proof of [COT03, Theorem 8.11], a very precise collection of oriented surfaces,
E = {Sj , Bj | 1 ≤ j ≤ 2e} was described, representing a basis for the second homology of
the 2e copies of S2×S2 created by the surgeries on the 2e circles α′

j , β
′
j . We also use the

procedure of the h = 1.5 part of the proof, which tubes Si+g twice into parallel copies
of the Bi, in order to remove intersections between Si and Si+g that arose from pushing
off the contraction.

These surfaces have the following properties. They are disjointly embedded in V −∆
except that Sj intersects Bj transversely once with positive sign, and they have trivial
normal bundles. Moreover the Bj are essentially the capped-off second stage grope

surfaces, which, since third stage grope surfaces exist, satisfy π1(Bj) ⊂ π1(V − ∆)(1).
The Sj begin as 2-spheres pushed off the contraction, then half of them are tubed into
copies of the Bj to remove intersections created by the push off operation. All the Sj
also satisfy π1(Sj) ⊂ π1(V − ∆)(1). Consequently, not only is the intersection matrix
for the corresponding summand of H2(V −∆;Z) a direct sum of 2e hyperbolic matrices,
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but this matrix even represents the intersection form for H2(V − ∆;Z[t, t−1]) (for this
summand).

Now we follow the proofs of [CHH13, Proposition 4.1] and [CL86, Theorem 3.7]. Let
d = pr be a prime power and let Σd(K) denote the d-fold cyclic cover of S3 branched
over K, which is well known to be a Zp-homology sphere [CG78, Lemma 4.2]. Since
∆ represents zero in H2(V, ∂V ), H1(V −∆) ∼= Z, generated by the meridian. Thus the

d-fold cyclic cover of V branched over ∆, denoted Ṽ , is defined and has boundary Σd(K).

Since H1(V ;Zp) = 0, it follows from the proof of [CG78, Lemma 4.2] that H1(Ṽ ;Zp) = 0.

Thus the first and third betti numbers vanish: β1(Ṽ ;Zp) = 0 = β3(Ṽ ;Zp).

To compute the signature of Ṽ we make V into a closed 4-manifold and use the G-
signature theorem. Let (B4, FK) be the 4-ball together with a Seifert surface for K
pushed into its interior. Let

(Y, F ) = (V,∆) ∪ (−B4,−FK)

be the closed pair, let W̃ denote the d-fold cyclic branched cover of (B4, FK), and let

Ỹ be the d-fold cyclic branched cover of (Y, F ). Note that Zd acts on Ṽ , Ỹ , and W̃
with V , Y and B4 respectively as quotient. Choose a generator τ for this action. Let

Hi(Ỹ , j;C), 0 ≤ j < d, denote the exp(2πijd )-eigenspace for the action of τ∗ on Hi(Ỹ ;C);
let βi(Ỹ , j) denote the rank of this eigenspace, and let χ(Ỹ , j) denote the alternating

sum of these ranks (similarly for Ṽ and W̃ ). Let σ(Ỹ , j) denote the signature of the

exp(2πijd )-eigenspace of the isometry τ∗ acting on H2(Ỹ ;C) (similarly for Ṽ and W̃ ). By

a lemma of Rochlin, using the G-signature theorem [Roh71][CG78, Lemma 2.1], since Ỹ
is closed and [F ] · [F ] = 0,

σ(Ỹ , j) = σ(Y ).

Since Ỹ = Ṽ ∪ −W̃ glued along the rational homology sphere Σd(K), this translates to

σ(Ṽ , j)− σ(W̃ , j) = σ(V )− σ(B4) = 0.

Moreover it is known that σ(W̃ , j) is a pr-signature of K [Vir73], [Gor78, Chapter 12],
implying that

(3.3) σK(ωj) = σ(W̃ , j) = σ(Ṽ , j)

where ω = exp(2πid ). Since these roots of unity are dense in the circle, σK(z) = σK(ωj)
for some r and j. Hence it suffices to show that

(3.4) |σ(Ṽ , j)| ≤ 2g.

Since π1(E) ⊂ π1(V −∆)(1), the collection E lifts to a collection

Ẽ = {tkS̃i, tjB̃i | 0 ≤ k, j < d− 1, 1 ≤ i ≤ 2e}

of 4ed embedded surfaces in Ṽ . Indeed, their regular neighborhoods lift, so each has
self-intersection 0. Moreover, for different i and k the collections of lifts are disjoint

except that tkS̃i and t
kB̃i intersect transversely in one point. Since duals exist, it can

easily be seen that Ẽ is a basis for a τ -invariant subspace of H2(Ṽ ;C) of rank 4ed (for
more details see the proof of [CHH13, Theorem 6.2]). Hence we can speak of the jth
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eigenspace (Ẽ , j). For each fixed i, let S̃i and B̃i denote the τ -invariant d-dimensional

subspaces with bases τkS̃i and τ
kB̃i as k varies. Since the roots of td − 1 are distinct,

the jth eigenspaces of S̃i and B̃i have dimension one, generated by, say, sij and bij where

sis ∈ S̃i. Thus (Ẽ , j) has dimension 4e and has {sij | 1 ≤ i ≤ 2e} and {bij | 1 ≤ i ≤ 2e}
generating Lagrangian subspaces of rank 2e. Hence σ(Ẽ , j) = 0.

Finally note that the jth-eigenspace of H2(Ṽ ;C) decomposes as (Ẽ , j)⊕Dj for some Dj

(the direct sum is orthogonal with respect to the intersection form since the intersection

form restricted to (Ẽ , j) is nonsingular). Hence the rank of Dj is β2(Ṽ , j)− 4e. But the
argument on the top of page 2118 of [CHH13], in particular Equation 4.4, establishes

that β2(Ṽ , j) = β2(V ). Since the latter is 4e+ 2g, the rank of Dj is 2g. Thus

|σ(Ṽ , j)| = |σ(Dj)| ≤ rankDj = 2g,

establishing (3.4) and finishing the proof. �

Corollary 3.5. If K is a knot and z is a complex number of norm one that is not a root
of ∆K then

|σK(z)|
4q

≤ ∥K∥q.

Moreover if Arf(K) ̸= 0, then

1 +
max{|σK(z)| − 2, 0}

4q
≤ ∥K∥q.

Proof. Suppose K bounds a branch-symmetric grope Σ in B4. Let b0, b1, e denote the
number of branches of Σ for which ni is 0, 1, or greater than 1, respectively. We order
the branches so that ni = 0 for 1 ≤ i ≤ b0, ni = 1 for b0 + 1 ≤ i ≤ b0 + b1, and ni ≥ 2
for i ≥ b0 + b1 + 1. Then

∥Σ∥q = b0 +

b0+b1∑
i=b0+1

1

q

(
1− 1

gi2

)
+

g1(Σ)∑
i=b0+b1+1

1

qni

(
1−

ni+1∑
k=2

1

gik

)
≥ b0 +

b1
2q

≥ g(Σ)

2q
,

where g(Σ) = b0 + b1 By Theorem 3.1, 2g(Σ) ≥ |σK(z)|. Thus

|σK(z)|
4q

≤ ∥Σ∥q.

Since this true for every Σ, the first claimed result follows. For the second part, if
Arf(K) ̸= 0 then K cannot bound any symmetric grope of height 2, so b0 ≥ 1. Thus

b0 + b1/2q ≥ 1 +
g(Σ)− 1

2q
≥ 1 +

max{|σK(z)| − 2, 0}
4q

,

since gik ≥ 2, from which the second claimed result follows. �

4. Definitions on string links

Let I denote the interval [0, 1].
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Definition 4.1 (String links and string link concordance). Fix m points, p1, . . . , pm ∈
D2. An m-component string link L is an embedding L : {p1, . . . , pm}× I ↩→ D2× I such
that (pi, j) 7→ (pi, j) for i = 1, . . .m and j = 0, 1. An example is depicted in Figure 3.
Let Li = im({pi}×I) be the ith component of L. Denote the exterior of a string link L by
EL := D2×IrνL, where we identify L with its image, and νL is a regular neighborhood
of L.

..

Figure 3. A 3-component string link.

A concordance between string links L0, L1 is an embedding {p1, . . . , pm} × I × I ⊂
D2 × I × I with im({pi} × I × {j}) = Li

j ⊂ D2 × I × {j} for i = 1, . . . ,m and j = 0, 1,

and (pi, k, x) 7→ (pi, k, x) for i = 1, . . . ,m, k = 0, 1 and for all x ∈ I. We say that L0, L1

are string link concordant or concordant.

Note that a string link L0 is concordant to the trivial string link, LT : (pi, x) 7→ (pi, x)
for all x ∈ I, if and only if its closure

L̂0 := L0 : {p1, . . . , pm} × I ⊂ D2 × I

{(x, 0) ∼ (x, 1)| x ∈ D2}
∪S1×S1 S1 ×D2 ∼= S3

is slice. We call the string link L0 slice too.
The orientation of I (in {p1, . . . , pm} × I) determines an orientation of L. We often

conflate L and its oriented image, and use L to denote both.

Definition 4.2 (Concordance group of string links). The sum L0#L1 of two string links
is given by

L0#L1 : {p1, . . . , pm} × I ↩→ D2 × I

(pi, x) 7→

{
L0(pi, 2x) 0 ≤ x ≤ 1/2

L1(pi, 2x− 1) 1/2 < x ≤ 1

The inverse −L of a string link L is given by

−L : {p1, . . . , pm} × I ↩→ D2 × I
(pi, x) 7→ (pi,−x)
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With these notions of addition and inverse, the set of concordance classes ofm-component
string links form a group Cm

SL, the string link concordance group.

Now we give the definition of a string link infection. One should think about these as
operators (functions) Cm

SL → Cℓ.

Definition 4.3 (String link infection). Anm-multidisk D is the standardly oriented unit
disk D2 together with a collection of m ordered embedded subdisks D1, . . . , Dm in D2

with pi ∈ Int(Di). Here the pi are the same points as in Definition 4.1.
Let R = R1 ∪ · · · ∪ Rℓ ⊂ S3 be a link, let D be an m-multidisk, and let ψ : D ↩→ S3

be an embedding where R intersects D transversely and R∩ (Dr (∪i Int(Di))) = ∅. The
data (R,ψ) is called a pattern. Two patterns are equivalent if they are ambiently isotopic
through patterns. An example of thickened multidisk together with some strands of R
is shown in Figure 4.

..

Figure 4. A 3-multidisk and some strands of R that intersect it.

This data determines a satellite operator R(−, ψ) : Cm
SL → Cℓ from the concordance

group ofm-component string links to the set of concordance classes of ℓ-component links,
as follows.

Set B = D× I, oriented using the product orientation, and set H = Br (∪i Int(Di)×
I) ⊂ B. Denote the boundary of ψ(Di) by ηi(R,ψ), and let η(R,ψ) be the m-component
unlink η1(R,ψ) ∪ · · · ∪ ηm(R,ψ). When it is clear, we will suppress the (R,ψ) and just
write η or ηi. We identify D with D × {0} and note that ψ extends to an orientation
preserving embedding ψ : B ↩→ S3 with R ∩ H = ∅. Note that the image of H can be
identified with the exterior of the trivial string link T , and in this identification ηi is the
ith meridian of T . Given an m-component string link L, remove the image of H from
S3, and replace it by EL, identifying the ith longitude of L with the ith longitude of T
and the ith meridian of L with the ith meridian of T . The resulting 3-manifold is again
homeomorphic to S3 (see Definition 2.2 of [CFT09] for more details)

f : cl(S3rψ(H)) ∪ EL
∼=−→ S3.
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Denote the image f(R) by R(L,ψ), the output of the string link operator R(−, ψ) acting
on L. When it is clear, we may drop the ψ and write R(L). In addition, when L has
one component, ψ is determined by the curve η so we may write R(L, η).

By definition, the (algebraic) winding matrix of R(−, ψ) is an ℓ × m matrix over Z
with columns aw1, . . . , awm, where each awi ∈ Zℓ is the element of H1(ER;Z)

≃−→ Zℓ

represented by ηi(R,ψ). We say that an operator has (algebraic) winding number k if
every entry of the matrix is equal to k.

The geometric winding number of (R,ψ) is an m-tuple (w1, . . . , wm) ∈ (N0)
m where

wi is the minimal number of intersections of R with the subdisk Di, i.e. the number
of strands of R that pass through ηi(R,ψ). Here the minimum is taken over all repre-
sentatives of the pattern equivalence class of (R,ψ). We remark that for the geometric
winding number, the count does not take orientations into account.

The above definition can be easily adapted to the case that R is a string link. In that
case we obtain a function

R(−, η) : Cm
SL → Cℓ

SL.

Next we define the notion of grope concordance of string links.

Definition 4.4. A grope concordance between m-component string links L0 and L1 is
an embedding of an m-component grope G ⊂ D2 × I × I with ∂G ⊂ ∂(D2 × I × I),
∂G ∩ (D2 × I × {j}) = Lj and ∂G ∩ (D2 × {k} × I) = {p1, . . . , pm} × {k} × I, for
k, j ∈ {0, 1}. We say that L0 and L1 cobound the grope G.

We can easily extend our metrics to string links.

Definition 4.5. The distance dq(L, J) between two m-component string links L and

J with all pairwise linking numbers vanishing, is the distance dq(L̂, Ĵ) between their

closures L̂ and Ĵ . We say that a string link J bounds a group of height n, that is

J ∈ Gm
n , if the closure satisfies Ĵ ∈ Gm

n .

5. The effect of satellite operations and string link infections

Classical satellite operators are operators on the metric spaces (C, dq). More generally,
as described above, string link infections may be viewed as functions (Cm

SL, d
q) → (Cℓ, dq).

In this section we show that these functions are Lipschitz continuous, where the Lipschitz
constant depends on the geometric winding number. We also show that algebraic winding
number zero operators are contraction mappings for any q bigger than the geometric
winding number.

Definition 5.1. A tip of a grope Σ consists of a basis curve on a top stage surface; that
is, a surface in Σ to which no further surfaces are attached.

A cap for a grope Σ (of multiplicity k) is a planar surfaceD2r(⊔k
i=1 Int(Di)) embedded

in D4rνΣ such that Di ⊂ D2 is a disk, ∂D2 is a normal framing push off of a tip of Σ,
and the interior boundary ⊔k

i=1∂Di is a collection of meridians of L = ∂Σ1:1. Note that
this definition of a cap is not standard. We call each interior boundary component ∂Di

a tip of the cap or a cap tip. A capped grope is a grope for which every top stage surface
has a symplectic basis of tips to which caps are attached.
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We can similarly define a tip and a cap for a grope concordance, and obtain the notion
of a capped grope concordance.

Lemma 5.2. If a link L bounds a grope G in a simply-connected 4-manifold W , then
the grope can be capped.

Proof. Consider the embedded framed link {ℓj} consisting of the tip circles of G. Any
link in the interior of a simply-connected 4-manifold bounds a set of smoothly immersed
2-disks {δj} in the interior of W , which we may assume to intersect G transversely. By
boundary twisting, we may also assume that for each immersion the given framing on
{ℓj} extends to {δj} [FQ90, Corollary 1.3B]. Any such collection of framed immersions
can be replaced by a collection that is disjointly embedded (by pushing intersections
off the boundary) [FQ90, Section 1.5]. Then each transverse intersection of one of the
embedded disks δj with one of the surface stages of G can be “pushed down” (by an
isotopy) to create two new intersections with a lower stage [FQ90, Section 2.5]. In this
fashion we may assume that all of the intersections of {δj} with G are with the first stage
surfaces. After removing small 2-disks from the δj at these intersection points, we have
a collection of disjointly embedded genus zero surfaces whose boundaries are disjoint
copies of circle fibers of the regular neighborhood of the first stage surfaces. These can
be joined by disjoint tubes in this circle bundle to meridians of L, until we arrive at a
collection of caps, that is a disjoint collection of framed genus zero surfaces Fj whose
interiors are in the complement of G, wherein the boundary of Fj is the tip ℓj together
with a number of disjoint parallel copies of certain meridians of L (the cap tips). �

A similar lemma holds holds when G is a grope concordance. The next proposition is
our main technical result for constructing gropes.

Proposition 5.3. Let R(−, ψ) : Cm
SL → Cℓ be a satellite operator as in Definition 4.3

(where R is a link or string link; in the latter case we have a function Cm
SL → Cℓ

SL) with
geometric winding numbers (w1, . . . , wm), where the link η(R,ψ) bounds a symmetric
grope Gη of height h in (S3r (R∪ Int(ψ(B))))× [0, 1]. Let L0, L1 be string links that are
grope cobordant via a branch-symmetric grope GL = (GL1 , . . . , GLm) ⊂ D2× I× I. Then
R(L0, ψ) and R(L1, ψ) are grope cobordant via a branch-symmetric grope GR(L), that,
loosely speaking, is formed from wj copies of GLj for 1 ≤ j ≤ m, and multiple copies of
the components of Gη attached to tips of the copies of GL. More specifically,

(A) The genus of the first stage surface of GR(L)s is

(5.4) g1(GR(L)s) =

ℓ∑
j=1

ws
jg1(GLj );

where ws
j is the number of strands of Rs that pass through the jth subdisk of D.

(B) A branch, B′, of the new grope GR(L) consists (abstractly) of a copy of a branch, B,
of GL along with (a boundary connected sum of) copies of Gη attached to each tip
of B. Thus the length of B′ is h more than the length of B; and

(C) for each tip of B the number of copies of Gηj used is equal to the jth cap multiplicity
i.e. to the number of meridians of Lj occurring in the (punctured) cap chosen for
this tip of B.
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Moreover, in the special case that R is a slice link and L1 is a trivial string link, so
R(L1, ψ) bounds slice disks ∆ ↩→ B4, then, by appending ∆ to GR(L), we have that

R(L0, ψ) bounds a grope in B4; and for this case the weaker condition that the link
(η1, . . . , ηm) bounds a symmetric grope of height h in B4 −∆ is sufficient.

The techniques used in the following proof are very similar to those used in [CT07,
Prop. 3.4, Corollary 3.14] and [Hor10, Thm 3.4]. The difference is that we keep precise
track of the genera and the number of copies used in the construction.

Proof. We will assume that R is a link in S3. The proof is essentially the same if R is a
string link.

First, we will describe a simple grope concordance G′ between R(L0) and R(L1). By
hypothesis the string link L0 ↩→ D2×I×{0} is grope cobordant via GL, in D

2×I×I to
the string link L1 in D2 × I ×{1}. Note that by Lemma 5.2 we can choose caps for GL.
We can assume that the tips of these caps are assumed to be copies of the meridians of
the components of L1, since in the proof of Lemma 5.2 the final tubing to the boundary
can be done in either direction, to L0 or to L1; in particular we can choose all tubes so
that they lead to meridians of L1. Henceforth in this proof we assume that these caps
are part of GL. The choices of caps will affect the structure of the grope.

Let (w1, . . . , wm)L denote the string link obtained by taking, for each 1 ≤ j ≤ m, wj

parallel copies of the jth component of L and then perhaps changing the string orientation
of some of the copies as needed below. Thus (w1, . . . , wm)L0 is grope cobordant in
B× [0, 1] to (w1, . . . , wm)L1 via a grope that we will call (w1, . . . , wm)GL. The latter is
obtained by taking parallel copies of the components of GL.

For each strand of the sth component of R that passes through ηj we need a copy

of the jth component of the grope concordance GL. This copy of (GL)j will (below)

become part of the first stage surface for the sth-component of the grope concordance
G′. This observation justifies equation (5.4). Moreover this grope concordance is capped
by parallel copies of the caps of GL.

A key observation is that each of the cap tips of (w1, . . . , wm)GL will not be a meridian
of (w1, . . . , wm)L1, but rather will be a “fat meridian” of say the jth-component of L1

(a circle that encloses all the parallel copies of (L1)j which were taken). So it is best
to think of taking parallel copies of the components of L1 that lie inside the original
tubular neighborhood of L1, so that these new fat meridians are actually the same as
the meridians of the original components of L1.

Now let B denote the complementary 3-ball to ψ(B), meaning S3 = B ∪ ψ(B) where
ψ : B → S3 is an extension of ψ : D → S3 as described in Definition 4.1. Then, by
definition of string link infection, (S3, R(Lk)), for k = 0, 1, decomposes as

(ψ(B), (w1, . . . , wm)Lk) ∪ (B, R ∩ B),

for a certain choice of string orientations on the components of (w1, . . . , wm)Lk. Now
define a grope concordance G′ from R(L0) to R(L1) by

G′ ≡ (w1, . . . , wm)GL ∪ ((R ∩ B)× [0, 1]) ↩→ (B× [0, 1]) ∪ (B × [0, 1]) ≡ S3 × [0, 1].
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Recall that the boundaries of the punctured caps of G′ are copies of the meridians of the
original components of L1 in B × {1}. But these are identified, in the process of string
link infection, with copies of the circles ηj in S3 × {1}.

Now we will add extra stages to the grope concordance (S3 × [0, 1], G′). First extend
G′ to (S3 × [0, 2], G′′) by adding the product annuli R(L1) × [1, 2] ↩→ S3 × [1, 2]. By
hypothesis (η1, . . . , ηm) ↩→ S3 × {1} bounds a symmetric grope Gη of height h in (S3 r
(R ∪ Int(ψ(B)))) × [1, 2] and hence certainly bounds such a grope in the exterior of
the product annuli R(L1) × [1, 2] ↩→ S3 × [1, 2]. So, finally, we can add copies of the
±Gηj ↩→ S3× [1, 2] to each of the copies of ±ηj that occur as tips of the caps of G′′. The
resulting grope, which we call GR(L), is a grope concordance from R(L0) to R(L1) each
of whose branches has length h more than that of the corresponding branch of GL. A
schematic of the construction is shown in Figure 5.

...

G′

.

Gη

.

Gη

.

S3 × [1, 2]

.

S3 × [0, 1]

.

R(L1)× [1, 2]

Figure 5. A schematic of the construction of GR(L). The links R(Li)
are drawn as single circles and each component grope is drawn as a genus
one surface.

Moreover, in the case that R is a slice link and L1 is a trivial string link, so R(L1)
is a slice link which bounds some slice disks ∆ ↩→ B4, then, by appending ∆ to GR(L)

constructed above, we have that R(L0) bounds a grope in B4 with essentially the same
topology and combinatorics as above. Moreover, for this case the weaker condition that
the link (η1, . . . , ηm) bounds a symmetric grope of height h in B4 − ∆ is sufficient, as
can be seen by analyzing the previous paragraph. �

The following corollary generalizes [CT07, Prop. 3.4, Corollary 3.14], [Cha14b, Prop.
4.7] and [Hor10, Thm 3.4]. Recall that we denote the set of m component links that

bound a grope of height n in D4 by Gm
n , and we say that a string link J ∈ Gm

n if Ĵ ∈ Gm
n .

Corollary 5.5. Let R = (R1, . . . , Rℓ) be a slice link (or a slice string link) that admits a
system of slice disks ∆. Suppose the link (η1, . . . , ηm) is the data of a string link infection
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as above and bounds a symmetric grope of height h in the exterior of ∆. Suppose L ∈ Gm
n .

Then R(L) ∈ Gℓ
n+h.

Proof. The hypotheses of Corollary 5.5 are the hypotheses of the special case in the last
sentence of Proposition 5.3. �

Recall that a doubling operator is a special case of a string link infection wherein
R is a slice link (or a slice string link) and ℓk(ηj , Rk) = 0 for all j, k; see for exam-
ple [CHL08, p.1598],[CHL09, p.1425] and [Bur14, Def.1.3]. The latter condition says
that the algebraic winding number is zero.

Consider the special case of a string link infection when R = P is a knot and
m = 1, so η = η1 is a single curve. We can think of P as a knot in the solid torus
S3 − (B− (D1 × I)), called the pattern knot. Then P (−, η) : C → C is called a satel-
lite operator. The algebraic and geometric winding numbers are now both just single
numbers.

Corollary 5.6. For any doubling operator (R, η), R(Gm
n ) ⊂ Gℓ

n+1. In particular for any

winding number zero pattern knot P which is a slice knot when viewed in S3, the induced
(faithful) satellite operator P : C → C satisfies P (Gn) ⊂ Gn+1 for each n.

Here faithful refers to the lack of potential twistings that could occur during a satellite
operation; see [Rol90, p. 111].

Proof. Since (R, η) is a doubling operator, R = (R1, . . . , Rℓ) is an ℓ-component slice link.
Let ∆ be a collection of slice disks. Moreover (η1, . . . , ηm) forms a trivial link in S3 −R,
for which ℓk(ηj , Rk) = 0 for all j, k. Hence the following lemma can be applied to find a
collection of disjointly embedded height one gropes with boundary the ηi. The proof is
then finished by applying Corollary 5.5 with h = 1. �
Lemma 5.7. For any link (or string link) R, and any set of disjoint circles {η1, . . . , ηm}
in the exterior of R for which ℓk(ηi, ηj) = ℓk(ηi, Rk) = 0 for all i, j, k, the link {η1, . . . , ηm}
bounds a height one grope whose interior lies in (S3 − R − η1 − η2 − · · · − ηm) × [0, 1].
Moreover, for any set of slice disks ∆ for a link (or string link) R, the link {η1, . . . , ηm}
bounds a height one grope in B4 −∆.

Proof. For each ηj , choose a Seifert surface Sj whose interior is disjoint from the other
ηi. For each j, let Fj ↩→ S3 × [0, j] be the surface bounding ηj which consists of the
product annulus ηj × [0, j] together with a copy of Sj ↩→ S3 × {j}. Since the Sj occur
in different levels, these surfaces in S3 × [0,m] are disjoint. Moreover, if i ̸= j then Fj

is disjoint from ηi × [0,m]. After a slight adjustment along the annulus part of Fj , we
can assume it is disjoint from ηj × [0,m] except where they coincide at ηj × {0}. After
smoothing corners, we may assume that the Fj are transverse to each component of
R× [0,m], hence intersect each component in pairs of points with opposite signs. Using
disjoint arcs in these components as guides, we can alter each Fj by adding tubes to get
it disjoint from R× [0,m]. This yields the desired height one grope. A schematic of the
proof is shown in Figure 6.

The case of slice disks is easier and actually follows from the above case by assuming
that the slice disks are products R × [0, ϵ] near the boundary, and finding the grope in
R× [0, ϵ] as above. �
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... 1. 2. 3.

η1

.

η2

.

η3

.

S3

.

[0, 3]

.

S1

.

S2

.

S3

Figure 6. A schematic of the proof for m = 3.

Definition 5.8. A map f : (X, d) → (Y, d′) between pseudo-metric spaces is Lipschitz
continuous if there exists some δ ≥ 0, called a Lipschitz constant of f , such that
d′(f(x), f(w)) ≤ δd(x,w) for all x,w ∈ X.

Proposition 5.9. For any pattern knot P and any q, the satellite operator P : (C, dq) →
(C, dq) is Lipschitz continuous with Lipschitz constant equal to the geometric winding
number of P .

Proof. Let gw(P ) be the geometric winding number of P . Suppose that K and J are
arbitrary knots and Σ is any grope concordance between them. From Σ we will construct
a grope concordance G between P (K) and P (J). It will suffice to show that ∥G∥q ≤
gw(P )∥Σ∥q since this implies that dq(P (K), P (J)) ≤ gw(P )dq(K,J), which implies that
P is Lipschitz.

To construct G, we essentially repeat the first part of the proof of Proposition 5.3.
In this simple case, a satellite operation is a string link infection where B is simply a
thickening of the meridional disk of the solid torus in which P lies. By hypothesis the
knotted arc K ↩→ B × {0} is grope cobordant via Σ, in B × [0, 1] to the knotted arc J
in B × {1}. Taking gw(P ) parallel copies of Σ and changing some orientations, we see
that the string link gw(P )K is grope cobordant in B× [0, 1] to gw(P )J via a grope that
we will call gw(P )Σ. Let B denote the complementary 3-ball to D. Now define a grope
concordance G from P (K) to P (J) by

G ≡ gw(P )Σ ∪ ((P ∩ B)× [0, 1]) ↩→ (B× [0, 1]) ∪ (B × [0, 1]) ≡ S3 × [0, 1].

The grope G is composed of gw(P ) copies of Σ (some with altered orientation) banded
together along their boundaries. Thus the genus of the first stage surface of G is gw(P )
times that of Σ and each branch of Σ is repeated gw(P ) times. Thus, for any q,

∥G∥q = gw(P ) ∥Σ∥q,
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as desired. �
A special case of Lipschitz continuity is the following.

Definition 5.10. A map f : (X, d) → (Y, d′) between pseudo-metric spaces is called a
contraction mapping if there exists some 0 ≤ δ < 1 such that d′(f(x), f(w)) ≤ δd(x,w)
for all x,w ∈ X.

Proposition 5.11. For any winding number zero satellite operator R(−, η) there is an
N , depending only on the geometric winding numbers of R(−, η), such that for each
q > N , R : (Cm

SL, d
q) → (Cℓ, dq) is a contraction mapping. In particular, for any winding

number zero pattern knot P , and any q > gw(P ), the satellite operator P : (C, dq) →
(C, dq) is a contraction mapping.

This gives further evidence that C has the structure of a fractal space as conjectured
in [CHL11].

Proof. Suppose that R = (R1, . . . , Rℓ) and η = (η1, . . . , ηm). Let ws
j , for 1 ≤ s ≤ ℓ

and 1 ≤ j ≤ m, be the number of strands of Rs that “pass through” ηj . Let N =

maxj{
∑ℓ

s=1w
s
j} = maxj{wj}. Fix any q > N . We will show that R : (Cm, dq) → (Cℓ, dq)

is a contraction mapping; here we omit η from the notation of the operator for brevity.
In the case thatN = 0 then all ws

j = 0 so, for any L, R(L) = R. Thus dq(R(L0), R(L1)) =
0 for all L0, L1, so R is a contraction mapping for δ = 0.

Henceforth we assume that N > 0. Let δ = N
q , so 0 ≤ δ < 1. We will show that, for

all string links L0, L1,

(5.12) dq(R(L0), R(L1)) ≤ δdq(L0, L1).

Since R(−, η) has winding number zero, Lemma 5.7 ensures that the link (η1, . . . , ηm)
bounds a symmetric grope Gη of height 1 in (S3 − (R ∪ B))× [0, 1]. Suppose that L0 is
grope cobordant to L1 via a grope Σ. Recall that

∥Σ∥q =
m∑
j=1

g1(Σj)∑
i=1

1

qnji

(
1−

nji+1∑
k=2

1

gjik

)
=

m∑
j=1

∥Σj∥q

Let G denote the grope concordance from R(L0) and R(L1) constructed in Proposi-
tion 5.3. Hence

g1(Gs) =
m∑
j=1

ws
jg1(Σj); 1 ≤ s ≤ ℓ.

Moreover Gs is formed from ws
j parallel copies of Σj with copies of the surfaces Gη

attached to all tips (and sum over j). The key point is that, for fixed j the topology of
all of these copies is the same, independent of s. Thus

dq(R(L0), R(L1)) ≤∥G∥q =
ℓ∑

s=1

∥Gs∥q =
ℓ∑

s=1

m∑
j=1

ws
j∥Σj ∪ copies Gη∥q =

ℓ∑
s=1

m∑
j=1

ws
j

g1(Σj)∑
i=1

1

qnji+1

(
1−

nji+1∑
k=2

1

gjik
− 1

gjinji+2

)
.
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Now if we just ignore the last terms arising from the final stage surfaces, we can continue
with:

≤
ℓ∑

s=1

m∑
j=1

ws
j

g1(Σj)∑
i=1

1

qnji+1

(
1−

nji+1∑
k=2

1

gjik

)

=

ℓ∑
s=1

m∑
j=1

ws
j

q
∥Σj∥q =

1

q

m∑
j=1

∥Σj∥q
( ℓ∑

s=1

ws
j

)
≤N
q
∥Σ∥q = δ∥Σ∥q.

Hence dq(R(L0), R(L1)) ≤ δ∥Σ∥q. Since this is true for any grope concordance Σ from
L0 to L1, this establishes inequality (5.12).

In particular, any pattern knot P with winding number zero is an example of such a
string link operator with ℓ = m = 1 and N = gw(P ). �

6. Examples exhibiting the non-discrete behaviour

Proposition 6.1. For each m ≥ 3, there exists a family of knots, {Km
n | n ≥ 0}, such

that Km
n bounds a symmetric height n + 2 grope, whose first stage has genus 2n and

whose higher stages have genus one. Moreover Kn /∈ Gn+3.

Note that Proposition 6.1 completes the proof of Theorem 2.13.

Proof. First, for any fixed m, we will recursively define knots Km
n , each of which bounds

a symmetric grope of height n + 2. Let K0 = Km
0 be the mirror image of the knot

(independent of m) given in [CT07, Figure 3.6], that bounds a symmetric height 2 grope
whose first and second stage surfaces each have genus one. The other relevant property
of K0 is that ρ0(K0), the integral of its Levine-Tristram signature function, is negative,
as shown in [CT07, Lemma 4.5]. Let Rm be the ribbon knot shown on the left-hand
side of Figure 7. The −m in the box indicates m full left-handed twists between the
bands. Below the dotted η circle on the left of Figure 7 one sees what we mean by half
a negative twist. Let ηm be an oriented unknotted circle which has linking number zero
with Rm. An example of a curve with this property is shown as dashed in the figure.
The actual ηm we will use will be described presently. Then let Km

n ≡ Rm(Km
n−1) as

shown on the right-hand side of Figure 7, for the particular choice of η in the left-hand
diagram. Henceforth we will suppress m from the notation until it becomes relevant.
For any such η, the pair (R, η) implicitly symbolizes a winding number zero pattern,
since the exterior of a neighborhood of η is a solid torus and R gives a pattern knot
inside this solid torus, which, by abuse of notation, we will also call R. Thus R(−, η)
defines a doubling operator. Since K0 ∈ G2, by repeatedly applying Corollary 5.6, we
see that Kn ∈ Gn+2. By the second sentence of Proposition 5.11, for any q > gw(R), R
is a contraction operator, so the sequence Kn converges to the class of the trivial knot in
(C, dq). Below we will show that, for certain choices of η, Kn /∈ Gn+3 which implies that
each knot in the sequence represents a distinct concordance class. This will be enough
to show that (C, dq) does not have the discrete topology for any q > gw(R).
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−m

η
Km

n−1

−m

Km
n ≡ Rm(Km

n−1)(Rm, η)

Figure 7

However, to prove Corollary 2.13 for all q > 1 we must choose ηm very carefully and
prove that Kn bounds a symmetric height n + 2 grope whose first stage has genus 2n

and whose higher stages have genus one. For this we must look more carefully at the
gropes constructed in the proof of Proposition 5.3. In particular we are in the special
case covered in the last paragraph of the statement of that proposition. The existence
of the ηm we require is guaranteed by the following lemma.

Lemma 6.2. Let R be a knot with cyclic rational Alexander module. Then there exist a
curve η with the following properties:

(1) η bounds an embedded disk in S3 that intersects R transversely in two points with
opposite signs;

(2) η generates the rational Alexander module of R;
(3) η bounds, in the exterior of R, an embedded genus one surface with symplectic basis

x, y, each of which bounds a cap in S3 that intersects R precisely once.

Proof of Lemma 6.2. The rational Alexander module of Rm, henceforth denoted by A,
is cyclic with order (mt− (m+ 1)((m+ 1)t−m). Let α be a generator. Since Q[t, t−1]
is a PID and since t1 + t−1 − 2 is relatively prime to the order of A (t±1 − 1 cannot be
a factor of any Alexander polynomial of a knot), there is a class β ∈ A such that

(6.3) α = (t1∗ − 1 + t−1
∗ − 1)β.

After possibly by multiplying α and β by the same positive integer, we may assume
without loss that α and β come from the integral Alexander module and hence are
represented by homotopy classes η̃ and b in π1(S

3−Rm)(1), and that equation (6.3) holds
in the integral Alexander module. The desired circle η will be a particular representative
of the homotopy class η̃. By (6.3) we have the following statement in π1(S

3 −R):

η̃γ = (µbµ−1)b−1(µ−1bµ)b−1 = [µ, bµ−1b−1],

where µ is the homotopy class of a fixed meridian of Rm and γ ∈ π1(S
3−R)(2). Redefine

η̃ = η̃γ since they both represent α. Now the proof follows that of [CT07, Lemma
3.9]. Of course µ is represented by an actual geometric meridian, by which we mean an
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oriented circle in S3−R that bounds an embedded disk D1, that hits R in only one point
and which contains the basepoint in its boundary. We can represent bµ−1b−1 by another
such meridian, that is there is an embedded disk, D2, whose boundary represents this
class, which intersects R in one point, and which intersects D1 only at the basepoint.
These two disks will be the caps of the punctured torus we now define. The circles
x ∨ y ≡ ∂D1 ∪ ∂D2 form an embedded wedge of circles. We can thicken each circle to
get two plumbed annuli, forming an embedded punctured torus, Gη, whose boundary
realizes the commutator η̃ (see [CT07, Lemma 3.9] for a figure and more details). Let η
be the boundary of Gη. Then η satisfies 2. and 3. Moreover the torus can be surgered
along either D1 or D2 showing that η also bounds an embedded disk that hits R in two
points. This completes the proof of Lemma 6.2. �

Now assume that η satisfies the properties in Lemma 6.2. Thus η bounds a genus
one height one grope Gη in the exterior of a slice disk ∆ for R. Moreover this grope
is capped by disks D1, D2, each of which intersects ∆ in single point. Now suppose,
inductively, that Kn−1 bounds a symmetric height (n+1) grope G whose first stage has
genus 2n−1, whose higher stage surfaces all have genus one and moreover where each
tip of G has a cap with multiplicity 1. Thus the punctured caps are merely “pushing”
annuli. We will apply the last paragraph of Proposition 5.3 with h = 1. By part (A)
of Proposition 5.3, R(Kn−1) bounds a grope Σ whose first stage has genus twice that
of G, namely 2n. Moreover, by part (B) of Proposition 5.3, the union of all except the
top stage surfaces of Σ consists of a boundary connected sum of two parallel copies of
G, so all of the surfaces in stages 2 through n + 1 are genus one surfaces. By part (C)
of Proposition 5.3, the (n + 2)th-stage of Σ consists of these pushing annuli together
with one copy of the punctured torus Gη per annulus. Thus Kn bounds a symmetric
height n + 2 grope Σ whose first stage has genus 2n and whose higher stage surfaces
all have genus one. Moreover each tip of Σ is capped by a copy of D1 or D2 which
have multiplicity one. This finishes the inductive step of the proof that Kn bounds a
symmetric height n + 2 grope Σ whose first stage has genus 2n and whose higher stage
surfaces all have genus one. The base case, namely that K0 bounds a symmetric height
2 grope whose first stage has genus 20, whose second stage surfaces have genus one and
where each tip has a cap with multiplicity 1, was shown in [CT07, Figure 3.13].

It only remains to show that, if m ≥ 3, Km
n /∈ Gn+3. First, we claim that each

(Rm, ηm) is a robust doubling operator in the sense of [CHL11, Def. 7.2]. This requires
that A(Rm) is cyclic with order p(t)p(t−1) where p(t) is prime, generated by η. We
have these properties. Moreover we must verify that, for each isotropic submodule
P ⊂ A(Rm), either P is a Lagrangian arising from the kernel of the inclusion to a ribbon

disk exterior, or else the corresponding first-order L(2)-signature of Rm, ρ(MR, ϕP ) is
non-zero [CHL11, Def. 7.1]. In our case Rm has two Lagrangian subspaces corresponding
to two ribbon disks and only one other isotropic submodule, namely P = 0. In this case
the corresponding first-order signature is denoted ρ1(Rm). The details to justify these
statements are in [CHL11, Example 7.3]. The fact that if m ≥ 3 then ρ1(Rm) < 0 is
shown in [Dav12, Theorem 7.2.1]. Thus Km

n is the result of applying n successive robust
doubling operators to the Arf invariant zero knot K0. Hence [CHL11, Theorem 7.5]
(or more precisely its proof) can be applied to Km

n to deduce that no positive multiple
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cKm
n lies in F(n.5) as long as the equation dρ0(K0) + ρ(Rm, ϕP ) = 0 has no solution

for 1 ≤ d ≤ c and for any first-order signature of Rm (see equation (7.8) of the proof
of [CHL11, Theorem 7.5]). Since we saw that ρ0(K0) < 0, and since the set of first
order signatures of Rm is {0, 0, ρ1(Rm)}, this equation cannot be solved. It follows that
no nonzero multiple of Km

n lies in F(n+1) and hence no non-zero multiple of Km
n lies in

G(n+3) by [COT03, Theorem 8.11]. �
Remark 6.4. Since the Alexander polynomials of the Rm are (strongly) coprime, the
set {Km

n | n ≥ 0,m ≥ 3} is linearly independent in C by [CHL11, Theorem 7.7] (with
the proof modified similarly to above).

Scholium 6.5. For any q > 1 there exist uncountably many sequences of knots {Kmn
n }∞n=1

such that ∥Kmn
n ∥q > 0 for all n and mn but whose norms satisfy

lim
n→∞

∥Kmn
n ∥q = 0.

Every pair of elements in all of these sequences represent different concordance classes.

Proof. Alter the numbers mn used in the infinite sequence of knots whose norms tend
to zero. There are at least as many different choices of sequences of mn as there are real
numbers. �

7. The link concordance space is non-discrete for q = 1

In the case of knots, in order to show that the spaces of topological and smooth
concordance classes of knots are not discrete, we had to restrict to q > 1. When q = 1,
we do not know that d1(K,U) = 0 for all topologically slice knots and links so the
distance function d1 is only well defined on Cm, the set of smooth concordance classes
of m-component links. In this situation, which is somewhat complementary to that of
Theorem 2.13 (topological, knots, q > 1 versus smooth, links, q = 1), we can find a
sequence of links whose norms tend to zero without ever reaching zero.

Proposition 7.1. For anym ≥ 2 there exists a sequence ofm-component links L1, L2, . . .
such that each link has ∥Lj∥1 ̸= 0 but limj→∞ ∥Lj∥1 = 0. In particular, the link concor-
dance space (Cm, d1) is not discrete.

Note that the same construction as in the following proof will also provide the proof
for q > 1, but we focus on q = 1 since that is the outstanding case. For q > 1, the only
difference is to replace 1/2n−1 with 1/(2q)n−1 in the proof below.

Proof. Start with a Hopf link H = L0 ∪L1, and Bing double the L1 component n times,
to obtain a link L = L0 ∪ BDn(L1) with 2n + 1 components. According to Lin [Lin91]
(see also [Ott14, Corollary 6.6]), if a link bounds a grope of height n, then the Milnor
invariants µL(I) vanish for |I| ≤ 2n.

The component L0 bounds a symmetric grope Σ0 of height n, where all the surface
stages are of genus one. In fact this grope is embedded in S3rL. The norm ∥Σ0∥1 =
1/2n−1. With L0 deleted, BDn(L1) is an unlink, so bounds a collection of disks in the
interior of B4, which we call unlinking disks. Denote the union of Σ0 with the unlinking
disks by Σ. We have ∥Σ∥1 = 1/2n−1 and thus ∥L∥1 ≤ 1/2n−1. (Strictly speaking, since
we do not allow disks, we replace a small neighborhood of each of the disks with an
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arbitrary height grope, to obtain a sequence of gropes with length tending to zero; the
resulting infimum is zero.)

Next, nonrepeating Milnor’s invariants of length 2n + 1 are nonvanishing for L by
[Coc90, Theorem 8.1], thus L does not bound any grope of height n + 1. By Propo-
sition 2.10 we have that ∥L∥1 ≥ 1/2n−1, so that we in fact determine ∥L∥1 = 1/2n−1

precisely.
We need to improve this to find a sequence of links realizing a subsequence of the

same sequence of norms, but for which each link in the sequence has the same number
of components m, for m at least 2. To achieve this, choose a collection of bands for
the components in the complement of the unlinking disks for BDn(L1), that connect
components of L as desired. As long as the resulting multi-index, obtained from identi-
fying the indices of banded together components, has a nonvanishing Milnor’s invariant
associated to it, the same lower bound for the norm applies. For each multi-index I and
m ≥ 2, in [Coc90, Theorem 7.2], the first author defined the integer δ(I) to be the least
nonzero element of {|µL(I)|}, where L ranges over all m-component links, if there is a
link L with µL(I) ̸= 0. Otherwise δ(I) = 0. In the proof of [Coc90, Theorem 7.2], for
each m ≥ 2 and each multi-index I, the first author showed that the Milnor’s invariants
of the examples we constructed above (by iterated Bing doubles and banding the com-
ponents together) realize δ(I). Moreover, for m ≥ 2 and for any N > 0, there exists a
multi-index I with m distinct indices, with |I| ≥ N , and with δ(I) ̸= 0 by [Orr89]. This
gives rise to a sequence of m-component links {J1, J2, . . . } with lower bounds on their

norms given by ∥Ji∥ ≥ 1/2F (i), for some strictly increasing function F : N → N. That
is, Ji is obtained from the Hopf link by Bing doubling one of the components F (i) + 1
times and then performing some band moves.

We claim that the function F also determines an upper bound ∥Ji∥1 ≤ 1/2F (i). To
see this, we need to see that the banded together link Ji still bounds a grope of height
F (i) + 1. We construct this grope as we move into D4 in the radial direction. First

perform saddle moves to cut the bands. This yields the original (2F (i)+1+1)-component
link L constructed above for n = F (i)+1. Next attach the grope Σ0 in a radial slice, then
move slightly further into the 4-ball to attach the unlinking disks for L with L0 deleted.
This constructs a grope with the same combinatorics as before, except there are fewer
link components and therefore fewer disk (or more accurately, arbitrary height grope)
components to the grope. This completes the proof of the claim. Thus we determine the
norms of the sequence of links J1, J2, . . . precisely, as ∥Ji∥1 = 1/2F (i). Since F is strictly
increasing, this completes the proof that the link concordance space is non-discrete.

�

Remark 7.2. We note that, as in the knot case above, since one can choose different
Milnor’s invariants of length n to be realised by the links constructed, there are in
fact uncountably many distinct sequences of (concordance classes of) links having the
property that their norms limit to zero but are all nonzero.



29

8. Lower bounds from higher order ρ-invariants

In this section will define lower bounds on the grope norms which can arise from all
possible gropes of height n. We will do this by investigating obstructions from higher
order ρ-invariants. The next definition first appeared in [Har08].

Definition 8.1 (Rational derived series). For a group G, the rational derived series is

defined inductively as follows. Let G
(0)
r := G, and then let

G(k+1)
r := ker

(
G(k)

r → G(k)
r /[G(k)

r , G(k)
r ] → G(k)

r /[G(k)
r , G(k)

r ]⊗Z Q
)
.

Definition 8.2 (Order n signatures). For a 3-manifold M together with a representa-

tion ϕ : π1(M) → Γ, the Cheeger-Gromov Von Neumann ρ-invariant ρ(2)(M,ϕ) ∈ R is
defined [CG85], [CW03]. Given a 4-manifoldW with ∂W =M , such that ϕ extends over

π1(W ), the ρ-invariant can be computed as the L(2)-signature defect σ(2)(W,Γ)−σ(W ),

where σ(2) is the L(2)-signature and σ is the ordinary signature ofW . The L(2)-signature
is the signature of the intersection form on H2(W ;NΓ), where NΓ is the Von Neumann
algebra of ZΓ. For more details see [COT03, Section 5], [CO12].

For n ≥ 0, the set of order n signatures of a knot K is the set of real numbers given
by ρ-invariants ρ(2)(MK , ϕ : π1(MK) → Γ), where MK is the zero surgery manifold,

ϕ : π1(MK) → π1(W ) → π1(W )/π1(W )
(n+1)
r =: Γ and W is an n-solution for K.

Note that there is a unique order 0 signature, where Γ = Z, so that the ρ(2)-invariant
is equal to the average of the Levine-Tristram signature function over S1 [COT03, Sec-
tion 5].

Definition 8.3 (Extendable branches). Suppose a knot K ∈ Gn but K /∈ Gn+1, and K
bounds a symmetric grope Σ of height n. A set of branches is extendable if there exists
an embedded branch-symmetric grope Σ′ such that Σ ⊂ Σ′, and the branches in question
are contained in branches of Σ′ of length n (recall that if all branches were of length n
then the whole grope would be a symmetric grope of height n+ 1).

In previous sections, we used the fact that if a knot K is not in Gn+3, then the grope
norm satisfies ∥K∥q ≥ 1/(2q)n+1 by Proposition 2.10. In this section, we will show that
order n ρ-invariants, as well as obstructing a knot from lying in Gn+3, can give lower
bounds on the number of non-extendable branches of any height n+ 2 grope. This can
improve our lower bound for the infimum of the grope length function, taken over all
gropes of height n + 2. Controlling the set of order n ρ-invariants uses the existence of
a grope of height n+ 2. It could be that our knot bounds a very simple grope of height
n+1, and thus we cannot rule out ∥K∥q = 1/(2q)n; Corollary 8.5 below gives the precise
statement. Still, Theorem 8.4 does represent a refinement of our lower bounds.

In fact, for the proof of Theorem 8.4, we could have begun with a grope of any height.
However the less we restrict, the larger the set of ρ-invariants whose infimum gives a
lower bound on the number of non-extendable branches. (Taking the infimum over a
larger set can of course result in a smaller infimum.) There are practical advantages to
the way we have proceeded. By restricting to the set of all possible order n ρ-invariants,
there exist, at least for examples constructed from iterated infections, techniques which
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can show the infimum to be nonzero, and indeed arbitrarily large. We refer to [Hor11,
Theorem 4.5] for explicit examples.

Denote the set of order n signatures of K by Sn(K). The following theorem was
inspired by [Hor11].

Theorem 8.4. Let n ≥ 1. Suppose that K bounds a symmetric grope Σ of height
n + 2 and first stage genus g1(Σ). Let e be the maximal cardinality amongst all sets of
extendable branches and let d = g1(Σ)− e. Then

inf{|ρn| | ρn ∈ Sn(K)} ≤ 4d.

Proof. We follow the idea of the proof of Theorem 3.1. Let g = g1(Σ) and let α1, . . . , α2g

be the basis curves on the first stage surface of Σ that bound the higher grope stages.
Perform symmetric surgery on the αi. Here we mean that we perform surgery on D4

along a thickening S1 × D3 of a push-off of an αi curve – each such surgery adds a
connected S2×S2 or S2×̃S2 summand to D4 – and then we use the core of the resulting
pair of surgery disks to reduce the genus of Σ1:1 with either symmetric surgery. We
obtain a 4-manifold V with a slice disk ∆ for K arising from the surgered first stage of
Σ. Define W := V − ν∆.

As in [COT03, Theorem 8.11], and as explained above in the proof of Theorem 3.1,
we obtain a collection of surfaces Si, Bi, i = 1, . . . , 2g. The difference from the proof
of Theorem 3.1 is that we perform symmetric surgery everywhere in the current proof,
whereas before we did asymmetric surgery for the non-extendable branches. Now we
want to look at signatures associated to (n)-solutions i.e. height n + 2 gropes only, in
order to have a practically useful condition; as remarked above, in favourable situations
we actually can show that the set of order n signatures, restricted in this way, is bounded
below.

The surfaces Bi are constructed from the second stage surfaces of Σ, capped off by
the surgery disks. The surfaces Si come from the dual surgery spheres, pushed off the
contraction and then tubed into the Bi to remove intersections between them that appear
while pushing off the contraction. The surfaces are framed and embedded, generate
H2(W ;Z) ∼= Z4g = Z4d⊕Z4e. The Z4d summand corresponds to non-extendable branches
and the Z4e summand corresponds to the extendable branches. The intersection form
of W on H2(W ;Z) is hyperbolic, since the intersections between the surfaces Si, Bi are
Si · Sj = 0 = Bi · Bj and Si · Bj = δij . The ordinary signature σ(W ) of W therefore
vanishes.

Define Γ := π1(W )/π1(W )
(n+1)
r , the quotient by the (n + 1)th rational derived sub-

group. The group Γ is poly-torsion-free-abelian (PTFA – see [COT03, Section 2]) and
is therefore amenable and in Strebel’s class D(Q) [Str74]. This will be useful to bound
the rank of the ZΓ homology shortly. Note that ∂W = MK , the zero surgery on K,
and W is an n-solution [COT03, Theorem 8.11], so that ρ(2)(MK , ϕ : π1(MK) → Γ) =

σ(2)(W,Γ)− σ(W ) = σ(2)(W,Γ) ∈ Sn(K) is an nth order signature of K.
The surfaces Si, Bi, for i = 2d+ 1, . . . , 2g, were constructed from spheres and second

stage surfaces belonging to branches of length n+1 that can be extended to have length
at least n + 2, therefore they satisfy π1(Si) ⊂ π1(W )(n+1) and π1(Bi) ⊂ π1(W )(n+1).
Thus these surfaces lift to the Γ-cover. Now work over the Von Neumann algebra NΓ.
For i = 2d + 1, . . . , 2g the surfaces Si, Bi define elements of H2(W ;NΓ), in which they
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generate a submodule E, and the intersection form λΓ : H2(W ;NΓ)×H2(W ;NΓ) → NΓ
restricted to E is hyperbolic.

Claim. The submodule E is a direct summand.

We have a short exact sequence

0 → E → H2(W ;NΓ) → H2(W ;NΓ)/E → 0.

The map

s : H2(W ;NΓ) → E

y 7→
∑2g

i=2d+1(y ·Bi)[Si] +
∑2g

i=2d+1(y · Si)[Bi],

which is a homomorphism by linearity of the intersection pairing, splits this exact se-
quence. This proves the claim that E is a direct summand.

Claim. The submodule E is free.

Suppose that

C :=

2g∑
i=2d+1

ni[Si] +

2g∑
i=2d+1

mi[Bi] = 0.

Taking the intersection C ·Bk implies that nk = 0. Similarly the intersection C · Sk = 0
implies that mk = 0. This proves the claim that E is free. Let D := H2(W ;NΓ)/E. We

need to investigate the L(2)-dimension of D.

Claim. We have that |ρ(2)(MK , ϕ)| ≤ dim(2)(D).

Although D may not be a free NΓ-module, following [Cha14a, pp. 4776–80], we can

define the L(2)-signature σ(2)(W,Γ) by replacing D with P (D) = D/T (D), a projective
quotient of D, where

T (D) = {x ∈ D | f(x) = 0 for any homomorphism f : D → NΓ}
is the Von Neumann torsion submodule of D [Lüc02, p. 239]. The submodule T (D)

satisfies dim(2)(T (D)) = 0 so dim(2)(P (D)) = dim(2)(D). Note that T (E ⊕D) = T (D)
since E is free. Moreover, for any t ∈ T (D) and for any x ∈ E ⊕D we have λW (t, x) =
0. To see this note that T (−) is functorial, and so the adjoint of λW sends t into
T ((E ⊕D)∗). But T (A∗) = 0 for any NΓ-module A by [Cha14a, Lemma 3.4]. It follows
that λW (t,−) = 0 ∈ (E ⊕D)∗.

Find an NΓ-module Q such that P (D) ⊕ Q ∼= NΓℓ is free. Extend the intersection
form λW from E ⊕ P (D) to E ⊕ NΓℓ by having it vanish on Q; we also denote the

extended intersection form on E ⊕ NΓℓ by λW . We can then define the L(2)-signature
σ(2)(λW ) as usual using the functional calculus [COT03, Section 5], [Cha14a, pp. 4779–

80]. We note that |σ(2)(λW |NΓℓ)| ≤ dim(2)(D), since the absolute value of the L(2)

signature is always bounded above by the L(2)-dimension of the underlying module, and
extending by the zero form on Q only increases the dimension of the 0-eigenspace, leaving
the dimensions of the positive and negative definite subspaces unaltered. Now use that
λW |E is nonsingular, and that it is defined on a free module, to change basis so that
the direct sum decomposition E ⊕ NΓℓ is orthogonal with respect to the intersection
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form. This, together with the facts that the intersection form λW |E is hyperbolic and
σ(W ) = 0, yields:

|ρ(2)(MK , ϕ)| = |σ(2)(W,Γ)| = |σ(2)(λW |NΓℓ)| ≤ dim(2)D.

Now we have one last claim.

Claim. We have dim(2)(D) ≤ 4d.

To prove the claim we will use the following dimension bound for homology over NΓ in
terms of the dimension of theQ homology, which can be found in [Cha14a, Theorem 3.11].

Theorem 3.11 of [Cha14a]. Suppose G is amenable and in D(R) with R = Q or Zp,
and C∗ is a projective chain complex over ZG with Cm finitely generated. If {xi}i∈I
is a collection of m-cycles in Cm, then for the submodules H ⊂ Hm(NG ⊗ZG C∗) and
H ⊂ Hm(R ⊗ZG C∗) generated by {[1NG ⊗ xi]}i∈I and {[1R ⊗ xi]}i∈I respectively, we
have:

dim(2)Hm(NG⊗ZG C∗)− dim(2)H ≤ dimRHm(R⊗ZG C∗)− dimRH.

As noted above, Γ = G satisfies the hypothesis of Theorem 2. Apply the theorem
with R = Q, G = Γ and m = 2. Let C∗ = C∗(W ;ZΓ) and take the xi to be given by
the lifts to the Γ-cover of the surfaces Si, Bi corresponding to extendable branches. We
have dimQH2(Q⊗ZΓ C∗(W ;ZΓ)) = dimQH2(W ;Q) = 4g, dimQH = 4e and dim(2)H =

dim(2)E = 4e. Thus Theorem 2 and additivity of the L(2) dimension imply that

dim(2)D = dim(2)H2(W ;NΓ)− dim(2)E ≤ dimQH2(W ;Q)− dimQQ⊗ E

= 4g − 4e = 4d.

This completes the proof of the claim that dim(2)(D) ≤ 4d. Combined with the inequality

|ρ(2)(MK , ϕ)| ≤ dim(2)(D) proved above, this completes the proof of the Theorem 8.4,
by the following logic. We have shown that given a height n + 2 symmetric grope with
d non-extendable branches, there exists an order n ρ(2)-invariant which is at most 4d.
Considering all possible gropes of height n + 2, they correspond to possibly different
representations ϕ : π1(MK) → Γ, so the infimum of the order n signatures becomes a
lower bound for the number of non-extendable branches of any height (n+ 2) grope.

�
Corollary 8.5. For each n ≥ 0 we have

infρn∈Sn(K){|ρn|}
4(2q)n+1

≤ inf

{
∥Σ∥q K bounds a branch-symmetric grope Σ all of whose

branches have length at least n+ 1

}
≤ inf{∥Σ∥q |K bounds a symmetric grope Σ of height ≥ n+ 2}.

Thus, for each n ≥ 0, we have

min

{
infρn∈Sn(K){|ρn|}

4(2q)n+1
,

1

(2q)n

}
≤ ∥K∥q.

Proof. Let Σ be a branch-symmetric grope where each branch has length at least n+ 1
and let m be the number of branches of length n + 1. Then Σ contains a subgrope Σ′

that is a symmetric grope of height n+2. If d is the number of non-extendable branches
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of Σ′, then d ≤ m. By the previous theorem, Σ′ must have at least
infρn∈Sn(K){|ρn|}

4 non-

extendable branches. Each branch of Σ of length n+1 contributes at least 1/(2q)n+1 to
∥Σ′∥q. Thus we see that

infρn∈Sn(K){|ρn|}
4(2q)n+1

≤ d

(2q)n+1
≤ m

(2q)n+1
≤ ∥Σ∥q.

This completes the proof of the first statement of the corollary.
For the second part, suppose K bounds a branch-symmetric grope and let n ≥ 0 be

fixed. If all the branches of Σ have length at least n + 1 then by the proof of the first

part, we see that
infρn∈Sn(K){|ρn|}

4(2q)n+1 ≤ ∥Σ∥q. Otherwise, there is some branch of length at

most n, so by Proposition 2.10 we have ∥Σ∥q ≥ 1/(2q)n. �

9. Quasi-isometries to knot concordance with the slice genus metric

Recall that a map of metric spaces f : (X, dX) → (Y, dY ) is a quasi-isometry if there
exist constants A ≥ 1 and B ≥ 0 such that

1

A
dX(x, y)−B ≤ dY (f(x), f(y)) ≤ A · dX(x, y) +B

for any x, y ∈ X, and if there is a constant C ≥ 0 such that for any z ∈ Y there exists
an x ∈ X such that dY (z, f(x)) ≤ C.

Let ds be the metric on C defined by the slice genus, which was studied in detail
in [CH14]. Let ∥–∥s be the associated norm. Not only are the slice and grope metric
spaces not isometric, but we show that the identity is not even a quasi-isometry. It is
unknown whether there is another quasi-isometry between them, but we do not expect
one to exist.

Proposition 9.1. For any q ≥ 1, neither of the identity maps Id : (C, ds) → (C, dq) nor
Id : (C, dq) → (C, ds) are quasi-isometries.

Proof. First we will show that for any A ≥ 1 and for any B ≥ 0 there exists a knot K
such that

1

A
∥K∥s −B > ∥K∥q.

From this, we see that the left hand side of the condition for Id: (C, ds) → (C, dq) to be

a quasi-isometry is violated. Since q < q′ implies that ∥K∥q ≤ ∥K∥q′ , it suffices to show
this for q = 1. Let J be a knot with slice genus one such that τ(J) = 1 (for example
a trefoil), where τ : C → Z is the invariant from knot Floer homology [OS03]. Let A,B
be given as above. Choose m ∈ N such that m > A(B + 1). Then choose n such that
m/2n < 1; that is choose n ∈ N which is greater than logm/ log 2. Now define K to
be a connect sum of m copies of the n-fold iterated positive Whitehead double of J ,
K := #mWhn+(J). According to [Hed07], τ(Whn+(J)) = 1, so by additivity τ(K) = m.
Therefore ∥K∥s ≥ m since τ(K) ≤ ∥K∥s by [OS03]. Thus the left hand side of the
inequality above satisfies

1

A
∥K∥s −B ≥ 1

A
m−B >

1

A
(A(B + 1))−B = 1.
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On the other hand, Whn+(J) bounds a grope of height n + 1, wherein all the stages
are of genus one, and K, the connect sum of m copies of Whn+(J), bounds a grope
of height n + 1, with first stage genus m and all higher stages genus one. Therefore
∥K∥1 ≤ m/2n < 1, since the q = 1 length of a grope of height one all of whose surfaces
are genus one is 1/2n. This shows that K has the property desired.

To show that the inverse identity map Id: (C, dq) → (C, ds) is not a quasi-isometry, we
prove that the right hand side in the defining condition is not satisfied. That is, for any
A,B there exists a knot K with ∥K∥s > A∥K∥q + B. This is equivalent to ∥K∥s/A −
B/A > ∥K∥q, and thus we can apply the argument above with B/A replacing B.

�
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E-mail address: mark@cirget.ca


