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Abstract 

Understanding past changes in the Antarctic ice sheets provides insight into how they 

might respond to future climate warming. During the Pliocene and Pleistocene, geological 

data show that the East Antarctic Ice Sheet responded to glacial and interglacial cycles by 

remaining relatively stable in its interior, but oscillating at its marine-based margin. It is 

currently not clear how outlet glaciers, which connect the ice sheet interior to its margin, 

responded to these orbitally-paced climate cycles. Here we report new ice surface constraints 

from Skelton Glacier, an outlet of the East Antarctic ice sheet, which drains into the Ross Ice 

Shelf. Our multiple-isotope (10Be and 26Al) cosmogenic nuclide data indicate that currently 

ice-free areas adjacent to the glacier underwent substantial periods of exposure and ice cover 

in the past. We use an exposure-burial model driven by orbitally-paced glacial-interglacial 

cycles to determine the probable ice surface history implied by our data. This analysis shows 

that: 1) the glacier surface has likely fluctuated since at least the Pliocene; 2) the ice surface 

was >200 m higher than today during glacial periods, and the glacier has been thicker than 

present for ~75–90% of each glacial-interglacial cycle; and 3) ice cover at higher elevations 

possibly occurred for a relatively shorter time per Pliocene cycle than Pleistocene cycle. Our 

multiple-nuclide approach demonstrates the magnitude of ice surface fluctuations during the 

Pliocene and Pleistocene that are linked to marine-based ice margin variability. 
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1. Introduction 

Geological records from ice-free areas of Antarctica can provide direct constraints on 

the sensitivity of the Antarctic ice sheet to past climatic changes. Nunataks that protrude 

through the ice serve as gauges of past ice sheet thickness change (e.g. Ackert et al., 1999; 

Stone et al., 2003). The production of in situ cosmogenic nuclides in a rock surface can be 

exploited to quantify whether and when ice previously overrode the area. In locations where 

this ice was predominantly cold-based, with little or no erosion of the rock surface, multiple-

isotope measurements allow the long-term glacial history at the site to be explored (e.g. Balco 

et al., 2014; Bierman et al., 1999; Corbett et al., 2016; Lilly et al., 2010; Sugden et al., 2005); 

the nuclides 10Be and 26Al are produced in quartz at a constant ratio during periods of 

exposure, but the shorter half-life of 26Al (0.716 Ma) relative to 10Be (1.39 Ma) enables faster 

decay during periods of burial by ice, lowering the ratio of 26Al to 10Be (Lal, 1991). A rock 

surface with an old apparent exposure age from only a single nuclide indicates the minimum 

time since first exposed, but exposure may have been constant or intermittent over this time. 

Multiple-isotope measurements are required to determine if there has been a complex 

exposure history. A “simple” exposure history could be inferred if exposure ages are 

consistent between multiple nuclides, indicating constant exposure since first exposed. 

Whereas, a “complex” exposure history would result in exposure ages that are not consistent 

between multiple nuclides, indicating some period of burial since first exposed. 

Multiple-isotope surface-exposure data, collected from near to the interior of the East 

Antarctic ice sheet (EAIS), have typically provided concentrations and ages consistent with a 

constant exposure history since first uncovered by ice. These ages show that first exposures 

were at times during the Pliocene, implying that the ice surface was higher than today in the 

Pliocene and has not been as high since then (e.g. Balco et al., 2014; Lilly et al., 2010; 

Yamane et al., 2015). Meanwhile, sediment cores drilled on the continental shelf reveal that 



 

 

large-scale orbitally-paced oscillations of the ice margin occurred through the Pliocene and 

Pleistocene in marine-based portions of the ice sheet (e.g. drill core site AND-1B; McKay et 

al., 2012; Naish et al., 2009; Patterson et al., 2014), contemporaneous with local and global 

environmental changes (Levy et al., 2012). Outlet glaciers link such regions of contrasting ice 

sheet variability, controlling the flux of ice from the interior to the ice margin. Currently, we 

lack data constraining the behavior of outlet glaciers prior to the last glacial cycle, in the 

Pliocene and Pleistocene. 

We report new multiple-isotope (10Be and 26Al) surface-exposure data from Skelton 

Glacier, an outlet of the EAIS. Here ice flows, through the Transantarctic Mountains, from 

the East Antarctic plateau to the Ross Sea embayment and over the AND-1B drill site 

(Talarico et al., 2012) (Fig. 1). Skelton Glacier is therefore suitably located to investigate the 

degree to which past oscillations of the marine-based ice margin that are documented at 

AND-1B propagated inland. Any past changes near the ice margin should have been 

expressed upstream as ice surface elevation changes, but the distance upstream and the 

magnitude of such changes during the Pliocene and Pleistocene is not well understood. 

In this paper we determine whether the surface of Skelton Glacier was higher in the 

past, for how long and by how much it fluctuated, and whether such changes in ice surface 

elevation can be explained by glacial-interglacial oscillations of the ice margin. We apply an 

exposure-burial model to robustly evaluate the ice surface history implied by our cosmogenic 

nuclide data. The results of glacier flowline simulations that were constrained by geological 

and climatological data, presented in an associated study (Jones et al., 2016, and references 

therein), are then used to help better understand how glacier surface elevation changes 

corresponded to shifting ice dynamics under past contrasting climates. 

 

 



 

 

2. Methods 

2.1. Study area and sample collection 

Six nunataks (Clinker Bluff, Halfway Nunatak, Névé Nunatak, Tate Peak, the 

Escalade Peak saddle with Tate Peak, and an unnamed nunatak) were targeted to provide 

spatial coverage of past ice surface changes (Fig. 1). Clinker Bluff, Halfway Nunatak and 

Névé Nunatak extend upstream from the modern grounding-line, adjacent to and north of the 

main flow path. Tate Peak, the Escalade Peak saddle and an unnamed nunatak are located to 

the south of the main flow path of Skelton Glacier, near to the ice divide with Mulock 

Glacier. The sample sites represent a range of elevations between approximately 2 m and 215 

m above the adjacent ice surface, allowing relative changes in the past thickness of Skelton 

Glacier to be investigated. 

The bedrock underlying the Skelton Glacier catchment is comprised of a 

metasedimentary basement (Skelton Group), overlain by sandstone sedimentary sequences 

(Beacon Supergroup), which are intruded by dolerite dykes and sills (Ferrar Supergroup) 

(Gunn and Warren, 1962). Névé Nunatak is made up of dolerite, Clinker Bluff is granite, 

Halfway Nunatak is comprised of both dolerite and granite, the unnamed nunatak consists of 

sandstone, and Tate and Escalade Peaks are predominantly comprised of sandstone and 

dolerite. Sandstone also likely underlies large parts of the upper catchment, which is evident 

from ice-free outcrops either side of The Portal, upstream of Névé Nunatak (Fig. 1). 

Evidence of subaerial weathering and past overriding of ice is evident at each of these 

nunataks (see supplementary Fig. 1). Extensive, long-term surface weathering can be 

inferred from granite surfaces that are heavily spalled and large areas of exposed dolerite that 

are heavily fractured. However, past glacial activity is also apparent, as glacially-polished 

granite surfaces at Clinker Bluff and striated sandstone surfaces at Tate Peak, the Escalade 

Peak saddle and the unnamed nunatak, as well as perched boulders, erratic cobbles and 



 

 

glacial till at Halfway and Névé Nunataks. Most clasts found strewn over these surfaces 

(including boulders >1 m in diameter) are sub-angular and derived from local bedrock, while 

erratic sandstone clasts, sourced from upstream, are less common. The geomorphology 

observed at these sites suggests both the preservation of weathered relict surfaces and the 

deposition of clasts at times of largely non-erosive ice cover.  

Glacier flowline modeling, driven by available paleoclimate data, support our 

interpretations of the geomorphology. This modeling indicates that Skelton Glacier likely 

experienced warm-based ice with substantial basal sliding and erosion of the bed in 

overdeepenings within the central flow path, but minimal erosion elsewhere, during both 

Pliocene and Quaternary climates (Jones et al., 2016). The modeling suggests that 1) erratic 

cobbles, for example, those found at Halfway and Névé Nunataks, were likely sourced from 

beneath the warm-based areas, where subglacial erosion is predicted, before being 

transported to the less-erosive flanks of Skelton Glacier, and 2) any ice cover of the nunataks 

during the Pliocene and Quaternary was likely by ice with limited erosion potential, which is 

supported by the presence of angular to sub-angular clasts strewn over largely weathered 

bedrock surfaces, and well-developed patterned ground on some low gradient nunatak slopes. 

A bedrock surface sampled at these nunataks should, therefore, record a long-term glacial 

history, while an erratic cobble should record either recent exposure since it was last covered 

by ice or repeated exposure and burial since it was initially exposed at the nunatak. 

In total, twelve samples were collected for surface-exposure analysis, from nunatak 

areas where there was evidence of past ice cover and away from areas of patterned ground. 

Samples were selected that had intact rock surfaces and signs of at least minor glacial 

abrasion, including 7 erratic sandstone cobbles on thin (<5 cm), compacted till that was 

draped over bedrock at Névé Nunatak, an isolated unweathered sandstone erratic boulder on 

bedrock at Halfway Nunatak, sandstone bedrock surfaces at the unnamed nunatak, Tate Peak 



 

 

and Escalade Peak saddle, and a granite bedrock surface at Clinker Bluff (Figs. 1 and 2, and 

supplementary Table 1 and Fig. 2). 

 

2.2. Sample processing, measurement, and exposure age calculation 

Samples were prepared and beryllium and aluminum were extracted at Victoria 

University of Wellington (VUW), the University of Otago (UoO) and the Australian Nuclear 

Science and Technology Organisation (ANSTO) (Table 1), following established procedures 

(Mifsud et al., 2013; Norton et al., 2008; Von Blanckenburg et al., 1996). They were then 

measured for 10Be and 26Al at ETH Zurich and ANSTO for the samples processed at VUW 

and UoO/ANSTO, respectively. The 10Be samples measured at ETH Zurich were normalized 

relative to the nominal 10Be/9Be value of 28.1×10-12 for S2007N, and at ANSTO to the 

nominal 10Be/9Be value of 8.56×10-12 for 07KNSTD-01-5-2 (Nishiizumi et al., 2007). The 

26Al samples measured at ETH Zurich were normalized relative to the nominal 26Al/27Al 

value of 48×10-11 for ZAL94N, and at ANSTO to the nominal 26Al/27Al value of 3.096×10-11 

for KN-01-4-2 (Nishiizumi, 2004). All final AMS 10Be/9Be and 26Al/27Al values were 

corrected by their corresponding full chemistry procedural blanks. Final AMS isotopic ratios 

were converted to 10Be and 26Al concentrations (atoms g-1) by using the measured 9Be 

concentrations in the 372.5 ppm spike solution, and ICP-OES 27Al assay in the quartz at 

GeoForschungsZentrum (GFZ) and ANSTO for samples processed at VUW and 

UoO/ANSTO respectively. The ICP-OES analyses performed at GFZ were replicated on 

ICP-MS at VUW, with measurements consistent at 1 sigma level and corresponding mean 

26Al concentrations differing by ~1–6%. 

Surface-exposure ages were calculated from the measured concentrations of 10Be and 

26Al, corrected for topographic shielding, sample thickness, rock density and an Antarctic 

atmospheric pressure gradient, using CRONUS-Earth online calculator (Balco et al., 2008). 



 

 

They are termed ‘apparent exposure ages’ as they assume continuous exposure since initially 

exposed and near-zero surface erosion over that time. 

 

2.3. Multiple-nuclide exposure-burial modeling 

In order to better determine the ice surface history implied by the data, nuclide 

concentrations can be modeled through periods of exposure and burial (e.g. Balco et al., 

2014; Bierman et al., 1999; Corbett et al., 2016; Sugden et al., 2005). Our approach assumes: 

1) the episodes of past exposure and burial relate directly to fluctuations of the ice surface 

elevation; 2) these fluctuations occurred over uniform glacial-interglacial cycles (40-ka or 

100-ka), as recorded by benthic oxygen isotopes and Antarctic marine sediments; and 3) the 

glacier surface elevation rose (i.e. sample burial) during glacial episodes, in response to 

buttressing near the terminus from expanded grounded ice in the Ross Sea (e.g. Denton and 

Hughes, 2000), and lowered (i.e. sample exposure) during interglacial episodes (Fig. 3A). 

The concentration (atoms g-1) of a nuclide in a rock surface (𝑁𝑘) can be calculated for 

a glacial and an interglacial period as follows: 

 

𝑁𝑘
𝑖 = 𝑁𝑘

𝑖−1 𝑒𝑥𝑝 [− ( λ𝑘 +
𝜌 𝜀𝑠𝑔

Λ
) 𝑡𝑏]       (1) 

and 

𝑁𝑘
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𝜌 𝜀𝑠𝑎

Λ
) 𝑡𝑒]  + 

𝑃𝑘

λ𝑘+
𝜌 𝜀𝑠𝑎

Λ

(1 − 𝑒𝑥𝑝 [− ( λ𝑘 +
𝜌 𝜀𝑠𝑎

Λ
) 𝑡𝑒])  (2) 

 

where 𝑃𝑘 is the production rate (atoms g-1 a-1) and 𝜆𝑘 is the decay constant (a-1) for nuclide 𝑘, 

𝜌 is the rock density (g cm-3), 𝜀𝑠𝑔 and 𝜀𝑠𝑎 are the subglacial and subaerial erosion rates (cm a-

1), Λ is the attenuation length (g cm-2), and 𝑡𝑏 and 𝑡𝑒 are the durations of burial and exposure 

per glacial-interglacial cycle. Nuclide concentrations calculated during each glacial or 



 

 

interglacial period (𝑁𝑘
𝑖 ) are dependent on the on the concentrations calculated for the 

preceding glacial or interglacial period (𝑁𝑘
𝑖−1). 

 Nuclide concentrations are zero at the start of an exposure-burial scenario (𝑡𝑡𝑜𝑡𝑎𝑙), and 

a forward model calculates concentrations as stated in Equations 1 and 2 iteratively over 

glacial-interglacial cycles until present day (Fig. 3). The model uses the decay constants of 

4.99 x 10-7 a-1 for 10Be and 9.83 x 10-7 a-1 for 26Al (Chmeleff et al., 2010; Korschinek et al., 

2010; Nishiizumi, 2004), an attenuation length of 160 g cm-2 (Balco et al., 2008) and a rock 

density of 2.65 g cm-3. Production is calculated for spallation using the 10Be production rate 

of 4.49 atoms g a-1, predicted by a global calibration dataset (Balco et al., 2008). While this 

value may slightly overestimate the true production rate, this analysis relies primarily on the 

measured decay constants and the commonly used 26Al/10Be production ratio of 6.75 (Balco 

and Shuster, 2009). Production by muons is small (~1.5–2% that of spallation), and is 

therefore considered negligible (e.g. Balco et al., 2014; Briner et al., 2006; Lilly et al., 2010). 

The resulting nuclide concentrations are then normalized by the Sea-Level-High-Latitude 

production rate (Balco et al., 2008; Stone, 2000) for comparison with measured 

concentrations that are normalized by their site-specific production rate. 

Nuclide concentrations evolve in the model along exposure/burial pathways according 

to the periodicity of glacial-interglacial cycles (𝑡𝑐𝑦𝑐𝑙𝑒), percent buried per cycle (% 𝑏𝑢𝑟), 

subaerial erosion rate (𝜀𝑠𝑎), subglacial erosion rate (𝜀𝑠𝑔), and amount of total exposure/burial 

time (𝑡𝑡𝑜𝑡𝑎𝑙) (Fig. 3). An additional parameter, the duration of constant exposure prior to 

cyclic exposure-burial (𝑡𝑝𝑟𝑒), is used only for cobble samples. These parameters are either 

specified or allowed to float between given ranges of values for each model simulation 

(supplementary Table 2), which we proceed to explain below. 

We assume that the cyclicity in exposure and burial is driven by the dominant orbital 

cycle reflected in benthic oxygen isotopes, which reflect ocean temperature and global ice 



 

 

volume (Lisiecki and Raymo, 2005). Similar orbital frequencies are recorded in Antarctic 

offshore sediment cores, including at drill site AND-1B downstream of Skelton Glacier, 

representing oscillations of the ice margin since at least the Pliocene (McKay et al., 2012; 

Naish et al., 2009; Patterson et al., 2014). Based on these records, we impose 𝑡𝑐𝑦𝑐𝑙𝑒 values of 

40 ka during the Pliocene (5.4–2.6 Ma BP) and 100 ka during the Late Pleistocene (0.8–0 Ma 

BP). The cycle periodicity is less certain during the intervening Early-Mid Pleistocene (2.6–

0.8 Ma BP). We therefore set 𝑡𝑐𝑦𝑐𝑙𝑒 as either 40 ka or 100 ka for this period, meaning that 

half of all simulations use either 40-ka or 100-ka cycles during the Early-Mid Pleistocene. 

For scenarios where initial exposure occurs prior to the Pliocene, concentrations evolve 

according to 20-ka, 40-ka or 100-ka cycles until 5.4 Ma BP. However, in this study we focus 

on the Pliocene to present-day, when the ice surface history implied by our data can be 

predicted more reliably. 

The percentage of a glacial-interglacial cycle that a rock surface was ice-covered 

likely varied depending on the sample location (e.g. elevation of the site above the modern 

ice surface), and therefore we use a range of 0–100% (in 5% increments) ice cover per cycle 

(% 𝑏𝑢𝑟) in the model (Fig. 3A); as an example, 60 % 𝑏𝑢𝑟 of a Late Pleistocene cycle (𝑡𝑐𝑦𝑐𝑙𝑒 

= 100 ka) equates to 40 ka exposed (𝑡𝑒) and 60 ka buried (𝑡𝑏). Full shielding by ice, and 

therefore zero nuclide production, is assumed during glacial periods, while no cover of the 

rock surface, zero shielding and full nuclide production is assumed during interglacial 

periods. Today, snow cover is thin and temporary at nunataks because of low moisture 

transport, low albedo and high winds, and till deposition at these sites is minimal (see 

supplementary Fig. 1), and therefore partial shielding during interglacial periods is 

considered negligible. 

In addition to radionuclide decay, nuclides can be lost to subaerial (𝜀𝑠𝑎) or subglacial 

(𝜀𝑠𝑔) erosion, during exposure or burial, respectively. The model uses a range of possible 



 

 

erosion rates (0–1.5 m Ma-1, in 0.1 m Ma-1 increments), partly constrained by available data 

from Antarctica that imply rates less than 1.5 m Ma-1 (e.g. Balco et al., 2014; Ivy-Ochs et al., 

1995). These are independently applied at constant rates during periods of burial and 

exposure, as described in equations 1 and 2 respectively; the effects of subglacial erosion on 

nuclide concentrations following a period of exposure are highlighted in Fig. 3B. While we 

assume that surface erosion is steady, there was no evidence of large-scale episodic erosion, 

such as plucking, of rock surfaces at the sample sites.  

The rock surfaces could have been buried and exposed over many millions years or 

just the last glacial-interglacial cycle, with the total recorded exposure/burial history partly 

dependent on the amount of cumulative erosion; higher erosion rates cause nuclide 

concentrations to reach equilibrium more rapidly, limiting the signal of past ice surface 

fluctuations that can be preserved (Balco et al., 2014). We include a large range of 𝑡𝑡𝑜𝑡𝑎𝑙 in 

the model (0–8 Ma BP, in 10-ka increments), with the longer histories limited by the erosion 

rate for each modeled scenario. 

While the bedrock samples can be assumed to have undergone in situ exposure and 

burial, the erratic samples collected at Névé Nunatak could have a more diverse history. 

There is a chance that some of these cobbles were exposed upstream for some time prior to 

being deposited at Névé Nunatak and subsequent cycles of exposure and burial. To account 

for this possibility, the concentrations are allowed to evolve from constant exposure for 𝑡𝑝𝑟𝑒, 

prior to cyclic exposure-burial in the model; the concentrations resulting from these scenarios 

are only compared to the cobble samples from Névé Nunatak. 

Nuclide concentrations were modeled through time for each combination of parameter 

values. Scenarios were then only accepted where the final nuclide concentrations matched the 

measured sample concentrations, using a uniform uncertainty distribution for each 

measurement (at 95% confidence; measurement uncertainty). It is worth noting here that the 



 

 

uncertainty of the measurements therefore partly governs the ability of these types of 

modeling approaches to identify simulated scenarios consistent with the data. In the case of 

the erratic cobbles, we only want to simulate the exposure-burial history at Névé Nunatak, 

where the multiple samples must have undergone the same ice surface fluctuations for at least 

some period of time and, therefore, we additionally only accepted scenarios of 

exposure/burial time (% 𝑏𝑢𝑟 and 𝑡𝑐𝑦𝑐𝑙𝑒) if they were consistent between all Névé Nunatak 

samples. The resulting frequency populations were then converted to probability estimates to 

identify the most likely ice cover history implied by the samples. 

 

3. Results 

3.1. Apparent exposure ages and two-isotope analysis 

Surface-exposure ages were calculated from measured nuclide concentrations as 

described above for all samples (Tables 1 and 2). The youngest (10Be) exposure age comes 

from an erratic boulder with a relatively unweathered surface at Halfway Nunatak (HN36), 

dated to 5.8 ± 0.8 ka BP. This is the only sample that most likely records ice surface lowering 

during the last glacial cycle. 

All other samples provide 10Be and 26Al apparent exposure ages in the range of ~90 

ka to 1 Ma BP (Fig. 4A), which are broadly older for samples at higher elevations. Critically, 

the ages derived from 10Be and 26Al isotopes are not consistent for any of these samples (Fig. 

4A). The lack of agreement between the two isotopes indicates that the samples record the 

inheritance of cosmogenic nuclides, representing at least one episode of exposure prior to the 

last episode of burial (Fig. 3B). Therefore, while these apparent exposure ages cannot be 

considered absolute estimates for the timing of deglaciation, we can learn about the exposure 

and burial histories of these samples by evaluating their multiple nuclide concentrations. 



 

 

Nuclide concentrations range from 2.1 × 106 ± 6 × 104 atoms g-1 to 1.5 × 107 ± 4 ×

105 atoms g-1 and 1.1 × 107 ± 6 × 105 atoms g-1 to 6.3 × 107 ± 2 × 106 atoms g-1, for 10Be 

and 26Al respectively (at 1 σ) (Table 2). These values correspond to mean 26Al/10Be ratios of 

3.79 to 5.48, which are significantly below the production ratio of 6.75 (Balco and Shuster, 

2009). The relative position of these nuclide concentrations (normalized to production rates) 

on a two-isotope plot provides a preliminary assessment of the degree of exposure and burial 

experienced by the samples (Fig. 4B). A sample that has experienced continuous exposure 

and any degree of subaerial erosion will plot within the steady-state erosion island (shown as 

a bold black line), while a sample with concentrations plotting below this island indicates that 

the sample must have experienced burial following initial exposure, the minimum amount of 

which is denoted by isochrones of equal burial time. It is also possible for a sample that has 

undergone exposure and burial to plot within the steady-state erosion island, if the cumulative 

burial time is sufficiently less than that of exposure, and erosion is minimal. The amount of 

burial time implied by this plot is largely determined by the 26Al/10Be ratio, which has a 

relatively large uncertainty because of error propagation from both isotope concentrations, 

with generally greater uncertainty for 26Al than 10Be measurements. 

Our samples record a long time of cumulative exposure and burial, which varies in 

magnitude between samples and sites (Fig. 4B). Two samples at Névé Nunatak (NN33c and 

NN33d) plot within the steady-state erosion island, given the measurement uncertainty of the 

nuclide concentrations. These samples could possibly be explained by continuous exposure 

and erosion since first deposited, but this is unlikely considering that these samples would 

have shared at least some exposure/burial history with neighboring samples at Névé Nunatak, 

which indicate significant burial similar to the other sites. The simplest scenario for all of our 

samples is that they underwent a single period of continuous exposure, ranging from ~150 ka 

to ~1.8 Ma (at 1 σ), followed by a single period of continuous burial, ranging from ~100 ka to 



 

 

~850 ka (at 1 σ) (Fig. 4B). This would imply a switch from uninterrupted ice-free conditions 

to uninterrupted ice cover during the Pleistocene, with the time that this occurred varying 

between samples and sites. Such a simple two-stage (exposure then burial) history is unlikely 

as it ignores potential surface erosion and cyclic episodes of ice cover, which is recorded for 

the ice margin downstream at the AND-1B core site (McKay et al., 2012; Naish et al., 2009). 

This scenario also ignores the data from Halfway Nunatak, which implies a recent re-

exposure period since at least ~5.8 ka BP. In order to robustly determine the history of past 

ice surface fluctuations reflected in the samples, a more systematic analysis of the potential 

exposure-burial histories is required. 

 

3.2. Exposure-burial modeling of long-term ice surface fluctuations 

We explored this long-term history further by modeling the evolution of nuclide 

concentrations through glacial-interglacial cycles. By accepting the simulated nuclide 

concentrations that matched our data, we can identify which exposure-burial scenarios are 

consistent with our samples (Fig. 5). The total exposure-burial history recorded by the 

samples can be inferred from the distribution of modeled time since first exposed (Fig. 6A). 

Based on the modes and 68% confidence bounds of these distributions, our samples record 

~3–6 Ma of total exposure and burial time. Rock surfaces likely underwent erosion at 

differing rates between samples and sites, but a rough indication of erosion rates at Skelton 

Glacier can be obtained by combining the results of all samples. During periods of exposure, 

the simulations estimate that the sampled surfaces were subjected to average subaerial 

erosion rates of ~0.4–0.6 m Ma-1 (Fig. 6B), similar to the rates estimated in the nearby Dry 

Valleys region (0.5–1.5 m/Ma, Balco et al., 2014; 0.7 m/Ma, Ivy-Ochs et al., 1995). During 

periods of ice cover, subglacial erosion likely occurred at average rates of ~0.7 m Ma-1 (Fig. 

6B). Although, the magnitude of this basal erosion would have probably been much higher 



 

 

towards the central flow path of the glacier where the ice is faster flowing and much thicker, 

with a far greater potential for basal melt and sliding (e.g. Golledge et al., 2013; Jones et al., 

2016). 

Modeling indicates that all nunatak sites experienced substantial burial by ice since 

the Pliocene. The simulated nuclide concentrations that were consistent with our data evolved 

primarily dependent on the duration of burial per glacial-interglacial cycle at each site, 

irrespective of total exposure-burial time and erosion rates. The duration of this burial per 

glacial-interglacial cycle correlates well with elevation above the modern ice surface (R2 ≈ -

0.91 to -0.99, p < 0.03 to < 0.001) (Fig. 7). At most sites, the relative duration of burial was 

broadly the same for the Pliocene, Early-Mid Pleistocene and Pliocene. The unnamed 

nunatak sample, collected within 2 m of the ice surface, implies that Skelton Glacier was 

thicker than present for 75–90% of a glacial-interglacial cycle (~75–90 ka per Late 

Pleistocene cycle, ~30–35 ka per Pliocene cycle, and ~30–35 ka or ~75–90 ka per Early-Mid 

Pleistocene cycle depending on the periodicity of the cycles). This is broadly consistent with 

the youngest exposure age collected at Halfway Nunatak, which implies at least ~6 ka of 

exposure over the last (100-ka) cycle. While the distribution of results is broader at Névé 

Nunatak, ~200 m above the modern ice surface, less burial time is predicted relative to the 

samples at lower elevation sites (Fig. 7). Here, our modeling suggests that ice cover likely 

occurred for ~35–95% and ~35–60% during Late and Early-Mid Pleistocene cycles, 

respectively, but just ~15–55% during Pliocene cycles. The modes and means of these 

probability distributions (at 45% and 47% for the Early-Mid Pleistocene, and 30% and 34% 

for the Pliocene, respectively) imply an apparent offset in the duration of ice cover per cycle, 

but the differences between the distributions are not significant at 68% confidence (Fig. 7). 

This result should therefore be considered with some caution. 



 

 

Previous modeling of complex burial-exposure histories recognized that a higher 

26Al/10Be production ratio can cause longer modeled burial durations (Corbett et al., 2016). 

We find that our data produce very similar results using a relatively high ratio of 7.28 

(Borchers et al., 2016; scaling of Lifton et al., 2014) compared to the commonly accepted 

ratio of 6.75 that is applied here (see supplementary data). 

 

4. Discussion 

 Cosmogenic nuclide data from rock surfaces at nunatak sites located across the 

Skelton Glacier catchment consist of two sample populations: 1) an erratic boulder with a 

relatively young 10Be-derived exposure age of ~5.8 ka BP; and 2) 11 bedrock surfaces and 

erratic cobbles with much older and offset 10Be- and 26Al-derived apparent ages, and 

corresponding nuclide concentrations indicative of long-term exposure and burial histories. 

The former most likely represents deglaciation during the last glacial cycle and, as it is 

located close to the present-day glacier margin, implies that ice surface lowering here was 

near-complete by at least the mid-Holocene. However, this should only be considered as a 

tentative conclusion as it is based on just a single erratic sample, which could potentially have 

micro-inheritance (e.g. from incomplete surface erosion when last covered by ice (e.g. White 

et al., 2011)) or post-depositional alteration (e.g. subaerial erosion or movement following 

exposure). Consequently, this discussion focuses on the latter population, which records long-

term exposure and burial of rock surfaces. 

 

4.1. Old apparent ages and low 26Al/10Be ratios indicative of long-term exposure and burial 

  The majority of samples were shown to have nuclide concentrations requiring multi-

stage exposure histories. This was evident as relatively old apparent exposure ages, which 

were significantly younger from 26Al than from 10Be. These apparent exposure ages increased 



 

 

broadly with elevation of the sample site, reflecting greater cumulative exposure at higher 

elevations than at lower elevations. Preliminary evaluation of the concentrations identified 

that the 26Al/10Be ratios were largely inconsistent with continuous exposure and possible 

surface erosion. Instead, these concentrations implied at least ~150 ka to ~1.6 Ma of exposure 

and at least ~100 ka to ~850 ka of burial, assuming the simplistic scenario of an uninterrupted 

period of exposure and then burial. Notably, the amount of exposure and burial varied 

between sites and between the erratic cobbles. Discrete exposure-burial histories should be 

expected as each nunatak represents a slightly different part of the glacier catchment, each 

sample site has a different elevation relative to the modern ice surface, and all rock surfaces 

could have been subjected to varied degrees of erosion. Erratic cobbles additionally have the 

potential of a more diverse history, for example, from prior nuclide production at another site 

upstream and prolonged burial during glacial transport. While such differences can help 

explain the variance between sample concentrations, understanding the probable exposure-

burial history at each site required systematic modeling, informed by the evidence of 

orbitally-paced ice margin oscillations recorded downstream of Skelton Glacier. 

 The primary outcomes of the modeling exercise, assuming that ice surface changes 

occurred over orbital frequencies, were that 1) the samples likely record a burial/exposure 

history since at least the Pliocene, 2) all sampled sites were buried during glacial periods, 3) 

the unnamed nunatak (lowest elevation) site was buried for ~75–90% of each glacial-

interglacial cycle, and 4) burial at Névé Nunatak, the highest elevation site, possibly occurred 

for a relatively shorter time per Pliocene cycle than Pleistocene cycle. Apart from Névé 

Nunatak, where results were based on common exposure-burial histories of 7 erratic cobbles, 

the results for all other sites were based on single bedrock surface samples. In straightforward 

surface-exposure dating applications, multiple bedrock surfaces would be needed to provide a 

reliable representative age of a site or feature because of potential differential erosion rates 



 

 

and prior exposure histories. Here, however, such effects were accounted for in the model, 

with the range of site elevations providing an additional tool to evaluate the reliability of 

these samples. The strong relationship between the duration of burial per glacial-interglacial 

cycle and the elevation of sample sites above the modern ice surface demonstrates that the 

samples suitably represent ice cover history at their respective sites. 

 In order to assume that the long-term exposure and burial histories that are implied by 

our data represent thinning and thickening of Skelton Glacier, we must rule out other possible 

causes. Nuclide decay associated with burial of a rock surface can occur from till or snow 

cover, or burial from local ice. It is unlikely that till or snow cover could explain our data as 

this cover would have to vary cyclically, probably in line with glacial-interglacial changes in 

climate, and have durations of cover stratigraphically consistent with elevation above the 

modern ice surface. Likewise, none of the nunatak sites are conducive to local glacier ice 

today or have topographic relief that might have facilitated local ice expansion in the past, 

particularly which was unrelated to Skelton Glacier.  

There is also a possibility that changes in nuclide concentrations associated with 

burial/exposure may not have occurred over continuous glacial-interglacial cycles. For 

example, sites may have been continuously exposed during the Pliocene, prior to cycles of 

burial/exposure from a fluctuating ice surface during the Pleistocene. In our modeling, an ice-

free Pliocene could occur with a scenario of 0% burial per Pliocene cycle, but the results 

showed that the nunatak sites were more likely partly ice-covered than completely exposed 

over this time (Fig. 7). While we cannot rule out other non-cyclic or missing cycle scenarios, 

the modeling exercise demonstrates that orbitally-paced ice surface histories, consistent with 

marine-based ice cover evidence, can explain the measured nuclide concentrations. 

  

 



 

 

4.2. East Antarctic ice surface history since the Pliocene 

Our analysis indicates that the surface of Skelton Glacier, connecting the East 

Antarctic plateau to the coastal ice margin, was higher than today during the Pliocene and 

Pleistocene. This is consistent with data from high altitude sites in the Transantarctic 

Mountains (e.g. Balco et al., 2014; Brook et al., 1993; Di Nicola et al., 2012; Fogwill et al., 

2004; Staiger et al., 2006) and other East Antarctic sites representing surface elevation 

changes of the ice sheet interior (e.g. Lilly et al., 2010; Suganuma et al., 2014; Yamane et al., 

2015), which suggest higher ice surface elevations potentially reflective of a thicker-than-

present ice sheet during the Pliocene or at least the Early Pleistocene. Here, however, we find 

that thickening possibly occurred for a relatively shorter duration at high elevation sites in the 

Pliocene than in the Pleistocene, implying a general trend of increasing ice cover duration 

from the Pliocene towards present, rather than a progressively lowering ice surface over this 

time (e.g. Lilly et al., 2010; Yamane et al., 2015). The difference may reflect the location of 

the Skelton Glacier sites, at relatively lower elevations above the modern ice surface and in 

the mid-lower reaches of the glacier, closer to the influences of marine-based portions of the 

ice sheet. If so, our data analysis might imply that the surface of the ice sheet interior was 

higher during the Pliocene, but that outlet glaciers and the ice sheet margins had relatively 

higher surfaces during the Pleistocene. 

Our analysis also indicates that the glacier surface elevation fluctuated substantially 

since at least the Pliocene. This is consistent with data collected at lower altitudes or nearer to 

the coast that show a complex surface-exposure history over this time (e.g. Balco et al., 2014; 

Di Nicola et al., 2009; Lilly et al., 2010), highlighting the magnitude of past surface elevation 

changes at areas akin to Skelton Glacier, upstream of the ice margin (Fig. 8). 

 

 



 

 

4.3. Fluctuations of marine-based ice sheet margins 

Fluctuations between contrasting glacial-interglacial ice surface elevations and outlet 

glacier configurations likely coincided with shifts in ice velocity and basal conditions through 

Pliocene and Pleistocene climates (Fig. 8). During glacial periods, ice sheet margins 

advanced towards the continental shelf edge (e.g. McKay et al., 2012; Naish et al., 2009; 

Patterson et al., 2014; Pollard and DeConto, 2009). The expansion of ice in the marine 

embayment acted as a buttress, restricting the flow of outlet glaciers and causing them to 

thicken upstream (e.g. Anderson et al., 2004; Denton and Hughes, 2000). At Skelton Glacier, 

the ice surface was probably at least 200 m higher than today during both Pliocene and 

Pleistocene glacial periods (Fig. 7), with greatest thickening likely occurring in the lower 

reaches of the glacier (Jones et al., 2016). While similar ice surface elevations are indicated 

by our data throughout this time at each site, progressive erosion of the bed beneath the 

central trunk of the glacier would mean that the corresponding ice thickness was likely 

greater in the Pleistocene than Pliocene (Fig. 8). These glacial periods lasted for 75–90% of a 

glacial-interglacial cycle, which is broadly consistent with estimates of glacial/interglacial 

durations inferred from paleoclimate records, at least for the Late Pleistocene (e.g. Tzedakis 

et al., 2012). 

Interglacial periods are recorded at Skelton Glacier when the ice surface was likely 

near or below the present-day elevation, lasting for ~10–25% of a glacial-interglacial cycle. 

Although we are unable to constrain the magnitude of thinning during interglacial periods, 

glacier modeling predicts that the Skelton Glacier terminus could have retreated upstream of 

the overdeepened inlet, above sea level, under a Pliocene interglacial climate (Jones et al., 

2016) (Fig. 8), which is similar to that modeled at Ferrar Glacier, another East Antarctic 

outlet glacier (Golledge and Levy, 2011). Warm sea surface (+3–5 °C) (Winter et al., 2010) 

and atmospheric temperatures in the Pliocene likely also produced a more dynamic glacier 



 

 

profile with enhanced basal erosion and offshore sediment deposition, relative to that in the 

Pleistocene (Fig. 8) (Levy et al., 2012). At times when the vicinity downstream of Skelton 

Glacier was open water (Naish et al., 2009), continent-scale ice sheet modeling indicates that 

significant deglaciation of the WAIS, and the Wilkes Basin in East Antarctica, occurred 

(Austermann et al., 2015; Pollard and DeConto, 2009). Recent ice sheet simulations indicate 

that substantial retreat of the EAIS and WAIS margins possibly also occurred during the 

Pleistocene (DeConto and Pollard, 2016). This is consistent with our data from Skelton 

Glacier, which shows that the duration of deglaciation, relative to glacial expansion, was 

similar in both the Pliocene and Pleistocene. 

Large amplitude glacial-interglacial fluctuations of the glacier surface and ice sheet 

margin are inferred despite there being contrasting climates between the Pliocene and 

Pleistocene. Relatively high precipitation during the Pliocene, possibly from increased 

moisture transport (Yamane et al., 2015), could have caused greater thickening of the ice 

sheet interior. Meanwhile, the relatively warmer air and ocean temperatures (Haywood et al., 

2013; Winter et al., 2010) would have facilitated more extensive basal sliding and higher 

surface velocities of East Antarctic outlet glaciers (Golledge and Levy, 2011; Jones et al., 

2016; Levy et al., 2012), allowing for oscillations of the ice margin and the faster propagation 

of ice flux changes inland (Fig. 8). The climate cooled globally towards the Late Pleistocene, 

helping ice sheets to thicken and advance during glacial periods (Fig. 8). Progressive glacial 

incision of bedrock troughs and basins on the continental shelf since the Late Pliocene 

(Golledge et al., 2013; Rebesco and Camerlenghi, 2008) would have allowed deglaciation to 

occur during Pleistocene interglacial periods from enhanced marine instability feedbacks and 

only moderately warm temperatures. In locations where multiple outlet glaciers and ice 

streams coalesced in an embayment, such as the Ross Embayment, buttressing effects likely 



 

 

acted to amplify the upstream thickening of glaciers during Pliocene and Pleistocene glacial 

periods. 

 

5. Conclusions 

We applied multiple-isotope cosmogenic nuclide analysis to cobble and bedrock 

surface samples, collected at ice-free sites flanking Skelton Glacier, in order to record a 

history of ice surface fluctuations. While one boulder possibly indicates that relatively recent 

deglaciation was near-complete by the mid-Holocene, all other samples (11 of 12) provide 

much older 10Be- and 26Al-derived apparent ages, and corresponding nuclide concentrations 

indicative of long-term exposure and burial histories. We assume that exposure and burial 

occurred over glacial-interglacial cycles, driven by orbital cycles that are reflected in benthic 

oxygen isotopes and local Antarctic ice marginal sediments. By modeling nuclide 

concentrations through these glacial-interglacial cycles, we identified the most probable 

glacier surface fluctuation histories that are consistent with our data. Firstly, relatively low 

erosion rates of a few decimeters per Ma have preserved long-term exposure histories in these 

samples, which imply substantial exposure and burial since at least the Pliocene. Secondly, 

the ice surface was likely >200 m higher than today during glacial periods, covering our 

highest elevation site, and the glacier has probably been thicker than present for ~75–90% of 

each glacial-interglacial cycle. Thirdly, ice cover at higher elevations possibly occurred for a 

relatively shorter time per Pliocene cycle than Pleistocene cycle. While it is not possible to 

determine the magnitude of surface lowering during interglacial periods, our data imply that 

the duration of deglaciation, relative to glacial expansion, was similar in both the Pliocene 

and Pleistocene.  

Our analysis links new onshore data of ice surface elevations from an East Antarctic 

outlet glacier with offshore evidence of the ice margin that is recorded downstream of the 



 

 

study area. The outcomes are consistent with evidence from the edge of the East Antarctic 

plateau that indicate a higher ice sheet surface existed during the Pliocene, but also highlight 

that glacier surface elevations fluctuated substantially since the Pliocene. Large glacial-

interglacial fluctuations in ice extent occurred at the marine-based ice margin of the East 

Antarctic Ice Sheet, in response to the evolving climate and bed topography since at least the 

Pliocene. Over this time, we have shown how such changes can be manifested upstream as 

surface elevation changes of outlet glaciers. The scale of these ice surface fluctuations during 

the Pliocene and Pleistocene can be used to better inform ice sheet models that simulate long-

term ice volume, and corresponding sea level contribution, over glacial-interglacial cycles. 
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Tables 

 
Table 1. Nuclide concentrations. 

Site 
Sample 
ID 

Final 
quartz 

weight (g) 

Mass of 
9Be added 

(mg) 

10Be conc. 
(atoms g-1) 

10Be conc.  
1 sigma 

(atoms g-1) 

26Al conc. 
(atoms g-1) 

26Al conc. 
1 sigma 

(atoms g-1) 

26Al/10Be 
ratio 

Ratio 
1 sigma  

Unnamed 
Nunatak AN35 * 61.03 0.1784 2.13E+06 6.38E+04 1.10E+07 6.47E+05 5.16 0.50 
Halfway 
Nunatak HN36 * 21.54 0.1650 7.47E+04 7.60E+03 – – – – 

Escalade-Tate 
Peak saddle EP26 † 50.08 0.3810 5.21E+06 1.31E+05 2.35E+07 1.60E+06 4.51 0.47 

Tate Peak EP25 † 50.06 0.3840 5.57E+06 1.28E+05 2.99E+07 1.20E+06 5.37 0.37 

Clinker Bluff CB38 * 33.80 0.2055 6.73E+06 1.61E+05 2.63E+07 1.17E+06 3.91 0.29 

Névé Nunatak NN33d * 12.30 0.1677 1.05E+07 3.14E+05 5.41E+07 1.49E+06 5.16 0.31 

Névé Nunatak NN33c * 57.40 0.1677 8.18E+06 2.62E+05 4.48E+07 5.35E+05 5.48 0.28 

Névé Nunatak NN31 * 26.40 0.1680 1.44E+07 4.33E+05 5.46E+07 9.93E+05 3.79 0.20 

Névé Nunatak NN32 * 34.02 0.1672 5.19E+06 1.56E+05 2.72E+07 1.10E+06 5.23 0.38 

Névé Nunatak NN33a * 36.89 0.1681 1.04E+07 3.13E+05 5.30E+07 2.48E+05 5.08 0.22 

Névé Nunatak NN33b * 56.75 0.1677 1.05E+07 3.14E+05 5.23E+07 1.91E+06 4.99 0.35 

Névé Nunatak NN30 * 56.24 0.1861 1.45E+07 4.36E+05 6.25E+07 2.05E+06 4.30 0.29 

Samples were processed at *VUW and †ANSTO, and measured at ETH Zurich/GFZ and ANSTO, respectively (see text). 

 

 

 
Table 2. Apparent exposure ages. 

Nunatak 
Sample 
ID 

10Be age (ka) 26Al age (ka) Ps (atoms g-1 a-1) 

Mean 
age 

1 sigma 
(internal) 

1 sigma 
(external) 

Mean 
age 

1 sigma 
(internal) 

1 sigma 
(external) 

10Be 26Al 

Unnamed 
nunatak AN35 121 4 11 94 6 10 17.77 119.88 

Halfway 
Nunatak HN36 5.8 0.6 0.8 – – – 12.72 – 

Escalade-Tate 
Peak saddle EP26 257 7 25 175 13 21 21.28 143.55 

Tate Peak EP25 288 7 28 238 11 26 20.47 138.10 

Clinker Bluff CB38 815 24 91 484 28 61 9.81 66.18 

Névé Nunatak NN33d 660 23 72 557 20 68 18.32 123.60 

Névé Nunatak NN33c 489 18 51 430 6 47 18.55 125.17 

Névé Nunatak NN31 971 38 115 559 14 66 18.43 124.32 

Névé Nunatak NN32 290 9 29 234 11 25 18.93 127.72 

Névé Nunatak NN33a 658 23 72 541 3 62 18.33 123.67 

Névé Nunatak NN33b 657 23 71 529 25 65 18.40 124.12 

Névé Nunatak NN30 955 37 113 656 30 86 18.78 126.68 

PS = Sample-specific production rate for spallation. 
Exposure ages are calculated using the Lal/Stone scheme (Lal, 1991; Stone, 2000). 
‘Internal’ refers to solely the measurement uncertainty of the nuclide measurement, while the ‘external’ uncertainty additionally 
includes production rate uncertainties. 

  



 

 

Figure Captions 

 

 

Figure 1. Study area context. A) Skelton Glacier delivers ice from the East Antarctic Ice 

Sheet (EAIS) to the Ross Sea and AND-1B core site (yellow triangle; Naish et al., 2009) 

today, indicated by an arrow, and likely has done since at least the Pliocene (Talarico et al., 

2012). Ice-free areas are shown in black. WAIS – West Antarctic Ice Sheet. B) Nunataks 

targeted for surface-exposure analysis are in red (boxed sample sites are shown in Figure 2). 

The catchment boundary of Skelton Glacier (as defined in Jones et al., 2016) is denoted with 

a red dot-dashed line, while ice flow is highlighted with mapped flow stripes (grey lines) and 

ice velocity contours (blue lines at 25 m a-1 intervals; Rignot et al., 2011). 

 



 

 

 

Figure 2. Four example samples collected at Skelton Glacier nunataks. The location of each 

sample is shown by a yellow star on an aerial photograph. Black arrows highlight the modern 

ice flow direction, while red arrows denote the former ice flow, apparent from bedrock striae 

where available. The details of all samples are provided in the supplement. 

 

 

Figure 3. Summary of exposure-burial modeling approach used. A) Nuclide production and 

decay is calculated for episodes of exposure (𝑡𝑒) and burial (𝑡𝑏) through glacial-interglacial 

cycles (𝑡𝑐𝑦𝑐𝑙𝑒), for an assigned period of time (𝑡𝑡𝑜𝑡𝑎𝑙). The percent of ice cover per cycle 

(% 𝑏𝑢𝑟) determines the duration of 𝑡𝑒 and 𝑡𝑏. B) Concentrations of 10Be and 26Al are 

produced and then decay over an exposure-burial cycle (calculated here for 𝑡𝑒 30 ka, 𝑡𝑏 70 



 

 

ka). Higher erosion rates increase the amount of nuclide loss, shown here for subglacial 

erosion (𝜀𝑠𝑔) during burial by ice. 

 

 

Figure 4. Measured burial/exposure history of the samples. A) Apparent exposure ages are 

based on 10Be and 26Al concentrations (Tables 1 and 2) and shown for each sample site with 

measurement uncertainty (68% confidence). B) The corresponding sample concentrations 

(normalized; 68% and 95% confidence) are shown as ellipses on a two-isotope plot, with 

burial (dot-dashed lines) and exposure (dashed lines) isochrones, and the steady-state erosion 

island (solid black lines). 

 

  



 

 

 

Figure 5. Simulated exposure-burial scenarios shown on a two-isotope plot (see Fig. 4B). 

Nuclide concentrations evolve through glacial-interglacial cycles, with each pathway 

dependent on the periodicity of cycles, percent of each cycle covered by ice (% 𝑏𝑢𝑟), total 

time of cycles (𝑡𝑡𝑜𝑡𝑎𝑙), and subglacial (𝜀𝑠𝑔) and subaerial (𝜀𝑠𝑎) erosion rates. A) Example 

scenarios where the final nuclide concentrations were not consistent with sample EP25 (at 

95% confidence), and were therefore rejected: 1) 1.2 Ma 𝑡𝑡𝑜𝑡𝑎𝑙, 65 % 𝑏𝑢𝑟, 0.5 m Ma-1 𝜀𝑠𝑔, 

0.5 m Ma-1 𝜀𝑠𝑎, 2) 4.8 Ma 𝑡𝑡𝑜𝑡𝑎𝑙, 85 % 𝑏𝑢𝑟, 0.1 m Ma-1 𝜀𝑠𝑔, 0.6 m Ma-1 𝜀𝑠𝑎, 3) 3.5 Ma 𝑡𝑡𝑜𝑡𝑎𝑙, 

40 % 𝑏𝑢𝑟, 0.6 m Ma-1 𝜀𝑠𝑔, 0.6 m Ma-1 𝜀𝑠𝑎, 4) 5.4 Ma 𝑡𝑡𝑜𝑡𝑎𝑙, 20 % 𝑏𝑢𝑟, 0.3 m Ma-1 𝜀𝑠𝑔, 0.3 m 

Ma-1 𝜀𝑠𝑎. B) Example scenarios that converge with our data, and were therefore accepted. 

Note the change in axes scale. As the erratic cobble samples at Névé Nunatak (NN) were 

allowed to evolve from constant exposure prior to cyclic exposure-burial, two such scenarios 

are included in this plot. Sample concentrations are plotted as ellipses for 95% probability. 

 



 

 

 

Figure 6. Modeled probable burial/exposure histories that explain the measured nuclide 

concentrations. A) Probability density estimates for each sample (individual line colors 

correspond to samples as in Fig. 4), where the peak of a curve (mode) reflects the highest 

likelihood. Based on these modes, rock surfaces most likely record first exposure between ~3 

and 6 Ma BP; a few samples at Névé Nunatak and Tate Peak were possibly first exposed at 

~1–2 Ma BP. The 68% confidence bounds of these distributions are also shown as horizontal 

bars. B) Erosion rates over this time are shown for subaerial vs. subglacial erosion, with 

contours colored blue (low probability) to yellow (high probability). Subaerial erosion most 

likely occurred at ~0.4–0.6 m Ma-1, while subglacial erosion occurred at ~0.7 m Ma-1, on 

average across the catchment. 

 

  



 

 

 

Figure 7. Ice cover per glacial-interglacial cycle. The modeled percent buried per cycle is 

shown as probability density estimates for each nunatak, with the means of each distribution 

as filled circles. The duration of ice cover is well correlated with elevation of the site above 

the modern ice surface; linear regression analysis of the means determines an r2 of -0.9132 (p 

= 0.0282) for the Late Pleistocene, -0.9927 (p = 0.0008) for the Early-Mid Pleistocene, and -

0.9793 (p = 0.0036) for the Pliocene. At Névé Nunatak (NN), the probability distributions of 

ice cover per cycle differ between the Pliocene (mode 30%, mean 34%) and Early-Mid 

Pleistocene (mode 45%, mean 47%). 

 



 

 

 

Figure 8. Conceptual reconstruction of outlet glacier configurations during the Pliocene and 

Pleistocene. Ice surface elevation, relative ice surface slope and velocity, potential for basal 

melt and glacial incision, and terminus position are based on our new and previously 

published (e.g. Yamane et al., 2015) ice surface elevation data, as well as simulations of East 

Antarctic outlet glaciers under past climates (Golledge and Levy, 2011; Jones et al., 2016). 

 


