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Abstract:	The	oceanic	gateways	of	the	Drake	Passage	and	the	Agulhas	Current	are	critical	locations	14	

for	the	inflow	of	intermediate-depth	water	masses	to	the	Atlantic,	which	contribute	to	the	shallow	15	

return	flow	that	balances	the	export	of	deep	water	from	the	North	Atlantic.	The	thermohaline	16	

properties	of	northward	flowing	intermediate	water	are	ultimately	determined	by	the	inflow	of	17	

water	through	oceanic	gateways.	Here,	we	focus	on	the	less	well-studied		“Cold	Water	Route”	18	

through	the	Drake	Passage.	We	present	millennially-resolved	bottom	current	flow	speed	and	sea	19	

surface	temperature	records	downstream	of	the	Drake	Passage	spanning	the	last	25,000	years.	We	20	

find	that	prior	to	15	ka,	bottom	current	flow	speeds	at	sites	in	the	Drake	Passage	region	were	21	

dissimilar	and	there	was	a	marked	anti-phasing	between	sea	surface	temperatures	at	sites	upstream	22	

and	downstream	of	the	Drake	Passage.	After	14	ka,	we	observe	a	remarkable	convergence	of	flow	23	



	

speeds	coupled	with	a	sea	surface	temperature	phase	change	at	sites	upstream	and	downstream	of	24	

Drake	Passage.	We	interpret	this	convergence	as	evidence	for	a	significant	southward	shift	of	the	25	

sub-Antarctic	Front	from	a	position	north	of	Drake	Passage.	This	southward	shift	increased	the	26	

through-flow	of	water	from	the	Pacific,	likely	reducing	the	density	of	Atlantic	Intermediate	Water.	27	

The	timing	of	the	southward	shift	in	the	sub-Antarctic	Front	is	synchronous	with	a	major	re-28	

invigoration	of	Atlantic	Meridional	Overturning	Circulation,	with	which,	we	argue,	it	may	be	linked.		29	

Introduction	30	

The	export	of	North	Atlantic	Deep	Water	(NADW)	to	the	South	Atlantic	requires	a	compensating	31	

intermediate-depth	northward	flow.	Volume	transport	estimates	suggest	that	Antarctic	32	

Intermediate	Water	(AAIW)	is	the	main	component	of	this	upper	layer	return	flow	(Poole	and	33	

Tomczak,	1999).	Thermocline	waters	contributing	to	Atlantic	AAIW	enter	the	Atlantic	either	through	34	

Drake	Passage	(the	Cold	Water	Route)	or	via	the	Agulhas	Current	(the	Warm	Water	Route)	(Poole	35	

and	Tomczak,	1999).	The	water	mass	properties	of	these	AAIW	contributions	are	markedly	different,	36	

with	relatively	cold-fresh	water	entering	the	southwest	Atlantic	via	the	Cold	Water	Route	and	37	

warmer-saltier	thermocline	waters	entering	the	southeast	Atlantic	via	the	Warm	Water	Route	38	

(Gordon	et	al.,	1992).	The	relative	contribution	and	thermohaline	properties	of	these	water	masses	39	

determine	the	Atlantic’s	meridional	heat	and	freshwater	fluxes,	and	thus	have	implications	for	global	40	

climate.		41	

Whilst	there	have	been	a	large	number	of	studies	that	have	focused	on	the	changes	in	the	flow	and	42	

thermohaline	properties	of	water	masses	entering	the	southeast	Atlantic	via	the	Warm	Water	43	

Route,	there	are	relatively	few	proxy	reconstructions	of	past	changes	in	Cold	Water	Route	inflow.		44	

The	inflow	of	water	via	the	Cold	Water	Route	is	strongly	influenced	by	the	position	of	the	oceanic	45	

fronts	within	the	Drake	Passage.	Low-density	Sub-Antarctic	Mode	Water	(SAMW),	formed	in	the	46	

southeast	Pacific,	is	transported	into	the	Atlantic	basin	north	of	the	sub-Antarctic	Front	(SAF,	the	47	



	

most	northerly	jet	of	the	Antarctic	Circumpolar	Current,	ACC)	(Talley,	1999).	Along	its	flow	path	48	

through	the	Drake	Passage,	SAMW	mixes	with	Antarctic-derived	waters	to	ultimately	form	the	cold-49	

fresh	AAIW	end-member	in	the	Atlantic.	Determining	the	position	of	the	SAF	is	therefore	critical	for	50	

understanding	changes	in	the	inflow	of	low-density	intermediate	water	via	the	Cold	Water	Route	in	51	

the	past.		52	

Sea	surface	temperature	(SST)-based	reconstructions	of	the	SAF	during	the	last	glacial	period	suggest	53	

that	it	was	5-10o	northwards	of	its	present	position	(e.g.	Gersonde	et	al.,	2005);	however,	54	

reconstructions	of	the	position	of	the	SAF	in	the	Drake	Passage	region	remain	scarce.	Estimates	of	55	

bottom	current	speed	(McCave	et	al.,	1995)	provide	a	more	direct	means	to	determine	relative	56	

changes	in	Cold	Water	Route	through-flow.	To-date,	the	only	two	flow	speed	reconstructions	from	57	

within	(Lamy	et	al.,	2015)	and	downstream	(McCave	et	al.,	2014)	of	the	Drake	Passage	are	relatively	58	

low	resolution	across	the	last	deglaciation	and	their	interpretation	of	deglacial	changes	in	flow	via	59	

the	Cold	Water	Route	are	contradictory.		60	

Here,	we	use	a	multi-proxy	approach	to	determine	changes	in	the	structure	and	flow	of	water	61	

through	the	Cold	Water	Route	over	the	last	deglaciation.	We	present	sub-millennially-resolved	62	

bottom	current	flow	speed	and	alkenone-based	SST	reconstructions	from	a	site	immediately	63	

downstream	of	Drake	Passage	spanning	the	last	25	kyr.	Comparison	with	other	SST	and	bottom	64	

current	flow	speed	records	from	the	Drake	Passage	region	reveals	that	the	Last	Glacial	Maximum	65	

(LGM)	and	early	deglacial	was	characterised	by	a	very	different	spatial	pattern	of	SSTs	and	bottom	66	

current	flow	speeds	relative	to	the	last	14	kyr,	suggesting	Cold	Water	Route	through-flow	during	the	67	

glacial	period	was	reduced.		68	

2.	Materials	and	Methods	69	

2.1	Core	Material	70	

This	study	is	based	on	the	sediment	core	GC528	(53o0.8’S,	58o2.4’W,	598	m)	located	on	the	southern	71	

flank	of	the	Falkland	Plateau	collected	on	the	cruise	JR244	of	the	RRS	James	Clark	Ross.	The	core	was	72	



	

taken	from	a	contourite	drift	(South	Falkland	Slope	Drift;	Koenitz	et	al.,	2008),	that	is	today	located	73	

under	the	core	of	a	strong	westerly	jet	associated	with	the	SAF	(Figure	1)	and	is	bathed	by	AAIW.			74	

The	top	50cm	of	GC528	(Holocene	sediments)	consist	of	foraminifera	ooze	containing	>10%	CaCO3	75	

and	alkenone	concentrations	of	>1	μg/g.	The	rest	of	the	sequence	is	mainly	composed	of	silt-bearing	76	

clay	with	occasional	dropstones	present	(particularly	towards	the	LGM).	Weight	percent	carbonate	is	77	

~1%	and	the	alkenone	concentration	is	0.5-1	μg/g.		78	

The	age	model	for	core	GC528	is	based	on	reservoir-age	corrected	AMS	14C	dates	on	monospecific	79	

benthic	foraminifera	and	has	been	described	in	full	in	Roberts	et	al.	(2016).	The	sedimentation	rate	80	

varies	from	7	cm/kyr	in	the	Holocene	to	50	cm/kyr	during	the	glacial.		81	

2.2	Methods	82	

2.2.1	Sortable	silt	grain	size	analysis	83	

Sediment	grain	size	distribution	in	the	silt	fraction	(10-63	µm)	is	strongly	controlled	by	the	84	

geostrophic	speed	occurring	above	the	bottom	mixed	layer	(McCave	et	al.,	1995).	A	detailed	grain	85	

size	analysis	of	the	silt	fraction	(with	an	average	temporal	resolution	of	200	years),	in	which	86	

carbonate	and	biogenic	silica	had	been	removed	(McCave	et	al.,	1995),	was	performed	using	a	87	

Coulter	Counter	(Multisizer	3)	(Bianchi	et	al.,	1999)	with	a	200	μm	aperture.	The	set-up	was	adapted	88	

following	Moffa-Sanchez	et	al.	(2015).	The	measurement	error	in	the	sortable	silt	mean	grain	size	89	

(𝑆𝑆)	was	0.48	µm	(1	S.D.,	n=8).	90	

2.2.2	Ice-rafted	Debris		91	

Counts	of	terrigenous	grains	>300	µm	(used	as	a	proxy	for	coarse	IRD)	were	made	every	1cm	in	order	92	

to	determine	potential	changes	in	the	source	of	sediment	and	the	effect	on	𝑆𝑆.	Ice-rafted	debris	93	

comprises	all	grain	sizes	but	we	use	counts	of	grains	>300	µm	as	a	proxy	for	IRD	because	grains	in	94	

this	fraction	are	unlikely	to	be	transported	by	other	processes.	95	



	

No	obvious	gravitational	down-slope	deposits	were	observed	in	the	core,	suggesting	no	influence	96	

from	downslope	transport	that	could	have	otherwise	emplaced	sediment	unmodified	by	current	97	

transport	at	the	site.	Shards	of	Southern	Andean	volcanic	ash	or	tephra	have	the	potential	to	be	98	

transported	significant	distances	by	the	south-westerly	winds	(SWWs),	therefore	grains	of	tephra	99	

were	not	counted.		100	

2.2.3.	Alkenone-derived	Sea	Surface	Temperatures	101	

Sea	surface	temperatures	were	calculated	from	the	UK
37	index	(Prahl	et	al.,	1988)	from	alkenone	102	

analysis	of	core	GC528	with	an	average	sample	resolution	of	250	years.	Lipids	were	extracted	from	103	

~3	g	of	homogenised,	freeze-dried	sediment	using	a	CEM	microwave	system	with	12	mL	of	104	

Dichloromethane	(DCM):MeOH	(3:1,	v/v)	(Kornilova	and	Rosell-Melé,	2003).	Internal	standards	were	105	

added	for	quantification	(5α-cholestane,	dotriacontane	and	tetracontane).	The	relative	abundances	106	

of	di-,	tri-,	and	tetra-unsaturated	C37	alkenones	were	measured	with	a	Trace	Ultra	gas	107	

chromatograph	directly	coupled	to	a	Thermo	DSQ	single	quadrupole	mass	spectrometer,	fitted	with	108	

a	programmed	temperature	vaporising	(PTV)	injector.	The	target	m/z	were:	300	(nonadecanone),	109	

544	(C37:4),	546	(C37:3),	548	(C37:2),	560	(C38:3Et	and	C38:3Me),	562	(C38:2Et	and	C38:2Me),	564	and	578	(C36	110	

alkyl	alkenoates)	(Rosell-Mele	et	al.,	1995).		Several	samples	were	split	and	extracted	separately	to	111	

determine	the	procedural	error	of	UK
37	=	±	0.034	(n=	12;	equating	to	an	error	in	SST	±	1.2oC).	The	112	

Prahl	et	al.,	(1988)		UK
37	-SST	calibration	produced	the	best	match	between	the	surface	sample	and	113	

modern	annually-averaged	sea	surface	temperatures	at	site	GC528.	This	is	because	the	Prahl	et	al.,	114	

(1988)		calibration	is	based	on	the	UK
37	index	(as	opposed	to	the	UK’

37),	which	includes	C37:4.	This	115	

alkenone	is	abundant	in	high	latitude	regions	and	it	has	been	shown	that	the	UK
37	index	provides	116	

more	robust	SST	reconstructions	in	high	Southern	latitudes	than	UK’
37	(Ho	et	al.,	2012).	117	

2.2.4.	δ13CTOC	and	C/N	ratio	118	

Total	organic	carbon	δ13CTOC	and	C/N	ratio	are	used	here	to	track	changes	in	surface	ocean	119	

productivity	and	organic	carbon	source.	Decarbonated	samples	(at	5	cm	resolution)	were	measured	120	



	

for	organic	carbon	content	following	the	method	described	in	Könitzer	et	al.,	(2012).	Percentage	121	

carbon	and	nitrogen	and	δ13CTOC		analysis	were	performed	by	combustion	on	pre-weighed	samples	122	

in	an	online	system	comprising	a	Costech	ECS4010	elemental	analyser	(EA)	coupled	with	a	VG	123	

TripleTrap	and	a	VG	Optima	dual-inlet	mass	spectrometer	at	the	NERC	Isotope	Geosciences	124	

Laboratory.	Each	analytical	run	contained	10	replicates	of	the	internal	NIGL	standard	BROC2	and	2	125	

replicates	of	the	external	standard	SOILB.	δ13CTOC	is	reported	relative	to	the	VPDB	standard,	with	a	126	

precision	of	0.1‰	(1	S.D.).	127	

2.3.	Numerical	Modelling	128	

A	numerical	model	is	used	to	determine	the	effect	of	a	change	in	sea	level	on	bottom	current	flow	129	

speeds.	The	numerical	model	(Princeton	Ocean	Model,	Blumberg	and	Mellor,	1987)	is	a	regional	130	

nested	implementation	of	the	Regional	Ocean	Modeling	System.	At	the	base	there	is	a	parent	131	

model,	which	extends	from	20˚N	to	70˚S	and	from	180˚E	to	180˚W	with	a	horizontal	resolution	of	¼˚.	132	

The	parent	model	is	nudged	to	the	monthly	mean	climatological	values	of	Simple	Ocean	Data	133	

Assimilation	(SODA)	at	its	northern	(open)	boundary.	Nested	into	this	parent	model	there	is	a	child	134	

model,	which	covers	all	the	southwestern	Atlantic	and	southeastern	Pacific	sectors	with	a	horizontal	135	

resolution	of	1/12˚.	The	nested	model	configuration	is	forced	with	climatological	mean	wind	stress	136	

forcing	derived	from	the	ERA-Interim	data	set.	Surface	heat	and	freshwater	fluxes	are	derived	from	137	

the	COADS	dataset.	See	Combes	and	Matano	2014	and		Palma	et	al.	2008	for	details.	138	

An	“LGM”	sea	level	simulation	was	run	such	that	the	only	difference	from	the	control	was	a	120	m	139	

reduction	in	sea	level.	Note	that	this	“LGM”	simulation	does	not	take	into	account	topographic	140	

changes	related	to	isostatic	adjustment.	The	LGM	and	control	simulations	were	spun-up	to	141	

dynamical	equilibrium	and	run	in	diagnostic	mode	for	5	model	years.	Average	values	of	the	last	year	142	

of	the	diagnostic	run	are	used	in	the	present	analysis.		143	

3.	Results	144	

3.1	Grain	size	analysis	145	



	

The	𝑆𝑆	at	site	GC528	almost	doubles	across	the	last	deglaciation,	from	a	minimum	of	18.2	µm	at	19-146	

18	ka	to	a	maximum	of	34.7	µm	at	1	ka	[Figure	2b].	There	are	two	step-wise	changes	in	𝑆𝑆	across	the	147	

deglaciation;	(i)	between	21-19	ka,	𝑆𝑆	decreases	by	5.2	µm,	(ii)	between	14.5-14.0	ka,	𝑆𝑆	increases	148	

by	5.0	µm.	After	10	ka,	there	is	a	steady	increase	in	𝑆𝑆	spanning	the	entirety	of	the	Holocene.		149	

There	is	a	𝑆𝑆-bottom	current	flow	speed	calibration	for	the	Scotia	–	Weddell	Sea	region	(𝑆𝑆 =150	

0.59𝑈 + 12.24)	based	on	six	points	for	which	the	sensitivity	is	1.69	cm	s-1/	µm.	However	the	greater	151	

confidence	in	the	universal	sensitivity	of	sortable	silt	mean	grain	size	to	bottom	current	flow	speed	152	

based	on	24	points	of	1.47	±	0.20	cm	s-1/	µm	(by	Coulter	Counter)	(McCave	et	al.,	submitted)	is	153	

preferred.		The	total	deglacial	change	in	𝑆𝑆	of	16.5	µm	(34.7-18.2	µm)	implies	a	change	in	bottom	154	

current	flow	speeds	of	19.8-26.4	cms-1.	Given	that	the	largest	grains	in	the	silt	size	fraction	(60	µm)	155	

transition	into	an	erosion	regime	in	flow	velocities	greater	than	25	cm	s-1,	the	magnitude	of	this	156	

deglacial	change	in	𝑆𝑆	must	correspond	to	an	increase	in	bottom	current	velocity	from	<5	cm	s-1	to	157	

~20	cm	s-1	(using	the	lower	limit	of	sensitivity).	158	

3.2	Fidelity	of	𝑆𝑆	as	record	of	bottom	water	flow	159	

Several	processes	act	on	glacial-interglacial	timescales	that	could	affect	the	sedimentation	at	GC528,	160	

such	as	changes	in	flow	strength,	sea	level	and	ice-rafting,	which	we	discuss	here.	161	

Reconstruction	of	the	LGM	Patagonian	coastline	(based	on	modern	bathymetry)	places	it	200	km	162	

closer	to	GC528	than	it	is	today	(Figure	S1),	potentially	increasing	sediment	supply.	This	could	impact	163	

on	the	reliability	of	𝑆𝑆	as	a	bottom	current	flow	speed	proxy	if	the	rate	of	direct	sediment	164	

introduction	was	faster	than	the	current	could	rework.	The	sediment	mass	accumulation	rate	at	165	

GC528	was	higher	during	the	LGM	than	the	Holocene	(Figure	S1b),	likely	reflecting	a	closer	sediment	166	

source	during	glacial	times	as	a	result	of	the	sea	level	lowstand.	However,	it	is	interesting	to	note	167	

that	the	mass	accumulation	rate	at	GC528	does	not	decrease	linearly	with	increasing	sea	level	across	168	

the	deglaciation,	suggesting	that	any	relationship	between	sea	level	and	sediment	supply	to	GC528	is	169	

not	straightforward.		Increased	rates	of	sea	level	rise	at	20-19	ka	and	14.5-13	ka	coincide	with	170	



	

elevated	accumulation	rates	at	GC528	(Figure	S1b-c),	perhaps	suggesting	that	the	initial	flooding	of	171	

exposed	shelf	may	have	affected	sediment	supply	to	the	slope.			172	

At	high	latitudes,	ice-rafted	sediment	provides	additional	material	to	the	core	site	with	significant	173	

fluctuations	on	glacial-interglacial	timescales.	At	site	GC528,	high	concentrations	of	IRD	are	observed	174	

during	the	LGM	[Figure	2c].	This	is	consistent	with	acoustic	images	of	scours	on	the	seafloor	in	the	175	

region	suggesting	the	presence	of	icebergs	in	the	past	(Brown	et	al.,	2017).	The	concentration	of	IRD	176	

at	GC528	rapidly	decreases	between	20-19	ka,	corresponding	to	a	decrease	in	𝑆𝑆 (Figure	S2b).		177	

Do	the	variations	in	the	sedimentation	rate	across	the	last	deglaciation	reduce	confidence	in	𝑆𝑆	as	178	

an	indicator	of	bottom	current	flow	speed?	The	key	assumption	underlying	the	𝑆𝑆	proxy	is	that	the	179	

sediment	must	be	current	sorted	(McCave	et	al.,	1995).	Lamy	et	al.,	(2015)	used	the	correlation	180	

between	𝑆𝑆	and	%SS	to	demonstrate	current	sorting	at	sites	within	the	Drake	Passage.	In	GC528,	the	181	

cross-plot	of 𝑆𝑆	and	%SS	(measured	on	a	subset	of	the	samples,	with	a	temporal	resolution	of	500	182	

years)	reveal	that	the	sortable	silt	fraction	of	all	sediments	within	GC528	has	been	current	sorted,	183	

even	within	intervals	that	have	been	strongly	influenced	by	IRD	(Figure	S2a),	and	there	is	no	184	

correlation	between 𝑆𝑆	and	IRD	concentration	(Figure	S2b).	Therefore,	we	are	confident	that	the	185	

𝑆𝑆 presented	here	can	be	interpreted	as	a	reliable	record	of	bottom	current	flow	speeds.		186	

3.3	Source	of	IRD	in	the	southwest	Atlantic	187	

Variations	in	IRD	concentrations	occur	across	the	last	deglaciation	at	site	GC528	(Figure	2c).	The	two	188	

most	significant	potential	source	regions	of	this	IRD	are	Patagonia	and	Antarctica.	Acoustic	imaging	189	

of	the	shelf	sediments	north	of	the	Falkland	islands	have	identified	iceberg	scours	at	present-day	190	

water	depths	of	240-480m	(Brown	et	al.,	2017).	These	authors	argue	that	the	depth	of	these	scours	191	

requires	large	icebergs	that	could	only	have	been	derived	from	Antarctica.	The	anti-clockwise	nature	192	

of	the	Antarctic	coastal	current	means	that	icebergs	calving	off	Antarctic	glaciers	typically	193	

accumulate	within	the	Weddell	Sea	(Stuart	and	Long,	2011).	From	the	Weddell	Sea,	most	of	the	194	

Antarctic	icebergs	escape	into	the	ACC	via	“Iceberg	Alley”.	Weber	et	al.	(2014)	identified	several	195	



	

large	iceberg	discharge	events	from	the	Weddell	Sea	during	the	last	deglaciation.	However,	196	

consistent	with	icebergs	drifting	eastwards	with	the	ACC	from	the	Scotia	Sea	region,	the	timing	of	197	

these	iceberg	discharge	events	(18-12	ka)	do	not	coincide	with	the	maximum	IRD	concentration	at	198	

site	GC528	(21-19	ka)	(Figure	S3),	indicating	that	the	source	of	IRD	at	GC528	was	distinct	from	the	199	

Scotia	Sea.	We	consider	it	likely	that	the	dominant	source	of	IRD	deposited	at	GC528	was	derived	200	

from	marine-terminating	glaciers	on	the	west	coast	of	Patagonia	and	transported	through	the	Drake	201	

Passage.	However,	an	exclusively	Patagonian	origin	of	IRD	in	this	region	is	inconsistent	with	the	202	

inference	of	Brown	et	al.	(2017)	based	on	iceberg	size,	suggesting	that	icebergs	sourced	from	East	203	

Antarctic	may	also	have	approached	our	site	via	the	Drake	Passage.	A	detailed	IRD	provenance	study	204	

would	be	required	to	further	test	this	hypothesis.		205	

3.3	Productivity	changes	at	site	GC528		206	

The	δ13CTOC	reflects	variations	in	both	surface	water	productivity	and	source	of	organic	matter,	207	

whereas	the	C/N	ratio	is	primarily	driven	by	the	organic	carbon	source.	In	core	GC528,	organic	208	

carbon	δ13CTOC	increases	from	values	ranging	between	-23.0	to	-22.6	‰	prior	to	15	ka,	to	-21.5	to	-209	

21.0	‰	after	14	ka	[Figure	2d].	In	contrast	the	C/N	ratio	gradually	decreases	across	the	deglaciation	210	

and	Holocene	with	no	marked	shift	in	the	C/N	ratio	at	15-14	ka	[Figure	2e].	Taken	together,	we	211	

suggest	the	shift	at	15-14	ka	to	more	positive	δ13CTOC	reflects	a	change	in	surface	ocean	productivity.				212	

3.4	Alkenone-derived	SST	213	

Alkenone-derived	SST	across	the	last	deglaciation	is	highly	variable	[Figure	2e].	The	Holocene	(10-0	214	

ka)	average	SST	(7.6	±	2.0	oC)	is	in	good	agreement	with	modern	annual	average	SSTs	at	the	core	215	

location.	In	contrast	to	other	southern	hemisphere	alkenone	records	(e.g.	Caniupán	et	al.,	2011;	216	

Kaiser	et	al.,	2005),	the	LGM	(19-22	ka)	average	alkenone-derived	SST	at	GC528	is	relatively	warm	217	

(7.0	±	3.9	oC).	However,	this	average	value	masks	the	large	fluctuations	that	are	apparent	in	the	218	

alkenone-SST	record	across	the	LGM.	The	LGM	SSTs	fluctuate	between	a	minimum	of	1.3oC	at	25-23	219	

ka	and	a	maximum	of	8oC	at	19	ka,	and	there	are	two	intervals	spanning	the	end	of	the	last	glacial	220	



	

period	(20-18.5	ka	and	23-22	ka)	during	which	SSTs	in	the	southwest	Atlantic	were	elevated	by	4-6oC	221	

above	the	glacial	mean.	Replicate	analyses	on	samples	over	this	interval	confirm	that	these	warm	222	

LGM	temperature	signals	are	robust.	In	the	following,	we	evaluate	factors	that	may	result	in	the	223	

elevated	LGM	alkenone-derived	SSTs.	224	

3.5	Fidelity	of	alkenone-	UK
37	as	record	of	sea	surface	temperature	225	

Variations	in	the	dominant	alkenone-producing	haptophyte	could	require	the	use	of	different	226	

regressions	between	UK
37	and	SST.	The	abundance	of	ΣC37:	ΣC38	alkenones	within	a	sediment	sample	227	

has	been	used	to	identify	shifts	in	the	dominant	alkenone-producing	haptophyte	population	228	

(McClymont	et	al.,	2005).	We	identify	no	significant	shift	in	the	ΣC37:	ΣC38	ratio	over	the	interval	229	

studied	[Figure	2f]	with	values	averaging	1.16,	in	the	range	of	Emiliania	huxleyi	(0.91-2.26)	rather	230	

than	the	other	dominant	alkenone-producing	haptophyte	Gephyrocapsa	oceanica	(0.59-0.81)	231	

(Volkman	et	al.,	1995).	This	suggests	that	no	change	in	the	dominant	alkenone	producing	232	

haptophyte	population	occurred,	and	thus	the	UK
37	-SST	relationship	should	have	remained	constant.		233	

Preferential	degradation	of	components	with	a	greater	degree	of	unsaturation	may	bias	the	234	

alkenone-SST	record	towards	warmer	values	(Flügge,	1997).	We	consider	the	percentage	of	the	cold	235	

tetra-unsaturated	C37:4	alkenone	that	would	need	to	be	removed	in	order	to	produce	LGM	SSTs	as	236	

low	as	during	the	late	deglaciation	period	(2.2oC	at	11.9	ka).	We	find	that	to	account	for	a	diagenetic	237	

bias	of	6oC,	at	least	70%	of	the	‘original’	C37:4	would	have	to	be	removed	from	the	samples.	Such	a	238	

significant	amount	of	alteration	has	not	been	observed	experimentally	or	within	sediments	studied	239	

from	this	time	period	(Flügge,	1997).		240	

Advection	of	warm	water	alkenones	has	been	used	to	explain	a	warm	LGM	alkenone-SST	signal	in	241	

some	regions	of	the	ocean.	Modern	alkenone	studies	from	sites	influenced	by	the	Falkland	Current	242	

(Benthien	and	Müller,	2000)	demonstrate	that	alkenone-derived	SSTs	from	this	region	are	biased	243	

towards	colder	temperatures	as	a	result	of	strong	northward	transport	by	the	Falkland	Current	and	244	

deep	western	boundary	current.	However	core-top	alkenone-SST	data	from	site	GC528	(7.7	oC)	245	



	

shows	good	correlation	with	modern	SSTs	suggesting	that	advection	does	not	strongly	bias	the	246	

alkenone-SST	signal	at	this	site.		247	

Reworking	of	alkenones	from	older	warm	intervals	(such	as	the	Eemian)	could	overprint	the	original	248	

alkenone-SST	and	bias	the	alkenone	signal	to	warmer	temperatures.	However,	we	do	not	believe	249	

this	to	be	a	significant	issue	at	site	GC528	because	(i)	neither	the	TOC	or	the	alkenone	250	

concentrations	during	the	two	“warm”	intervals	during	the	LGM	are	significantly	higher	than	the	251	

LGM	average	[Figure	S3b-c],	and	(ii)	other	proxies	such	as	planktonic	δ18O	[Figure	S3d]	show	no	252	

evidence	of	reworking.	In	addition,	the	spatial	distribution	of	“warm”	alkenone-derived	LGM	SST	253	

records	is	globally	distributed	(Barrows	et	al.,	2011).	If	all	the	sites	were	influenced	by	older	254	

reworked	alkenones,	they	would	all	have	to	be	simultaneously	affected	by	(specifically	warm)	255	

reworked	alkenones	during	the	LGM	only.	This	seems	an	improbable	explanation.			256	

Changes	in	the	seasonality	of	alkenone	production	can	affect	the	temperatures	recorded	by	the	257	

alkenones.	In	high	latitude	regions,	the	limitation	of	light	and	the	extreme	surface	conditions	restrict	258	

alkenone	production	to	a	short	summer	growth	season	(Ternois	et	al.,	2000).	Site	GC528	is	located	in	259	

the	sub-Antarctic,	and	is	sufficiently	far	north	that	it	is	not	light	limited.	However,	could	there	be	260	

other	processes	in	play	during	the	LGM	that	affects	the	seasonality	of	alkenone	production?	Whilst	it	261	

is	unlikely	that	sea	ice	was	able	to	accumulate	(even	seasonally)	across	the	Drake	Passage,	there	262	

exist	very	indirect	arguments	supporting	the	idea	that	sea	ice	may	have	been	present	between	the	263	

Falkland	Islands	and	Argentina	during	the	LGM	(Austin	et	al.,	2013);	however,	we	find	no	evidence	of	264	

any	sea	ice	biomarkers	(i.e.	highly-branching	isoprenoids	(Collins	et	al.,	2013))	in	the	glacial	samples	265	

of	GC528.		Alternatively,	the	accumulation	of	large	icebergs	in	an	“iceberg	graveyard”	around	the	266	

Falkland	shelf	(Brown	et	al.,	2017)	could	have	generated	shallow	meltwater	stratification	in	the	267	

surface	ocean,	potentially	biasing	summer	SSTs	(Peck	et	al.,	2008).	High	IRD	concentrations	268	

coincident	with	both	apparent	warming	events	lend	weight	to	this	hypothesis	[Figure	2c].		269	



	

Despite	our	concern	that	seasonality	could	have	led	to	a	warm	bias	in	the	glacial	alkenone	SST	at	site	270	

GC528,	a	global	comparison	of	seasonality	in	alkenone	flux	demonstrated	that	at	a	global	scale,	the	271	

mean	annual	SST	signal	still	dominates	the	sedimentary	record	(Rosell-Melé	and	Prahl,	2013).	272	

Furthermore,	where	high	latitude	seasonality	in	alkenone	production	has	been	shown	(Conte	et	al.,	273	

2006),	the	bias	relative	to	the	expected	mean	annual	SST	was	only	2.5oC.	Subtracting	this	value	from	274	

our	glacial-stage	warm	intervals	does	not	compensate	the	4	oC	anomalies	relative	to	the	other	275	

samples;	thus,	the	intervals	of	warming	remain.	As	we	show	later	(Section	4.1),	seemingly	logical	276	

spatial	trends	in	SSTs	can	be	inferred	from	the	comparison	of	this	SST	record	with	other	alkenone-277	

SST	records	in	the	Drake	Passage	region	(see	Section	4.1).	We	therefore	argue	that	whilst	a	278	

seasonality	overprint	of	the	glacial	alkenone-SST	record	could	have	contributed	to	the	magnitude	of	279	

the	warmings,	the	overall	pattern	in	SSTs	remains	robust.		280	

4.	Discussion	281	

4.1	The	15-14	ka	event	282	

The	𝑆𝑆	record	from	site	GC528	shows	a	step-wise	increase	in	bottom	current	flow	speeds	(ΔU	=	6.4	283	

cms-1)	at	14.5-14	ka	[Figure	2b].	Coupled	with	the	change	in	bottom	current	velocity,	there	is	284	

evidence	of	a	significant	increase	in	δ13CTOC	[Figure	2d],	potentially	reflecting	increased	surface	ocean	285	

productivity.	Today,	the	Falkland	Current	(the	most	northerly	ACC	jet	associated	with	the	SAF)	acts	286	

as	the	primary	source	of	nutrients	to	the	surface	ocean	above	site	GC528,	supporting	high	287	

concentrations	of	chlorophyll	along	the	shelf	break.	While	the	Falkland	Current	remains	in-situ,	288	

surface	productivity	is	relatively	unresponsive	to	changes	in	dust	flux	(unlike	other	sub-Antarctic	289	

sites).	This	idea	is	supported	by	our	record	of	δ13CTOC,	which	shows	little	response	to	the	well-known	290	

decrease	in	dust	between	18-17	ka	(Lambert	et	al.,	2008).	This	indicates	that	the	prominent	increase	291	

in	δ13CTOC	at	14.5-14	ka	was	likely	driven	by	reorganisation	of	the	oceanic	currents	in	the	region.	292	

Oceanic	current	reorganisation	would	impact	the	supply	of	nutrients	and/or	the	thermohaline	293	



	

properties	of	the	surface	ocean,	affecting	surface	productivity.	Furthermore,	reorganisation	would	294	

impact	the	bottom	current	speeds,	so	would	be	expressed	in	the	𝑆𝑆	record.	295	

Understanding	the	nature	of	the	inferred	change	in	ocean	circulation	at	14.5-14	ka	requires	296	

comparison	with	other	sites	in	the	region.	Site	MR806-PC9	is	located	at	the	northern	margin	of	the	297	

Drake	Passage	[Figure	1a],	and	is	today	immediately	upstream	of	site	GC528	within	the	jet	298	

associated	with	the	SAF	[Figure	1b].	Comparison	of	the	𝑆𝑆	records	between	site	GC528	and	MR806-299	

PC9	(Lamy	et	al.,	2015)	reveals	a	remarkable	similarity	in	bottom	current	speed	at	the	two	sites	300	

between	14-0	ka	[Figure	3b].	In	contrast,	prior	to	14	ka,	there	was	divergence	between	the	two	𝑆𝑆	301	

records	[Figure	3b],	with	faster	bottom	current	flow	speeds	in	Drake	Passage	than	on	the	South	302	

Falkland	slope.		303	

The	fact	that	sites	GC528	and	MR806-PC9	presently	lie	within	the	core	of	the	main	SAF	jet	[Figure	304	

1b]	and	have	similar	bottom	current	flow	speeds	over	14-0	ka	[Figure	3b]	suggests	a	common	305	

response	to	changes	in	the	intensity	of	the	SAF	jet.	Both	records	suggest	strengthening	of	the	SAF	jet	306	

through	the	Drake	Passage	over	the	late	deglaciation	and	Holocene	(which	we	discuss	in	Section	307	

4.2).	In	contrast,	the	disparity	in	bottom	current	flow	speeds	prior	to	14	ka	-	with	faster	flow	speeds	308	

in	Drake	Passage	relative	to	the	downstream	site	-	could	be	the	product	of	one	of	two	different	309	

scenarios;	(i)	a	lower	glacial	sea	level	meant	that	the	SAF	did	not	cross	the	topographic	high	of	the	310	

North	Scotia	Ridge	and	thus	site	GC528	was	‘shielded’	from	the	influence	of	the	SAF,	or	(ii)	the	311	

Southern	Ocean	frontal	system	shifted	northwards	relative	to	its	current	position	such	that	the	SAF	312	

did	not	extend	through	Drake	Passage	but	instead	was	truncated	by	South	America,	analogous	to	313	

the	present	Sub-Tropical	Front.	The	faster	flow	speed	at	MR806-PC9	may	then	be	the	result	of	314	

proximity	to	a	more	northerly	position	of	the	Polar	Front.		315	

In	order	to	test	Scenario	1	(a	lower	sea	level	shielded	GC528	from	the	SAF),	we	modelled	the	effect	316	

of	a	lower	sea	level	on	bottom	current	flow	speeds.		The	model	predicts	an	overall	increase	in	317	

bottom	current	flow	within	the	Drake	Passage	[Figure	4].	This	increase	is	because	the	ACC	is	an	318	



	

equivalent	barotropic	jet	and	therefore,	bottom	current	velocities	are	inversely	proportional	to	the	319	

depth	of	the	fluid.	In	contrast	to	the	general	strengthening	within	the	Drake	Passage,	the	model	320	

predicts	a	decrease	in	bottom	current	flow	speeds	of	10-15	cms-1	at	site	MR806-PC9	[Figure	4].	This	321	

is	driven	by	the	development	of	a	frictional	recirculation	cell	that	occupies	the	space	between	the	322	

continent	and	the	intensified	offshore	flow,	and	is	highly	dependent	on	the	model	configuration,	and	323	

is	therefore	not	a	robust	prediction.	At	site	GC528,	the	model	predicts	an	increase	of	6	cm	s-1	in	324	

northward	advection	of	bottom	water	during	sea	level	lowstands	[Figure	4].	This	predicted	increase	325	

in	transport	at	GC528	is	driven	by	a	reduction	in	on-shelf	transport,	resulting	in	an	increase	in	326	

transport	along	the	shelf-break.	Because	the	Patagonian	shelf	is	so	expansive,	a	reduction	in	sea	327	

level	results	in	a	large	reduction	in	on-shelf	transport	(and	subsequent	increase	in	shelf-break	328	

transport)	relative	to	the	minor	reduction	in	the	transport	across	the	North	Scotia	Ridge.	Therefore	a	329	

relative	strengthening	of	bottom	currents	is	predicted	at	GC528.		The	model	predictions	are	330	

inconsistent	with	our	𝑆𝑆	reconstructions	across	the	15-14	ka	transition,	which	suggest	a	significantly	331	

weaker	bottom	current	before	15	ka	at	site	GC528	and	a	stronger	bottom	water	flow	at	MR806-PC9.	332	

Whilst	we	emphasise	the	uncertainty	in	the	model	prediction	at	MR806-PC9,	we	are	confident	in	the	333	

model	result	at	GC528.	The	discrepancy	between	the	model	prediction	and	the	𝑆𝑆	reconstructions	334	

implies	that	sea	level	change	is	not	the	driver	of	the	change	in	bottom	current	flow	speeds	observed	335	

in	the	records	at	GC528	(and	possibly	also	MR806-PC9).	Instead,	oceanographic	changes	other	than	336	

eustatic	sea	level	change	must	have	controlled	the	observed	bottom	current	speed	changes.	337	

	An	alternative	hypothesis	invokes	a	change	in	the	position	of	the	oceanic	fronts.	LGM	front	338	

reconstructions	(e.g.	Gersonde	et	al.,	2005)	suggest	that	the	Southern	Ocean	fronts	were	located	5-339	

10o	northward	of	their	present	position.	We	propose	that	during	the	last	glacial	and	early	deglacial	340	

period	(until	15	ka),	the	SAF	did	not	extend	through	the	Drake	Passage	but	was	instead	truncated	by	341	

the	South	American	continent	(similar	to	the	modern	Sub-Tropical	Front;	Figure	5a).	If	the	SAF	did	342	

not	extend	through	the	Drake	Passage,	slower	bottom	current	flow	velocities	at	both	GC528	and	343	

MR806-PC9	would	be	expected.	The	fact	that	bottom	current	flow	speeds	at	MR806-PC9	are	344	



	

significantly	faster	than	GC528	prior	to	15	ka	[Figure	4b]	suggests	that	this	is	not	the	entire	story,	345	

and	may	be	influenced	by	a	more	northerly	located	Polar	Front	[Figure	5a]	or	a	decrease	in	sea	level	346	

(given	the	model	uncertainty	at	this	location).		347	

Support	for	the	idea	of	a	northward	shifted	SAF	can	be	found	in	the	Pacific-Atlantic	SST	phase	348	

relationships	over	the	last	deglaciation.	The	comparison	of	alkenone-SST	records	from	GC528	and	349	

two	sites	upstream	of	the	Drake	Passage	[Figure	1a],	site	MD07-3128	(Caniupán	et	al.,	2011)	and	350	

ODP	1233	(Kaiser	et	al.,	2005)	reveals	a	striking	SST	anti-correlation	prior	to	15	ka	[Figures	3c,	6c].	351	

Intervals	of	warming	downstream	of	the	Drake	Passage	(e.g.	23-22	ka	and	20-18	ka)	coincide	with	352	

significant	cooling	upstream.	From	14	ka	onwards,	this	anti-phase	relationship	is	absent	[Figures	3c,	353	

6b].	In	contrast,	planktonic	Mg/Ca-derived	SSTs	downstream	of	GC528,	at	the	Brazil	Margin	site	GL-354	

1090	(24oS,	42oW;	Santos	et	al.,	2017)	are	in-phase	with	site	GC528	throughout	the	last	deglaciation	355	

[Figure	6].	The	idea	of	a	“thermal	see-saw”	between	the	southeast	Pacific	and	the	southwest	Atlantic	356	

during	the	last	glacial	and	early	deglacial	period	(25-15	ka)	supports	the	inference	of	northward	357	

shifted	SAF	during	the	LGM	and	early	deglaciation.	In	the	southeast	Pacific,	SSTs	are	controlled	by	358	

the	balance	between	cold	sub-Antarctic	Surface	Water	of	the	ACC	advected	northeastwards	and	359	

warm	surface	waters	transported	southwards	by	the	Chilean	Coastal	Current	(Strub	et	al.,	1998).	360	

Similarly,	the	SSTs	in	the	southwest	Atlantic	represent	a	balance	between	cold	southern-sourced	361	

water	transported	through	the	Drake	Passage	(Talley,	1999)	and	warm	northern-sourced	water	362	

carried	southwards	via	the	Brazil	Current	(Peterson	and	Stramma,	1991).	Hypothesising	that	the	SAF	363	

was	absent	from	the	Drake	Passage	during	the	LGM,	a	significant	proportion	of	the	cold	water	364	

transported	via	the	ACC	to	the	Chilean	margin	would	be	redirected	northwards	into	the	Pacific	(Lamy	365	

et	al.,	2015).	This	results	in	a	relative	cooling	in	the	southeast	Pacific	and	warming	in	the	southwest	366	

Atlantic	[Figure	5a].	Note	that,	based	on	our	hypothesis,	we	argue	that	the	warm	LGM	SST	records	367	

from	the	Brazil	Margin	(Santos	et	al.,	2017)	are	the	result	of	a	reduction	in	cold	water	advected	368	

through	the	Drake	Passage,	rather	than	an	increase	in	warm	water	advected	south	from	the	Equator.		369	



	

The	transition	to	in-phase	SSTs	upstream	and	downstream	of	Drake	Passage	at	~14	ka	is	consistent	370	

with	the	southward	migration	of	the	SAF	to	pass	through	the	Drake	Passage	[Figure	5b].	A	371	

southward	shift	of	the	SAF	would	increase	the	inter-basin	exchange	of	water	between	the	Pacific	372	

and	Atlantic,	enabling	temperature	perturbations	upstream	of	Drake	Passage	to	be	propagated	373	

rapidly	to	regions	downstream	of	this	gateway.	374	

In	summary,	sortable	silt,	SST	and	δ13CTOC	records	from	GC528	suggest	a	significant	change	in	ocean	375	

circulation	in	the	southwest	Atlantic	at	15-14	ka.	Comparison	of	bottom	current	flow	speeds	376	

downstream	and	within	the	Drake	Passage	provides	evidence	for	a	significant	reorganisation	of	the	377	

frontal	structure	in	the	Drake	Passage	region	across	this	interval.	In	particular,	we	suggest	that	the	378	

SAF	did	not	extend	through	the	Drake	Passage	until	15-14	ka.	Anti-phased	alkenone-SST	records	379	

upstream	and	downstream	of	the	Drake	Passage	support	the	idea	of	a	reduced	inter-basinal	380	

connection	prior	to	15	ka.	381	

4.2	Strengthening	of	flow	in	the	SAF	after	14	ka	382	

Bottom	current	flow	speeds	downstream	(GC528)	and	within	the	Drake	Passage	(MR806-PC9)	383	

evidence	a	significant	increase	(∆𝑆𝑆	of	11.5	μm	suggests	an	increase	of	~16	cm	s-1)	since	14	ka.	Given	384	

that	both	sites	record	a	very	similar	𝑆𝑆	record	throughout	this	period,	we	infer	that	both	sites	are	385	

responding	to	an	in-situ	increase	in	the	strength	of	the	jet	associated	with	the	SAF.	A	strengthening	386	

of	the	SAF	is	supported	by	εNd	records	from	the	Brazil	Margin	(Howe	et	al.,	2016),	which	show	387	

increasingly	radiogenic	Nd	isotopic	signatures	across	the	Holocene,	indicating	a	greater	through-flow	388	

of	Pacific-derived	AAIW.		389	

The	cause	of	such	a	large	increase	in	the	strength	of	the	SAF	jet	is	difficult	to	determine.	The	density	390	

difference	either	side	of	a	front	results	in	a	strong	pressure	gradient,	which	is	balanced	by	the	391	

Coriolis	force	producing	a	strong	eastward	jet.		At	a	basic	level,	a	stronger	density	gradient	across	a	392	

front	will	strengthen	the	associated	jet	(Thompson,	2008).	The	SAF	is	the	location	where	cold-fresh	393	

dense	Antarctic-derived	water	subducts	beneath	less	dense	water	to	the	north	to	form	Antarctic	394	



	

Intermediate	Water	(Hartin	et	al.,	2011).	The	increase	in	the	strength	of	the	jet	associated	with	the	395	

SAF	may	thus	be	the	result	of	an	increase	in	the	density	contrast	between	sub-Antarctic	Surface	396	

Water	north	of	the	SAF	and	Antarctic	surface	waters	south	of	the	SAF.		397	

Proxy	data	of	SSTs	from	north	and	south	of	the	SAF	do	not	provide	strong	support	for	the	idea	of	an	398	

increased	north-south	temperature-driven	surface	density	gradient	during	the	Holocene.	Sea	surface	399	

temperature	records	of	Antarctic	surface	water	across	the	Holocene	in	the	South	Atlantic	(Figure	7D;	400	

Nielsen	et	al.,	2004)	suggest	an	early	Holocene	warming	followed	by	a	cooler	interval	between	7-4	401	

ka,	and	a	relative	warming	from	4	ka	to	the	present.	In	contrast,	SST	records	north	of	the	SAF	from	402	

the	Chilean	margin	suggest	an	initial	warming	in	the	Early	Holocene	followed	by	a	general	cooling	403	

trend	(Figure	7C;	Kaiser	et	al.,	2005).	Over	the	course	of	the	Holocene,	there	is	significant	fluctuation	404	

in	the	north-south	SST	gradient;	however,	the	long-term	Holocene	trend	suggests	a	general	decrease	405	

in	the	SST	gradient	[Figure	7E].	Based	on	this	evidence,	we	cannot	attribute	the	increase	in	the	406	

intensity	of	the	SAF	jet	to	an	increase	in	a	density	gradient	driven	by	temperature	across	the	front.	407	

Note	that	the	sites	that	we	have	used	to	reconstruct	the	SST	gradient	in	Figure	7	are	not	proximal	to	408	

the	SAF	and	so	may	not	accurately	reflect	SST	gradients	in	the	vicinity	of	the	SAF.	Alternatively,	there	409	

remains	the	possibility	of	salinity-driven	changes	related	to	ice-melt,	but	we	have	no	data	to	410	

examine	this	aspect,	nor	(to	our	knowledge)	are	there	any	proxy	data	reconstructions	of	salinity	411	

across	the	SAF.	However,	it	should	be	noted	that	the	melt-related	salinity	gradients	in	the	Southern	412	

Ocean	were	probably	at	a	maximum	during	the	deglaciation	(18-12	ka)	when	the	majority	of	ice	was	413	

lost	from	Antarctica	and	Patagonia,	and	not	during	the	Holocene.		414	

Finally,	based	on	current	understanding	of	the	ACC,	we	observe	that	it	is	difficult	to	determine	how	415	

changes	in	the	intensity	or	position	of	the	south	westerly	winds	(SWW)	might	drive	changes	in	the	416	

strength	of	the	SAF	jet.	The	SWWs	transfer	momentum	into	the	surface	ocean	of	the	ACC,	which	sets	417	

up	the	barotropic	component	of	flow	(e.g.	Allison	et	al.,	2010).	However,	the	exact	relationship	418	

between	the	overlying	wind	forcing	and	the	response	of	the	ACC	remains	a	matter	of	debate	and	is	419	

model	dependent	(Hogg	et	al.,	2008	and	references	therein).	Eddy	compensation	and	eddy	420	



	

saturation	result	in	non-linear	responses	of	the	ACC	to	changes	in	wind	forcing,	and	jets	are	a	finer	421	

scale	that	is	not	often	well	resolved	in	models.	Furthermore,	even	if	the	response	of	the	ACC	could	422	

be	predicted,	proxy	reconstructions	of	SWW	strength	show	that	the	SWWs	did	not	increase	423	

monotonically	across	the	Holocene	(Lamy	et	al.,	2010).	On	balance,	wind	stress	cannot	adequately	424	

explain	the	seemingly	linear	increase	in	bottom	current	flow	speeds	suggested	by	data	presented	425	

here.		426	

In	summary,	the	increase	in	bottom	current	velocities	at	sites	in	the	Drake	Passage	and	on	the	South	427	

Falkland	slope	since	14	ka	suggests	an	increase	in	the	strength	of	the	SAF	jet.	However,	the	428	

underlying	cause	of	the	increase	in	SAF	jet	strength	remains	enigmatic.		Improved	knowledge	of	sea	429	

surface	salinity	and	temperature	in	the	Drake	Passage	region	could	provide	a	key	to	understanding	430	

the	increase	in	SAF	jet	flow	speed	across	the	Holocene.		431	

4.3	Implications	for	the	Atlantic	Meridional	Overturning	Circulation	(AMOC)	432	

A	key	idea	presented	here	is	that	of	a	thermal	seesaw	between	the	southeast	Pacific	and	southwest	433	

Atlantic	during	the	last	glacial	period	and	early	deglacial	(25-15	ka).	This,	we	argue,	was	related	to	a	434	

reduction	in	the	interbasinal	connection	via	the	Drake	Passage	as	a	result	of	a	northward	shifted	SAF.	435	

The	following	discussion	concerns	the	wider	effect	of	these	changes	on	ocean	circulation.		436	

The	relative	proportion	of	water	flowing	into	the	Atlantic	basin	via	the	Cold	and	Warm	Water	Routes	437	

affects	the	thermohaline	properties	of	the	shallow	northward	return	flow.	Extension	of	the	SAF	438	

through	the	Drake	Passage	would	have	transmitted	a	greater	volume	of	cold	SAMW	into	the	439	

southwest	Atlantic	via	Drake	Passage,	with	potential	consequences	for	global	ocean	circulation.	440	

The	onset	of	the	southward	shift	of	the	SAF	at	15-14	ka	is	synchronous	with	a	‘spin-up’	of	the	AMOC	441	

during	the	Bølling-Allerød	interstadial	(McManus	et	al.,	2004;	Skinner	et	al.,	2013).	This	AMOC	spin-442	

up	has	commonly	been	interpreted	to	reflect	changes	in	North	Atlantic	freshwater	forcing,	but	the	443	

flow	of	water	through	the	Drake	Passage	might	also	have	played	a	role.	Reduced	throughput	of	cold	444	

low-salinity	SAMW	during	the	LGM	would	result	in	denser	Atlantic	AAIW	(relative	to	today).	If	the	445	



	

density	of	Atlantic	AAIW	advected	into	the	North	Atlantic	exceeds	the	density	of	NADW,	then	AMOC	446	

is	potentially	unstable	(Keeling	and	Stephens,	2001).	In	contrast,	a	southward	shift	of	the	SAF	at	15-447	

14	ka	would	increase	the	transport	of	low-salinity	SAMW	into	the	Atlantic	and	decrease	the	density	448	

of	AAIW	relative	to	NADW,	producing	a	more	stable	AMOC	(Keeling	and	Stephens,	2001),	and	could	449	

explain	the	re-invigoration	in	AMOC	observed	during	the	Bølling-Allerød	interstadial	(McManus	et	450	

al.,	2004;	Skinner	et	al.,	2013).	Support	for	this	hypothesis	comes	from	modelling	studies	(Weaver	et	451	

al.,	2003)	which	show	that,	given	an	initial	circulation	state	in	which	the	density	of	AAIW	is	greater	452	

than	that	of	NADW,	it	is	possible	to	spin	up	AMOC	circulation	by	freshening	AAIW	in	the	vicinity	of	453	

the	Drake	Passage.		In	this	scenario,	Drake	Passage	through-flow	would	act	as	a	driver	of	AMOC	454	

circulation.		455	

5.	Conclusion	456	

In	this	study,	detailed	grain	size	data	and	SST	records	from	sites	along	the	northern	margin	of	Drake	457	

Passage	were	used	to	determine	changes	in	the	flow	and	frontal	structures	within	the	Drake	Passage	458	

since	the	LGM.	In	particular,	we	focus	on	the	interval	between	15-14	ka	when	an	increase	in	bottom	459	

water	current	speeds	is	accompanied	by	increased	in	δ13CTOC	in	the	southwest	Atlantic,	indicating	460	

significant	reorganisation	of	the	currents.	Comparison	of	bottom	current	flow	speeds	in	the	461	

southwest	Atlantic	under	the	influence	of	the	SAF	jet	to	an	upstream	site	in	the	Drake	Passage	462	

reveals	very	similar	trends	after	14	ka,	indicating	that	both	sites	are	responding	to	changes	in	the	463	

strength	of	the	SAF	jet.	In	contrast,	prior	to	15	ka,	bottom	current	speeds	at	the	two	sites	are	464	

dissimilar.	We	propose	that	during	the	interval	prior	to	15	ka,	the	SAF	did	not	extend	through	Drake	465	

Passage	but	instead	lay	further	north	and	was	truncated	by	South	America,	similar	to	the	modern	466	

STF.	This	hypothesis	is	supported	by	alkenone-based	SSTs	upstream	and	downstream	of	the	Drake	467	

Passage	that	suggest	through-flow	via	the	Cold	Water	Route	during	the	last	glacial	was	reduced	468	

relative	to	today.	We	suggest	that	this	reduction	in	the	inflow	of	low-density	SAMW	during	the	LGM	469	

potentially	had	wider	reaching	implication	for	AMOC;	the	higher	density	of	Atlantic	AAIW	relative	to	470	



	

NADW	may	have	contributed	to	a	more	sluggish	overturning	circulation	in	the	Atlantic.	In	contrast,	471	

the	subsequent	southward	migration	of	the	SAF	at	15-14	ka	enabled	a	greater	through-flow	of	low-472	

density	SAMW	into	the	Atlantic,	reducing	the	density	of	Atlantic	AAIW	and	potentially	contributing	473	

to	the	spin-up	of	AMOC	during	the	Bølling-Allerød	interstadial.	If	correct,	our	findings	have	474	

significant	implications	for	the	importance	of	the	Drake	Passage	in	controlling	AMOC	stability.		475	
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Figure	Captions	645	

	646	

Figure	1:	(A)	Bathymetric	map	of	Drake	Passage	showing	the	annual	mean	position	of	the	647	

circumpolar	fronts	in	blue	(from	N	to	S:	SAF	=	Sub-Antarctic	Front;	PF	=	Polar	Front;	SACCF	=	648	

Southern	Antarctic	Circumpolar	Current	Front;	SB	=	Southern	Boundary	of	the	ACC)	(Orsi	et	al.,	649	

1995),	core	sites	and	location	of	flow	speed	profile	shown	in	Fig.	1B	(dotted	red	line);	(B)	650	

Geostrophic	flow	velocities	on	transect	through	Drake	Passage	(Renault	et	al.,	2011).	Core	positions	651	

have	been	projected	onto	this	transect.	652	



	

	653	

Figure	2:		Deglacial	grain	size	analysis,	organic	carbon	and	biomarker	records	from	site	GC528	in	the	654	

southwest	Atlantic.	(A)	EPICA	Dome	C	(EDC)	δD	record	on	the	AICC2012	age	scale	(Veres	et	al.,	655	

2013);	(B)	Mean	sortable	silt	grain	size	(𝑆𝑆);	(C)	Counts	of	grains	>300	μm,	used	as	a	proxy	for	IRD;	656	

(D)	Total	organic	carbon	(TOC)	δ13C;	(E)	Organic	carbon	C/N	ratio;	(F)		Alkenone-derived	SST	based	on	657	

the	Uk
37	index	(Prahl	et	al.,	1988);	(G)	Total	C37:	C38	alkenones	used	here	to	track	changes	in	the	658	

alkenone-producing	community.	Grey	and	green	bars	show	the	typical	range	of	E.huxleyi	and	659	
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G.oceanica	C37:C38	ratio	based	on	culture	studies	(Volkman	et	al.,	1995).	In	each	record,	the	2σ	660	

analytical	precision	is	shown	by	the	error	bars,	and	a	1500	yr	moving	average	and	1σ	moving	661	

standard	deviation	of	each	record	is	shown	by	the	solid	line	and	dashed	lines	respectively.		662	

	663	

Figure	3:	Comparison	of	proxy	records	from	GC528	with	upstream	sites.	(A)	EPICA	Dome	C	(EDC)	δD	664	

record	on	the	AICC2012	age	scale	(Veres	et	al.,	2013);	(B)	Mean	sortable	silt	grain	size	(𝑆𝑆),	GC528	665	

(black)	and	MR806-PC9	(green;	Lamy	et	al.,	2015);	(C)	Alkenone-derived	SST	records	from	upstream	666	

(MD07-3128	-	red,	Caniupán	et	al.	2011)	and	downstream	(GC528	-	black)	of	the	Drake	Passage.	A	667	
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1500	yr	moving	average	and	1σ	moving	standard	deviation	of	each	record	is	shown	by	the	solid	line	668	

and	dashed	lines	respectively.	669	

	670	

	671	

Figure	4:	Model	simulations	of	changes	in	bottom	water	flow	speeds	as	a	result	of	a	lowering	of	sea	672	

level.	Plot	shows	the	relative	change	in	bottom	current	flow	velocity	as	a	result	of	a	-120m	reduction	673	

in	sea	level.	A	reduction	in	bottom	current	velocity	is	highlighted	by	the	blue	colours.	Green	and	674	

black	open	circles	show	the	position	of	MR806-PC9	(in	Drake	Passage)	and	GC528	(south	of	the	675	

Falkland	Islands)	respectively.	Pale	grey	shows	the	model	coastline	in	the	low	sea	level	scenario.	676	
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	677	

Figure	5:	Schematic	of	changes	in	ACC	frontal	jets	from	the	last	glacial	period	to	the	Holocene	with	678	

inferred	inter-basinal	exchange	between	Pacific	and	Atlantic.	(A)	Glacial	ACC	flow	showing	SAF	679	

located	northwards	of	its	present	position	and	little	inter-basinal	exchange;	(B)	Holocene	ACC	flow	680	

showing	the	SAF	extending	through	the	Drake	Passage	and	enhanced	inter-basinal	exchange.	The	681	

positions	of	the	ACC	fronts	are	shown	by	the	blue	lines	(more	speculative	locations	denoted	by	682	

dashed	lines).	The	“Cold	Water	Route”	water	shown	by	light	blue	arrow.	SAF	=	Sub-Antarctic	Front;	683	

PF	=	Polar	Front;	SACCF	=	Southern	Antarctic	Circumpolar	Current	Front;	SB	=	Southern	Boundary	684	

Front.	685	



	

	686	

Figure	6.	(A)	Sea	surface	temperature	records	from	GC528	(black)	and	GL-1090	(blue,	Santos	et	al.,	687	

2017)	from	the	southwest	Atlantic,	and	sites		MD07-3128	(red,	Caniupán	et	al.,	2011)	and	1233	688	

(orange,	Kaiser	et	al.,	2005)	from	the	Chile	Margin.	(B)	Cross-correlation	between	GC528	and	MD07-689	

3128	(red),	GC528	and	1233	(orange),	and	GC528	and	GL-1090	(blue)	for	the	interval	14-2	ka;	(C)	690	

Cross	correlation	for	25-15	ka,	colours	as	in	(B).		691	
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	692	

Figure	7:	Reconciling	the	increase	in	strength	of	the	SAF	with	changes	in	SST	gradients	over	the	693	

Holocene.	(A)	EPICA	Dome	C	(EDC)	δD	record	on	the	AICC2012	age	scale	(Veres	et	al.,	2013);	(B)	694	

Mean	sortable	silt	grain	size,	GC528	(black)	and	MR806-PC9	(green;	Lamy	et	al.,	2015);	(C)	Alkenone-695	

SST	record	from	the	Chilean	Margin,	north	of	the	SAF	(orange;	ODP	site	1233,	Kaiser	et	al.,	2005);	(D)	696	

Diatom	transfer	function	based	SST	reconstruction	from	the	Atlantic	Sector	of	the	Southern	Ocean,	697	

at	the	Polar	Front	(blue;	Core	TN057-17,	Nielsen	et	al.,	2004);	(E)	Difference	between	the	two	SST	698	
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records	(C	and	D),	used	here	as	an	indication	of	the	density	gradient	across	the	SAF.	A	1500	yr	699	

moving	average	and	1σ	moving	standard	deviation	of	each	record	is	shown	by	the	solid	line	and	700	

dashed	lines	respectively.	701	


