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COBORDISMS TO WEAKLY SPLITTABLE LINKS

STEFAN FRIEDL AND MARK POWELL

Abstract. We show that if a link L with non–zero Alexander
polynomial admits a locally flat cobordism to a ‘weakly m–split
link’, then the cobordism must have genus at least ⌊m

2
⌋. This

generalises a recent result of J. Pardon.

1. Introduction

A k–component link L is an oriented k–component one dimensional
submanifold of S3 with an ordering of the components. A smooth
(respectively topological) cobordism C between two k–component links
L = L1 ⊔ · · · ⊔ Lk and J = J1 ⊔ · · · ⊔ Jk is a smooth (respectively
locally flat) oriented surface C = C1 ⊔ · · · ⊔ Ck ⊂ S3 × [0, 1], such
that Ci ∩ S3 × {0} = Li × {0} and Ci ∩ S3 × {1} = −Ji × {1} for
i = 1, . . . , k.

J. Pardon [Pa11] recently extended Rasmussen’s knot concordance
invariant [Ra10] to a concordance invariant for links. As one of the
main applications of the new invariant Pardon proves the following
theorem:

Theorem 1.1. A smooth cobordism between a Kh–thin link and a link

split into m components must have genus at least ⌊m
2
⌋.

We will not give a precise definition of Kh–thin links. Roughly speak-
ing a link is Kh–thin if its reduced Khovanov homology (see [Kh00]) is
concentrated on a diagonal. Alternatively one can define Kh–thin links
using ordinary Khovanov homology (see [Kh03, Proposition 4]). What
is of interest to us is that we have the following inclusions:



non-split
alternating

links



 ⊂

{
quasi-alternating

links

}
⊂

{
Kh–thin
links

}

⊂

{
links with
det(L) 6= 0

}
⊂

{
links with
∆L(t) 6= 0

}
.

Here we denote the determinant of a link L by det(L), and the one–
variable Alexander polynomial by ∆L(t). We refer to [MO08, OS05]
for details on the first two inclusions. For the third inclusion see e.g.
[Wa08, Proposition 2.5]. The last inclusion follows from the equality
det(L) = |∆L(−1)|.
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As indicated, it is known that these inclusions are proper inclusions:
see e.g. [Gr10] for the second inclusion.

Pardon asks whether the Alexander module of a link can be used to
reprove Theorem 1.1 for certain classes of links (e.g. quasi–alternating
links). In this note we follow through on Pardon’s idea, and both
reprove and extend Theorem 1.1.

In the following, we say that a link J = J1 ⊔· · ·⊔ Jk is weakly m–split

if there exist m disjoint oriented surfaces Σ1, . . . ,Σm with non–trivial
boundary, embedded in S3, such that ∂Σ1 ⊔ · · · ⊔ ∂Σm = J . Note that
a link which splits into m sublinks is in particular weakly m–split. On
the other hand m–component boundary links, which in general do not
split, are nevertheless also weakly m–split.

Our main technical result (see Theorem 2.3) relates the ranks of
Alexander modules of links to the genera of cobordisms between them.
This will allow us to prove the following generalisation of Pardon’s
theorem:

Main Theorem 1.2. Let L be a link with non–zero Alexander poly-

nomial ∆L ∈ Z[t±1]. A topological cobordism between L and a weakly

m–split link J must have genus at least ⌊m
2
⌋.

Acknowledgements. MP would like to thank Charles Livingston and
Kent Orr for helpful discussions. We also wish to thank the referee for
carefully reading our paper.

2. Proof of the main theorem

2.1. Preliminaries on Alexander modules. Let L be a k-component
link. We write YL := S3 \ νL. Given a k–component link L and a
homomorphism φ : Zk → H to a free abelian group, we consider the
coefficient system corresponding to

π1(YL) → H1(YL;Z) ∼= Zk φ
−→ H → Z[H ] → Q(H),

where the second map is the canonical isomorphism sending the i–th
oriented meridian to ei, the i–th standard basis element of Zk, and
where Q(H) denotes the quotient field of the group ring Z[H ]. We
define:

r(L, φ) := dimQ(H)H1(YL;Q(H)).

We denote by δ : Zk → Z the ‘diagonal’ homomorphism defined by
δ(ei) = 1, i = 1, . . . , k. Note that the corresponding π1(YL) → Z is
the unique epimorphism which sends each oriented meridian to 1. We
write:

r(L) := r(L, δ : Zk → Z).

As usual we identify the group ring Z[Z] with Z[t±1] and we denote
by H1(YL;Z[t

±1]) the Alexander module corresponding to the canoni-
cal epimorphism. Furthermore we denote the order of this Alexander
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module by ∆L = ∆L(t) ∈ Z[t±1]. Note that r(L) = 0 if and only if
∆L 6= 0.

Our proof of Theorem 1.2 hinges on the following bound on the rank
of the twisted homology of a weakly m–split link.

Lemma 2.1. Let J be a weakly m–split link. Then

r(J) ≥ m− 1.

The statement of the lemma is well–known for boundary links. The
standard proof for boundary links easily generalises to the case of
weakly m–split links. For the reader’s convenience we provide the de-
tails.

Proof. Since J is a weakly m–split link, there exist m disjoint oriented
surfaces Σ1, . . . ,Σm with non–trivial boundary, such that ∂Σ1 ⊔ · · · ⊔
∂Σm = J . In the following, by slight abuse of notation, we also denote
the intersection of the surface Σi with YJ by Σi, for i = 1, . . . , m.
Note that Σ := Σ1 ⊔ · · · ⊔ Σm is dual to the canonical homomorphism
φ : π1(YJ) → Z under the isomorphisms

H2(YJ , ∂YJ ;Z)
≃
−→ H1(YJ ;Z)

≃
−→ HomZ(H1(YJ ;Z),Z)

≃
−→ Hom(π1(YJ),Z),

since both homomorphisms to Z send each oriented meridian to one.
In particular Σ is non–separating. Since Q(t) is flat as a module over
Z[t±1] we have

H∗(YJ ;Q(t)) ∼= H∗(YJ ;Z[t
±1])⊗Z[t±1] Q(t) ∼= H∗(ỸJ ;Z)⊗Z[t±1] Q(t),

where ỸJ is the infinite cyclic cover of YJ , constructed by cutting
YJ along Σ to obtain Y Σ and then gluing the fundamental domains
{tiY Σ | i ∈ Z} together along {tiΣ | i ∈ Z}. The Mayer-Vietoris se-
quence of

ỸJ =
⊔

i odd

tiY Σ ∪⊔
i∈Z

tiΣ

⊔

i even

tiY Σ

is as follows:

H1(ỸJ ;Z)

→
⊕

i∈Z H0(t
iΣ;Z) →

⊕
i∈Z H0(t

iY Σ;Z) → H0(ỸJ ;Z).

Considering all of the homology groups as Z[t±1] modules, this is equiv-
alent to:

H1(YJ ;Z[t
±1])

→ H0(Σ;Z)⊗Z Z[t±1] → H0(Y
Σ;Z)⊗Z Z[t±1] → H0(YJ ;Z[t

±1]).

Tensoring with Q(t), considered as a Z[t±1]-module, yields:

H1(YJ ;Q(t))
→ H0(Σ;Z)⊗Z Q(t) → H0(Y

Σ;Z)⊗Z Q(t) → H0(YJ ;Q(t)).

Since each Σi is connected, H0(Σ;Z) ∼=
⊕m

i=1 H0(Σi;Z) ∼= Zm, so
that H0(Σ;Z) ⊗Z Q(t) ∼= Q(t)m. Similarly, since Y Σ is connected,
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H0(Y
Σ;Z)⊗Z Q(t) ∼= Q(t). The coefficient system π1(YJ) → Z = 〈t〉 is

non-trivial, which implies that

H0(YJ ;Q(t)) ∼= coker((t− 1) : Q(t) → Q(t)) ∼= 0.

Therefore, by exactness,

ker(H0(Σ;Z)⊗Z Q(t) → H0(Y
Σ;Z)⊗Z Q(t)) ∼= Q(t)m−1

∼= im(H1(YJ ;Q(t)) → H0(Σ;Z)⊗Z Q(t)),

so that dimQ(t)(H1(YJ ;Q(t))) ≥ m− 1 as claimed. �

2.2. Cobordisms and ranks of Alexander modules. We start our
discussion of cobordisms between links with the following elementary
lemma:

Lemma 2.2. Let L and J be two k–component links. Then the follow-

ing are equivalent:

(1) there exists a smooth cobordism between L and J ;

(2) there exists a topological cobordism between L and J ;

(3) we have lk(Li, Lj) = lk(Ji, Jj) for all i, j = 1, . . . , k.

Proof. Any smooth cobordism is also a topological cobordism, so (1)
implies (2). The fact that (2) implies (3) follows from the defini-
tion of linking numbers in terms of surfaces in the 4–ball. Finally,
assume that we have lk(Li, Lj) = lk(Ji, Jj) for all i, j = 1, . . . , k. Since
H1(S

3 × [0, 1];Z) = 0, there exist oriented, smoothly embedded sur-
faces F1, . . . , Fk with ∂Fi = Li∪−Ji, i = 1, . . . , k. We can furthermore
assume that the surfaces are in general position. It follows from the
definition of linking numbers that the signed count of double points
satisfies:

Fi · Fj = lk(Li, Lj)− lk(Ji, Jj) = 0.

We can therefore pair up intersection points of Fi and Fj . Let p, q ∈
Fi ∩ Fj have opposite signs, and let γ be a path in Fj from p to q.
Remove an open disc neighbourhood of p and of q from Fi, add a
tube γ × S1 to Fi \ (νp ⊔ νq) and smooth the corners. By repeating
this operation we can arrange that the surfaces F1, . . . , Fk are disjoint,
which implies (1).

�

Given two links L and J with the same number of components we
define, for CAT = top, smooth:

gCAT (L, J) := min{g(C) |C a CAT cobordism between L and J},

where g(C) = 1
2
(β1(C) − β0(C)) is the genus of C. If no cobordism

between L and J exists, then we define gCAT (L, J) := ∞.
We need one last definition before we can state our main theorem.

We say that a homomorphism φ : Zk → H to a free abelian group H
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is admissible if φ(ei) 6= 0 for i = 1, . . . , k, where ei is the i–th basis
element of Zk.

Our main technical theorem is then as follows:

Theorem 2.3. Let L and J be k–component links, let H be a free

abelian group and let φ : Zk → H be admissible. Then

gtop(L, J) ≥
1

2
|r(J, φ)− r(L, φ)| .

Proof of Theorem 1.2 assuming Theorem 2.3. Let L be a link with non–
zero Alexander polynomial ∆L ∈ Z[t±1] and let C be a topological
cobordism to a weakly m–split link J . Recall that a link L has non–
zero single variable Alexander polynomial ∆L(t) if and only if r(L) = 0.
We apply Theorem 2.3 to the admissible ‘diagonal’ homomorphism
δ : Zk → Z. We deduce that g(C) ≥ 1

2
r(J), so that g(C) ≥ m−1

2
by

Lemma 2.1. �

Remark. (1) Kawauchi [Ka78, Theorem A] showed that if L and J

are in fact concordant, i.e. cobordant via annuli, then r(L, Id) =
r(J, Id). Kawauchi’s proof is easily modified to show that his
result holds for any admissible φ. Our theorem can therefore be
thought of as a generalisation of Kawauchi’s result to the case
r(L, φ) 6= r(J, φ).

(2) It is straightforward to verify that our proof generalises to the
consideration of links L, J in integral homology 3–spheres M,N

which are cobordant via a cobordism in an integral homology
S3 × [0, 1] with boundary M ∪ −N .

(3) Let L and J be two k–component links. The Gordian distance
d(L, J) is defined as the minimal number of crossing changes
needed to turn L into J . The intra–component Gordian dis-
tance dcomp(L, J) is defined to be the minimal number of cross-
ing changes which involve the same component of the link,
that are needed to transform L to J . If no such sequence of
moves exists, then we say that dcomp(L, J) = ∞. By a stan-
dard trick which replaces a neighbourhood of a double point
of an immersed surface with a twisted annulus, one sees that
dcomp(L, J) ≥ gsmooth(L, J).

Given a link L we denote by m(L) the minimal number of
generators of the Alexander module H1(YL;Z[t

±1]). Kawauchi
[Ka96, Theorem 2.3] showed that

d(L, J) ≥ |m(L)−m(J)|.
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Theorem 2.3 and Kawauchi’s result now fit into the following
diagram

dcomp(L, J)

��

// gsmooth(L, J) // gtop(L, J)

��

d(L, J) // |m(L)−m(J)| // 1
2
|r(L)− r(J)|

where an arrow A → B indicates that B is a lower bound on A.
Our result is therefore seen to be independent of Kawauchi’s.

2.3. Proof of Theorem 2.3. In this section we will give a proof of
Theorem 2.3. Throughout, we let C be a topological cobordism be-
tween two k–component links L and J and we denote the genus of C
by g. We write

XC := (S3 × [0, 1]) \ νC.

We now have the following lemma relating the integral homology groups
of XC , YL, YJ , C, L and J .

Lemma 2.4. The integral homology of XC is given by:

Hi(XC ;Z) ∼=






Z i = 0;

Zk i = 1;

Z2g+k−1 i = 2;

0 i ≥ 3.

Furthermore the inclusion induced maps H1(YL;Z) → H1(XC ;Z) and

H1(YJ ;Z) → H1(XC ;Z) are isomorphisms, such that the image of the

i–th meridian of L in H1(XC ;Z) agrees with the image of the i–th

meridian of J .

This lemma can be seen as a variation on Alexander duality in a
ball. The statement is well-known to the experts, but we give a proof
for the reader’s convenience.

Proof. In this proof, all homology groups are with Z–coefficients. We
therefore allow ourselves to omit the coefficients from the notation. In
the following we identify L with L×{0} ⊂ S3×[0, 1] and J with J×{1}.
We will also write SL = S3 ×{0} and SJ = S3 ×{1}. Finally we write
ηL = L×D2 ⊂ SL, ηJ = J ×D2 ⊂ SJ and ηC = C ×D2 ⊂ S3× [0, 1].

We first consider the following commutative diagram, where the hor-
izontal isomorphisms are given by Poincaré duality and excision:

(1)
Hi(YL) ∼= H3−i(YL, ∂YL) ∼= H3−i(SL, ηL)

↓ ↓ ↓
Hi(XC) ∼= H4−i(XC , ∂XC) ∼= H4−i(S3 × I, SL ∪ ηC ∪ SJ).

The first vertical map is induced by inclusion. The other vertical maps
in the diagram above, and indeed for all but one vertical map in the
next two diagrams, are given by a composition of excision and maps
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from long exact sequences of certain pairs. For example, the second
vertical map is given by:

H3−i(YL, ∂YL) ∼= H3−i(∂XC , YJ ∪C×S1) → H3−i(∂XC) → H4−i(XC , ∂XC).

Next, we have the commutative diagram:
(2)

H2−i(ηL) → H3−i(SL, ηL) → H3−i(SL)
↓ ↓ ↓

H3−i(ηC, ηL∪ηJ) → H4−i(S3×I, SL∪ηC∪SJ) → H4−i(S3×I, SL∪SJ).

Here, the top row is part of the long exact sequence in cohomology of
the pair (S3, ηL). The bottom row belongs to the long exact sequence
of the triple

(S3 × I, SL ∪ ηC ∪ SJ , SL ∪ SJ),

noting that

H3−i(SL ∪ ηC ∪ SJ , SL ∪ SJ) ∼= H3−i(ηC, ηL ∪ ηJ)

by excision. Our last commutative diagram is as follows:

(3)
Hi−1(L) ∼= H2−i(L) ∼= H2−i(ηL)

↓ ↓ ↓
Hi−1(C) ∼= H3−i(C,L ∪ J) ∼= H3−i(ηC, ηL ∪ ηJ).

Here the first vertical map is induced by inclusion, while the other two
vertical maps arise as described above.

Putting the bottom rows of the diagrams (1) and (3) together with
the long exact sequence in cohomology corresponding to the bottom
row of (2), we obtain the following long exact sequence:

H3−i(S3 × I, SL ∪ SJ)
→ Hi−1(C) → Hi(XC) → H4−i(S3 × I, SL ∪ SJ).

Finally, note that the map

H1(S3 × I, SL ∪ SJ) → H1(ηC, ηL ∪ ηJ) ∼= H1(C)

sends the generator of H1(S3× I, SL ∪ SJ) to an indivisible element in
H1(C), namely the element corresponding to the sum of the oriented
curves C ∩ SL. We can now find the homology groups of XC , by a
straightforward calculation, to be as claimed.

When i = 1, diagram (2) extended one to the left becomes:

(4)
0 → H1(ηL)

≃
−→ H2(SL, ηL) → 0

↓ ↓

0 → H2(ηC, ηL ∪ ηJ)
≃
−→ H3(S3 × I, SL ∪ ηC ∪ SJ) → 0.

The second statement of the lemma then follows from combining the
commutative diagrams (1), (3) and (4), the fact that the inclusion map
L → C induces an isomorphism on 0–th homology, and the observation
that the rôles of L and J can be reversed, together with a careful
consideration of orientations. �
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Corollary 2.5. The Euler characteristic of XC is χQ(XC) = 2g.

From here on we fix an admissible homomorphism φ : Zk → H to a
free abelian group. We write l := r(L, φ) and j := r(J, φ). Without
loss of generality we can assume that j ≥ l.

Lemma 2.4 implies that the canonical isomorphisms H1(YL;Z) ∼= Zk

and H1(YJ ;Z) ∼= Zk extend uniquely to an isomorphism H1(XC ;Z) ∼=
Zk. Therefore we can extend the coefficient systems corresponding to φ

over XC , and use the resulting coefficient system to define the twisted
homology and cohomology of XC .

Eventually the goal is to show that the difference of the dimensions
of the Q(H)–homologies of L and J gives a lower bound on the second
Q(H)–homology of XC , which in turn will give a lower bound on the
genus of C.

With this in mind, we proceed to collect some facts about the ho-
mology of XC with Q(H) coefficients. In order to do this we recall the
following lemma (see e.g. [COT03, Proposition 2.10]).

Lemma 2.6. Let B → A be an inclusion of connected spaces such that

Hi(A,B;Z) = 0 for i = 0, . . . , r. Let π1(A) → F be a homomorphism

to a free abelian group F . Then Hi(A,B;Q(F )) = 0 for i = 0, . . . , r.

The implications of Lemma 2.6 which will be relevant for us are given
in the next corollary.

Corollary 2.7. We have:

(1) H1(XC , YL;Q(H)) ∼= 0; and
(2) dimQ(H)(H1(XC ;Q(H))) ≤ l.

Proof. It follows from Lemma 2.4 combined with Lemma 2.6 that

Hi(XC , YK ;Q(H)) ∼= 0

for K = L, J and i = 0, 1. With K = L, this proves (1). Moreover, the
long exact sequence of the pair

H1(YL;Q(H)) → H1(XC ;Q(H)) → H1(XC , YL;Q(H))

shows us that the map H1(YL;Q(H)) → H1(XC ;Q(H)) is surjective.
But dimQ(H)(H1(YL;Q(H))) = l, which implies (2). �

Lemma 2.8. The homology of XC twisted over Q(H) is given by:

Hi(XC ;Q(H)) ∼= 0

for i 6= 1, 2.

Proof. Since the coefficient system arises from an admissible homomor-
phism φ : Zk → H , it is non-trivial: we therefore have H0(XC ;Q(H)) ∼=
0.

By the universal coefficient theorem and Poincaré-Lefschetz duality,
we have isomorphisms:

H4(XC ;Q(H)) ∼= H4(XC ;Q(H)) ∼= H0(XC , ∂XC ;Q(H)).
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The fact that H0(XC ;Q(H)) ∼= 0 together with the long exact sequence
of the pair (XC , ∂XC), implies that H0(XC , ∂XC ;Q(H)) ∼= 0, so that
as claimed H4(XC ;Q(H)) ∼= 0.

Similarly, we have isomorphisms:

H3(XC ;Q(H)) ∼= H3(XC ;Q(H)) ∼= H1(XC , ∂XC ;Q(H)).

We now consider the long exact sequence of the triple (XC , ∂XC , YL):

H1(XC , YL;Q(H)) → H1(XC , ∂XC ;Q(H)) → H0(∂XC , YL;Q(H)).

First, H0(∂XC ;Q(H)) ∼= 0, again since the coefficient system is non–
trivial. Thence, by the long exact sequence of the pair (∂XC , YL),
H0(∂XC , YL;Q(H)) ∼= 0.

Moreover, by Corollary 2.7 (1), H1(XC , YL;Q(H)) ∼= 0. It follows
that the middle homology group H1(XC , ∂XC ;Q(H)) ∼= 0, which in
turn implies from the isomorphisms above that H3(XC ;Q(H)) ∼= 0.
This completes the proof of Lemma 2.8. �

Lemma 2.9. We have an isomorphism

H1(∂XC ;Q(H)) ∼= H1(YL;Q(H))⊕H1(YJ ;Q(H)).

Proof. Note that

∂XC = YL ∪⊔k S1×S1 C × S1 ∪⊔k S1×S1 −YJ .

We claim that both C × S1 and ⊔k S
1 × S1 have vanishing Q(H)-

homology. To see this, consider each connected component of C × S1

and ⊔k S
1 × S1 separately. Let hi 6= 1 ∈ H be the image of the

i–th basis element ei ∈ Zk under the admissible homomorphism φ.
As in [COT04, Lemma 5.6], the tensor product of any chain complex

with the contractible chain complex Q(H)
(hi−1)
−−−−→ Q(H) of S1 is again

contractible. Therefore the chain complexes C∗(Ci × S1;Q(H)) and
C∗(S

1 × S1;Q(H)) are contractible, which is sufficient to prove the
claim. Therefore the Mayer-Vietoris sequence which calculates the ho-
mology of ∂XC as the union above implies the lemma. �

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Let C be a topological cobordism between links
L and J . Recall that we write

l := r(L, φ) and j := r(J, φ),

and that we assume without loss of generality that j ≥ l. By Lemma
2.9,

H1(∂XC ;Q(H)) ∼= H1(YL;Q(H))⊕H1(YJ ;Q(H)).

It follows that

dimQ(H)(H1(∂XC ;Q(H))) = l + j.
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Combining this with Corollary 2.7 (2), which says that

dimQ(H)(H1(XC ;Q(H))) ≤ l,

we deduce that

dimQ(H)(ker(H1(∂XC ;Q(H)) → H1(XC ;Q(H)))) ≥ j.

By the long exact sequence in twisted homology of the pair (XC , ∂XC):

H2(XC , ∂XC ;Q(H)) → H1(∂XC ;Q(H)) → H1(XC ;Q(H)),

this implies that

dimQ(H)(im(H2(XC , ∂XC ;Q(H)) → H1(∂XC ;Q(H)))) ≥ j,

so that

dimQ(H)(H2(XC , ∂XC ;Q(H))) ≥ j.

By the universal coefficient theorem and Poincaré-Lefschetz duality,

H2(XC ;Q(H)) ∼= H2(XC ;Q(H)) ∼= H2(XC , ∂XC ;Q(H)),

which then implies that

dimQ(H)(H2(XC ;Q(H))) ≥ j.

We have shown in Lemma 2.8 that Hi(XC ;Q(H)) ∼= 0 for i 6= 1, 2.
This implies that the Euler characteristic is given by:

χQ(H)(XC) = dimQ(H)(H2(XC ;Q(H)))− dimQ(H)(H1(XC ;Q(H))).

From the inequalities

dimQ(H)(H2(XC ;Q(H))) ≥ j

and

dimQ(H)(H1(XC ;Q(H))) ≤ l,

we obtain that

χQ(H)(XC) ≥ j − l.

Since the Euler characteristic can be calculated without taking homol-
ogy, from the chain complex of the universal cover of XC , by tensoring
with Q or with Q(H) and taking the alternating sum of the ranks of
the resulting chain groups, the Euler characteristic must be the same
with either coefficient system. So

χQ(H)(XC) = χQ(XC) = 2g,

by Corollary 2.5. Therefore

2g ≥ j − l,

which completes the proof of Theorem 2.3, and therefore also of The-
orem 1.2. �
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[OS05] P. Ozsváth and Z. Szabó, On the Heegaard Floer homology of branched

double covers, Adv. Math., 194(1):1–33, (2005).
[Pa11] J. Pardon, The link concordance invariant from Lee homology, Preprint

(2011), to appear in Alg. Geom. Top.
[Ra10] J. Rasmussen, Khovanov homology and the slice genus, Invent. Math.,

182(2): 419–447, (2010).
[Wa08] L. Watson, Surgery obstructions from Khovanov homology, to appear in

Selecta Mathematica, arXiv:0910.0449 (2008).

Mathematisches Institut, Universität zu Köln, Germany
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