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Résumé. On considère un codage symbolique des géodésiques sur une famille de surfaces de Veech
(surfaces de translation riches en symétries affines) récemment découverte par Bouw et Möller. Ces
surfaces, comme l’a remarqué Hooper, peuvent être réalisées en coupant et collant une collection de
polygones semi-réguliers. Dans cet article, on caractérise l’ensemble des suites symboliques (“suites
de coupage”) qui correspondent au codage de trajectoires linéaires, à l’aide de la suite des côtés des
polygones croisés. On donne une caractérisation complète de l’adhérence de l’ensemble des suites
de coupage, dans l’esprit de la caractérisation classique des suites sturmiennes et de la récente
caractérisation par Smillie-Ulcigrai des suites de coupage des trajectoires linéaires dans les polygones
réguliers. La caractérisation est donnée en termes d’un système fini de substitutions (connu aussi sous
le nom de présentation S-adique), réglé par une transformation unidimensionnelle qui ressemble à
l’algorithme de fraction continue. Comme dans le cas sturmien et dans celui des polygones réguliers,
la caractérisation est basée sur la renormalisation et sur la définition d’un opérateur combinatoire de
dérivation approprié. Une des nouveautés est que la dérivation se fait en deux étapes, sans utiliser
directement les éléments du groupe de Veech, mais en utilisant un difféomorphisme affine qui envoie
une surface de Bouw-Möller vers sa surface “duale”, qui est dans le même disque de Teichmüller. Un
outil technique utilisé est la présentation des surfaces de Bouw-Möller par les diagrammes de Hooper.

ABSTRACT. We consider a symbolic coding for geodesics on the family of Veech surfaces (translation
surfaces rich with affine symmetries) recently discovered by Bouw and Möller. These surfaces, as
noticed by Hooper, can be realized by cutting and pasting a collection of semi-regular polygons. We
characterize the set of symbolic sequences (cutting sequences) that arise by coding linear trajectories
by the sequence of polygon sides crossed. We provide a full characterization for the closure of the set of
cutting sequences, in the spirit of the classical characterization of Sturmian sequences and the recent
characterization of Smillie-Ulcigrai of cutting sequences of linear trajectories on regular polygons.
The characterization is in terms of a system of finitely many substitutions (also known as an S-adic
presentation), governed by a one-dimensional continued fraction-like map. As in the Sturmian and
regular polygon case, the characterization is based on renormalization and the definition of a suitable
combinatorial derivation operator. One of the novelties is that derivation is done in two steps, without
directly using Veech group elements, but by exploiting an affine diffeomorphism that maps a Bouw-
Möller surface to the dual Bouw-Möller surface in the same Teichmüller disk. As a technical tool, we
crucially exploit the presentation of Bouw-Möller surfaces via Hooper diagrams.

Key words. Cutting sequences, translation surfaces, Bouw-Möller surfaces, renormalization for Veech
surfaces, S-adic systems, substitutions, linear complexity sequences.
Mots clé. Suites de coupage, surfaces de translation, surfaces de Bouw-Möller, renormalisation pour
une surface de Veech, systèmes S-adiques, substitutions, suites de complexité linéaire.

Short form of the title. Cutting sequences on Bouw-Möller surfaces (Suites de coupage sur les
surfaces de Bouw-Möller)

Math subject classification. Primary : 37B10 Symbolic dynamics, 37E35 Flows on surfaces
Secondary : 11J70 Continued fractions and generaliztions, 37D40 Dynamical systems of geometric
origin and hyperbolicity (geodesic and horocycle flows, etc).
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1. Introduction

In this paper we give a complete characterization of a class of symbolic sequences that generalizes the
famous class of Sturmian sequences, that arises geometrically by coding bi-infinite linear trajectories
on Bouw-Möller surfaces. A gentle introduction for the non-familiar reader is given below, but first we
will give a short version of our main result. The Bouw-Möller family of translation surfaces is a family
of Veech surfaces (see §2 for definitions) indexed by two parameters, (m, n), so that the Bouw-Möller
surface Sm,n is obtained by identifying parallel sides of m semi-regular polygons with symmetry of
order n (the definition is given in § 2.5). Let Am,n be an alphabet that labels (pairs of identified) sides
of these polygons, and let w ∈ A Z

m,n be a sequence that codes a bi-infinite linear trajectory on Sm,n
(called a cutting sequence). Our main result characterizes the closure of the set of such sequences in
A Z

m,n in terms of a finite family of substitutions as follows (see § 9.3 for the definition of a substitution).

Theorem 1.1. For any Bouw-Möller surface Sm,n, there exist (m − 1)(n − 1) substitutions σi = σ
m,n
i ,

i = 1, . . . , (m − 1)(n − 1) on an alphabet A ′
m,n, and operators Ti = Tm,n

i , i = 0, . . . , 2n − 1 from sequences
in A ′

m,n
Z to sequences in A Z

m,n, such that the following characterization holds:
A sequence w ∈ A Z

m,n is in the closure of the set of cutting sequences of bi-infinite linear trajectories
on the Bouw-Möller surface Sm,n if and only if there exists a sequence (sk)k∈N of indices 1 ≤ sk ≤
(m − 1)(n − 1), 0 ≤ s0 ≤ 2n − 1, and a sequence of letters ak ∈ A ′

m,n, such that w can be written as1

(1) w = lim
k→∞

Ts0 ◦ σs1 ◦ σs2 ◦ · · · ◦ σsk (ak).

The above expression is called an S−adic expansion of the word w, and this type of characterization,
which is well known in the world of word combinatorics, is known as an S−adic characterization (see
for example [7] or [1]). We emphasize that the notion of S−adic expansions is used to describe words
with low complexity since, under some general assumptions, a word with an S−adic presentation has
zero entropy (see Theorem 4.3 in [7] for a precise statement). The substitutions σm,n

i and the operators
Tm,n
i are explicitly constructed in the paper2.
Furthermore, in this paper we show that the sequence (sk)k∈N that appears in the S−adic expansion

of w is the itinerary of a certain Farey-type map Fm,n on the set of directions. In particular, it is
completely determined by knowing the direction of the trajectory coded by the cutting sequence w.
This can be used in two ways: on one hand, given a direction θ ∈ S1, one can hence algorithmically
produce, by iterating our substitutions, all (finite length blocks of) cutting sequences of trajectories in
direction θ. On the other hand, given a sequence w that is the cutting sequence of a trajectory in an
unknown direction θ, one can recover the sequence (sk)k∈N from w (see the informal discussion after
Theorem 1.6 in this introduction and Section § 7.5 for more details) and hence use the map Fm,n to
recover (uniquely, if w is non-periodic) the direction θ (see Proposition 8.6).

1The limit is taken along a sequence of finite words, for which convergence in A Zm,n to the infinite word w means that
the finite words, as k grows, share larger and larger central blocks of letters.

2A technical detail is that this S−adic presentation is possible only at the level of transitions, namely pairs of
consecutive letters in w; indeed the alphabet A ′m,n on which the substitutions are defined is an alphabet labeling
transitions, and the operators Tm,n

i
(defined in §9.3) simply transform a sequence of transitions into a sequence of letters

in Am,n.
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In order to introduce the problem of charactarization of cutting sequences and motivate the reader,
we start this introduction by recalling in §1.1 the geometric construction of Sturmian sequences in
terms of coding linear trajectories in a square, and then both their characterization using derivation,
as described by Series, and their S−adic presentation by a system of substitutions. We then recall in
§1.2 how this type of description was recently generalized by several authors to the sequences coding
linear trajectories in regular polygons. Finally, in §1.3 we explain why Bouw-Möller sequences are the
next natural example to consider to extend these symbolic characterizations, and state a simple case
of our main result.

1.1. Sturmian squences. Sturmian sequences are an important class of sequences in two symbols
that often appear in mathematics, computer science and real life. They were considered by Christoffel
[10] and Smith [39] in the 1870’s, by Morse and Hedlund [31] in 1940 and by many authors since
then (see [1] for a contemporary account and [26] for a historical survey). Sturmian sequences are
interesting because of their geometric origin, and are also of interest because they give the simplest
non-periodic infinite sequences (see [11]), having the lowest possible complexity.3 They admit the
following geometric interpretation:

Consider an irrational line, i.e. a line in the plane in a direction θ such that tan θ is irrational,
in a square grid (Figure 1). As we move along the line, let us record with a 0 each time we hit a
horizontal side and with a 1 each time we hit a vertical side. We get in this way a bi-infinite sequence
of 0s and 1s which, up to choosing an origin arbitrarily, we can think of as an element in {0, 1}Z.
The sequences obtained in this way as the line vary among all possible irrational lines are exactly all
Sturmian sequences. (For further reading, see the beautiful expository paper by Series [34], and also
the introduction of [38].)

Equivalently, by looking at a fundamental domain of the periodic grid, we can consider a square with
opposite sides identified by translations. We define a linear trajectory in direction θ to be a path that
starts in the interior of the square and moves with constant velocity vector making an angle θ with the
horizontal, until it hits the boundary, at which time it re-enters the square at the corresponding point
on the opposite side and continues traveling with the same velocity. For an example of a trajectory
see Figure 1. We will restrict ourselves to trajectories that do not hit vertices of the square. As in
Figure 1, let us label by 0 and 1 respectively its horizontal and vertical sides.4 The cutting sequence
c(τ) associated to the linear trajectory τ is the bi-infinite word in the symbols (edge labels, here 0 and
1) of the alphabet L , which is obtained by reading off the labels of the pairs of identified sides crossed
by the trajectory τ as time increases.

Let us explain now how to characterize Sturmian sequences. One can assume without loss of
generality (see [38] for details) that 0 ≤ θ ≤ π/2. If 0 ≤ θ ≤ π/4, as in Figure 1, the cutting sequence
does not contain the subword 00, and if π/4 ≤ θ ≤ π/2, it does not contain the subword 11. Let us say
that a word w ∈ {0, 1}Z is admissible if either it does not contain any subword 00, so that 0s separate
blocks of 1s (in which case we say it it admissible of type 1) or it does not contain any subword 11
and 1s separate blocks of 0s (in which case we say it it admissible of type 0).

Given an admissible word w, denote by w′ the derived sequence5 obtained by erasing one 1
(respectively one 0) from each block of consecutive 1’s (respectively 0’s) if w is admissible of type
1 (respectively 0).

Example 1.2. A w and its derived sequence w′:

w = . . . 01110111101110111011110 . . .

w′ = . . . 011 0111 011 011 0111 0 . . .

We say (following Series [34]) that a word is infinitely derivable if it is admissible and each of its
derived sequences is admissible. It turns out that cutting sequences of linear trajectories on the square
are infinitely derivable (see Series [34] or also the introduction of [38]). Moreover, the converse is
almost true; the exceptions, i.e. words in {0, 1}Z which are infinitely derivable and are not cutting
sequences such as w = . . . 111101111 . . . , can be explicitly described. The space of words has a natural

3For each n let P(n) be the number of possible strings of length n. For Sturmian sequences, P(n) = n + 1.
4Since squares (or, more generally, parallelograms) tile the plane by translation, the cutting sequence of a trajectory

in a square (parallelogram) is the same than the cutting sequence of a straight line in R2 with respect to a square (or
affine) grid.

5In this section, we are using the terminology from Series [34].
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Figure 1. A trajectory with θ < π/4 and irrational slope on the square torus

topology that makes it a compact space (we refer e.g. to [25]). The word w is not a cutting sequence,
but it has the property that any finite subword can be realized by a finite trajectory. This is equivalent
to saying that it is in the closure of the space of cutting sequences. In fact, the closure of the space of
cutting sequences is precisely the set of infinitely derivable sequences.

An alternative related characterization of Sturmian sequences can also be given in terms of
substitutions. The definition of substitution is recalled in §9.3 (see Definition 9.9). Let σ0 be the
substitution given by σ0(0) = 0 and σ0(1) = 10 and let σ1 be the substitution given by σ1(0) = 01 and
σ1(1) = 1. Then, words in Sturmian sequences can be obtained by starting from a symbol (0 or 1) and
applying all possible combinations of the substitutions σ0 and σ1. More precisely, given a Sturmian
word w corresponding to a cutting sequence in a direction 0 < θ < π/4, there exists a sequence (ai)i∈N
with integer entries ai ∈ N such that

(2) w ∈
⋂
k∈N

σa0
0 σa1

1 σa2
0 σa3

1 · · ·σ
a2k
0 σa2k+1

1 {0, 1}Z.

If π/4 < θ < π/2, the same type of formula holds, but starting with σ1 instead of σ0. Furthermore, w
is in the closure of the set of cutting sequence in {0, 1}Z if and only if there exists (ai)i∈N with integer
entries ai ∈ N such that (2) holds, thus this gives an alternative characterization via substitutions and
more precisely S-adic expansions.

We refer to [7] for a nice exposition on S-adic systems, which are a generalization of substitutive
systems (see also [15] and [2]). While in a substitutive system one considers sequences obtained as
a fixed point of a given substitution and the closure of its shifts, the sequences studied in an S-adic
system, are obtained by applying products of permutations from a finite set, for example from the set
S = {σ0, σ1} in (2). Equivalently, we can write (2) in the form of a limit, which is known as S-adic
expansion (see (1) or more in general [7]). The term S−adic was introduced by Ferenczi in [15], and
is meant to remind of Vershik adic systems [42] (which have the same inverse limit structure) where
S stands for substitution.

The sequence of substitutions in an S-adic system is often governed by a dynamical system, which
in the Sturmian case is a one-dimensional map, i.e. the Farey (or Gauss) map (see Arnoux’s chapter
[1] and also the discussion in §12.1 in [2]).

Indeed, the sequence (ai)i∈N in (2) is exactly the sequence of continued fraction entries of the slope
of the coded trajectory and hence can be obtained as symbolic coding of the Farey (or Gauss) map
(see for example the introduction of [37], or [1]). There is also a classical and beautiful connection
with the geodesic flow on the modular surface (see for example the papers [34], [35], [36] by Series).
For more on Sturmian sequences, we also refer the reader to the excellent survey paper [1] by Arnoux.

1.2. Regular polygons. A natural geometric generalization of the above Sturmian characterization
is the question of characterizing cutting sequences of linear trajectories in regular polygons (and on the
associated surfaces).

Let On be a regular n-gon. When n is even, edges come in pairs of opposite parallel sides, so we can
identify opposite parallel sides by translations. When n is odd, no sides are parallel, but we can take
two copies of On and glue parallel sides in the two copies (this construction can also be done for n even).
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Linear trajectories in a regular polygon are defined as for the square. We will restrict our attention to
bi-infinite trajectories that never hit the vertices of the polygons. If one labels pairs of identified edges
with edge labels in the alphabet Ln = {0, 1, . . . , n − 1}, for example from the alphabet L4 := {0, 1, 2, 3}
when n = 8 (see Figure 2), one can associate as above to each bi-infinite linear trajectory τ its cutting
sequence c(τ), which is a sequence in L Z

n . For example, a trajectory that contains the segment in
Figure 2 will contain the word 10123.

0 1 2 3

Figure 2. A trajectory on the regular octagon surface, and the
corresponding transition diagram for θ ∈ [0, π/8)

In the case of the square, identifying opposite sides by translations yields a torus or surface of genus
1. When n ≥ 4, one obtains in this way a surface of higher genus. We call all the surfaces thus obtained
(taking one or two copies of a regular polygon) regular polygonal surfaces. Regular polygonal surfaces
inherit from the plane an Euclidean metric (apart from finitely many points coming from vertices),
with respect to which linear trajectories are geodesics.

The full characterization of cutting sequences for the octagon, and more in general for regular
polygon surfaces coming from the 2n-gons, was recently obtained by Smillie and the third author in
the paper [38]; see also [37]. Shortly after the first author, Fuchs and Tabachnikov described in [12]
the set of periodic cutting sequences in the regular pentagon, the first author showed in [13] that the
techniques in Smillie and Ulcigrai’s work [38] can be applied also to regular polygon surfaces with n
odd. We now recall the characterization of cutting sequences for the regular octagon surface in [38],
since it provides a model for our main result.

One can first describe the set of pairs of consecutive edge labels, called transitions, that can occur
in a cutting sequence. By symmetry, one can consider only cutting sequences of trajectories in a
direction θ ∈ [0, π) and up to permutations of the labels, one can further assume that θ ∈ [0, π/8). One
can check that the transitions that are possible in this sector of directions are only the ones recorded
in the graph in Figure 2. Graphs of the same form with permuted edge labels describe transitions
in the other sectors of the form [πi/8, π(i + 1)/8) for i = 1, . . . , 7. We say that a sequence w ∈ L Z

4 is
admissible or more precisely admissible in sector i if it contains only the transitions allowed for the
sector [πi/8, π(i + 1)/8).

One can then define a derivation rule, which turns out to be different than Series’ rule for Sturmian
sequences, but is particularly elegant. We say that an edge label is sandwiched if it is preceded and
followed by the same edge label. The derived sequence of an admissible sequence is then obtained by
keeping only sandwiched edge labels.

Example 1.3. In the following sequence w sandwiched edge labels are written in bold fonts:

w = · · · 2 1 3 122 1 2213 0 312213 0 3122 1 221 3 122 1 221 3 · · ·
Thus, the derived sequence w′ of w will contain the string

w′ = · · · 231001313 · · · .

One can then prove that cutting sequences of linear trajectories on the regular octagon surface are
infinitely derivable. Contrary to the Sturmian case, though, this condition is only necessary and fails
to be sufficient to characterize the closure of the space of cutting sequences. In [38] an additional
condition, infinitely coherent (that we do not want to recall here), is defined in order to characterize
the closure. It is also shown on the other hand that one can give an S-adic presentation of the closure of
the octagon cutting sequences. In [38] the language of substitutions was not used, but it is shown that
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one can define some combinatorial operators called generations (which are essentially substitutions on
pairs of labels) and that each sequence in the closure can be obtained by a sequence of generations.
One can rewrite this result in terms of substitutions; this is done for the example in the case of the
regular hexagon in [33], thus obtaining a characterization that generalizes (2) and provides an S−adic
presentation, which for a regular 2n-gon surface consists of 2n − 1 substitutions. The 1-dimensional
map that governs the substitution choice is a generalization of the Farey map (called the octagon Farey
map for 2n = 8 in [38]). A symbolic coding of this generalized Farey map applied to the direction of a
trajectory coincides with the sequence of sectors in which derived sequences of the trajectory’s cutting
sequence are admissible.

Both in the Sturmian case and for regular polygon surfaces the proofs of the characterizations are
based on renormalization in the following sense. Veech was the first to notice in the seminal paper
[41] that the square surface and the regular polygon surfaces share some special property that might
make their analysis easier. He realized that all these surfaces are rich with affine symmetries (or more
precisely, of affine diffeomorphisms) and are examples of what are nowadays called Veech surfaces
or lattice surfaces, see §2.3 for definitions. It turns out that these affine symmetries can be used to
renormalize trajectories and hence produce a characterization of cutting sequences. In the case of
the square torus, they key idea behind a geometric proof of the above mentioned results on Sturmian
sequences is the following: by applying an affine map of the plane, a linear trajectory is mapped to
a linear trajectory whose cutting sequence is the derived sequence of the original trajectory. From
this observation, one can easily show that cutting sequences are infinitely derivable. In the case of
the regular octagon, Arnoux and Hubert have used affine symmetries in [3] to renormalize directions
and define a continued fraction-like map for the octagon, but could not use their renormalization to
describe cutting sequences and left this as an open question in [3]. An important point in Smillie
and Ulcigrai’s work [38, 37] is to also use non-orientation-preserving affine diffeomorphisms, since this
makes the continued fraction simpler and allows to use an element which acts as a flip and shear,
which accounts for the particularly simple sandwiched derivation rule.

1.3. Our results on Bouw-Möller surfaces. In addition to the regular polygon surfaces, there are
other known examples (see §2.4) of surfaces which, being rich with affine symmetries, are lattice (or
Veech) surfaces (the definition is given in §2.3). A full classification of Veech surfaces is an ongoing big
open question in Teichmüller dynamics (see again §2.4 for some references). Two new infinite families
of Veech surfaces were discovered almost two decades after regular polygonal surfaces, respectively
one by Irene Bouw and Martin Möller [8] and the other by Kariane Calta [9] and Curt McMullen [28]
independently.

The family found by Irene Bouw and Martin Möller was initially described algebraically (see §2.4);
later, Pat Hooper presented the construction of what we here call Bouw-Möller surfaces as created by
identifying opposite parallel edges of a collection of semi-regular polygons (see §2.4 for more detail).
We give a precise description in §2.5. An example is the surface in Figure 3, obtained from two semi-
regular hexagons and two equilateral triangles by gluing by parallel translation the sides with the same
edge labels. Surfaces in the Bouw-Möller family are parametrized by two indices m, n, so that the Sm,n
Bouw-Möller surface is glued from m polygons, the first and last of which are regular n-gons, and the
rest of which are semi-regular 2n-gons. The surface in the example is hence known as S4,3.

Bouw-Möller surfaces can be thought in some sense as the next simplest classes of (primitive) Veech
surfaces after regular polygon surfaces, and the good next candidate to generalize the question of
characterizing cutting sequences. Indeed, the Veech group, i.e. the group generated by the linear
parts of the affine symmetries (see §2.3 for the definition) of both regular polygon surfaces and Bouw-
Möller surfaces are triangle groups. More precisely, regular n-gon surfaces have (n,∞,∞)-triangle groups
as Veech groups, while the Veech groups of Bouw-Möller surfaces are (m, n,∞)-triangle groups for m
and n not both even (when m and n are both even, the Veech group has index 2 inside the (m, n,∞)-
triangle group) [17]. In [14], Davis studied cutting sequences on Bouw-Möller surfaces and analyzed
the effect of a flip and shear (as in Smillie-Ulcigrai’s work [38]) in order to define a derivation operator
and renormalize trajectories. Unfortunately, with this approach it does not seem possible to cover all
angles, apart from the surfaces with m = 2 or m = 3 in which all polygons are regular. Part of the
reason behind this difficulty is that the Veech group contains two rotational elements, one of order m
and one of order n, but they do not act simultaneously on the same polygonal presentation.
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Figure 3. Part of a trajectory on the Bouw-Möller surface S4,3

In this paper, we give a complete characterization of the cutting sequences on Bouw-Möller surfaces,
in particular providing an S-adic presentation for them. The key idea behind our approach is the
following. It turns out that the Sm,n and the Sn,m Bouw-Möller surfaces are intertwined in the sense
that they can be mapped to each other by an affine diffeomorphism.6 While the Sm,n surface has a
rotational symmetry of order n, the Sn,m surface has a rotational symmetry of order m. We will call
Sm,n and the Sn,m dual Bouw-Möller surfaces. Instead of normalizing using an affine automorphism
as in the regular polygon case, we renormalize trajectories and define associated derivation operators
on cutting sequences in two steps, exploiting the affine diffeomorphism between the Sm,n and the
Sn,m Bouw-Möller surfaces. In particular, we map cutting sequences on the Sm,n surface to cutting
sequences on the Sn,m Bouw-Möller surface. This allows us the freedom in between to apply the n
rotational symmetry and the m rotational symmetry respectively, and this allows us to renormalize all
cutting sequences.

Note that since we frequently use the relationship between the surfaces Sm,n and Sn,m, we use the
colors red and green to distinguish them throughout the paper, as here and as in Figure 4 below.

We now give an outline of the statement of our main result, with an example in the special case
of the S4,3 surface. The general results for Sm,n surfaces are stated precisely at the end of our paper,
in §6.1. Let us label pairs of identified edges of the Sm,n surface with labels in the alphabet Lm,n =

{1, 2, . . . , (m − 1)n}. The surface S4,3 is for example labeled by L4,3 = {1, 2, . . . , 9} as in Figure 3. The
way to place edge labels for Sm,n is described in §6.2 and is chosen in a special way that simplifies the
later description. By applying a symmetry of the surface and exchanging edge labels by permutations
accordingly, we can assume without loss of generality that the direction of trajectories we study belongs
to the sector [0, π/n].

As in the case of the regular octagon, we can first describe the set of transitions (i.e. pairs of
consecutive edge labels) that can occur in a cutting sequence. For trajectories on S4,3 whose direction
belongs to sector [0, π/3], the possible transitions are shown in the graph in Figure 4. The structure
of transition diagrams T i

m,n for trajectories on Sm,n whose direction belong to sector [πi/n, π(i + 1)/n]
are described in §6.8. We say that a sequence w ∈ L Z

m,n is admissible (or more precisely admissible in
sector i) if it contains only the transitions represented by arrows in the diagram T i

m,n.
We define a derivation operator Dn

m, which maps admissible sequences in L Z
m,n to (admissible)

sequences in L Z
n,m. The derivation rule for sequences admissible in sector 0 is described by a labeled

diagram as follows. We define derivation diagrams D0
m,n for the basic sector [0, π/n] in which some

of the arrows are labeled by edge labels of the dual surface Sn,m. The derivation diagram for S4,3
is shown in Figure 4. The derived sequence w′ = Dn

mw of a sequence w admissible in diagram 0 is
obtained by reading off only the arrow labels of a bi-infinite path which goes through the vertices of
D0

m,n described by w.

Example 1.4. Consider the trajectory on S4,3 in Figure 3. Its cutting sequence w contains the word
· · · 1678785452 · · · . This word corresponds to a path on the derivation diagram D0

4,3 in Figure 4, which
goes through the edge label vertices. By reading off the labels of the arrows crossed by this path, we
find that w′ = D3

4w contains the word · · · 434761 · · · .
6In other words, they belong to the same Teichmüller disk.
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Figure 4. The transition diagram T 0
3,4 for S3,4 and its derivation

diagram D0
3,4, used to define D4

3

This type of derivation rule is not as concise as for example the keep the sandwiched labels rule
for regular polygons, but we remark that the general shape of the labeled diagram that gives the
derivation rule is quite simple, consisting of an (m − 1) × n rectangular diagram with vertex labels and
arrows labels snaking around as explained in detail in §6.5.

We say that a sequence w ∈ L Z
m,n is derivable if it is admissible and its derived sequence Dn

mw ∈ L Z
n,m

is admissible (in one of the diagrams of the dual surface Sn,m). The derivation operator is defined in
such a way that it admits the following geometric interpretation: if w is a cutting sequence of a linear
trajectory on Sm,n, the derived sequence Dn

mw is the cutting sequence of a linear trajectory on the dual
surface Sn,m (see §7.1 for this geometric interpretation). In the special case m = 4, n = 3 this result was
proved by the second author in [33] (see also the Acknowledgments), where the derivation diagram in
Figure 4 was first computed.

In order to get a derivation from sequences L Z
m,n back to itself, we compose this derivation operator

with its dual operator Dm
n : we first normalize the derived sequence, i.e. apply a permutation to

the labels to reduce to a sequence admissible in T 0
m,n. The choice of the permutations used to map

sequences admissible in T i
m,n to sequences admissible in T 0

m,n is explained in §6.7. We can then apply
Dm

n . This composition maps cutting sequences of trajectories on Sm,n first to cutting sequences of
trajectories on Sn,m and then back to cutting sequences on Sm,n.

We say that a sequence in L Z
m,n is infinitely derivable if by alternatively applying normalization and

the two dual derivation operators Dn
m and Dm

n one always obtains sequences that are admissible (see
formally Definition 7.10 in §7.4). With this definition, we then have our first result:

Proposition 1.5. Cutting sequences of linear trajectories on Bouw-Möller surfaces are infinitely
derivable.

As in the case of regular polygon surfaces, this is only a necessary and not a sufficient condition to
characterize the closure of cutting sequences. We then define in §9.1 generation combinatorial operators
that invert derivation (with the additional knowledge of starting and arrival admissibility diagram)
as in the work by Smillie-Ulcigrai [37, 38]. Using these operators, one can obtain a characterization,
which we then also convert in §9.3 into a statement using substitutions. More precisely, we explain
how to explicitly construct, for every Bouw-Möller surface Sm,n, (m − 1)(n − 1) substitutions σi for
1 ≤ i ≤ (m−1)(n−1) on an alphabet of cardinality N = Nm,n := 3mn−2m−4n+2 and an operator Tm,n

i
that maps admissible sequences in the alphabet of cardinality N (see details in §9.2) to admissible
sequences on T i

m,n such that:

Theorem 1.6. A sequence w is in the closure of the set of cutting sequences on the Bouw-Möller
surface Sm,n if and only if there exists a sequence (si)i∈N with si ∈ {1, . . . , (m−1)(n−1)} and 0 ≤ s0 ≤ 2n−1
such that

(3) w ∈
⋂
k∈N

Tm,n
s0

σs1σs2 · · ·σsk {1, . . . , N}Z.

Furthermore, when w is a non periodic cutting sequence the sequence (si)i∈N can be uniquely recovered
from the knowledge of w.
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We remark that (3) gives the S −adic presentation as a limit of finite sequences, which is equivalent
to the result given in (1) in the statement of Theorem 1.1 at the beginning of the paper. Theorem 1.6,
which is proved as Theorem 9.14 in §9.2,7 and the relation with itineraries mentioned above, which
is proved by Proposition 8.5, provide the desired S−adic characterization of Bouw-Möller cutting
sequences (recall the discussion on S−adic systems in the paragraph following equation (2) previously
in this introduction) and is indeed the main result of our work.

We remark also that Theorem 1.6 provides an algorithmic way to test (in infinitely many steps)
if a sequence belongs to the closure of cutting sequences. The sequence (si)i∈N can be recovered
algorithmicaly when w is a cutting sequence and hence infinitely derivable and is the sequence of
indices of diagrams in which the successive derivatives of w are admissible (see Definition 7.13 in
Section 7.5).

Furthermore, the sequence (si)i∈N is governed by a 1-dimensional dynamical system as follows.
There exists a piecewise expanding map Fm,n, which we call the Bouw-Möller Farey map, which has
(n − 1)(m − 1) branches, such that if w is the cutting sequence of a trajectory in direction θ, the sequence
(si)i∈N is given by the symbolic coding of the orbit of θ under Fm,n. More precisely, it is the itinerary of
((Fm,n)k(θ))k∈N with respect to the natural partition of the domain of Fm,n into monotonicity intervals.
This is explained in §8, where the map Fm,n is defined as composition of two simpler maps, describing
the projective action on directions of the affine diffeomorphisms from Sm,n to Sn,m and from Sn,m to
Sm,n respectively.

The Bouw-Möller Farey map can be used to define a generalization of the continued fraction
expansion (see §8.4) which can be then in turn used to recover the direction of a trajectory
corresponding to a given cutting sequence. More precisely, the itinerary of visited sectors for the
Bouw-Möller Farey map described above gives us the indices for the Bouw-Möller additive continued
fraction expansion of the direction θ (Proposition 8.6).

Finally, let us conclude by commenting that, even though our characterization of cutting sequences
is still only specific to the Bouw-Möller translation surfaces, we believe that this new family of Veech
surfaces contains a substantial new layer of complexity and that our methods (briefly described in
the next section) actually provide insight on how to potentially characterize cutting sequences on any
Veech surface (see the very final subsection of the Appendix A for more insight in this direction).
In particular, a key novelty that distinguishes our methods from the characterization of Sturmian
sequences, or of cutting sequences on regular polygons (e.g. from [37]) is that, though as in the other
works we crucially exploit renormalization via affine diffeomorphisms, we do not directly describe the
action of (suitable generators of) the group of affine diffeomorphisms of Sm,n, but we first describe the
action on cutting sequences of intermediate and simpler maps, i.e. diffeomorphisms from the Bouw-
Möller surface Sm,n to an affine image of the dual Bouw-Möller surface Sm,n. An interpretation of these
elementary moves acting on the Teichueller disk of Sm,n is given in Appendix A.

1.4. Structure and outline of the paper. Let us now comment on some of the tools and ideas
used in the proofs and describe the structure of the rest of the paper. As a general theme throughout
the paper, we will first describe properties and results on an explicit example, then give general results
and proofs for the general case of Sm,n. The example we work out in detail is the characterization
of cutting sequences on the Bouw-Möller surface S4,3 which already appeared in this introduction,
exploiting also its dual Bouw-Möller surface S3,4. This is the first case that could not be fully dealt
with by D. Davis in [14].8

In the next section, §2, we include some background material, in particular the definition of
translation surface (§2.1), affine diffeomorphisms (§2.2) Veech group and Veech (or lattice) surfaces
(§2.3) and a brief list of known classes of Veech surfaces (§2.4). In §2.5 we then give the formal
definition of Bouw-Möller surfaces, describing the number and type of semi-regular polygons to form
Sm,n and giving formulas for their side lengths. We also describe their Veech group (see §2.6).

The main tool used in our proofs is the presentation of Bouw-Möller surfaces through Hooper
diagrams, introduced by P. Hooper in his paper [17] and originally called grid graphs by him. These

7We remark that Theorem 9.14 the notation used is slightly different than the statement above, in particular the
substitutions are labeled by two indices i, j and similarly the entries si are pairs of indices which code the two simpler
Farey maps, see §9.2 for details.

8On the other hand derivation on S3,4 can be fully described using Davis’ flip and shear because whenever m = 3, all
the polygons are regular.
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are decorated diagrams that encode combinatorial information on how to build Bouw-Möller surfaces
via the Thurston-Veech construction. The surface Sm,n can be decomposed into cylinders in the
horizontal direction, and in the direction of angle π/n. The Hooper diagram encodes how these
transversal cylinder decompositions intersect each other. In §3 we first explain how to construct
a Hooper diagram starting from a Bouw-Möller surface, while in §3.4 we formally define Hooper
diagrams and then explain how to construct a Bouw-Möller surface from a Hooper diagram.

As we already mentioned in the introduction, the definition of the combinatorial derivation operator
is motivated by the action on cutting sequences of affine diffeomorphism (a flip and shear) between Sm,n
and its dual Bouw-Möller surface Sn,m. This affine diffeomorphism is described in §4. A particularly
convenient presentation is given in what we call the orthogonal presentation: this is an affine copy
of Sm,n, so that the two directions of cylinder decomposition forming an angle of π/n are sheared to
become orthogonal. In this presentation, both Sm,n and Sn,m can be seen simultaneously as diagonals
of rectangles on the surface (that we call basic rectangles, see Figure 14).

In §5 a useful tool for later proofs is introduced: we describe a local configuration in the Hooper
diagram, that we call a hat (see Figure 17 to understand choice of this name) and show that it translates
into a stair configuration of basic rectangles in the orthogonal presentation mentioned before. Proofs
of both the shape and labeling of transition diagrams and of derivation rules exploit the local structure
of Hooper diagrams by switching between hat and stairs configurations.

Section §6 is devoted to transition diagrams: we first explain our way of labeling edges of Bouw-
Möller surfaces. This labeling, as mentioned before, works especially well with Hooper diagrams. The
structure of transition diagrams is then described in §6.5 (see Theorem 6.15) and proved in the later
sections using hats and stairs. In the same sections we prove also that derivation diagrams describe
intersections with sides of the affine image of the dual Bouw-Möller surface, which is a key step for
derivation.

In Section §7 we describe the derivation process obtained in two steps, by first deriving cutting
sequences on Sm,n to obtain cutting sequences on the dual surface Sn,m (see §7.2) and then, after
normalizing them (see §7.3), deriving them another time but this time applying the dual derivation
operator. This two-step process of derivation and then normalization is called renormalization. In
§8 we define a one-dimensional map, called the Bouw-Möller Farey map, that describes the effect of
renormalization on the direction of a trajectory.

In §9 we invert derivation through generation operators. This allows to prove the characterization
in §9.1, where first the characterization of Bouw-Möller cutting sequences through generation is proved
in §9.2, then the version using substitutions is obtained in §9.3, see Theorem 9.14.

1.5. Acknowledgements. The initial idea of passing from Sm,n to Sn,m to define derivation in Bouw-
Möller surfaces came from conversations between the third author and John Smillie, whom we thank
also for explaining to us Hooper diagrams. We also thank Samuel Lelièvre, Pat Hooper, Rich Schwartz
and Ronen Mukamel for useful discussions and Alex Wright and Curt McMullen for their comments
on the first version of this paper.

A special case of the derivation operator defined in this paper (which provided the starting point
for our work) was worked out by the second author for her Master’s thesis [33] during her research
project under the supervision of the third author. We thank Ecole Polytechnique and in particular
Charle Favre for organizing and supporting this summer research project and the University of Bristol
for hosting her as a visiting student.

The collaboration that led to the present paper was made possible by the support of ERC grant
ChaParDyn, which provided funds for a research visit of the three authors at the University of Bristol,
and by the hospitality during the ICERM’s workshop Geometric Structures in Low-Dimensional
Dynamics in November 2013, and the conference Geometry and Dynamics in the Teichmüller space
at CIRM in July 2015, which provided excellent conditions for continued collaboration.
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2. Background

In this section we present some general background on the theory of translation surfaces, in particular
giving the definition of translation surfaces (§2.1), of affine deformations and of Veech groups (§2.3)
and we briefly list known examples of Veech surfaces (§2.4).
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2.1. Translation surfaces and linear trajectories. The surface T obtained by identifying opposite
parallel sides of the square, and the surface O obtained by identifying opposite parallel sides of the
regular octagon, are examples of translation surfaces. The surface T has genus 1, and the surface O
has genus 2. Whenever we refer to a translation surface S, we will have in mind a particular collection
of polygons in R2 with identifications. We define translation surfaces as follows:

Definition 2.1. A translation surface is a collection of polygons Pj in R2, with parallel edges of the
same length identified, so that

• edges are identified by maps that are restrictions of translations,
• every edge is identified to some other edge, and
• when two edges are identified, the outward-pointing normals point in opposite directions.

If ∼ denotes the equivalence relation coming from identification of edges, then we define the surface
S =

⋃
Pj/∼.

Let S be the set of points corresponding to vertices of polygons, which we call singular points.9
We will consider geodesics on translation surfaces, which are straight lines: any non-singular point

has a neighborhood that is locally isomorphic to the plane, so geodesics locally look like line segments,
whose union is a straight line. We call geodesics linear trajectories. We consider trajectories that do
not hit singular points, which we call bi-infinite trajectories.

A trajectory that begins and ends at a singular point is a saddle connection. Every periodic
trajectory is parallel to a saddle connection, and is contained in a maximal family of parallel periodic
trajectories of the same period. This family fills out a cylinder bounded by saddle connections.

A cylinder decomposition is a partition of the surface into parallel cylinders. The surfaces that
we consider, Bouw-Möller surfaces, have many cylinder decompositions (see Figure 8). For a given
cylinder, we can calculate the modulus of the cylinder, which is ratio of the width (parallel to the
cylinder direction) to the height (perpendicular to the cylinder direction). For the cylinder directions
we use on Bouw-Möller surfaces, all of the cylinders have the same modulus (see Theorem 2.7, proven
in [14]).

2.2. Affine deformations and affine diffeomorphisms. Given ν ∈ GL(2,R), we denote by νP ⊂
R2 the image of P ⊂ R2 under the linear map ν. Note that parallel sides in P are mapped to parallel
sides in νP. If S is obtained by gluing the polygons P1, . . . , Pn, we define a new translation surface that
we will denote by ν · S, by gluing the corresponding sides of νP1, . . . , νPn. The map from the surface
S to the surface ν · S, which is given by the restriction of the linear map ν to the polygons P1, . . . , Pn,
will be called the affine deformation given by ν.

Let S and S′ be translation surfaces. Consider a homeomorphism Ψ from S to S′ that takes S to S′
and is a diffeomorphism outside of S. We can identify the derivative DΨp with an element of GL(2,R).
We say that Ψ is an affine diffeomorphism if the derivative DΨp does not depend on p. In this case
we write DΨ for DΨp. The affine deformation Φν from S to ν · S described above is an example of an
affine diffeomorphism. In this case DΦν = ν.

We say that S and S′ are affinely equivalent if there is an affine diffeomorphism Ψ between them.
We say that S and S′ are translation equivalent if they are affinely equivalent with DΨ = Id. If S is
given by identifying sides of polygons Pj and S′ is given by identifying sides of polygons P′

k
then a

translation equivalence Υ from S to S′ can be given by a “cutting and pasting” map. That is to say we
can subdivide the polygons Pj into smaller polygons and define a map Υ so that the restriction of Υ
to each of these smaller polygons is a translation and the image of Υ is the collection of polygons P′

k
.

An affine diffeomorphism from S to itself is an affine automorphism. The collection of affine
diffeomorphisms is a group which we denote by A f f (S). If S is given as a collection of polygons
with identifications then we can realize an affine automorphism of S with derivative ν as a composition
of a map Ψν : S → ν · S with a translation equivalence, or cutting and pasting map, Υ : ν · S → S.

2.3. The Veech group and Veech surfaces. The Veech homomorphism is the homomorphism
Ψ 7→ DΨ from A f f (S) to GL(2,R). The image of this homomorphism lies in the subgroup of matrices
with determinant ±1 which we write as SL±(2,R). We call Veech group and we denote by V(S) the
image of A f f (S) under the Veech homomorphism. It is common to restrict to orientation-preserving

9Standard usage says that such a point is singular only if the angle around it is greater than 2π, but since all of our
vertices satisfy this, we call all such points singular points.



CUTTING SEQUENCES ON BOUW-MÖLLER SURFACES 13

affine diffeomorphisms in defining the Veech group, but since we will make essential use of orientation-
reversing affine automorphisms, we will use the term Veech group for the larger group V(S). Note
that the term Veech group is used by some authors to refer to the image of the group of orientation-
preserving affine automorphisms in the projective group PSL(2,R).

A translation surface S is called a Veech surface if V(S) is a lattice in SL±(2,R). The torus T2 = R2/Z2
is an example of a Veech surface whose Veech group is GL(2,Z). Veech proved more generally that
all translation surfaces obtained from regular polygons are Veech surfaces. Veech surfaces satisfy the
Veech dichotomy (see [41], [43]) which says that if we consider a direction θ then one of the following
two possibilities holds: either there is a saddle connection in direction θ and the surface decomposes
as a finite union of cylinders each of which is a union of a family of closed geodesics in direction θ, or
each trajectory in direction θ is dense and uniformly distributed.

We will use the word shear to denote an affine automorphism of a surface whose derivative is
[
1 s
0 1

]
for some real number s. If a translation surface admits a shear, we can decompose it into cylinders of
commensurable moduli, so a power of the shear acts as a Dehn twist in each cylinder.

2.4. Known examples of Veech surfaces. Several families of Veech surfaces are known. A brief
history of known Veech surfaces is as follows.

• The simplest example of a Veech surface is the square, with pairs of parallel sides identified to
create the square torus.
• Covers of the square torus, called square-tiled surfaces, are created by identifying opposite
parallel edges of a collection of congruent squares. Eugene Gutkin and Chris Judge [16] showed
that square-tiled surfaces are equivalent to those surfaces whose Veech group is arithmetic, i.e.
commensurable with SL(2,Z). Subsequently, Pascal Hubert and Samuel Lelièvre showed that
in genus 2, all translation surfaces in H(2) that are tiled by a prime number n > 3 of squares
fall into exactly two Teichmüller discs.
• William Veech was the first to define in [41] Veech groups and lattice surfaces, and to prove
that all regular polygon surfaces are Veech surfaces and satisfy the Veech dichotomy described
above.
• Clayton Ward discovered a new family of Veech surfaces about 10 years after regular polygonal
surfaces [44]. These surfaces are created by identifying opposite parallel edges of three polygons:
two regular n gons and a regular 2n-gon (see Figure 6 for the case when n = 4.) Ward’s surfaces
turn out to be a special case of Bouw-Möller surfaces, those made from exactly 3 polygons,
the S3,n family.
• Veech surfaces are related to billiards on triangles; we will not describe the correspondence
here. Rick Kenyon and John Smille [21] showed that, other than the triangles corresponding
to the examples above, only three other triangles correspond to Veech surfaces. Two of these
were already known to Yaroslav Vorobets [43].
• Kariane Calta [9] and Curt McMullen [28] discovered independently infinitely many new Veech
surfaces in genus 2, each of which can be presented as an L-shaped polygon with certain integer
measurements in a quadratic vector field.
• In [30], McMullen discovered a new infinite family of primitive Teichmüller curves in Mg for
g = 2, 3, 4, as well as new closed SL(2,R)-invariant loci in the space of holomorphic 1-forms
ΩMg, g ≤ 5 and new Teichmüller curves generated by strictly quadratic differentials. All these
new examples are built using a construction that generalizes to higher genus the work he did
for genus 2 using Jacobians with real multiplication (see [29]).
• Irene Bouw and Martin Möller discovered a new family of Veech curves (i.e. quotients of

SL(2,R) by a lattice Veech group) with triangular Veech groups in [8]. Then Pat Hooper in
[17] showed that special points on these Veech curves can be obtained by gluing semi-regular
polygons; see the definition given in the next section. In this paper, we will call Bouw-Möller
surfaces this family of Veech surfaces obtained by gluing semi-regular polygons (as it has been
done often in previous literature). We remark that Hooper showed that the Teichmüller curves
associated to his semi-regular polygon surfaces were the same as Bouw and Möller’s Veech
curves in many cases, with a few exceptions. Later, Alex Wright [45] showed this equality
in all the remaining cases. We remark also that while Ward’s surfaces are always glued from
exactly 3 polygons (they correspond as mentioned above to the S3,n Bouw-Möller family),
Bouw-Möller surfaces can be obtained by gluing any number m ≥ 2 of (semi-regular) polygons.
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• Hooper found that the (π/12, π/3, 7π/12) triangle has the lattice property, and computed its
Veech group. The surface unfolded from this triangle is one of the Veech surfaces of genus 4
discovered by McMullen in [29]), described above, and Hooper showed that it comes from a
billiard in this triangle (see [18]).

Providing a full classification of Veech surfaces is a big open question in Teichmüller dynamics, since
Veech surfaces correspond indeed to closed SL(2,R)-orbits and hence are the smallest orbit closures of
the SL(2,R) action on the moduli space of Abelian differentials. Several very recent results are in the
direction of proving that there exists only finitely many Veech surfaces in several strata of translation
surfaces, see for example [4, 5, 6, 22, 23, 27, 32].

2.5. Bouw-Möller surfaces: semi-regular polygonal presentation. We will now describe the
polygonal presentation of the Bouw-Möller surfaces, given by Pat Hooper [17]. We create the surface
Sm,n by identifying opposite parallel edges of a collection of m semi-regular polygons that each have
2n edges.

A semi-regular polygon is an equiangular polygon with an even number of edges. Its edges alternate
between two different lengths. The two lengths may be equal (in which case it is a regular 2n-gon), or
one of the lengths may be 0 (in which case it is a regular n-gon).
Example 2.2. The Bouw-Möller surface S4,3 (m = 4, n = 3) is made of 4 polygons, each of which have
2n = 6 edges (Figure 5). From left to right, we call these polygons P(0), P(1), P(2), P(3). Polygon P(0)
has edge lengths 0 and sin π/4 = 1/

√
2, polygon P(1) has edge lengths 1/

√
2 and sin(π/2) = 1, polygon

P(2) has edge lengths 1 and 1/
√
2, and polygon P(3) has edge lengths 1/

√
2 and 0.

Figure 5. The Bouw-Möller surface S4,3 with m = 4, n = 3 is made
from two equilateral triangles and two semi-regular hexagons. Edges
with the same label are identified.

Definition 2.3 gives an explicit definition of an equiangular 2n-gon whose edge lengths alternate
between a and b:
Definition 2.3. Let Pn(a, b) be the polygon whose edge vectors are given by:

vi =

{
a [cos iπ

n , sin
iπ
n ] if i is even

b [cos iπ
n , sin

iπ
n ] if i is odd

for i = 0, . . . , 2n−1. The edges whose edge vectors are vi for i even are called even edges. The remaining
edges are called odd edges. We restrict to the case where at least one of a or b is nonzero. If a or b is
zero, Pn(a, b) degenerates to a regular n-gon.

In creating polygons for a Bouw-Möller surface, we carefully choose the edge lengths so that the
resulting surface will be a Veech surface (see §2.3).
Definition 2.4. Given integers m and n with at least one of m and n nonzero, we define the polygons
P(0), . . . , P(m − 1) as follows.

P(k) =


Pn

(
sin (k+1)πm , sin kπ

m

)
if m is odd

Pn

(
sin kπ

m , sin
(k+1)π

m

)
if m is even and k is even

Pn

(
sin (k+1)πm , sin kπ

m

)
if m is even and k is odd.
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An example of computing these edge lengths was given in Example 2.2.

Remark 2.5. P(0) and P(m − 1) are always regular n-gons, because sin 0π
m = 0 and sin (m−1+1)πm = 0. If

m is odd, the central 2n-gon is regular, because sin(kπ/m) = sin((k + 1)π/m) for k = (m − 1)/2. Figure
6 shows both of these in S3,4.

Figure 6. The Bouw-Möller surface S3,4 with m = 3, n = 4 is made
from two squares and a regular octagon. Edges with the same label are
identified.

Finally, we create a Bouw-Möller surface by identifying opposite parallel edges of m semi-regular
polygons P(0), . . . , P(m − 1). For each polygon in the surface, n of its edges (either the even-numbered
edges or the odd-numbered edges) are glued to the opposite parallel edges of the polygon on its left,
and the remaining n edges are glued to the opposite parallel edges of the polygon on its right. The
only exceptions are the polygons on each end, which only have n edges, and these edges are glued to
the opposite parallel edges of the adjacent polygon. These edge identifications are shown in Figures 5
and 6.

We now give the edge identifications explicitly:

Definition 2.6. The Bouw-Möller surface Sm,n is made by identifying the edges of the m semi-regular
polygons P(0), . . . , P(m − 1) from Definition 2.4. We form a surface by identifying the edges of the
polygon in pairs. For k odd, we identify the even edges of P(k) with the opposite edge of P(k + 1), and
identify the odd edges of P(k) with the opposite edge of P(k − 1). The cases in Definition 2.4 of P(k)
are chosen so that this gluing makes sense.

Theorem 2.7 ([14], Lemma 6.6). Every cylinder of the Bouw-Möller surface Sm,n in direction kπ/n
has the same modulus. The modulus of each such cylinder is 2 cot π/n + 2 cos π/m

sin π/n .

We will use this fact extensively, because it means that one element of the Veech group of
Sm,n is a shear, a parabolic element whose derivative is

[
1 s
0 1

]
for some real number s. For Sm,n,

s = 2 cot π/n + 2 cos π/m
sin π/n as above.

Theorem 2.8 (Hooper). Sm,n and Sn,m are affinely equivalent.

This means that Sm,n can be transformed by an affine map (a shear plus a dilation) and then cut
and reassembled into Sn,m.

Example 2.9. In Figure 7 it is for example shown how the surface in Figure 5 can be cut and
reassembled into a sheared version of the surface in Figure 6.

We will use this affine equivalence extensively, since as already mentioned in the introduction our
derivation and characterization of cutting sequences exploit the relation between cutting sequences on
Sm,n and Sn,m. The affine diffeomorphism between Sm,n and Sn,m that we use for derivation (which
also includes a flip, since this allows a simpler description of cutting sequences) is described in §4.



CUTTING SEQUENCES ON BOUW-MÖLLER SURFACES 16

Figure 7. The bold outline on the left shows how the left surface can
be cut and reassembled into a sheared version of the right surface, and
vice-versa.

2.6. The Veech group of Bouw-Möller surfaces. The Veech group of Sm,n, as well as the Veech
group of the Sn,m, is isomorphic to the (m, n,∞) triangle group. The only exception to this is when m
and n are both even, in which case the Veech group of Sm,n has index 2 in the (m, n,∞) triangle group
see [17]. Thus, the Veech group contains two elliptic elements of order 2m and 2n respectively. One
can take as generators one of this two elements and a shear (or a “flip and shear”) automorphism from
the (m, n) surface to itself. In the (n,m) polygon presentation of Sm,n the elliptic element of order 2m
is a rotation of order π/m (while in the (m, n) polygon decomposition the elliptic element is a rotation
of order π/n). Thus, the elliptic element of order 2n acting on Sm,n can be obtained conjugating the
rotation of π/n on the dual surface Sn,m by the affine diffeomorphism between Sm,n and Sn,m given
by Theorem 2.8. In section Section A we describe the action of these Veech group elements on a
tessellation of the hyperbolic plane by (m, n,∞) triangles shown in Figure 49.

3. Bouw-Möller surfaces via Hooper diagrams

In §2.5 we recalled the construction of Bouw-Möller surfaces by gluing a collection of semi-regular
polygons. In his paper [17], as well as this polygonal presentation, Hooper gave a description of
these surfaces by constructing a decorated diagram, that we will call the Hooper diagram Hm,n for
the Bouw-Möller surface Sm,n. These diagrams are related to what is known as the Thurston-Veech
construction (sometimes also called the Bouillabaisse construction) first described by Thurston [40]
and independently by Veech [41]. Indeed, Hooper diagrams describe the intersection pattern of two
transversal cylinder decompositions of the surface, and hence provide data that can be used for the
Thurston-Veech construction of pseudo-Anosov diffeormorphisms of a surface as product of two distinct
multi-twists. We remark that similar diagrams and the related ribbon graphs already appeared in the
literature before the work of Hooper [17] (for example in the works of Leininger [24] and McMullen
[30]). We choose to refer to them as Hooper diagrams since it is the decorated version in [17] that we
use, and Hooper was the first to find this description of Bouw-Möller surfaces (he also brought the use
of this type of diagrams further, by exploiting them to study infinite translation surfaces in [19] and
[20]).

In this section we will explain how to construct the Hooper diagram given the polygonal presentation
of the surface and vice versa, following the example of S3,4 throughout.

3.1. From S3,4 to a Hooper diagram: an example. Let us consider the Bouw-Möller surface
S3,4. To construct its Hooper diagram, we need to consider the two cylinder decompositions given in
Figure 8.

We have a horizontal cylinder, and a cylinder in direction 3π
4 that we will call vertical. The horizontal

cylinders will be called α1, α2 and α3 as in Figure 8, while the vertical ones will be β1, β2 and β3.
Notice that both decompositions give the same number of cylinders – three cylinders in this case –
and this is true for all Bouw-Möller surfaces, that the cylinder decompositions in each direction kπ/n
yield the same number of cylinders.

Let us now construct the corresponding graphH3,4 as the cylinder intersection graph for our cylinder
decompositions. In general, it will be a bipartite graph with vertices V = A∪B, represented in Figure
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Figure 8. The cylinder decomposition for S3,4 and its Hooper diagram.

8 with black and white vertices, respectively. The black vertices are in one-to-one correspondence with
the vertical cylinders, while the white vertices are in one-to-one correspondence with the horizontal
cylinders. To describe the set of edges, we impose that there is an edge between two vertices vi and vj
if the two corresponding cylinders intersect. It is clear that we will never have edges between vertices
of the same type, because two parallel cylinders never intersect. An edge will hence correspond to a
parallelogram that is the intersection between cylinders in two different decompositions.

In our case, the graph H3,4 will have six vertices: three white ones, corresponding to the cylinders
αi, and three black ones, corresponding to the cylinders βi, for i = 1, 2, 3. Considering the intersections,
as we can see in Figure 8, the central cylinder α2 of the horizontal decomposition will cross all three
cylinders of the vertical decomposition. The other two will cross only two of them, β1 and β2 in the
case of α3; β3 and β1 in the case of α3.

Finally, we need to record how the various pieces of a cylinder, seen as the various edges around
a vertex, glue together. To do that we first establish a positive direction, gluing on the right for the
orthogonal decomposition and gluing upwards for the vertical one. We then record this on the graph
by adding some circular arrows around the vertices, giving an ordering for the edges issuing from that
vertex. We can easily see that such arrows will have the same direction (clockwise or counter-clockwise)
in each column, and alternating direction when considering the vertices on the same row. We start the
diagram in a way such that we will have arrows turning clockwise in odd columns and arrows turning
counter-clockwise in the even columns. All we just said leads us to construct a graph as in Figure 8.

We notice that the dimension of the graph is of three rows and two columns and this will be true
in general: the graph Hm,n for Sm,n will have n − 1 rows and m − 1 columns.

3.2. From Sm,n to Hooper diagrams: the general case. We will now explain how to extend this
construction to a general Bouw-Möller surface and see what type of graph we obtain.

In general, our surface Sm,n will have two cylinder decompositions in two different directions that
we will call horizontal and vertical. We define A = {αi}i∈Λ and B = {βi}i∈Λ to be the set of horizontal
and vertical cylinders, respectively.

The vertices of the cylinder intersection graph is the set of cylinders in the horizontal and vertical
directions, A ∪ B. The set of edges will be determined by the same rule as before: there is an edge
between αi and βj for every intersection between the two cylinders. Therefore, each edge represents
a parallelogram, which we call a rectangle because it has horizontal and vertical (by our definition of
“vertical” explained above) sides. Let E be the collection of edges (or rectangles). Define the maps
α : E → A and β : E → B to be the maps that send the edge between αi and βj to the nodes αi and
βj , respectively.

The generalization of the black and white vertices is the concept of a 2-colored graph:

Definition 3.1. A 2-colored graph is a graph equipped with a coloring function C from the set of
nodes V to {0, 1}, with the property that for any two adjacent nodes, x, y ∈ V, we have C(x) , C(y).

The graph we constructed is a 2-colored graph. To see that, simply define C(x) = 0 if x ∈ α(E) = A
and C(x) = 1 if x ∈ β(E) = B. Conversely, the maps α, β : E → V as well as the decomposition
V = A ∪ B are determined by the coloring function.
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As we said, we also need to record in our graph the way the rectangles forming the cylinders are
glued to each other. To do that we define e : E → E be the permutation that sends a rectangle to the
rectangle on its right, and let n : E → E be the permutation that sends a rectangle to the rectangle
above it. (Here e stands for “east” and n stands for “north.”) Clearly, we will always have that e(e) lies
in the same cylinder as the rectangle e, hence α ◦ e = α and β ◦ n = β. Moreover, an orbit under e is a
horizontal cylinder and an orbit under n is a vertical one.

Corollary 3.2. By construction, Hm,n is always a grid of (n − 1) × (m − 1) vertices.

3.3. Definition of Hooper diagrams and augmented diagrams. In §3.2, we showed how from
a surface we can construct a Hooper diagram, which is a 2-colored graph equipped with two edge
permutations. In §3.4, we will show how to construct a Bouw-Möller surface from a Hooper diagram.
We first give the formal definition of Hooper diagrams and define their augmented version, which
provides an useful tool to unify the treatment to include degenerate cases (coming from the boundary
of the diagrams).

The data of a 2-colored graph H , and the edge permutations e and n, determine the combinatorics
of our surface as a union of rectangles, as we will explain explicitly in this section. We will also give
the width of each cylinder, to determine the geometry of the surface as well.

We will first describe in general the Hooper diagram for Sm,n. Here we use Hooper’s notation and
conventions from [17].

Definition 3.3 (Hooper diagram). Let Λ = {(i, j) ∈ Z2 | 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1}. Let Am,n

and Bm,n be two sets indexed by Λ, as follows:

Am,n = {αi, j, (i, j) ∈ Λ | i + j is even} and Bm,n = {βi, j, (i, j) ∈ Λ | i + j is odd}.
Here Am,n are the white vertices and Bm,n are the black vertices.

Let Hm,n be the graph with nodes Am,n ∪ Bm,n formed by adding edges according to the usual
notion of adjacency in Z2. In other words, we join an edge between αi, j and βi′, j′ if and only if
(i − i′)2 + ( j − j ′)2 = 1, for all (i, j), (i′, j ′) ∈ Λ for which αi, j and βi′, j′ exist. We define the counter-
clockwise ordering of indices adjacent to (i, j) to be the cyclic ordering

(i + 1, j) → (i, j + 1) → (i − 1, j) → (i, j − 1) → (i + 1, j).
The clockwise order will clearly be the inverse order. We define then the map e : E → E to be the cyclic
ordering of the edges with αi, j as an endpoint. We order edges with endpoints αi, j counter-clockwise
when i is odd and clockwise if i is even. Similarly, n : E → E is determined by a cyclic ordering with
βi, j as an endpoint. The opposite rule about the ordering of the cycle will be applied for βi, j : we order
the edges with endpoint βi, j clockwise when j is odd and counter-clockwise when j is even.
Hm,n is called the Hooper diagram for Sm,n.

We now define the augmented Hooper diagram, which will make it easier to construct the surface
associated to a Hooper diagram. As we explained, the Hooper diagram is related to the polygonal
representation of the surface in that the edges of the diagram represent cylinder intersections. When
dividing the polygonal representation of the surface into parallelograms that are cylinder intersections,
each polygon edge is either a diagonal of the parallelogram, or one of the sides of the parallelogram.
For uniformity of treatment, it is convenient to think of these latter sides as diagonals of degenerate
parallelograms where one of the side lengths is zero. Introducing the augmented diagrams corresponds
to introducing degenerate cylinder intersections (i.e. degenerate parallelograms) with one of the side
lengths equal to zero, so that we can describe each side of the polygons as a diagonal of one of the
(possibly degenerate) parallelograms corresponding to edges of the augmented Hooper diagram.

The augmented graph H ′m,n is obtained by adding degenerate nodes and degenerate edges to the
graph Hm,n. If we consider the nodes of Hm,n in bijection with the coordinates (i, j) ∈ Z2, for 0 < i < m
and 0 < j < n, the nodes of H ′m,n will be in bijection with the coordinates (i, j) ∈ Z2, for 0 ≤ i ≤ m
and 0 ≤ j ≤ n. The nodes we added are the degenerate nodes. On the new set of nodes we add a
degenerate edge if the nodes are at distance 1 in the plane and they are not yet connected by an edge.
Our graph H ′m,n is again bipartite and we extend coherently the naming conventions we described for
Hm,n. We can see the augmented graph for S3,4 in Figure 9.

Let E ′ denote the set of all edges of H ′m,n, both original edges and degenerate ones. We say a
degenerate edge e ∈ E ′ is A-degenerate, B-degenerate or completely degenerate if ∂e contains a
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Figure 9. The augmented Hooper diagram for S3,4.

degenerate A-node, a degenerate B-node or both, respectively. We also extend the edge permutations
to e′, n′ : E ′→ E ′ following the same convention as before.

3.4. From Hooper diagrams to Bouw-Möller surfaces: combinatorics. In Section 3.2, we
showed how from a surface we can construct a Hooper diagram. In this and the next sections, we will
show how to construct a Bouw-Möller surface from a Hooper diagramHm,n and describe it explicitly on
the example of S3,4 we considered before. The data of a 2-colored graph H , and the edge permutations
e and n, determine the combinatorics of our surface as a union of rectangles, as we will explain explicitly
in this section. We will also need the width of each cylinder, to determine the geometry of the surface
as well. This is explained in the next section §3.5.

From the (m, n) Hooper diagram Hm,n we can in fact recover the structure of two surfaces: Sm,n and
Sn,m (which are affinely equivalent, see Theorem 2.8). In this section we will show how to construct
Sm,n, while in §4 we will comment on how to recover also the dual surface. More precisely, we will
often consider an intermediate picture, that we will call the orthogonal presentation, which contains
both a sheared copy of Sm,n and a sheared copy of the dual Sn,m and allows us to easily see the relation
between the two (see §4).

To recover the combinatorics of the surface from its Hooper diagram, we need to decompose it
into smaller pieces. We will see that each piece corresponds to one polygon in the presentation in
semi-regular polygons that was explained in the previous section. The choice of which surface we
obtain depends on our choice to decompose the graph into horizontal or vertical pieces. The vertical
decomposition of the graphHm,n will give us the combinatorics of the surface Sm,n, while the horizontal
decomposition produces Sn,m, see §4. This is coherent with the operation of rotating the diagram to
invert the role of m and n, see Remark 4.1 for details.

We now explain how to construct the surface starting from its graph, using the example of S3,4. Let
us decompose the augmented graph vertically, as shown in Figure 10. We will consider as a piece a
column of horizontal edges with the boundary vertices and all the edges between two of these vertices,
no matter if they are degenerate or not. In our case the decomposition will be as in the following
figure, where, as before, the degenerate edges that have been added are represented with dotted lines.
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Figure 10. The three pieces of the vertical decomposition of H3,4.

Each edge will now represent a basic rectangle in our decomposition of the surface in polygons. We
will still need the data of the width and height of the rectangle, which we will treat later. In Figure
11 we label each edge and its corresponding basic rectangle with a letter, so that it is easy to see how
to pass from one to the other.

The degenerate edges will correspond to degenerate rectangles, which means rectangles with zero
width, or zero height, or both. The A-degenerate edges correspond to rectangles with zero height
(horizontal edges), the B-degenerate edges correspond to rectangles with zero width (vertical edges),
and the completely degenerate ones correspond to rectangles with zero width and zero height (points).

Each rectangle coming from a vertical edge will contain a positive diagonal, which means a diagonal
with positive slope, going from the bottom left corner to the upper right corner. In the case of
degenerate rectangles we will just identify the diagonal with the whole rectangle, so with a horizontal
edge, a vertical edge or a point for A-degenerate, B-degenerate and completely degenerate edges
respectively. In the non-degenerate rectangles, this means that since each piece is repeated twice, in
two pieces of our decomposition, each time we will include in our polygon one of the two triangles
formed by the diagonal inside the rectangle.

The permutation arrows between edges show us how the basic rectangles are glued. We will glue
the rectangles according to the “north” and “east” conventions: following e-permutation arrows around
white vertices corresponds to gluing on the right, and following n-permutation arrows around black
vertices corresponds to gluing above. Moreover, such arrows will sometimes represent gluing in the
interior of the same polygon, and other times they will represent gluing between a polygon and the
following one. This will depend on whether the permutation arrows are internal to the piece we are
considering or if they are between edges in different pieces of the decomposition.

This is evident already in the first piece of our diagram. As in Figure 11, we can see that the edges
that contain both a black and a white degenerate vertex collapse to a point, as for the basic rectangles
a, e, f , h, j, l. The edges containing only black degenerate vertices collapse to a vertical edge, as for
b, d, g,m. The edge c, containing a degenerate white vertex, will be a horizontal edge.

The remaining basic rectangles k and i are the only non-degenerate ones, each corresponding to
half of a basic rectangle. It is evident that the gluing between k and i internal to the piece is the one
going upwards, passing through the horizontal edge represented by c. The result is a parallelogram as
in the right picture of Figure 11. The diagonals in k and i will be glued to the other triangles, missing
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Figure 11. The first piece of the vertical decomposition of S3,4 and its
orthogonal presentation.

from the basic rectangle and that will appear in the following polygon. The other two sides will be
glued to the next polygon and this is because the gluing correspond to the “hanging arrows" shown in
the left part of Figure 12: a gluing on the left (arrow pointing to m around a white vertex) for m and
a gluing on the right (arrow starting from g around a white vertex).

Doing the same thing for the other two pieces of the Hooper diagram, we get two parallelograms
and a octagon glued together. We can see them in Figure 12 in what we will call the orthogonal
presentation. To return to the original polygonal presentation as described in section 2.5, we need to
shear back the cylinders to put them back in the original slope. The grid in the orthogonal presentation
is in fact the vertical and horizontal cylinder decomposition. (Recall that the angle we call vertical is
not π/2, but π/n.)

Figure 12. The orthogonal polygonal presentation of S3,4.

3.5. From Hooper diagrams to Bouw-Möller surfaces: widths of cylinders. Now that we
reconstructed the combinatorial structure of the surface from a Hooper diagram, we will explain how
to recover the widths of the cylinders, which is the last piece of information to completely determine
the geometry of the surface. Indeed, widths automatically determine the heights of the cylinders as
well: for how the two cylinder decompositions intersect, we can recover the heights from the formula:

height(βi) =
∑
j∈Λ

#(βi ∩ αj)width(αj).(4)

This is because each part of the cylinder βi is in the surface, hence also in a cylinder αj . Measuring
along the height of such a cylinder means counting each αj we are intersecting and having a segment
as long as its width.
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To recover the width we need to explain the concept of critical eigenfunctions.

Definition 3.4. Let’s assume in a general setting thatH is a graph, connected, with no multiple edges
or loops and V is the vertex set. Let E(x) ∈ V be the set of vertices adjacent to x ∈ V, which we
assume is finite. Let CV be the set of functions f : V → C. The adjacency operator is H : CV → CV
defined by

(H f )(x) =
∑

y∈E(x)
f (x).

An eigenfunction for H corresponding to the eigenvalue λ ∈ C is a function f ∈ CV , such that
H f = λ f .

Now let LZ be the graph with integer vertices whose edges consist of pairs of integers whose difference
is ±1. H will now be a connected subgraph of LZ, and again V is its vertex set. If we assume
V = {1, . . . , n − 1}, which will be our case, then:

Definition 3.5. The critical eigenfunction of H is defined by

f (x) = sin
xπ
n
, corresponding to the eigenvalue λ = cos

π

n
.

We now consider I and J , two connected subgraphs of LZ, with vertex setsVI andVJ respectively.
Let H be the Cartesian product of the two graphs, as described in [17].

Clearly our cylinder intersection graph is a graph of this type. For the graph Hm,n, we then choose
the widths of the cylinders to be defined by

w(αi, j) = w(βi, j) = fI(i) fJ( j),
where fI : VI → R and fJ : VJ → R are the critical eigenfunctions.

As we said, the graph fully determines the combinatorial structure for the surface. The flat structure
is fully determined by choosing the widths of the cylinders, corresponding to vertices of the graph. We
take the critical eigenfunctions of the graph to be the widths of the cylinders:

Corollary 3.6. The Bouw-Möller surface Sm,n has cylinder widths

wi, j = sin

(
iπ
m

)
sin

(
jπ
n

)
,

where wi, j is the width of the cylinder corresponging to the vertex (i, j) of the Hooper diagram Hm,n.
The height can be calculated using (4).

4. Affine equivalence of Sm,n and Sn,m

In this section we explicitly describe the affine equivalence between the dual Bouw-Möller surfaces
Sm,n and Sn,m (see Theorem 2.8) that we will use to characterize cutting sequences. As usual, we
first describe it through the concrete example of S3,4 and S4,3, then comment on the general case.
The semi-regular polygon presentation of S3,4 was shown in Figure 8, with its horizontal and vertical
cylinder decompositions, and the analogous picture for S4,3 is shown in Figure 13. In this section, we
will show that the two surfaces are affinely equivalent.

α1

α2

α3

β1

β2 β3

Figure 13. Horizontal and vertical cylinder decompositions for S4,3.
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We exploit the orthogonal presentation we built in §3 (shown for S3,4 in Figure 12), which provides
a convenient way to visualize the central step of this equivalence. We first discuss how to go from one
orthogonal decomposition to the dual one. We then combine this step with flips and shears, see §4.3.

4.1. The dual orthogonal decomposition. In §3.4, we constructed an orthogonal presentation for
S3,4, by cutting the Hooper diagram vertically and associating to each piece a semi-regular polygon.
This orthogonal presentation is in Figure 12, and is in the top left of Figure 14 below. We can consider
the same graph H3,4 and decompose it into horizontal pieces, instead of using the vertical pieces as
we did in §3.4, and then apply the same procedure. This produces the orthogonal presentation of the
dual Bouw-Möller surface S4,3, shown on the top right in Figure 14.
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√2
2

1 1√2
√6  
4
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√3  
2

a

√6  
4
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√2  
2

a a
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a

Figure 14. The top row shows the orthogonal polygonal presentation
of S4,3 from Figure 12, and then a rearrangement of the same pieces, and
then a different dissection of the same pieces into the dual orthogonal
presentation of S3,4, after rescaling the lengths by a diagonal matrix.
The second row shows the semi-regular presentations of S4,3 and S3,4,
respectively, which are sheared images of the figures above. It also
shows the length comparison for the two surfaces, where the number a
is calculated in (5).

Remark 4.1. The same figure (i.e. the dual orthogonal presentation shown on the top right in Figure
14) could also be obtained by vertically decomposing the graph H4,3 and repeating a procedure similar
to the one described in §3.4. The fact that the surface Sm,n and the surface Sn,m can each be obtained
from either of the respective graphs, Hm,n and Hn,m (decomposing each vertically), or both from the
same graphHm,n (one decomposing vertically, the other horizontally) is coherent with the construction
of the graphs Hm,n and Hn,m, because it is easy to check that we can obtain one from the other by
rotating the graph by π

2 and changing the directions of the permutation cycles around the black dots.
More precisely, from a point of view of the combinatorics of the surface, the change of direction

of the permutations does not change it, because since the black dots represent a lateral gluing, the
rectangles gluing on the right will be glued on the left instead and vice versa, which corresponds
on the surface to a vertical flip. The rotation corresponds to the equivalence between the vertical
decomposition of the first graph and the horizontal decomposition of the second one and vice versa.
This can be seen on the polygonal presentation from the fact that we consider diagonals with different
slopes if we decompose the graph vertically or horizontally.
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4.2. Cut and paste and rescaling between orthogonal presentations. The procedure de-
scribed above can be done starting from any graph Hm,n: by decomposing it vertically, we obtain
an orthogonal presentation of Sm,n; by decomposing it horizontally, a dual orthogonal presentation of
Sn,m. The two presentations, if we consider only the combinatorics of the surface, differ only by a cut
and paste map. We can in fact cut along the horizontal and vertical diagonals in the two parallelograms
that come from shearing a square and paste them along the side that was a diagonal of one of our
basic rectangles, as shown in Figure 14 for the example of S4,3 and S3,4.

Remark 4.2. The rectangles containing a diagonal in Sm,n are exactly the complementary ones to
the rectangles containing a diagonal in Sn,m. This comes from the fact that by construction, only the
vertical edges in one case and the horizontal ones in the other case are repeated and that the edges
repeated in two different pieces are the ones which have a diagonal. One can see this in the top line
of Figure 14, and also later we will see them superimposed on the same picture in Figure 20.

While from the point of view of the combinatorics of the surface the two presentations can be cut
and pasted to each other, if we computed the associated widths of cylinders as described in §3.5 we
we would see that the lengths of the sides of the basic rectangles are not the same. Since we want
both surfaces to have the same area (in particular, we want them to be in the same Teichmüller disc,
we want to define a similarity that allows us to rescale the lengths of the sides of the basic rectangles
suitably.

To determine the similarity, let us impose for the two surfaces in the orthogonal presentations to
have same areas, by keeping constant the ratios between the side lengths in the semi-regular polygon
presentation. Let us recall that the lengths, obtained from the polygonal description, or equivalently
from the critical eigenfunctions for the graph, give us the lengths of the sides of the basic rectangles
up to similarity.

Let us work out this explicitly in the S3,4 and S4,3 example. We can assume that the sides of the
original octagon all have length 1. The area of the polygonal presentation of S3,4 will then be clearly
A1 = 2(2 +

√
2). Denoting by a and a′ =

√
2
2 a the two side lengths of the sides of the polygons in S4,3,

the area is A2 =
√
3(1 +

√
2)a. Requiring them to have the same area, A1 = A2 gives us

(5) a =

√
2
√
6

3
and a′ =

√
2

2

√
2
√
6

3
.

From now on we will assume that S4,3 has these side lengths. Shearing the surface to make the two
cylinder decomposition directions orthogonal gives us basic rectangles with the side lengths marked in
Figure 14.

The transformation that rescales the basic rectangles can be easily deduced from the figure, as
the sides on the left and the corresponding sides on the right have the same ratio if we consider the
vertical ones and the horizontal ones separately. The transformation will hence be achieved by a
diagonal matrix, with the two ratios as its entries. We remark that since we imposed for the area to
be preserved, the matrix will be unitary.

For our example taking the orthogonal presentation of S4,3 to the orthogonal presentation of S3,4,
this diagonal matrix is

d3
4 =

©­«
4

√
3
2 0

0 4

√
2
3

ª®¬ .
We can extend all this reasoning to any generic Bouw-Möller surface, and compute in a similar way

a similarity that rescales the dual orthogonal presentation of Sn,m so that it has the same area as the
orthogonal presentation of Sm,n; see (6) for the general form.

4.3. Flip and shears. So far we built a sheared copy of Sm,n (its orthogonal presentation) which
can be cut and pasted and rescaled (as described in §4.2) to obtained a sheared copy of Sn,m (its
dual orthogonal presentation). Thus, one can obtain an affine diffeomorphism between Sm,n and
Sn,m through a shear, a cut and paste, a rescaling and another shear. In order to renormalize cutting
sequences, we also add a flip (the reason will be clear later, see §7), to obtain the affine diffeomorphism
Ψn
m : Sm,n → Sn,m defined in formulas below. Let us first describe it in a concrete example.
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Example 4.3. The affine diffeomorphism Ψ3
4 which we use to map S4,3 to S3,4, is realized by a sequence

of flips, shears and geodesic flow shown in Figure 15: starting from S4,3 we first apply the vertical flip
f , then the shear s4,3 to bring it to the orthogonal presentation. By cutting and pasting as explained
in Figure 14 and then applying the diagonal matrix d3

4 computed in the previous section, we obtain
the dual orthogonal presentation of S3,4. Finally, we shear the dual orthogonal presentation of S3,4 to
the semi-regular presentation of S3,4 by the shear s3,4.
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Figure 15. The affine diffeomorphism Ψ3
4 from S4,3 to S3,4, composi-

tion of f , s4,3, cut and paste and d3
4 and finally s3,4.

To define Ψn
m in the general case, consider a vertical flip f , the shear sm,n and the diagonal matrix

dn
m given by:

(6) f =
(
−1 0
0 1

)
, sm,n =

(
1 cot

(
π
n

)
0 1

)
, dn

m =

©­­­«
√

sin π
n

sin π
m

0

0

√
sin π

m

sin π
n

ª®®®¬ .
The affine diffeomorphism Ψn

m is obtained by first applying the flip f to Sm,n and shearing it by sm,n,
which produces the orthogonal presentation of Sm,n. We then compose with the cut and paste map
and the similarity given by dn

m, which maps the orthogonal presentation of Sm,n to the dual orthogonal
presentation of Sn,m. Finally, we compose with the other shear snm which produces the semi-regular
presentation of Sn,m.

Thus, the linear part of Ψn
m, which we will denote by γnm, is given by the following product:

(7) γnm = sn,mdn
msm,n f =

©­­­«
−
√

sin π
n

sin π
m

cos π
m+cos

π
n√

sin π
m sin π

n

0

√
sin π

m

sin π
n

ª®®®¬ .
The action of Ψn

m on directions will be described in §8.2, and the action on cutting sequences in §7.
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5. Stairs and hats

In this section we will explain in detail one particular configuration of basic rectangles in the
orthogonal presentation, and the corresponding configuration in the Hooper diagram. We put
particular emphasis on it because we will be using throughout the next sections.

Let us consider a piece of an orthogonal presentation given by six basic rectangles, glued together
as in Figure 16.

Figure 16. Configuration of a stair.

Definition 5.1. A stair is a piece of an orthogonal presentation made of six basic rectangles. They
are glued together so that we have three columns, made of three, two and one rectangle respectively,
as shown in Figure 16.

As we did all through §3, we will need to pass from the Hooper diagram to the orthogonal
presentation. First, we will explain what a stair corresponds to in a Hooper diagram. Clearly, it will
be a piece of diagram made of six edges, with some vertices between them. The exact configuration
will depend on the parity of the vertices, i.e. on the position of the piece in the diagram.

The piece corresponding to a stair will be one of the configurations in Figure 17, which we call a
hat.

ac

b

e

d

f ac f

b d

e

a

db

c f

e

ac f

db

e

Figure 17. Possible configurations of hats.

More precisely:

Definition 5.2. A hat is a piece of a Hooper diagram made of six edges. Two of them are vertical and
the others are horizontal, in the configuration shown in Figure 17. Moreover, if the two vertical ones go
upwards from the vertices of the three-piece base, the first column has counter-clockwise permutation
arrows; it has clockwise permutation arrows otherwise.
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According to the parity, these vertices described can be black or white and have permutation arrows
turning around clockwise or counter-clockwise. This gives us four possible configurations, as in Figure
17.

The direction of the permutation arrows depends on the number of the column. As we saw, in
fact, in odd columns we have arrows turning clockwise, while in even columns we have arrows turning
counter-clockwise. As we explained in the definition, this determines also the position of the two
vertical edges.

Given the parity of the column, the two different possibilities of the vertex colorings are determined
from the parity of the row. In an odd column we will have white vertices on odd rows and black
vertices on even rows, and the opposite in an even column.

Notice that the vertex in the lower left corner determines everything: Its color together with the
direction of its arrows determines the parity of the row and column of its position, and determines in
which of the four possible hats we are in.

The first case, with a white vertex and counter-clockwise arrows, corresponds to a corner position
in an even row and an even column. The second one, with a black vertex but still counter-clockwise
arrows, corresponds to an odd row and an even column. The third one, with a black vertex but
clockwise arrows, corresponds to an even row and an odd column. The last one, with a white vertex
and clockwise arrows again, corresponds to an odd row and an odd column.

5.1. Stairs and hats correspondence. We will now show that the stair and hat configurations
correspond to each other. To do that we will use our method of passing from the Hooper diagram to
the orthogonal decomposition and vice-versa.

Lemma 5.3 (Hat Lemma). The stair configurations correspond exactly to the four possible hat
configurations.

Proof. First, we show that if we have one of the hat configurations, it actually gives a stair
configuration. We will show it in detail for the first case and the others will work in exactly the
same way.

Let us consider a labeling on the hat in the upper-left of Figure 17. As before, each edge corresponds
to a basic rectangle. The three edges around the white vertex in the left bottom corner and the arrows
around it, tell us that we will have three basic rectangles, glued one to each other on the right, in the
order a glued to b, glued to c. On the other hand, the three edges around the black vertex at the
other extremity of the edge a, and its arrows, tell us that a basic rectangle labeled f is glued on top
of one labeled d which is glued on top of the one labeled a. Finally, the basic rectangle e is glued on
top of b, and on the right of d, and we obtain the configuration in Figure 16.

The other three cases work the same way.
Secondly, we show that if we have a stair configuration, it will necessarily give a hat configuration

on the Hooper diagram. Let us consider a stair configuration, with the same labels as in Figure 16.
The basic rectangle a will correspond to an edge, and we do not know if it will be horizontal or vertical.
We assume for the moment that it is a horizontal edge (we will explain later why the same figure,
but rotated so that a is vertical, is not acceptable). At this point we have the choice of on which
extremity of a we want to record the left-right adjacency and the upwards-downwards one. In other
words, we have the choice of where to put a black vertex and where to put a white one. This gives us
two possible cases.

If we have the white vertex (resp. the black vertex) on the left of the edge a, we will record the
gluing with b and then c (resp. d and f ) on that side. Again, we have the choice of recording it
putting b (resp. d) going upwards from the vertex or downwards. This leads to split each of the two
cases in two more. If b (resp. d) is above the line of a, the permutation arrows around the white vertex
will go counter-clockwise (resp. clockwise). Now, on the other extremity of the edge a, we record the
other adjacency and add the edges d and f (resp. b and c) in order. It looks like we have again a
choice of whether to draw d (resp. b) going upwards or downwards, but it is not difficult to see that
the previous choice determines also this one. In fact, if edge b was going upwards, the edge d will have
to go upwards as well, because the edge e is obtained both from the upwards gluing from b and from
the right gluing from d. The diagram does not intersect itself and we cannot repeat an edge, hence
the two vertical ones have to be in the same direction.
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This also shows that a needs to be horizontal, because having the two vertical edges in the same
direction makes the permutation arrow go in different orientation around the two vertices, and we saw
that if they are in the same column, then they must have the same orientation.

It is clear that we cannot have any other possibility and the four possibilities just described
correspond to the four hat configurations in Figure 17. �

5.2. Degenerate hat configurations. Let us recall that to unify and simplify the description of
Bouw-Möller surfaces via Hooper diagrams we introduced a augmented diagram, which allows us to
treat the boundary of the Hooper diagram as a degenerate case of a larger diagram (see §3.3). We
now describe degenerate hat configurations that correspond to boundary configurations in the Hooper
diagram. We will use them later, in §6.6, to prove our main structure theorem.

We will shade the six edges to pick out a hat configuration, as shown in Figure 18. The middle edge
is the one that is numbered in Figure 18 (or edge a from Figure 17).

Lemma 5.4 (Degenerate Hat Lemma). All edges of an augmented Hooper diagram that form a subset
of a hat, such that the middle edge of the hat is an edge of the augmented diagram, fall into one of the
four cases in Figure 18.

Figure 18. The cases 1 − 4 for hats

Proof. The reader can easily verify, using a diagram such as Figure 19, that any orientation and
placement of a hat whose middle edge is an edge of an augmented Hooper diagram falls into one of
the cases 1 − 4. �

Figure 19. Examples of the four possible cases for hats. We do not
include the outer degenerate edges (dashed gray) in our hats because
they are not adjacent to the middle edge.
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These cases are illustrated in Figure 19. We use hats, and degenerate hats, in Lemma 6.17, which
is a main step in our Structure Theorem 6.15 for derivation diagrams.

5.3. Dual surfaces. In this section, we will prove a Lemma that uses the stairs and degenerate stair
configurations, and will be used later to define the derivation diagrams that give derivation rules.

Consider the superposition of the orthogonal presentation of Sm,n and the dual orthogonal
presentation Sn,m, as shown in Figure 20. Recall that sides of (the sheared images of) Sm,n and of Sn,m
appear as diagonals of alternating basic rectangles. Sides of either presentation that are horizontal or
vertical can be thought of as degenerate diagonals, i.e. degenerate basic rectangles of zero width or
zero height, described by the augmented Hooper diagram (see §3.4).

As before, let us call positive diagonals the sheared images of sides of Sn,m (which, if not vertical
or horizotal, have slope 1) and let us now call negative diagonals the sheared images of sides of Sm,n
(which, if not vertical or horizontal, have slope −1). As observed in Remark 4.2, positive and negative
diagonals alternate, in the sense that the neighboring basic rectangles with a positive diagonal are
adjacent (right/left or up/down) to basic rectangles with a negative diagonal. This remark holds true
for all sides, including vertical and horizontal ones, if we think of them as degenerated diaganals and
draw them according to the following convention:

Convention 5.5. When degenerate sides of the orthogonal presentation of Sn,m and of the dual
orthogonal presentation of Sn,m coincide, we think of them as degenerated diagonals and hence we
draw them adjacent to each other and ordered so that degenerate positive (red) and negative (green)
diagonals alternate in horizontal and vertical directions, as shown in Figure 20 for S4,3 and S3,4.

Figure 20. The orthogonal presentations of S4,3 (green, left) and S3,4
(red, right), superimposed on the same figure (center). Coinciding
horizontal and vertical edges alternate red and green in the horizontal
and vertical directions. Here the space between coinciding edges is
exaggerated for clarity.

Consider trajectories whose direction belongs to the first quadrant, i.e. such that θ ∈ [0, π/2]. Let
us say that a pair of negative diagonals is consecutive if there exists such a trajectory which hits these
two diagonals one after the other.

Lemma 5.6. Consider a pair of consecutive negative diagonals. Then, the following dichotomy holds:
for any trajectory whose direction belong to the first quadrant, i.e. such that θ ∈ [0, π/2], either

• between any consecutive crossings of these pairs of negative diagonals, no positive diagonal is
crossed, or
• between any consecutive crossings of these pairs of negative diagonals, exactly one and the same
positive diagonal is crossed.

Proof. Assume first that the two negative adjacent negative diagonals are non-degenerate. The fact
that they are adjacent means that one can find a stair configuration as in Figure 16, in which the
two diagonals are the ones labeled by either a and c, or a and e, or a and f . It is then clear from
the stairs picture in Figure 16 that (referring to the labeling in that figure) if the pair is given by a
and e, then a trajectory whose direction belongs to the first quadrant that crosses these two negative
diagonals never crosses any positive diagonal in between, while if the pair is a and c or a and f , such
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a trajectory will always cross a negative diagonal between, i.e. b (for the pair a and c) or d (for the
pair a and f ).

Convention 5.5, which treats vertical and horizontal sides as degenerate diagonals, allows us to use
exactly the same proof for degenerate stairs (when some of the 6 edges in the stair are degenerate). �

In §6.5 this Lemma will be used to define derivation diagrams.

6. Transition and derivation diagrams

We now return to the polygon decomposition of the Bouw-Möller surfaces and to our goal of
characterizing all cutting sequences. First, in §6.1 we will describe how to label the edges of the
semi-regular presentation of the Bouw-Möller surface. We then show in §6.2 how this labeling induces
a labeling on the corresponding Hooper diagram. In §6.3 we define transition diagrams, which
are essential for understanding cutting sequences. In §6.4 we define admissible cutting sequences,
generalizing the work of Series and Smillie-Ulcigrai discussed in §1.1-1.2. In §6.5 we define derivation
diagrams, which are the key tool we will use to characterize cutting sequences on Bouw-Möller surfaces.
In §6.6, we prove our structure theorem for derivation diagrams for trajectories in Σ0n, which is the
main result of this section. In §6.7, we describe how to normalize trajectories in other sectors to Σ0n.
In §6.8, we describe transition diagrams for trajectories in other sectors.

6.1. Edge labeling. To label the edges of the Bouw-Möller surfaces, we use a “zig-zag” pattern as
follows. First, we label the lower-right diagonal edge of P(0) with a 1, and then go horizontally left to
the lower-left diagonal edge of P(0) and label it with a 2 (see Figure 21). Then we go up diagonally to
the right (at angle π/n) and label the next edge 3, and then go horizontally left and label that edge 4,
and so on until label n. The n edges of P(1) that are identified with these edges have the same labels.

Now we label the remaining n edges of P(1). If the bottom horizontal edge is already labeled (as
in Figure 21a below), we start with the lowest-right diagonal edge and label it n + 1, and then go
horizontally to the left and label that edge n + 2, and then zig-zag as before. If the bottom horizontal
edge is not yet labeled (as in Figure 21b below), we label it n + 1, and then go diagonally up to the
right and label that edge n + 2, and so on in the zig-zag. We do the same for P(2) and the remaining
polygons until all the edges are labeled.
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Figure 21. The edge labelings for S3,4 and S4,3

We choose to label the edges in this way because it makes the transition diagrams easy to describe,
as we will see. We can first reap the benefits of this labeling system by labeling the edges of the
Hooper diagram.

6.2. Labeling the Hooper diagram. Each edge of the Hooper diagram Hm,n corresponds to the
intersection of a horizontal cylinder and a vertical cylinder, which is a basic rectangle in the orthogonal
decomposition. Each non-degenerate basic rectangle is crossed by an edge of either Sm,n or Sn,m: a
negative diagonal for the (red) edges of Sm,n or a positive diagonal for the (green) edges of Sn,m. We
can label the edges of the Hooper diagram with the label of the edge that crosses the corresponding
basic rectangle.
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Proposition 6.1. In Hm,n, the labels are as follows:
The upper-left horizontal auxiliary edge is edge 1 of Sm,n, and thereafter the horizontal edges are

labeled 2, 3, 4, etc., “snaking” horizontally back and forth from top to bottom, as shown in Figure 22b.
The upper-left vertical auxiliary edge is edge 1 of Sn,m, and thereafter the vertical edges are labeled

2, 3, 4, etc., “snaking” vertically up and down from left to right, as shown in Figure 22b.

In Figure 22a, “up” and “down” are reversed because of the conventions in the Hooper diagram, but
we choose to orient the 1s in the upper left; see Remark 6.2.

Proof. We begin with an Hooper diagram, including the edges that are either horizontally degenerate,
or vertically degenerate. (We omit edges that are completely degenerate, because they are points and
thus do not have polygon edges associated with them.) This is the black part of the diagram in Figure
22. We will determine where the (colored) edge labels go on the diagram in several steps.

Recall that the white vertices represent horizontal cylinders, with the arrows indicating movement
to the right, and the black vertices represent vertical cylinders, with the arrows indicating movement
up.

Step 1 : The (red) edges of Sm,n and the (green) edges of Sn,m comprise the horizontal and vertical
sets of edges of the Hooper diagram. We can determine which is which by counting: Sm,n has n(m− 1)
edges and Sn,m has n(m − 1) edges. If m = n, the diagram is symmetric so it doesn’t matter which is
which.

For our example, S4,3 has 9 edges, so they are the horizontal edges in Figure 22a, and S3,4 has 8
edges, so they are the vertical edges in Figure 22a. This means that the horizontal edges will have red
edge labels, and the vertical edges will have green edge labels.

Step 2 : We determine where to put the edge label 1. 1 is a degenerate edge, so it must be one of
the outer (dotted) diagram edges. 1 is in Sm,n, so it must be a horizontal diagram edge. 1 is parallel
to the vertical cylinder decomposition, so it lies in a horizontal cylinder, so it emanates from a white
vertex. When we go against the arrow direction from 1, we get to 1, which is also a degenerate edge,
so it must be on a corner (see Figure 24).

All of these narrow our choices to just one, or sometimes two when the diagram has extra symmetry;
in that case, the two choices are equivalent. In our example, there is only one choice, the edge labeled
1 in Figure 22.

Figure 22. The labeled Hooper diagram for S4,3, and the general form
(see Remark 32). We do not include the bottom edge, the right edge, or
the bottom-right corner of the general form in Figure 22, because the
edge labels and the vertex colors depend on the parity of m and n, so it
is clearer to look at the example.

Step 3 : We determine where to place edges 1, 2, . . . , n, n + 1.
From edge 1 in Sm,n, we go horizontally to the left to get to 2, and in between we pass through

1 (see Figure 24). On the Hooper diagram, from edge 1 we go against the arrows around the white
vertex, and label the vertical edge 1 and the next horizontal edge 2.
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From edge 2 in Sm,n, we go in the direction of the vertical cylinder decomposition to get to 3, so we
go with the arrows around the black vertex and label the next horizontal edge 3. In our example S4,3,
this is the end of the row; for m > 3, we continue until we get to n, going left and up in the polygons
and correspondingly going around the white and black vertices in the Hooper diagram.

To get from edge n to n + 1, in the polygons we go up and right for n odd, and left and down for
n even, and we follow the arrows in the Hooper diagram to do the same. For our example S4,3, from
3 to 4, we go up and right, so in the Hooper diagram we follow the arrow around the black vertex to
the vertical edge, and then at the other end of the vertical edge we follow the arrow around the white
vertex, and label the horizontal edge 4. The same is true for any odd n. When n is even, we follow the
same pattern on the Hooper diagram to go left and down and label edge n + 1 in the same location.

Step 4 : We complete the labels of Sm,n and also label with Sn,m.
The construction in Step 3 shows why moving horizontally across a line in the Hooper diagram

corresponds to the zig-zag labeling in each polygon of the Bouw-Möller surface: going around white
and black vertices corresponds to alternately going horizontally and vertically in the polygons. To get
from one horizontal line to the next in the Hooper diagram, we follow the direction in the polygons.
Thus, the “snaking” labeling in the Hooper diagram corresponds to the labeling described in Section
6.1.

We already placed edge 1 of Sn,m, and we follow exactly the same method for the rest of the edges
as we just described for Sm,n. This leads to the overlaid “snaking” patterns shown in Figure 22. �

Remark 6.2. When we defined the Hooper diagrams in Section 3, we followed Hooper’s convention
of the arrangement of white and black vertices and arrow directions. In fact, this choice is somewhat
arbitrary; the diagrams lead to the same polygon construction if we rotate them by a half-turn,
or reflect them horizontally or vertically. Using Hooper’s convention, along with our left-to-right
numbering system in the polygons where we first label P(0) with 1, . . . , n and so on, leads to the edges
1 and 1 being in the lower-left corner of the labeled Hooper diagram, with the numbering going up.
We prefer to have the 1s in the upper-left corner with the numbers going down, so after we finish
labeling it, we will reflect the diagram horizontally, as in Figure 22b for the general form. This choice
is merely stylistic.

6.3. Transition diagrams: definitions and examples. In this section we define transition
diagrams, which describe all possible transitions between edge labels for trajectories that belong to a
given sector of directions (see Definition 6.4 below). We will first describe in this section transition
diagrams for cutting sequences of trajectories whose direction belongs to the sector [0, π/n]. Then,
exploiting the symmetries of the polygonal presentation of Bouw-Möller surfaces, we will describe
transition diagrams for the other sectors of width π/n, see §6.8.

Definition 6.3. For i = 0, . . . , 2n − 1, let Σin = [iπ/n, (i + 1)π/n]. We call Σ0n = [0, π/n] the standard
sector. For a trajectory τ, we say τ ∈ Σin if the angle of the trajectory is in Σin.

Let us first describe the transitions that are allowed in each sector:

Definition 6.4. The transition n1n2 is allowed in sector Σin if some trajectory in Σin cuts through edge
n1 and then through edge n2.

The main result of this section (Theorem 6.15) is the description of the structure of diagrams which
describe of all possible transitions in Σ0n for Sm,n.

Definition 6.5. The transition diagram T i
m,n for trajectories in Σin on Sm,n is a directed graph whose

vertices are edge labels of the polygon decomposition of the surface, with an arrow from edge label n1
to edge label n2 if and only if the transition n1n2 is allowed in Σin.

Example 6.6. We construct T 0
4,3 which is for sector Σ03 = [0, π/3] (Figure 23). A trajectory passing

through edge 1 can then go horizontally across through edge 2 or diagonally up through edge 6, so we
draw arrows from 1→ 2 and 1→ 6. A trajectory passing through edge 2 can go across through edge
1, or up through edge 3, so we draw arrows 2→ 1 and 2→ 3. From edge 3, we can only go up to edge
4, so we draw 3→ 4. The rest of the diagram is constructed in the same manner. We do not draw
(for example) an arrow from 3 to 6, because such a trajectory is not in Σ03 (it is in Σ13).

Example 6.7. In Figure 23, we also show T 0
3,4, which is constructed in the same way for trajectories

in sector Σ04 = [0, π/4] on S3,4.
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T 0
4,3:

1 2 3

6 5 4

7 8 9

T 0
3,4:

1 2 3 4

8 7 6 5

Figure 23. Transition diagrams for the standard sector

We chose to label the edges as we did so that the numbers in the transition diagrams “snake” back
and forth across the table in this convenient way, just as in the Hooper diagram. The arrows are
always as in Figure 23: The arrows in the upper-left corner of every diagram are exactly as in the
figure, and if m and n are larger, the same alternating pattern is extended down and to the right. We
prove this general structure in the main result of this section, Theorem 6.15.

6.4. Admissibility of sequences. Consider the space Lm,n
Z of bi-infinite words w in the symbols

(edge label numbers) of the alphabet Lm,n used to label the edges of the polygon presentation of Sm,n.

Definition 6.8. Let us say that the word w in Lm,n
Z is admissible if there exists a diagram T i

m,n for
i ∈ {0, . . . , n − 1} such that all transitions in w correspond to labels of edges of T i

m,n. In this case, we
will say that w is admissible in (diagram) T i

m,n. Equivalently, the sequence w is admissible in T i
m,n if

it describes an infinite path on T i
m,n. Similarly, a finite word u is admissible (admissible in T i

m,n) if it
describes a finite path on a diagram (on T i

m,n).

Admissibility is clearly a necessary condition for a sequence to be a cutting sequence:

Lemma 6.9. Cutting sequences are admissible.

Proof. Let w be a cutting sequence of a linear a trajectory τ on Sm,n. Up to orienting it suitably (and
reversing the indexing by Z if necessary) we can assume without loss of generality that its direction
θ belongs to [0, π]. Then there exists some 0 ≤ i ≤ n − 1 such that θ ∈ Σin. Since the diagram T i

m,n

contains by definition all transitions which can occurr for cutting sequences of linear trajectories with
direction in Σin, it follows that w is admissible in T i

m,n. �

We remark that some words are admissible in more than one diagram. For example, since we are
using closed sectors, a trajectory in direction kπ/n is admissible in sector k and in sector k + 1. On
the other hand, if w is a non-periodic sequence, then it is admissible in a unique diagram:

Lemma 6.10. If w in Lm,n
Z is a non-periodic cutting sequence of a linear trajectory on Sm,n, then

there exists a unique i ∈ {0, . . . , n − 1} such that w is admissible in diagram T i
m,n.

Proof. We know that w is the cutting sequence of some τ in an unknown direction θ. Let 0 ≤ i ≤ n−1
be so that w is admissible in T i

m,n. A priori w could be admissible in some other diagram too and we
want to rule out this possibility. We are going to show that all transitions which are allowed in T i

m,n

actually occur.
Since w is non-periodic, the trajectory τ cannot be periodic. The Veech dichotomy (see §2.3) implies

that τ is dense in Sm,n. Let n1n2 be a transition allowed in T i
m,n. This means that we can choose inside

the polygons forming Sm,n a segment in direction θ that connects an interior point on a side labeled by
n1 with an interior point on a side labeled n2. Since τ is dense, it comes arbitrarily close to the segment.
Since by construction τ and the segment are parallel, this shows that w contains the transition n1n2.

Repeating the argument for all transitions in T i
m,n, we get that w gives a path on T i

m,n which goes
through all arrows. This implies that the the diagram in which w is admissible is uniquely determined,
since one can verify by inspection that there is a unique diagram which contains certain transitions. �

6.5. Derivation diagrams. We now define derivation diagrams and explain how to construct them.
These diagrams, as explained in the introduction, will provide a concise way to encode the rule to
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derive cutting sequences. As usual, we start with a concrete example for S4,3, then give the general
definition and results.

As explained in Section 3, the Bouw-Möller surfaces Sm,n and Sn,m are cut-and-paste affinely
equivalent via a diffeomorphism Ψm,n. Hence, we can draw a flip-sheared version of Sn,m surface
on the Sn,m polygon decomposition. This is shown for the special case of m = 4, n = 3 in Figure 24.
When two edges coincide, we arrange them so that red and green edges alternate going horizontally,
and also vertically (as shown in Figure 24 for the example).

Figure 24. S3,4 with flip-sheared edges of S4,3, and S4,3 with flip-
sheared edges of S3,4.

We add the following labeling to the transition diagram, thus making it into a derivation diagram.
Recall that each arrow n1 → n2 in the diagram represents a possible transition from edge n1 to n2 for
a trajectory in Σin in Sm,n. We label the arrow n1 → n2 with the edge label n3 if trajectories which
hit the edge n1 and then the edge n2 passes through some edge labeled n3 of the flip-sheared Sn,m.
It turns out that, with a suitable convention to treat degenerate cases, this definition is well posed:
either every trajectory from n1 to n2 passes through n3, or no trajectory from n1 to n2 passes through
n3. This will be shown below in Lemma 6.13.

Example 6.11. Figure 24 shows S3,4 in red with the flip-sheared edges of S4,3 in green, and shows
S4,3 in green with the flip-sheared edges of S3,4 in red. The picture on the left and the picture on the
right are two pictures of the same surface, under an affine automorphism: if we start with the figure
on the left, flip it horizontally (via x → −x), shear it to the right, and then cut and paste the pieces,
we get the figure on the right. Similarly, if we do the same thing to the figure on the right, we get the
figure on the left. We have shown both the red and green edges on both pictures; some edges are edges
in both decompositions, so they have a red label and a green label. We will construct the derivation
diagram for each picture.

The transition diagram for S3,4 is as before, but now we will add arrow labels (Figure 25). A
trajectory passing from 1 to 2 crosses edge 2, so we label 1 → 2 with 2. A trajectory passing from
6 to 5 also passes through 2, so we label 6 → 5 with 2 as well. Since these arrows are next to each
other, we just write one 2 and the arrows share the label. The rest of the diagram, and the diagram
for S4,3, is constructed in the same way.

The only exceptions to this are the “degenerate cases”, where edges coincide. The edges that coincide
here are 1 with 1, 3 with 8, 7 with 4, and 9 with 5. Four pairs of edges coincide in this way in the four
corners of every transition diagram.

In general, we adopt the following convention, which corresponds (after a shear) to Convention 5.5
for the orthogonal presentations.

Convention 6.12. When sides of Sn,m and of the flip and sheared pre-image of Sn,m by Ψn
m coincide,

we draw them adjacent to each other and ordered so that sides of Sn,m (red) and sides of Sn,m (green)
diagonals alternate, as shown in Figures 20 and 24 for S4,3 and S3,4.

With this convention, the following Lemma holds, which is essentially a restating of Lemma 5.6
from the orthogonal presentations:
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Figure 25. Derivation diagrams for S4,3 and S3,4

Lemma 6.13. Consider any segment of a trajectory on Sm,n with direction θ in the standard sector Σ0n
which crosses from the side of Sm,n labeled n1 to the side of Sm,n labeled n2. Consider the interwoven
sides of the flip-sheared copy of Sn,m obtained asa preimage of Ψn

m. Then only one of the following is
possible:

(1) either no such segment crosses a side of the flip-sheared edges of S3,4, or
(2) every such segment crosses the same side of the flip-sheared edges of S3,4.

Proof. Remark that the affine diffeomorphism that maps the orthogonal presentation of Sm,n to Sm,n,
by mapping negative diagonals to sides of Sm,n, and the dual orthogonal presentation of Sn,m to the
flip and sheard preimage of Sn,m, by mapping positive diagonals to flip and sheared preimages of sides
of Sn,m by Ψn

m. Thus, Convention 6.12 for the sides of Sm,n and the sides of the preimage of Sn,m by
Ψn
m correspond to Convention 6.12 for diagonals in the orthogonal presentations. Thus, the lemma

follows immediately from Lemma 5.6 for the orthogonal presentations. �

With the above convention (Convention 6.12), in virtue of Lemma 6.13 the following definition is
well posed.

Definition 6.14. The derivation diagram D0
m,n is the transition diagram T 0

m,n for the standard sector
with arrows labeled as follows. We label the arrow n1 → n2 with the edge label n3 if all the segments
of trajectories with direction in the standard sector which hit the edge n1 and then the edge n2 passes
through some edge labeled n3 of the flip-sheared Sn,m. Otherwise, we leave the arrow n1 → n2 without
a label.

In the example of derivation diagram for the surface S3,4 in Figure 25, one can see that the arrow
labels in the example are also arranged elegantly: they snake up and down, interlaced with the edge
labels in two alternating grids. The relation between the diagrams for S3,4 and S4,3 is simple as well:
flip the edge labels across the diagonal, and then overlay the arrows in the standard pattern.

This structure holds for every Bouw-Möller surface, as we prove in the following main theorem of
this section:

Theorem 6.15 (Structure theorem for derivation diagrams). The structure of the derivation diagram
for Sm,n in sector [0, π/n] is as follows:

• The diagram consists of n columns and m − 1 rows of edge labels of Sm,n.
• The edge labels start with 1 in the upper-left corner and go left to right across the top row, then
right to left across the second row, and so on, “snaking” back and forth down the diagram until
the last edge label n(m-1) is in the left or right bottom corner, depending on parity of m.
• Vertical arrows between edge labels go down in odd-numbered columns and up in even-numbered
columns.
• Vertical arrows have no arrow labels.
• A pair of left and right horizontal arrows connects every pair of horizontally-adjacentedge labels.
• Horizontal arrows have arrow labels, which are edge labels of Sn,m.

For convenience, we choose to arrange these arrow pairs so that the top arrow goes left and the bottom
arrow goes right for odd-numbered columns of arrows, and vice-versa in even-numbered columns of
arrows. With this arrangement, the arrow labels are as follows:
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• The top-left arrow label is 1, and then going down, the next two arrows are both labeled 2, and
the rest of the pairs are numbered consecutively, until the last remaining arrow is labeled n.
Then the arrow to the right is labeled n+1, and going up the next two arrows are both labeled
n+2, and so on, “snaking” up and down across the diagram until the last arrow is labeled
m(n-1).

There are two examples of derivation diagrams in Figure 25, and the general form is shown in Figure
26. Essentially, the two transition diagrams in Figure 23 are laid over each other as overlapping grids.

Figure 26. The form of a derivation diagram for Sm,n

Again, we omit the right and bottom edges of the diagram because their labels depend on the parity
of m and n; to understand the full diagram, it is clearer to look at an example such as Figure 25.

6.6. The structure theorem for derivation diagrams. In this section we prove Theorem 6.15
describing the structure of derivation diagrams. For the proof we will use the stairs and hats that we
defined in Section 5.

Let us recall that each edge in the Hooper diagram corresponds to a basic rectangle, which is the
intersection of two cylinders, as explained in Section 3.2. Each stair configuration of basic rectangles
corresponds exactly to the four possible hat configurations, see Lemma 5.3 and also Figure 18. Recall
that the middle edge is the one that is numbered in Figure 18, and called a in Figure 27 below.

We will now describe the labeling on these hats that corresponds to a given labeling by a, b, c, d, e, f
of the basic rectangles in the stairs. Each basic rectangle either contains an edge of Sm,n (red, a
negative diagonal) or an edge of Sn,m (green, a positive diagonal). Thus, giving a labeling of diagonals
is equivalent to giving a labeling of basic rectangles. Furthermore, if we work with augmented diagrams
and degenerate basic rectangles, each edge of the Bouw-Möller surface and of its dual Bouw-Möller
surface is in correspondence with a diagonal (positive or negative) of a basic rectangle (possibly
degenerate).

Let us first establish:

Lemma 6.16. Hats are right-side-up when the middle edge is in an even-numbered column, and
upside-down when the middle edge is in an odd-numbered column.

Proof. Recall from Definition 5.2 that we have defined a hat in such a way that the arrows from the
Hooper diagram always go from the middle edge of the hat to each of the adjacent vertical edges −
from edge a to edges b and d as shown in in Figure 17. Since the arrows go down in even-numbered
columns and up in odd-numbered columns of the Hooper diagram, as discussed in §3.4 and shown
in Figure 9, the directions of the hats also alternate accordingly. When we perform the reflection
discussed in Remark 6.2, the directions are reversed, as desired. �

The following Lemma is key to proving the structure theorem, since it describes the local structure
of a transition diagram that corresponds to a (non-degenerate) hat/stair configuration. (Recall the
cases 1 − 4 for hats from the Degenerate Hat Lemma 5.4.)
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Lemma 6.17. Consider an edge a of the Bouw-Möller surface Sm,n. If the corresponding edge a of
Hm,n is the middle edge of a hat in case 1, with adjacent edges b, c, d, e, f as positioned in Figure 27a,
then the allowed transitions starting with a are as shown in Figure 27c.

Figure 27. (a) a hat in case 1 (b) the corresponding stair diagram (c)
the transitions from edge a

Furthermore, if a is the middle edge of a hat in any of the degenerate cases 2− 4, the corresponding
arrow picture is a subset of that picture, with exactly the edges that appear in the degenerate hat, as
shown in Figure 28.

Figure 28. The degenerate hats of cases 2−4, and their corresponding
transitions

Proof. First, we consider the case where a is the middle edge of a hat in case 1 (Figure 27a). Assume
that edges a, b, c in the Hooper diagram are adjacent in a vertical cylinder, so then a, d, f are adjacent
in a horizontal cylinder. Then the stair corresponding to this hat is as in Figure 27b.

Now we can determine the possible transitions from edge a to other edges of Sm,n – in this case,
edges c, e and f . Going vertically, a can go to c through b; going horizontally, a can go to f through
d, and going diagonally, a can go to e without passing through any edge of Sn,m. We record this data
with the arrows in Figure 27c.

If instead the edges a, b, c are adjacent in a horizontal cylinder, and a, d, f are adjacent in a vertical
cylinder, the roles of b and d are exchanged, and the roles of c and f are exchanged, but the allowed
transitions and arrows remain the same.

Now we consider the case where a is the middle edge of a hat in cases 2 − 4. The analysis about
basic rectangles and diagonals is the same as in case 1; the only difference is that the basic rectangles
corresponding to auxiliary (dotted) edges are degenerate, and the basic rectangles corresponding to
missing edges are missing.

The degeneracy of the rectangles does not affect the adjacency, so the degenerate edges act the same
as normal edges, and remain in the arrow diagram. The missing edges clearly cannot be included in
transitions, so these are removed from the arrow diagram (Figure 28). �
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We can now use these Lemmas to give the proof of Theorem 6.15.

Proof of Theorem 6.15. We begin with a Hooper diagram as in Figure 29a. The edges are labeled
corresponding to the case of the hat that has that edge as its middle edge. The label is above the edge
if that hat is right-side-up, and below the edge if the label is upside-down, from Lemma 6.16.

Lemma 6.17 tells us the allowed transitions in each case, and we copy the arrows onto the
corresponding locations in the Hooper diagram, in Figure 29. Here the node at the tail of each
arrow is the hat case number, and we have spaced out the arrows so that it is clear which arrows come
from which hat.

Figure 29. The first steps of constructing the derivation diagram for S4,3

Now we determine the arrow labels. Proposition 6.1 tells us that the edge labels from Sm,n and Sn,m
snake back and forth and up and down, respectively, so we copy the labels in onto the Hooper diagram
in Figure 30a. Then we use Lemma 6.17 to copy these labels onto the arrow picture. For S4,3, this
yields the derivation diagram in Figure 30b, and for Sm,n in general it yields the derivation diagram
in Figure 26.

Figure 30. Finishing the construction of the derivation diagram for S4,3

Where two identical arrow labels are adjacent (as for 2, 3, 6, 7 here), we only write one label, and
then get the diagram in Figure 26, as desired. �
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6.7. Normalization. Theorem 6.15 describes the transition diagram for Σ0n = [0, π/n]. Now we will
describe how to transform any trajectory into a trajectory in Σ0n. To normalize trajectories whose
direction does not belong to the standard sector, we reflect each other sector Σin for 1 ≤ i ≤ 2n − 1
onto Σ0n. Remark that geodesic are line in a given direction and we can choose how to orient it. We
can decide that all trajectories are “going up,” i.e. have their angle θ ∈ [0, π]. Hence, often we will
consider only sectors Σin for 1 ≤ i ≤ n − 1.

Recall that for Sm,n, we defined Σin = [iπ/n, (i + 1)π/n].

Definition 6.18. For 0 ≤ i < 2n the transformation φin is a reflection across the line θ = (i + 1)π/(2n).
Thus, φin maps Σin bijectively to Σ0n.

See Example 6.24 for the explicit form of the reflection matrices for n = 3.
The reflection φin also gives an affine diffeomorphism of Sm,n, which is obtained by reflecting each

polygon of Sm,n (see Example 6.25 below).

Convention 6.19. We use the same symbols φin to denote matrices in SL(2,R) and the corresponding
affine diffeomorphisms of the Bouw-Möller surface Sm,n .

Each of the affine diffeomorphisms φin also induces a permutation on the edge labels of Sm,n, i.e.
on the alphabet in Lm,n (see Example 6.26 below). We will denote the permutation corresponding
to φin by πin. We now want to describe these permutations explicitly. To do this, we first notice
that each flip can be seen as a composition of two flips that are easier to study (see Lemma 6.20
below). The following Definition 6.21 and Lemma 6.22 then explain the actions of these fundamental
transformations on the labels of the polygons.

Lemma 6.20. Each of the reflections φin can be written as a composition of the following:
• a flip along the axis at angle π/n, denoted by fn.
• a flip along the axis at angle π/(2n), denoted by f2n.

Proof. Recall that we numbered the sectors with Σin = [iπ/n, (i + 1)π/n], and that φin reflects sector
Σin into sector Σ0n. Applying f2n to Σin yields Σ2n−1n , with the opposite orientation. The composition
fn ◦ f2n is a counter-clockwise rotation by π/n, preserving orientation. Thus,

φin = ( fn ◦ f2n)2n−i ◦ f2n.

Notice that this is a composition of an odd number of flips, so it reverses orientation, as required. �

Definition 6.21. We define two actions on transition diagrams, which leave the arrows in place but
move the numbers (edge labels) around.

The action ν is a flip that exchanges the top row with the bottom row, the second row with the
next-to-bottom row, etc., as shown in the lower left of Figure 31. The action β is a switching of certain
adjacent pairs: the 1 in the upper-left corner is preserved, and the 2 and 3 exchange places, 4 and 5
exchange places, and so on across the first row. Then in the second row, the first and second are
exchanged, the third and fourth are exchanged, etc., as shown in the lower right of Figure 31 with
bold arrows connecting pairs that are switched. The pairs that are switched in the second row are
offset from those that are switched in the first, just as the second row of bricks is offset from the first
when a mason builds a brick wall. In the same way as bricks, all the odd rows are the same as each
other, and all the even rows are the same as each other.

Lemma 6.22. (1) The flip f2n has the effect of ν on the transition diagram.
(2) The flip fn has the effect of of β on the transition diagram.

Proof. (1) Recall Definition 2.4, where we named the polygons P(0), P(1), . . . , P(m − 1) from left
to right. By the Structure Theorem for derivation diagrams 6.15, the first row of a transition
diagram has the edge labels of P(0), the second row has the edge labels of P(1), and so on until
the last row has the edge labels of P(m − 1). A flip along the line at angle π/(2n) exchanges
the locations of the “short” and “long” sides, so it takes P(0) to P(m − 1), and takes P(1) to
P(m − 1), etc. Thus it exchanges the rows by the action of ν.

(2) A flip along π/n exchanges pairs of edge labels that are opposite each other in direction π/n
in the polygons, which because of the zig-zag labeling are exactly the ones exchanged by β.

�
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T 0
3,4:

1 2 3 4

8 7 6 5

ν(T 0
3,4):

8 7 6 5

1 2 3 4

β(T 0
3,4):

1 3 2 4

7 8 5 6

Figure 31. The actions ν and β on a transition diagram.

Corollary 6.23. The actions ν and β on the transition diagram corresponding to the actions of f2n
and fn, respectively, preserve the rows of the transition diagram T i

m,n. Consequently, the permutations
πin preserve the rows of T i

m,n.

Proof. It follows immediately from Lemma 6.22 that the action described on the diagrams preserve
rows. Now, each permutation πin corresponds to a reflection φin, which by Lemma 6.20 is obtained as
a composition of the transformations f2n and fn. Thus the permutations are obtained by composing
the permutations corresponding to f2n and fn. Each permutation preserves the rows, hence their
composition does too. �

Example 6.24 (Matrices for n = 3). For n = 3, the reflections φi3 for 0 ≤ i ≤ 2 that act on S4,3 are
given by the following matrices:

φ03 =

[
−1 0
0 1

]
φ13 =

[
−1/2

√
3/2√

3/2 1/2

]
φ23 =

[
−1 0
0 1

]
.

Example 6.25 (Reflections for n = 3). In Figure 32 we show how the reflections φi3 and φi4 act as
affine diffeomorphism on S4,3 and S3,4 respectively. The solid line reflects Σ1 to Σ0; the dashed line
reflects Σ2 to Σ0, and for S3,4 the dotted line reflects Σ3 to Σ0.

Figure 32. The action of reflections φin on S3,4 and S4,3.

Example 6.26 (Permutations for n = 3). Looking at Figure 32, we can see the permutation on edge
labels induced by each φin.

S4,3 : π13 =(17)(29)(38)(56) S3,4 : π14 =(14)(57)(68)
π23 =(12)(45)(78) π24 =(16)(28)(35)(47)

π34 =(12)(34)(67).

6.8. Transition diagrams for other sectors. We can now explain how to draw a transition diagram
for trajectories in each sector. Let us start with some examples, and then give a general rule to produce
any such diagram.

For our example surfaces S4,3 and S3,4, the transition diagrams for each sector are in Figures 33 and
34, respectively.
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T 0
4,3:

1 2 3

6 5 4

7 8 9

T 1
4,3:

7 9 8

5 6 4

1 3 2

T 2
4,3:

2 1 3

6 4 5

8 7 9

Figure 33. Transition diagrams in each sector for S4,3

T 0
3,4:

1 2 3 4

8 7 6 5
T 1
3,4:

4 2 3 1

6 5 8 7

T 2
3,4:

6 8 5 7

2 4 1 3
T 3
3,4:

2 1 4 3

8 6 7 5

Figure 34. Transition diagrams in each sector for S3,4

Corollary 6.27. Up to permuting the labels, the shape of the transition diagram is always the same.
For T i

m,n, the labels in T 0
m,n are permuted by πin.

Definition 6.28. We will call universal diagram and denote by Um,n the unlabeled version of the
diagrams T i

m,n.

The universal diagrams for S4,3 and S3,4 are shown in Figure 35. All transition diagrams for Sm,n
have the same arrow structure, Um,n, with different labels at the nodes.

U4,3: U3,4:

Figure 35. The universal diagrams U4,3 and U3,4

7. Derivation

In this section we will describe the renormalization procedure which will be our key tool to help us
characterize (the closure of) all possible trajectories on a given surface. The idea is that we will describe
geometric renormalization operators (given by compositions of affine maps and reflections) which
transform a linear trajectory into another linear trajectory, and at the same time we will describe the
corresponding combinatorial operations on cutting sequences. The renormalization will happen in two
steps, by first transforming a trajectory on Sm,n into one on Sn,m (and describing how to transform the
corresponding cutting sequence), then mapping a trajectory on Sn,m into a new trajectory on Sm,n (and
a new cutting sequence). The combinatorial operators which shadow this geometric renormalization



CUTTING SEQUENCES ON BOUW-MÖLLER SURFACES 42

at the level of cutting sequences will be our derivation operators, followed by a suitable normalization
(given by permutations). Since linear trajectories will be by construction infinitely renormalizable
under this procedure, their cutting sequences will have to be infinitely derivable (in the sense made
precise in §7.4 below).

More precisely, we begin this section by describing in §7.1 an example which, for S4,3, shows
geometrically how to renormalize trajectories and their cutting sequences. In §7.2 we then define
the combinatorial derivation operator Dn

m and prove that it has the geometric meaning described in
the example, which implies in particular that the derived sequence of a cutting sequence on Sm,n is
a cutting sequence of a linear trajectory on the dual surface Sn,m. In §7.3 we define this operator
for sequences admissible in the standard sector, and then define a normalization operator that maps
admissible sequences to sequences admissible in the standard sector. Then, by combining Nm

n ◦ Dn
m

with the operator Nn
m ◦ Dm

n one gets a derivation operator on cutting sequences for Sm,n back to
itself. In §7.4 we use this composition to give the definition of infinitely derivable and prove that
cutting sequences are infinitely derivable (Theorem 7.11). In §7.5, we use this result to associate to
any given cutting sequence an infinite sequence (the sequence of admissible diagrams) which records
combinatorial information on the sequence of derivatives. We will explain in the next section §8 how
this sequence can be used to provide an analogue of the continued fraction expansion for directions.
Finally, in §7.6 we characterize the (periodic) sequences which are fixed under the renormalization
process, since this description will be needed for the characterization in §9.

7.1. A motivational example: derivation for S4,3 geometrically. Let us start with an example
to geometrically motivate the definition of derivation. In §4 we described an explicit affine
diffeomorphim Ψ3

4 from S4,3 to S3,4, which is obtained by combining a flip, a shear, a cut and paste, a
similarity and another shear. The effect of these steps on S4,3 are shown in Figure 36. Remark that
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Figure 36. The effect of Ψ3
4 from S4,3 to S3,4.

the transformation Ψ3
4 acts on directions by mapping the standard sector Σ03 for S4,3 to the sector

[π/4, π], which is the complement in [0, π] of the standard sector Σ04 for S3,4. This is shown in Figure
36, where the image of the standard sector is followed step by step.
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In Figure 37, the preimages of the edges of S3,4 (with their edge labels) by Ψ3
4 are shown inside

S4,3. Given a trajectory τ on S4,3 in a direction θ ∈ Σ03 = [0, π/3] with cutting sequence w in L Z
4,3 with

respect to the edge labels of S4,3, one can also write the cutting sequence w′ of the same trajectory
τ with respect to the edge labels of the pullback of the sides of S3,4 by Ψ3

4 . This gives a symbolic
sequence w′ in L Z

3,4. We want to define a combinatorial derivation operator so that the sequence w′

is obtained from the sequence w by derivation.

Example 7.1. The periodic trajectory τ on S4,3 in Figure 37a has corresponding cutting sequence
w = 1678785452, and the same trajectory on S3,4 has corresponding cutting sequence w′ = 143476.10

We can read off w′ on the left side of the figure as the pullback of the sides of S3,4, or on the right
side of the figure in S3,4 itself. The reader can confirm that the path 1678785452 in D0

4,3 in Figure 25
collects exactly the arrow labels 434761.

Figure 37. A trajectory in S4,3 and S3,4: The green edges inside S4,3
on the left are the preimages under Ψ3

4 of S3,4 on the right. Figure 24
showed this construction, and here we now show the same trajectory
(the black line) on both surfaces. Note that the trajectories in the two
surfaces are not parallel; on the left it is at an angle of about 13◦, and
on the right about 17◦.

In this explicit example, one can check by hand that for each possible transition in T 0
4,3 from an edge

label of S4,3 to another one, either there are no pullbacks of edges of S3,4 crossed, or there is exactly
one edge crossed (in general this follows from Lemma 5.6). By writing the edge labels of these edges
on top of the arrows in T 0

4,3 representing the transition, one obtains exactly the derivation diagram in
Figure 25a. Thus, consider the derivation operator D3

4 already mentioned in the introduction. It maps
sequences admissible in T 0

4,3 to sequences in the S3,4 edge labels, and is given by reading off the S3,4
edge labels on the arrows of the sequence described by the original sequence on D0

4,3. It is clear from
this geometric interpretation that the derivation operator D3

4 is exactly such that the cutting sequence
w′ of τ with respect to the pullback of the S3,4 edges satisfies w′ = D3

4w.
Let us now apply the affine diffeomorphism Ψ3

4 . Then S4,3 is mapped to S3,4 and the trajectory
τ is mapped to a linear trajectory τ′ on S3,4 in a new direction θ ′, as shown in Figures 36-37. By
construction, the sequence w′ = D3

4w is the cutting sequence of a linear trajectory on S3,4. Since cutting
sequences are admissible, this shows in particular that the derived sequence of a cutting sequence is
admissible.

The direction θ ′ image of θ ∈ [0, π/3] belongs to [π/4, π] by the initial remark on the action of Ψ3
4

on sectors. Thus, D3
4 maps cutting sequences on S4,3 in a direction θ ∈ [0, π/3] to cutting sequences

on S3,4 in a direction θ ∈ [π/4, π]. By applying a symmetry on S3,4 that maps the direction θ ′ to the
standard sector [0, π/4] for S3,4 and the correspoding permutation on edge labels, one obtains a new
cutting sequence N4

3w
′ on S3,4. The map that sends the direction θ of τ to the direction θ ′ of τ′ is the

Farey map F 3
4 , which will be described in §8.

10Here the overbar indicates a bi-infinite periodic sequence.
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One can then perform a similar process again, starting this time from S3,4 and thus showing that
D4

3N
4
3w
′ is a cutting sequence of the trajectory τ′ with respect to the edge labels of the pullback of

the sides of a sheared S4,3 by Ψ4
3 , or equivalently, the cutting sequence of a new trajectory τ′′ on S4,3.

For symmetry, we also apply a final flip f ′ to reduce once more to trajectories with direction in the
standard sector. This second step is shown in Figure 38.
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Figure 38. The effect of Ψ4
3 from S3,4 to S4,3.

In Figure 39 we show the combined effect of applying Ψ3
4 , then a flip, then Ψ4

3 , then another flip.
By applying Ψ3

4 ◦ f ◦ Ψ4
3 , we then obtain a new linear trajectory in S4,3 whose cutting sequence is

D4
3N

4
3D

3
4w. We can then apply another flip f ′ to reduce again to a trajectory with direction in Σ03 and

repeat the same process.
The effect of the composition f ′ ◦ Ψ3

4 ◦ f ◦ Ψ4
3 , which we call renormalization, (see Remark 7.2

below) corresponds to applying derivation twice, with normalization to reduce to the standard sector
in between and at the end. One gets in this way an operator from cutting sequences on S4,3 back to
cutting sequences on S4,3. The cutting sequence of the initial trajectory with respect to the sides of
the image of S4,3 by this element is the sequence w derived, normalized, then derived and normalized
again. If we apply f ′ ◦ Ψ3

4 ◦ f ◦ Ψ4
3 , it maps the original trajectory to a new trajectory whose cutting

sequence with respect to S4,3 is the sequence w derived and normalized twice. Thus, deriving and
normalizing twice produces cutting sequences. Repeating this renormalization process allows us to
show, with this observation, that cutting sequences are infinitely derivable (see §7.4).

Remark 7.2. We will call renormalization the process just described (in the specific case of m = 4,
n = 3), obtained by applying to Sm,n first Ψn

m, then a flip to reduce to Σ0m for Sn,m, then Ψm
n and finally

another flip. The name renormalization must not be confused with the name normalization, used to
describe just the reduction (by flips) to standard sectors. Renormalization maps trajectories on Sm,n
back to trajectories on Sm,n but with the effect of shortening long pieces of trajectories with directions
in the standard sector. This follows since the standard sector is opened up to the complementary
sector, as shown in Figure 39.

At the combinatorial level of cutting sequences, the effect of renormalization corresponds to applying
derivation twice, once acting on cutting sequences on Sm,n, once on Sn,m, with normalization in between
and at the end, which acts by applying a permutation on cutting sequences to reduce to sequences
admissible in the standard sector. One gets in this way an operator from cutting sequences on Sm,n
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back to cutting sequences on Sm,n. The geometric fact that finite pieces of trajectories are shortened
by renormalization has, as its combinatorial counterpart, that finite pieces of cutting sequences, when
derived, become shorter ; see Remark 7.6.
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Figure 39. The full renormalization from S4,3 to itself.

7.2. Derivation operator for general m, n. In general, we will now define an operator Dn
m

combinatorially, and then prove that it admits a geometric interpretation as in the example in the
previous section. The derivation operator Dn

m is defined using the derivation diagram D0
m,n defined in

§6.5 (see Theorem 6.15) as follows. Recall that a sequence admissible in T 0
m,n describes a bi-infinite

path on D0
m,n (see the Definition 6.4 of admissible in §6.3).

Definition 7.3. Given a sequence w = (wi) ∈ L Z
m,n admissible in T 0

m,n, the sequence Dn
mw is the

sequence of labels of the arrows of D0
m,n that are crossed by an infinite path on D0

m,n that goes
through the vertices labeled by (wi)i∈Z.
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An example was already given, in the introduction (Example 1.4) and in the previous section
(Example 7.1). Derivation is well defined as an operator that maps admissible sequences in L Z

m,n to
sequences in L Z

n,m, by virtue of the following Lemma:

Lemma 7.4. If w = (wi) is a bi-infinite sequence in Lm,n admissible in T 0
m,n, Dn

mw is a bi-infinite
sequence in Ln,m. Thus, the operator Dn

m maps sequences sequences in L Z
m,n which are admissible in

T 0
m,n to L Z

n,m.

Proof. The proof of the Lemma is a consequence of the definition of derivation diagrams. Let us
recall from the structure theorem for derivation diagrams (Theorem 6.15) that in D0

m,n the only arrows
without edge labels are vertical. Since there are only m − 2 vertical arrows in a row, the bi-infinite
path described by w is going to have at least one horizontal arrow out of every m − 1 arrows. Thus,
for every block of m− 1 edge labels of Lm,n in w one get at least one edge label of Ln,m in the derived
sequence Dn

mw. It follows that also Dn
mw is an infinite sequence. �

Derivation is defined so that the following geometric interpretation holds.

Lemma 7.5 (Geometric interpretation for derivation.). If w is the cutting sequence of a linear
trajectory of Sm,n in a direction θ ∈ Σ0n, then the sequence Dn

mw is the sequence of edge labels of the
crossed sides of the flip-sheared copy of Sn,m which is the preimage of Sn,m by the affine diffeomorphism
Ψn
m.

The proof of the Lemma is a consequence of the definition of derivation diagrams and of their
Structure Theorem 6.15.

Proof. Consider the sequence wiwi+1, i ∈ Z of transitions in w, which by assumption of θ ∈ Σ0n are all
transitions which appear in T 0

m,n. Since w is a cutting sequence, each transition wiwi+1 corresponds
to a segment of the trajectory τ that crosses first the edge of Sm,n labeled wi, then the edge labeled
wi+1. By the definitions of derivation diagrams and derivation, if this segment crosses an edge of the
flip-sheared copy of Sn,m obtained as preimage by Ψn

m, the derived sequence w′ contains the label of
this edge. Thus, the derived sequence describes exactly the cutting sequence of τ with respect to the
flip-sheared copy of Sn,m in the statement. �

Remark 7.6. As we can intuitively see in Figure 37, when from the cutting sequence of a trajectory
in S4,3 we pass to the cutting sequence with respect to the edge labels that are the preimages by
Ψ3
4 of S3,4, the number of sides crossed reduces. Combinatorially, this can be seen on the derivation

diagram D0
m,n in general, by remarking that horizontal arrows have exactly one label, while vertical

arrows have none. This means that when we consider a subsequence that comes from a finite path
which travels along horizontal arrows, it will have the same number of labels after derivation, while if
the subsequence contains also vertical arrows, the length of the subsequence after derivation will be
shorter. Thus, the effect of derivation on finite subsequences of a word is not to increase their length.

From Lemma 7.5 we will now deduce that cutting sequences are derivable in the following sense.
Recall that the permutations πin introduced in §6.7 map sequences admissible in T i

m,n to sequences
admissible in T 0

m,n.

Definition 7.7. A sequence w admissible in T 0
m,n is derivable if Dn

m(w) is admissible in some diagram
T i
n,m. A sequence w admissible in T i

m,n is derivable if πinw is derivable.

Proposition 7.8. Cutting sequences of linear trajectories in Sm,n are derivable. Furthermore:
(1) The derived sequence Dn

m(w) of a cutting sequence w on Sm,n is the cutting sequence of a
trajectory in Sn,m.

(2) If w is admissible in T 0
m,n, then Dn

m(w) is admissible in some T i
n,m with 1 ≤ i ≤ m.

Proof. We will first prove the first claim. Normalizing by πin we can assume without loss of generality
by that w is admissible in T 0

m,n (recall from Definition 7.7 the notion of derivable in other sectors). The
proof follows from Lemma 7.5 by applying the affine diffeomorphism Ψn

m: Ψn
m maps the flip-sheared

copy of Sn,m to the semi-regular presentation of Sn,m, and the trajectory τ with cutting sequence w to
a new trajectory τ′ on Sn,m. This trajectory has cutting sequence Dn

mw by Lemma 7.5.
Since we just showed that the derived sequence is a cutting sequence and cutting sequences are

admissible (see 6.9), it follows that cutting sequences are derivable (according to Definition 7.7).
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Finally, the second claim in the Theorem follows by showing that the sector Σ0n is mapped by Ψn
m

to [0, π]\Σ0m. This can be verified by describing the image of Σ0n by each of the elementary maps (see
for example Figure 38) comprising γnm. �

7.3. Normalization. After deriving a derivable sequence using Dn
m, we now want to apply derivation

again, this time using the operator Dm
n for Sn,m. Since we defined derivation only for sequences

admissible in T 0
m,n and derived sequences are admissible in a sector T i

m,n with i , 0 (by the second
claim in the Theorem 7.8), so in order to apply derivation one more time we first want to normalize
the derived sequence as follows.

Definition 7.9. Given a sequence w = (wj)j∈Z which is admissible in diagram T i
m,n, the normalized

sequence which will be denoted by Nn
mw is the sequence Nn

mw = (πinwj)j∈Z. Thus, the operator Nn
m

maps sequences admissible in T i
m,n to sequences admissible in T 0

m,n.

Let us remark that a sequence w can in principle be admissible in more than one diagram T i
m,n. In

this case, we can use any of the corresponding πin to normalize w. On the other hand, we will apply
Nn

m to cutting sequences and one can show that if a Bouw-Möller cutting sequence is not periodic,
then it is admissible in a unique diagram T i

m,n (Lemma 6.10), hence Nn
mw is uniquely defined.

7.4. Cutting sequences are infinitely derivable. Let w be a derivable sequence in T 0
m,n. Then

by definition of derivability, Dn
mw is admissible in some T i

n,m. By normalizing, Nm
n D

n
mw is admissible

in T 0
n,m and we can now apply Dm

n .

Definition 7.10. A sequence w in L Z
m,n is infinitely derivable if it is admissible and, by alternatively

applying derivation and normalization operators, one always gets admissible sequences, i.e. for any
even integer k = 2l,

(Dm
n N

m
n D

n
mN

n
m) · · · (Dm

n N
m
n D

n
mN

n
m)︸                                         ︷︷                                         ︸

l times

w

is admissible on some T i
m,n for some 0 ≤ i ≤ n − 1 and for any odd integer k = 2l + 1,

(Dn
mN

n
mD

m
n N

m
n ) · · · (Dn

mN
n
mD

m
n N

m
n )︸                                         ︷︷                                         ︸

l times

Dn
mN

n
mw

for any l ∈ N is admissible on some T i
n,m for some 0 ≤ i ≤ m − 1.

We can now show that cutting sequences are infinitely derivable.

Theorem 7.11. Let w be a cutting sequence of a bi-infinite linear trajectory on Sm,n. Then w is
infinitely derivable in the sense of Definition 7.10.

Proof. We will prove this by induction on the number k of times one has derived and normalized the
sequence w that the resulting sequence wk is admissible (on some T i

m,n for k even, on some T i
n,m for

k odd). Assume that we have proved it for k. Say that k is odd, the other case being analogous. In
this case wk is a cutting sequence of a trajectory τk in some sector Σim. Since Nm

n acts on τk by the
permutation πim induced by an isometry of Sn,m, also Nm

n w
k is a cutting sequence, of the trajectory

πimτ
k which belongs to the standard sector Σ0m. By applying Dn

mm, by the first part of Proposition 7.8,
the sequence wk+1 := Dm

n N
m
n w
(n) is again a cutting sequence. Since cutting sequences are admissible

(Lemma 6.9) this concludes the proof. �

7.5. Sequences of admissible sectors. Let w be a cutting sequence of a bi-infinite linear trajectory
τ on Sm,n. Since by Theorem 7.11 w is infinitely derivable, one can alternatively derive it and normalize
it to obtain a sequence (wk)k of cutting sequences. More precisely:

Definition 7.12. The sequence of derivatives (wk)k starting from a cutting sequence of a bi-infinite
linear trajectory w on Sm,n, is the sequence recursively defined by:

w0 := w, wk+1 :=

{
Dm

n (Nm
n w

k), k odd;
Dn

m(Nn
mw

k), k even.



CUTTING SEQUENCES ON BOUW-MÖLLER SURFACES 48

This sequence is well-defined by Theorem 7.11, and by the same Theorem, (wk)k are all admissible
sequences in at least one sector. Furthermore, if w is non-periodic, each wk is admissible in a unique
sector by Lemma 6.10.

We now want to record after each derivation the sectors in which the cutting sequences wk are
admissible. By Proposition 7.8, for k even wk is admissible in (at least one) of the sectors Σin where
1 ≤ i ≤ n − 1, while for k odd wk is admissible in (at least one) of the sectors Σim where 1 ≤ i ≤ m − 1.
Let us hence define two sequences of indices in n − 1 and m − 1 symbols respectively as follows.

Definition 7.13 (Sequences of admissible sectors). Let w be a cutting sequence of a linear trajectory
on Sm,n in the standard sector Σ0n. Let us say that the two sequences (ak)k ∈ {1, . . . ,m − 1}N and
(bk)k ∈ {1, . . . , n − 1}N are a pair of sequences of admissible sectors associated to w if

• w2k−1 is admissible in Σak
m for any k ≥ 1;

• w2k is admissible in Σbk
n for any k ≥ 1.

Thus, the sequence of admissible sectors for w, i.e. the sequence of sectors in which the derivatives
w1,w2, . . . are admissible, is given by

Σ
a1
m , Σ

b1
n , Σ

a2
m , Σ

b2
n , . . . , Σ

ak
m , Σbk

n , . . . .

We remark that the sequences of admissible sectors associated to a cutting sequence w are unique as
long as w is non-periodic, by virtue of Lemma 6.10.

Convention 7.14. If w is a cutting sequence of a linear trajectory τ on Sm,n in a sector different
from the standard one, we will denote the sector index by b0, so that τ is admissible in Σ

b0
n , where

0 ≤ b0 ≤ 2n − 1.

In §8.3, after introducing the Bouw-Möller Farey map F n
m , we will show that this pair of sequences

is related to a symbolic coding of the map F n
m and can be used to reconstruct from the sequence w,

via a continued-fraction like algorithm, the direction of the trajectory of which w is a cutting sequence
(see §8.4, in particular Proposition 8.5).

7.6. Sequences fixed by renormalization. For the characterization of the closure of cutting
sequences, we will also need the following characterization of periodic sequences, which are fixed
points of our renormalization procedure. Let us first remark that it makes sense to consider the
restriction of the operators Nn

mD
m
n and Nm

n D
n
m to subwords of cutting sequences, by following up in the

process how a subword u of the bi-infinite cutting sequence w changes under derivation (some edge
labels in u will be dropped, while others will persist) and under normalization (a permutation will act
on the remaining edge labels). If w′ is obtained from a cutting sequence w by applying a sequence of
operators of the form Nn

mD
m
n and Nm

n D
n
m and u′ is the subword (possibly empty) obtained by following

a subword u of w in the process, we will say that u′ is the image of u in w′.

Lemma 7.15. Let w be the cutting sequence of a linear trajectory on Sm,n admissible in the standard
sector Σ0n. If w is fixed by our renormalization procedure, i.e.

Nn
mD

m
n N

m
n D

n
mw = w,

then w is an infinite periodic word of the form . . . n1n2n1n2 . . . for some edge labels n1, n2 ∈ Lm,n.
Furthermore, if u is a subword of a cutting sequence w on Sm,n such that the image u′ of u in

w′ = Nn
mD

m
n N

m
n D

n
mw has the same length (i.e. the same number of edge labels) of u, then u is a finite

subword of the infinite periodic word . . . n1n2n1n2 . . . for some edge labels n1, n2 ∈ Lm,n.

Proof. Let us first remark that it is enough to prove the second statement, since if w = w′ where
w′ is by definition Nn

mD
m
n N

m
n D

n
mw, in particular for any finite subword u of w, the image u′ of u in w

has the same number of edge labels as u. Thus, considering arbitrarily long finite subwords of w, the
second statement implies that w is the infinite word . . . n1n2n1n2 . . . .

Let w be a cutting sequence of a linear trajectory τ on Sm,n. Without loss of generality we can
assume that τ is in direction Σ0n, as the second part of the statement does not change up to applying the
relabeling induced by permutations. Thus, we can assume that the cutting sequence w (by definition
of the transition diagrams) describes an infinite path in T 0

m,n. Consider now the same path in the
derivation diagram D0

m,n. Any given finite subword u of w corresponds to a finite path on D0
m,n. If we

assume that the image u′ of u in Dn
mw has the same number of edge labels as u, the path cannot cross
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any vertical single arrow, as otherwise u′ would be shorter (see Remark 7.6). Thus, the path described
by u should consist of arrows all belonging to the same row of D0

m,n.
Without loss of generality, we can assume that the finite path described by u contains the arrow

r1 in the piece of diagram drawn here below. Since it cannot contain vertical arrows, the only arrows

that can follow r1 in the path can either be l2 or r2. Correspondingly, the sequence of edge labels
that can appear in the word are either n1n2n1 or n1n2n3. If we prove that the latter case leads to
a contradiction, then by repeating the same type of argument, we get that the path must be going
back and forth between edge labels n1 and n2 and hence the word u if a finite subword of the infinite
periodic word . . . n1n2n1n2 . . . .

Let us assume that the arrow r1 is followed by r2 and show that it leads to a contradiction. Let us
denote by n4 and n5 the edge labels of r1 and r2 respectively in the derivation diagram D0

m,n. Then, by
definition of the derivation operator Dm

n , the image u′ of u in Dm
n w will contain the string . . . n4n5 . . . .

We claim that the transition diagram T 0
n,m (for the standard sector of the dual surface Sn,m) will contain

a piece that looks like the following figure, up to change the direction of the arrows: In particular we

n4

n5

claim that the location of the edge labels A′, B′ in T 0
n,m is at opposite vertices as shown in the figure

above. This can be deduced by the Structure Theorem 6.15 looking at how the labels of the arrows of
the derivation diagram D0

m,n snake in Figure 26 and comparing them with the labels of the transition
diagram T 0

m,n. For a concrete example, refer to Figure 25: pairs of labels of arrows like r1 and r2 are
for example 2 and 8 or 6 and 2 which indeed lie at opposite vertices in the derivation diagram for
S3,4 and one can verify from Figure 26 that this is indeed always the case. In particular, n4, n5 do not
belong to the same row of T 0

n,m.
We know that the derived sequence w′ = Dm

n w is the cutting sequence of a linear trajectory on Sn,m
and that it is admissible in (at least one) transition diagram T i

n,m for some 1 ≤ i ≤ m (see Proposition
7.8). This means that there will be an arrow between the two vertices labeled n4 and n5 in the
transition diagram T i

n,m
11.

Let us now apply the normalization operator Nm
n , which corresponds to acting by the permutation

πim for some 1 ≤ i ≤ m on the labels in w. Denote by n′4, n
′
5 the images of the labels n4, n5. Since Nm

n D
n
mw

is admissible on T 0
n,m and contains the transition n′4n′5, by construction n′4 and n′5 must be connected

by an arrow of T 0
n,m. Furthermore, the assumption on u (that the image of u in w′ = Nn

mD
m
n N

m
n D

n
mw

has the same length as u) implies that n′4 and n′5 also have to be on the same row of T 0
n,m (otherwise

the image of u in w′ would be shorter than u because of the effect of Dm
n , see Remark 7.6). This means

that also n4 and n5 were on the same row of T i
n,m (since by definition of πim, n′4 = πi(n4) and n′5 = πi(n5)

are the labels on T 0
n,m of the vertices which were labeled n4 and n5, respectively, on T i

n,m).
By Corollary 6.23, the action of (πim)−1 = πim (πim are involutions since the reflections φim are) maps

the transition diagram T i
n,m to T 0

n,m by mapping labels on the same rows to labels on the same row.
Thus, we get that n4 and n5, which we just said are on the same row of T i

n,m, are also on the same row
of T 0

n,m, in contradiction with what we proved earlier (see the above Figure, that shows that n4 and n5

11We remark that this does not yet imply though that there has to be an arrow connecting n4, n5 in T 0
n,m and indeed

this does not have to be the case in general.
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are not on the same row on T 0
n,m). This concludes the proof that u has the desired form and hence, by

the initial remark, the proof of the Lemma. �

Finally, for the characterization we will also need to use that all sequences which have the form of
fixed sequences under derivation, i.e. of the form . . . n1n2n1n2 . . . , are actually cutting sequences:

Lemma 7.16. Given a transition n1n2, such that the word n1n2n1n2 is admissible in some diagram
T i
m,n, the periodic sequence of form . . . n1n2n1n2 . . . is the cutting sequence of a periodic trajectory in
Sm,n.

Proof. If n1n2n1n2 is admissible in a diagram T i
m,n, then both n1n2 and n2n1 are admissible in that

diagram, so the labels n1 and n2 are connected by arrows in both directions, so n1 and n2 must be on
the same row of the diagram T i

m,n and must be adjacent.
We recall from Section 3 that white vertices in a Hooper diagram correspond to horizontal cylinders

and black ones correspond to "vertical" cylinders. Edges around a vertex correspond to (possibly
degenerate) basic rectangles composing the cylinder. Moreover, sides in the polygonal representation
are diagonals of the basic rectangles which correspond to horizontal sides in the Hooper diagram.
Using this last fact, we can label the horizontal edges of a Hooper diagram with the edge labels of
the polygonal representation (see Figure 22) and we proved in Section 6 that the labels of the Hooper
diagram have the same structure as the transition diagram in the standard sector (see Figure 30). The
latter observation means that since n1 and n2 were adjacent and in the same row of T i

m,n, they will
label two adjacent horizontal edges of the Hooper diagram.

Let us consider first the case when n1 and n2 label horizontal edges of the Hooper diagram which
share a white vertex as a common endpoint. They will hence correspond to the two basic rectangles of
the horizontal cylinder represented by the white vertex in the Hooper diagram, which have the sides
labeled by n1 and n2 as diagonals. Consider now a horizontal trajectory in the polygon contained
in this horizontal cylinder. By looking at the way the arrows in the Hooper diagram follow each
other around a white edge, we can see that the horizontal trajectory will cross in cyclical order the
four (possibly degenerate) basic rectangles forming the cylinder, crossing first a basic rectangle which
does not contain sides of the polygonal representation (corresponding to a vertical edge in the Hooper
diagram), then the one with a diagaonl labeled by n1 (corresponding to a horizontal edge in the Hooper
diagram), then another basic rectangle which does not contain any side (corresponding to the other
vertical edge) and finally the one with a diagaonl labeled by n2. This means that the cutting sequence
of such trajectory corresponds to the periodic trajectory . . . n1n2n1n2 . . ..

Recalling that "vertical" means vertical in the orthogonal decomposition, and at an angle of π/n in
the polygon decomposition (see Figure 14 for the correspondence), the same argument can be used for
the case when n1 and n2 label horizontal edges of the Hooper diagram connected by a black vertex.
This proves that a path at angle π/n across the cylinder represented by the black dot corresponds to
the periodic trajectory . . . n1n2n1n2 . . .. �

8. The Bouw-Möller Farey maps

We will describe in this section a one-dimensional map that describes the effect of renormalization
on the direction of a trajectory. We call this map the Bouw-Möller Farey map, since it plays an
analogous role to the Farey map for Sturmian sequences. We define the Bouw-Möller Farey map Fm,n
in two steps, i.e. as composition of the two maps F n

m and Fm
n , which correspond respectively to the

action of Dn
m and Dm

n , each composed with normalization.

8.1. Projective transformations and projective coordinates. Let us introduce some prelimi-
nary notation on projective maps. Let RP1 be the space of lines in R2. A line in R2 is determined by a
non-zero column vector with coordinates x and y. There are two coordinate systems on RP1 which will
prove to be useful in what follows and that we will use interchangably. The first is the inverse slope
coordinate, u. We set u((x, y)) = x/y. The second useful coordinate is the angle coordinate θ ∈ [0, π],
where θ corresponds to the line generated by the vector with coordinates x = cos(θ) and y = sin(θ).
Note that since we are parametrizing lines rather than vectors, θ runs from 0 to π rather than from 0
to 2π.

An interval in RP1 corresponds to a collection of lines in R2. We will think of such an interval as
corresponding to a sector in the upper half plane (the same convention is adopted in [37, 38]).
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Convention 8.1. We will still denote by Σin for 0 ≤ i ≤ n − 1 (see Definition 6.3) the sector of RP1
corresponding to the angle coordinate sectors [iπ/n, (i + 1)π/n] for i = 0, . . . , 2n − 1, each of length π/n
in [0, π]. We will abuse notation by writing u ∈ Σin or θ ∈ Σin, meaning that the coordinates belong to
the corresponding interval of coordinates.

A linear transformation of R2 induces a projective transformation of RP1 as follows. If L =
(
a b
c d

)
is

a matrix in GL(2,R), the induced projective transformation is given by the associated linear fractional
transformation L[x] = ax+b

cx+d . This linear fractional transformation records the action of L on the space
of directions in inverse slope coordinates. Let PGL(2,R) be the quotient of GL(2,R) by all homotheties
{λI, λ ∈ R}, where I denotes the identity matrix. Remark that the linear fractional transformation
associated to a homothety is the identity. The group of projective transformations of RP1 is PGL(2,R).

8.2. The projective action Fn
m of Ψn

m. Let us recall that in §4 we defined an affine diffeomorphism
Ψn
m from Sm,n to Sn,m which acts as a flip and shear. The linear part of Ψn

m is the SL(2,R) matrix
γnm in (7), obtained as the product sn,mdn

msm,n f of the matrices in (6). The diffeomorphism Ψn
m acts

projectively by sending the standard sector Σ0n to the complement (π/m, π) of the standard sector Σ0m.
This is shown for m = 4, n = 3 in Figures 36 and 38, for Ψ3

4 and Ψ4
3 respectively, where the effect of

each elementary matrix in the product giving γnm is illustrated.
Let φim for i = 0, . . .m − 1 be the isometry of Sn,m described in §6, which maps Σim to Σ0m. We will

abuse the notation and also denote by φim the matrix in PGL(2,R) which represents them (see Example
6.24 for the matrices φi3 for S4,3). We stress that when we consider products of the matrices φim we
are always thinking of the product as representing the corresponding coset in PGL(2,R).

Let us define the map F n
m so that it records the projective action of Ψn

m on the standard sector Σ0n,
composed with normalization. Let us recall from §6.7 that we normalize trajectories in Σ j

m by applying
the reflection φ

j
m that maps them to Σ0m (see Definition 6.18). Thus, we have to compose γnm with φ

j
m

exactly when the image under γnm is contained in Σ j
m. Let us hence define the subsectors Σ0m,n( j) ⊂ Σ0n

for 1 ≤ j ≤ m − 1 which are given in inverse slope coordinates by

(8) Σ
0
m,n( j) := {(γnm)−1[u], u ∈ Σ

j
m} for 1 ≤ j ≤ m − 1.

Remark 8.2. Thus, u ∈ Σ0m,n( j) iff γnm[u] ∈ Σ
j
m.

We can then define the map F n
m : Σ0n → Σ0m to be the piecewise-projective map, whose action on the

subsector of directions corresponding to Σ0m,n( j) is given by the projective action given by φ j
mγ

n
m, that

is, in inverse slope coordinates, by the following piecewise linear fractional transformation:

(9) F n
m (u) = φ

j
mγ

n
m[u] =

aiu + bi
ciu + di

, where

(
ai bi
ci di

)
:= φ

j
mγ

n
m, for u ∈ Σ0m,n( j), ≤ j ≤ m − 1.

The action in angle coordinates is obtained by conjugating by conjugating by cot : [0, π] → R, so
that if θ ∈ Σi we have F(θ) = cot−1

(
a1 cot(θ)+bi
ci cot(θ)+di

)
. Let us remark that the change from the coordinates

u to θ through cotangent reverses orientation.
In Figure 40 we show the graphs of the map F 3

4 and F 4
3 in angle coordinates.
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Figure 40. The Farey maps F 3
4 and F 4

3 .
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Remark that since the image of the standard sector Σ0n by F n
m is contained in the standard sector

Σ0m, we can compose F n
m with Fm

n .

Definition 8.3. The Bouw-Möller Farey map Fm,n : Σ0n → Σ0n for Sm,n is the composition Fm,n :=
Fm
n ◦ F n

m of the maps F n
m and Fm

n given by (9).

In Figure 41 we show the graphs of the maps F4,3 and F3,4 in angle coordinates. The map Fm,n
is pointwise expanding, but not uniformly expanding since the expansion constant tends to 1 at the
endpoints of the sectors. Since each branch of Fm,n is monotonic, the inverse maps of each branch are
well defined.

Figure 41. The Farey maps F3,4 and F4,3.

8.3. Itineraries and sectors. The Bouw-Möller Farey map Fm,n has (m − 1)(n − 1) branches. The
intervals of definitions of these branches are the following subsectors of Σ0n that we will denote by
Σ0m,n(i, j) for 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1:

(10) Σ
0
m,n(i, j) = Σ0m,n(i) ∩ (F n

m )−1(Σ0n,m( j)), i = 1, . . . ,m − 1, j = 1 . . . , n − 1.
Thus, explicitely,

(11) Fm,n(u) = φb1n γmn φa1m γnm[u], iff u ∈ Σ0m,n(i, j),
Remark that if θ ∈ Σ0m,n(i, j), then the affine diffeomorphism Ψn

m sends the direction θ to a direction
θ ′ in the sector Σim and then, after normalizing the direction θ ′ to a direction φim[θ] in the standard
sector Σ0m, the affine diffeomorphism Ψm

n sends it to a direction θ ′′ in the sector Σ j
n. Thus the indices

i, j record the visited sectors.
Let us code the orbit of a direction under Fm,n as follows.

Definition 8.4 (Itinerary). To any θ ∈ Σ0n we can assign two sequences (ak)k ∈ {1, . . . ,m − 1}N and
(bk)k ∈ {1, . . . , n − 1}N defined by(

F n
m

)k−1(θ) ∈ Σ0m,n(ak, bk) for each k ∈ N.
We call the sequence ((ak, bk))k the itinerary of θ under Fm,n.

Let us recall that in §7.5 given a cutting sequence w, by performing derivation and normalization,
we assigned to it a pair of sequences recording the sectors in which derivatives of w are admissible (see
Definition 7.13), uniquely when w is non-periodic (by Lemma 6.10). These sequences are related to
itineraries of F n

m as follows:

Proposition 8.5. Let w be a non-periodic cutting sequence of a bi-infinite linear trajectory on Sm,n
in a direction θ in Σ0n. Let (ak)k ∈ {1, . . . ,m−1}N and (bk)k ∈ {1, . . . , n−1}N be the pair of sequences of
admissible sectors associated to w (see Definiton 7.13). Then the sequence ((ak, bk))k is the itinerary
of θ under Fm,n.

The proof is based on the fact that the Bouw-Möller Farey map shadows at the projective level
the action of the geometric renormalization procedure that is behind the combinatorial derivation and
normalization procedure on cutting sequences.



CUTTING SEQUENCES ON BOUW-MÖLLER SURFACES 53

Proof. Let (wk)k be the sequence of derivatives of w given by Definition 7.12. Remark that since τ
is not periodic, none of its derivatives wk is periodic. Thus, since wk is non-periodic, it is admissible
in a unique diagram that (by definition of (ak)k, (bk)k as sequences of admissible sectors) is T a j

n,m for
k = 2 j − 1 odd and T b j

m,n for k = 2 j even. Thus, the sequence (uk)k of normalized derivatives, given by
uk := Nm

n w
k for k odd and uk := Nn

mw
k for k even, is well defined and is explicitly given by uk = π

a j
m wk

for k = 2 j − 1 odd and uk = π
b j
n wk for k = 2 j even.

From Proposition 7.8 we know that, for any k, wk is the cutting sequence of a trajectory τk and
thus uk is the cutting sequence of a trajectory τk in the standard sector obtained by normalizing τk .
These trajectories can be constructed recursively as follows. Set τ0 := τ = τ0 (since we are assuming
that τ is in the standard sector). Assume that for some k ≥ 1 we have already defined τk−1 and τk−1

so that their cutting sequences are respectively wk−1 and uk−1. Deriving uk−1, we get wk , which, by
definition of sequence of sectors and the initial observation, is admissible only in T a j

n,m for k = 2 j−1 odd
and only in Db j

m,n for k = 2 j even. It follows that the trajectory τk of which wk is a cutting sequence
belongs to Σa j

m for k = 2 j − 1 odd and Σb j
n for k = 2 j even. Thus, to normalize it we should apply φa j

m

or φb j
n according to the parity. Hence, set for any k ≥ 1:

τk :=

{
Ψn
mτ

k−1, k − 1 even,
Ψm
n τ

k−1, k − 1 odd;
(12)

τk :=

{
φ
a j
m τ

k, k = 2 j − 1 odd;
φ
b j
n τ

k, k = 2 j even.
(13)

Let (θk)k be the directions of the normalized trajectories (τk)k . Recalling now the definition of the
Bouw-Möller Farey map Fm,n = Fm

n ◦ F n
m , and of each of the maps Fm

n and F n
m defined in (9), we see

then that the directions (θk)k of (τk)k satisfy for any k ≥ 1:

θ
k
=

{
F n
m (θ

k−1) = φa j
m γ

n
m[θ

k−1], k = 2 j − 1 odd;

Fm
n (θ

k−1) = φb j
n γ

m
n [θk−1], k = 2 j even.

It follows from Remark 8.2 that θ
k−1

belongs to Σ0n,m(aj) for k = 2 j −1 odd (since θk = γnm[θ
k−1], which

belongs to Σa j
m ) and to Σ0m,n(bj) for k = 2 j even (since θk = γmn [θ

k−1], which belongs to Σb j
n ).

From the definition of F l
m,n as composition, we also have that θ

2l
= F l

m,n(θ) for every l ≥ 0. Thus,
by definition (10) of the subsectors Σ0m,n(i, j) and using the previous formulas for k − 1 := 2l (so that k
is odd and we can write it as k = 2 j − 1 for j = l + 1), we have that F l

m,n(θ) belongs to Σ0m,n(al+1, bl+1)
for every l ≥ 0. This shows that ((ak, bk))k is the itinerary of θ under the Bouw-Möller Farey map and
concludes the proof. �

In the next section we show that, thanks to Proposition 8.5 and the expanding nature of the map
F n
m , one can recover the direction of a trajectory from its cutting sequence (see Proposition 8.6).

8.4. Direction recognition. Given a cutting sequence w, we might want to recover the direction
of the corresponding trajectory. This can be done by exploiting a continued fraction-like algorithm
associated to the Bouw-Möller Farey map, as follows.

Let I be the set of all possible itineraries of Fm,n, i.e. the set

Im,n := {((ak, bk))k , (ak)k ∈ {1, . . . ,m − 1}N, (bk)k ∈ {1, . . . , n − 1}N}.
Let us recall that Fm,n is monotonic and surjective when restricted to each subiterval Σ0m,n(i, j) for
1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1. Let us denote by Fm,n(i, j) the restriction of Fm,n to Σ0m,n(i, j). Each of
these branches Fm,n(i, j) is invertible.

Given ((ak, bk))k ∈ Im,n, one can check that intersection

(14)
⋂
k∈N
(Fm,n(a1, b1))−1(Fm,n(a2, b2))−1 · · · (Fm,n(ak, bk))−1[0, π]

is non empty and consists of a single point θ (the inverse branches Fm,n are indeed strictly contracting
apart from finitely many parabolic points, and one can argue this as in the proof of Lemma 2.2.15
in § 4.3 of [37]). In this case we write θ = [a1, b1, a2, b2, . . . ]m,n and say that [a1, b1, a2, b2, . . . ]m,n is
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a Bouw-Möller additive continued fraction expansion of θ. To extend this continued fraction beyond
directions in the standard sector, we set the following convention. For an integer 0 ≤ b0 ≤ 2n − 1, and
sequences (ak)k, (bk)k as above, we set

(15) [b0; a1, b1, a2, b2, . . . ]m,n :=
(
φb0n

)−1
[θ], where θ = [a1, b1, a2, b2, . . . ]m,n.

The index b0 is here such that the above angle lies in Σb0
n . The notation recalls the standard continued

fraction notation, and b0 plays the role analogous to the integer part.
We have the following result, which allows us to reconstruct the direction of a trajectory from the

combinatorial knowledge of the sequence of admissible sectors of its cutting sequence:

Proposition 8.6 (Direction recognition). If w is a non-periodic cutting sequence of a linear trajectory
in direction θ ∈ [0, 2π], then

θ = [b0; a1, b1, a2, b2, . . . ]m,n,
where b0 is such that θ ∈ Σb0

n and the two sequences (ak)k ∈ {1, . . . ,m − 1}N and (bk)k ∈ {1, . . . , n − 1}N
are a pair of sequences of admissible sectors associated to w.

Let us recall that b0 and the sequences (ak)k ∈ {1, . . . , n−1}N and (bk)k ∈ {1, . . . ,m−1}N are uniquely
determined when w is non-periodic (see §7.5). Let us also remark that the above Proposition implies
in particular that the direction θ is uniquely determined by the combinatorial information given by
deriving w.

Proof. Without loss of generality, by applying πb0n to w and φb0n to τ, we can assume that the direction
θ of τ is in the standard sector and reduce to proving that θ is the unique point of intersection of
(14). By Proposition 8.5, the itinerary of θ under Fm,n is ((ak, bk))k . By definition of itinerary, for
every k ∈ N we have that θk :=

(
F n
m

)k(θ) ∈ Σ0m,n(ak, bk). Thus, since Fm,n restricted to Σ0m,n(ak, bk) is
by definition the branch Fm,n(ak, bk), we can write

θk = (Fm,n(ak, bk))−1(θk+1), ∀ k ∈ N.
This shows that θ belongs to the intersection (14) and, since the intersection consists of an unique
point, it shows that θ = [a1, b1, a2, b2, . . . ]m,n. �

9. Characterization of cutting sequences

In this section we will give a complete characterization of (the closure of) Bouw-Möller cutting
sequences in the set of all bi-infinite sequences in the alphabet Lm,n. As in [37] we cannot give a
straightforward characterization of the cutting sequences as the closure of infinitely derivable sequences.
In fact, such a characterization holds only for the case of the Sturmian sequences on the square,
presented in [34]. As in the regular 2n-gons case for n ≥ 3, we can still give a full characterization and
we will present it in two different ways.

The first way, as in [37], consists in introducing the so-called generation rules, a combinatorial
operation on sequences inverting the derivation previously defined. These are defined in §9.1, where
it is shown that they allow us to invert derivation. In §9.2 we then state and prove a characterization
using generation (see Theorem 9.7). The second way, presented in §9.3, will be obtained from the
previous one by replacing the generation rules with the better known substitutions, in order to obtain
an S-adic presentation, i.e. Theorem 9.14.

9.1. Generation as an inverse to derivation. In this section we define generation operators,12

which will allow us to invert derivation. Generations are combinatorial operations on sequences which,
like derivation, act by interpolating a sequence with new edge labels and dropping the previous ones.
They will be used to produce sequences which, derived, give back the original sequence. Let us recall
that in our renormalization procedure we always compose the derivation operators (alternatively Dn

m

and Dm
n ) with a normalization operator (Nm

n or Nn
m respectively) which maps sequences admissible in

other sectors back to sequences admissible in the standard sectors (on which the derivation operators
are defined). Thus, we want more precisely to define operators that invert the action of the composition
Nm

n D
n
m of derivation and normalization on sequences in Sm,n.

12The name was introduced in [37], where this type of operator was also used to invert derivation.
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It turns out that the operator Nm
n D

n
m cannot be inverted uniquely. This is because, as we saw in §7,

under the action of Ψn
m, one of our sectors in Sm,n opens up to a whole range of sectors in Sn,m (more

precisely m−1 sectors, as many as the sectors in the complement of the standard one for Sn,m.) Then by
normalizing, we bring each of these sectors back to the standard one. As a consequence, when we have
the cutting sequence of a trajectory in Σ0n for Sn,m, there exist m − 1 cutting sequences of trajectories
in the standard sector for Sn,m which, derived and normalized, produce the same cutting sequence. To
uniquely determine an inverse, we have to specify the sector in which the derived sequence is admissible
before normalizing.

We will hence define m − 1 generations gm,ni for 1 ≤ i ≤ m − 1, each of which inverts Nm
n D

n
m: each

g
m,n
i will send an admissible sequence w in T 0

n,m to an admissible sequence gm,ni w in T 0
m,n which, when

derived and normalized, gives back the sequence w. For how we defined derivation and normalization,
the derived and normalized sequence of the cutting sequence of a trajectory in Sm,n, is the cutting
sequence of a trajectory in Sn,m. Generations gm,ni will act in the same way: applying them to a cutting
sequence of a trajectory in the standard sector on Sn,m will give a cutting sequence in Sm,n.

We will first define operators g0i , for 1 ≤ i ≤ m−1 (which invert Dn
m), and then to use them to define

g
n,m
i (which inverts Nm

n D
n
m). The operator g0i applied to the sequence w of a trajectory in Σ j

n in Sm,n,
will produce a sequence W = g jiw admissible in transition diagram T i

n,m, and such that Dn
mW = w.

As usual let us first start with defining generations for the S3,4 case. First we will define g0i . Such an
operator, applied to the cutting sequence of a trajectory in S3,4 admissible in the diagram T i

3,4, gives
a sequence admissible in diagram T 0

4,3, for trajectories in S4,3. In the proof of Proposition 9.3, we will
explain how to construct the diagram from which we deduce such an operator. For the general case,
the following definition will remain the same, but the diagrams in Figures 42 and 43 will be obviously
different, find in the way described in the proof of the Proposition.

Definition 9.1. Let w be a sequence admissible in diagram T k
n,m. Then g0kw is the sequence obtained

by following the path defined by w in T k
n,m, interpolating the elements of w with the labels on the

arrows of a diagram analogous to the ones in Figure 42 (which we will call generation diagrams and
denote by Gk

n,m), and dropping the previous ones.
For example, if our sequence contains w = . . . n1n2n3 . . . , and the arrow from n1 to n2 in diagram

Gk
n,m has the label wk

n1n2
, while the arrow from n2 to n3 in Gk

n,m has the label wk
n2n3

, then g0
k
w =

. . .wk
n1n2

wk
n2n3

. . . .

Figure 42. Generation diagrams describing the operator g0i for S4,3

We then define the generation operator as follows:

Definition 9.2. The generation operator gn,mi is defined by

g
n,m
i w = g0i (πim)−1w,

where w is a sequence admissible in T 0
n,m and πim is the ith isometry permutation in Sn,m.

As we said, this operator inverts the derivation and normalization operation on sequences. More
specifically, we have the following:

Proposition 9.3 (Generation as an inverse to derivation.). Let w be a sequence admissible in diagram
T 0
n,m. Then for every 1 ≤ i ≤ n − 1, the sequence W = g

n,m
i w is admissible in diagram T 0

m,n and
satisfies the equation Nm

n D
n
mW = w. Moreover, the derivative Dn

mW (before normalization) is a sequence
admissible in diagram T i

m,n.
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Figure 43. Generation diagrams describing the generation operator
g0i for S3,4

In order to prove the Proposition, the following Lemma will be crucial. The proof of the Proposition
relies in fact on the idea that the diagrams in Figures 42 and 43 are constructed exactly in such a way
to invert the derivation operation. This Lemma is useful exactly in this sense and is true for generic
Bouw-Möller surfaces.

Lemma 9.4. Let us consider the derivation diagram for Sm,n, as in Figure 44. Given two green edge
labels on arrows of the derivation diagram, if there is a path from one to the other that follows the
arrows on the diagram without crossing another green edge label in between, then the path is unique.
In other words, we cannot always go from a green edge label to an other green edge label following a
path satisfying such conditions, but if it is possible, then there exists only one such path.

Proof. The condition of not passing through another green edge label implies that we can move either
in the same column, upwards or downwards, or on the next one, on the left or on the right, because
we have a green edge label on each horizontal arrow. Starting from a green edge label, unless we are
on a boundary edge, we have the first choice to do. We will have the choice of which of the two arrows
carrying that edge label to follow. The choice will be related to the two different cases of moving
upwards or downwards if we are going to the same column, or if we are moving left or right if we are
changing the column.

Let us now assume that we want to reach an edge label on the same column. For the structure
of the derivation diagram, we know that if we follow one of the arrows we will get to a red vertex
whose column has arrows going upwards, while if we choose the other one we will get to arrows going
downwards. According to whether the green edge label we want to reach is higher or lower with respect
to the starting one, we will choose which way to go. Clearly, in the opposite case, we will be restricted
to go on the wrong side and we will never reach the targeted green edge label. At that point, we
follow arrows upwards or downwards until reaching the level of the green edge label where we want
to arrive. In fact, trying to move again to try to change column would make us cross a new green
edge label, which we can afford to do only once we reach the level of the edge label we want. After
stopping on the right red vertex we have half more arrow to move back to the column of the green edge
label, reaching the one we were targeting. This is obviously possible, because the horizontal arrows
are always double.

On the contrary, we consider now that we want to reach a green edge label on a column adjacent to
the previous one. In this case, the first choice of the edge to follow for the first half arrow depends on
whether the adjacent column is the right or the left one. Clearly, going in the other direction would
make it impossible to reach the green edge label we want. As before, at that point, we can only follow
the arrows going upwards or downwards, according to the parity of the column. As we said, we are
assuming that there is a path connecting the two edge labels. In fact, if for example the arrows are
going downwards and the edge label is on a higher row, then such a path does not exist, but this is a
case we are not considering.
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From what we said, it is clear that at each step the choice made is the only possible one to reach
the targeted edge label. �

The path that was found in the proof of the Lemma 9.4 will be used again later in the proof of
Proposition 9.3.

We also prove the following Lemma, which will be used later in the proof of Theorem 9.14.

Lemma 9.5. For any vertex n1 of any generation diagram Gi
m,n, the labels of all the arrows of Gi

m,n

which end in vertex n1 end with the same edge label of the alphabet Ln,m.

The proof of the Lemma is given below. For example, in Figure 42, one can see that the three
arrows which end in 9 carry the labels 6 and 36, which all end with 6. In this case one can verify by
inspection of Gi

4,3 that the same is true for any other vertex.

Definition 9.6 (Unique precedent). For any n1 ∈ Lm,n, the unique edge label n1 ∈ Ln,m given by
Lemma 9.5 (i.e. the edge label of Ln,m with which all labels of arrows ending at vertex n1 ends) will
be called the unique precedent of n1.

Proof of Lemma 9.5. The proof uses the stairs configuration introduced in §5. Let us first recall
that (by definition of generation diagrams and Proposition 9.3) given a path in Gi

m,n, the generated
sequences obtained by reading off the labeles of arrows of Gi

m,n along the path are by construction
admissible sequences in T 0

n,m that, derived, give the sequence of labels of vertices crossed by the path.
Furthermore, each label of an arrow on Gi

m,n is a cutting sequence of a piece of a trajectory in the
standard sector Σ0m that crosses the sequence of sides of Sn,m described by the label string. This
is because, when following on Gi

m,n a path coming from a cutting sequence, we produce a cutting
sequence, with the labels of the arrows crossed as subsequences. Such a label string will hence be
part of a cutting sequence in sector Σ0m. The label of the incoming vertex is an edge label of the flip
and sheared copy of Sm,n that is hit next by the same trajectory. If we apply a shear to pass to the
orthogonal presentation, we are considering trajectories with slope in the first quadrant, and the labels
of an arrow describe the sequence of negative diagonals of basic rectangles hit (see for example Figure
20), while the vertex label is the label of a positive diagonal.

Without loss of generality, we can assume that the edge label of Lm,n that we are considering is
the label of the positive diagonal b in the stair configuration in Figure 16, since recalling Convention
5.5, vertical or horizontal sides can be considered as degenerated diagonals in a degenerated stair
(corresponding to a degenerated hat in the augmented Hooper diagram). One can then see from
Figure 16 that any trajectories with slope in the first quadrant which hit the positive diagonal labeled
by b in Figure 16, last hit the negative diagonal labeled by a. This hence shows that all labels of arrows
in Gi

m,n which end in the vertex corresponding to the side b end with the edge label a of Ln,m. �

We are now ready to prove Proposition 9.3 and at the same time explain how to construct in general
the generation diagrams for the operator g0i .

Proof of Proposition 9.3. As we explained in §7, the operation of derivation consists of taking a
cutting sequence in Sm,n and interpolating pairs of edge labels with new ones, then dropping the
previous ones. In this way we get a cutting sequence in Sn,m. To invert it, given a cutting sequence
in Sn,m, we want to recover the previous edge labels to appear in the new ones. As we saw, derivation
might insert or not an edge label between two original ones, and if it does, it is only one. This implies
that generation will add edge labels (one or a string) between each and every pair of edge labels of
the new sequence.

For clarity, we first explain how to recover the edge labels to interpolate through the example of
S3,4. The proof for general (m, n) follows verbatim the proof in this special case. In §7, we started
from a sequence in the standard sector of S4,3, colored in red in the figures, and got a sequence in S3,4,
colored in green in the figures. The method consisted in interpolating the red edge labels with the
green ones, following the diagram in figure 44 (see also Figure 25 in §6).

Let us now assume that we have a sequence w in green edge labels. It will be a path in one of
the transition diagrams T i

3,4. Since we saw that a sequence in the standard sector gives a sequence
admissible in one of the other ones for the other surface, i will be between 1 and n−1, so here i = 1, 2, 3.

Let us define k such that w is admissible in T k
3,4. Each pair of green edge labels is hence a transition

in T k
3,4. For each of these pairs, we want to recover which path in the diagram in Figure 44 (i. e. from
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Figure 44. The derivation diagram for S4,3.

which cutting sequence in red edge labels) it can come from. This means that we have two green edge
labels and we want to find a path leading from one to the other through edges and vertices of our
derivation diagram for S4,3. Since we are considering a transition in w, we want a path which does not
intersect other green edge labels in the middle, or we would have the corresponding transition instead.
A path connecting two green edge labels admitted in T k

3,4 will always exist, because the derivation
opens the standard sectors surjectively on all the others. These are exactly the hypotheses of Lemma
9.4, so we can find a unique such path. We then record the red edge labels crossed by such a path on
the arrow in T k

3,4 corresponding to the transition that we are considering.
Such diagrams with labels are called Gk

n,m, and in the case S3,4 this procedure gives the diagrams
in Figure 43. By construction, each of these strings that we add on the arrows represents the unique
string the transition in w can come from. Hence, it creates an operator that inverts derivation.

The same procedure can be applied to a generic Bouw-Möller surface, as we saw that in all cases the
two transition diagrams for the (m, n) and (n,m) surfaces are combined together forming the derivation
diagram we described in §6. �

9.2. Characterization via generation operators. The following theorem gives a characterization
of the closure of the set of cutting sequences.

Theorem 9.7 (Characterization of Bouw-Möller cutting sequences via generation). A word w is in
the closure of the set of cutting sequences of bi-infinite linear trajectories on Sm,n if and only if there
exists 0 ≤ b0 ≤ 2n − 1 and two sequences (ak)k ∈ {1, . . . ,m − 1}N and (bk)k ∈ {1, . . . , n − 1}N such that

(16) w ∈ G (b0, (a1, b1) . . . , (ak, bk)) :=
⋂
k∈N
(πb0n )−1(gn,ma1

g
m,n
b1
)(gn,ma2

g
m,n
b2
) . . . (gn,mak

g
m,n
bk
)Adm,n,

where Adm,n denotes the set of words in L Z
m,n which are admissible in T 0

m,n.
Thus, a word w belongs to the closure of the set of cutting sequences if and only if

(17) w ∈
⋃

0≤b0≤2n−1

⋂
k∈N

⋃
1≤ak ≤m−1
1≤bk ≤n−1

G (b0, (a1, b1) . . . , (ak, bk)) .

Remark 9.8. As we will show in the proof, the sequences (ak)k ∈ {1, . . . , n−1}N and (bk)k ∈ {1, . . . ,m−
1}N in Theorem 9.7 will be given by the itinerary of the direction θ of the trajectory of which w is
cutting sequence under the Bouw-Möller Farey map Fm,n.

Proof of 9.7. Let us denote by I ⊂ Lm,n
Z the union of intersections in (17), by CS the set of cutting

sequences of bi-infinite linear trajectories on Sm,n and by CS be its closure in Lm,n
Z. In order to show

that CS = I, one has to show that CS ⊂ I, that I is closed and that CS is dense in I.
Step 1 (CS ⊂ I) Let w be the cutting sequence of a trajectory τ in direction θ. Let b0 be such that

θ ∈ Σb0
n and let (ak)k and (bk)k be such that ((ak, bk))k is the itinerary of θ0 := φb0n [θ] ∈ Σ0n under Fm,n

(where φb0n [θ] denotes the action of φb0n on directions, see the notation introduced in §8.1).
Let (wk)k be the sequence of derivatives, see Definition 7.12. From Propostion 7.8, it follows that

wk is the cutting sequence of a trajectory τk . Furtheremore, the sequence (τk)k is obtained by the
following recursive definition (which gives the geometric counterpart of the renormalization process on
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cutting sequeneces obtained by alternatively deriving and normalizing):

(18) τ0 := τ, τk+1 :=

{
Ψn
m(φ

b j
n )τk, k = 2 j even;

Ψm
n (φ

a j
m )τk, k = 2 j − 1 odd.

The direction of the trajectory τk belongs to Σa j
m for k = 2 j − 1 odd and to Σb j

m for k = 2 j even, as
shown in the proof of Proposition 8.5.

Let (uk)k be the sequence of normalized derivatives, given by

uk :=

{
π
a j
n wk, k = 2 j − 1 odd;
π
b j
n wk, k = 2 j even.

Remark that when w is non-periodic, this could be simply written as uk := Nn
mwk or uk := Nm

n wk

according to the parity of k, but for periodic sequences the operators Nn
m and Nm

n are a priori not
defined (since a derivative could possibly be admissible in more than one sector), so we are using the
knowledge of the direction of the associated trajectory to define normalizations.

We will then show that for any k ≥ 0:

(19) w = (πb0n )−1(gn,ma1
g
m,n
b1
)(gn,ma2

g
m,n
b2
) . . . (gn,mak

g
m,n
bk
)u2k .

This will show that w belongs to the intersections (16) and hence that CS ⊂ I.
First let us remark that by replacing w with Nn

mw = π
b0
n w we can assume without loss of generality

that b0 = 0, so πb0n is the identity. Notice also that by Proposition 9.3 wk is the cutting sequence of a
trajectory τk whose direction, by definition of the Farey map and its itinerary, is in Σa j

m for k = 2 j − 1
odd and in Σb j

n for k = 2 j even. Thus, if k = 2 j−1 is odd (respectively k = 2 j is even), uk = Nm
n D

n
muk−1

(respectively uk = Nn
mD

m
n uk) and wk is the cutting sequence of a trajectory in sector Σa j

m (respectively
Σ
b j
n . By Proposition 9.3, uk−1 is hence equal to gn,ma j

uk (respectively gm,n
b j

uk−1). Thus, if by the inductive
assumption we have (19) for k−1, we can write u2(k−1) = g

n,m
ak
g
m,n
bk
)u2k and get (19) for k. This concludes

the proof of this step.
Step 2 (I is closed) I is given by (17) as a union of countable intersections of finite unions. Since

the set Adm,n of admissible words in T 0
m,n is a subshift of finite type, Adm,n is closed (see for example

Chapter 6 of [25]). Moreover, one can check that the composition gn,mi g
m,n
j is an operator from L Z

m,n

back to itself which is Lipschiz, since if u, v ∈ Adm,n have a common subword, the interpolated words
g
n,m
i g

m,n
j u and gn,mi g

m,n
j v have an even longer common subword. Thus, the sets G ((a1, b1) . . . , (ak, bk))

in (17) are closed, since they are the image of a closed set under a continuous map from the compact
space Lm,n

Z. Since in (17), for each k, one considers a finite union of closed sets, I is a finite union of
countable intersection of closed sets and thus it is closed.

Step 3 (CS is dense in I) By the definition of topology on Lm,n
Z (see for example [25]), to show

that cutting sequences are dense in (17), it is enough to show that each arbitrarily long finite subword
u of a word w in the intersection (16) is contained in a bi-infinite cutting sequence of a trajectory on
Sm,n.

Let v be such a finite subword and let b0 and ((ak, bk))k be the integer and sequences, respectively,
that appear in the expression (16). Let (wk)k be the sequence of derivatives given by Definition 7.12
and let (vk)k be the subwords (possibly empty) which are images of v in wk (using the terminology
introduced at the very beginning of § 7.6). Recall that the operator Dm

n N
m
n D

n
mN

n
m either strictly

decreases or does not increase the length of finite subwords (see Remark 7.6). Thus, either there exists
a minimal k such that vk+1 is empty (let us call this situation Case (i)), or there exists a minimal k
such that vk has the same length as vk for all k ≥ k (Case (ii)).

Let us show that in both cases vk is a subword of the cutting sequence of some periodic trajectory
τk . In Case (i), let n1 (respectively n2) be the last (respectively the first) edge label of wk which
survives in wk+1 before (respectively after) the occurrence of the subword uk . Thus, since uk+1 is the
empty word by definition of k, n1n2 is a transition in wk+1. By definition of a transition, we can hence
find a trajectory τk+1 which contains the transition n1n2 in its cutting sequence. If we set τk to be
equal to (φa j

m )−1(Ψm
n )−1τk+1, if k = 2 j − 1 is odd (respectively (φb j

n )−1(Ψn
m)−1τk+1 if k = 2 j is even), the

cutting sequence of τk contains the block vk in its cutting sequence.
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In Case (ii), note that since vk has the same length as vk+2, by Lemma 7.15 it must be a finite
subword of the infinite periodic word . . . n1n2n1n2 . . . for some edge labels n1, n2. Now, by Lemma
7.16, all words of this type are cutting sequences of periodic trajectories, so there exists a periodic
trajectory τk which contains vk in its cutting sequence.

Finally, once we have found a trajectory τk which contains vk in its cutting sequence, we will
reconstruct a trajectory τ which contains v in its cutting sequence by applying in reverse order the steps
which invert derivation at the combinatorial level (i.e. the generations given by the knowledge of the
sequences of admissible sectors) on cutting sequences, and at the same time applying the corresponding
affine diffeomorphisms on trajectories. More precisely, we can define by recursion trajectories τk which
contain vk in their cutting sequence for k = k − 1, k − 2, . . . , 1, 0 as follows. Let us make the inductive
assumption that vk is contained in the cutting sequence of τk . Let us denote by wk the cutting
sequence of the normalized trajectory τk and by vk the block in wk which corresponds to vk in wk .
By definition of itinerary and by Proposition 9.3, we then have that uk−1 = gn,ma j

uk for k = 2 j − 1 odd

or uk−1 = gm,n
b j

wk for k = 2 j even. Thus, setting τk−1 to be equal to φ
a j
m
−1
Ψn
m
−1τk or Ψm

n
−1φ

b j
n

−1
τk

respectively, we have that by Proposition 9.3 the derived sequence wk contains vk . Thus, if we set
τk−1 to be respectively φb j−1

n τk−1 or φa j−1
m τk−1, τk−1 has a cutting sequence which contains vk−1.

Continuing this recursion for k steps, we finally obtain a trajectory τ0 which contains the finite
subword v. This concludes the proof that cutting sequences are dense in I. �

9.3. An S-adic characterization via substitutions. In this section we present an alternative
characterization using the more familiar language of substitutions. This will be obtained by starting
from the characterization via generations (Theorem 9.7) in the previous section §9.2, and showing
that generations can be converted to substitutions on a different alphabet corresponding to arrows (or
transitions) in transition diagrams. Let us first recall the formal definition of a substitution.

Definition 9.9 (Substitution). A substitution σ on the alphabet A is a map that sends each symbol
in the alphabet to a finite word in the same alphabet, then extended to act on AZ by juxtaposition,
so that if for a ∈ A we have σ(a) = wa where wa are finite words in A, then for w = (ai)Z ∈ {0, 1}Z we
have that σ(· · · a−1a0a1 · · · ) = · · ·wa−1wa0wa1 · · · .

Let us now define a new alphabet Am,n, which we will use to label arrows of a transition diagram
of Sm,n. The cardinality of the alphabet Am,n is Nm,n := 3mn − 2m − 4n + 2 since this is the number
of arrows in the diagrams T i

m,n. Recall that from each vertex in T i
m,n there is at most one outgoing

vertical arrow, for a total of n(m − 2) vertical arrows. On the other hand, there can be two outgoing
horizontal arrows, going one right and one left, for a total of 2(m − 1)(n − 2) horizontal arrows. Hence,
we will use as edge labels vi, li, ri where v, l, r will stays respectively for vertical, left and right and the
index i runs from 1 to the number of arrows in each group, i.e.

Am,n = {vi, 1 ≤ i ≤ n(m − 2)} ∪ {ri, 1 ≤ i ≤ (m − 1)(n − 2)} ∪ {li, 1 ≤ i ≤ (m − 1)(n − 2)}.
We label the arrows of the universal diagram Um,n in a snaking pattern starting from the upper

left corner, as shown in Figure 45 for S4,3 and S3,4, where the labels of the alphabet A4,3 are all in red
(since they represent transitions between the red vertices), while the labels of A4,3 are all in green.
In particular for vertical arrows vi, v1 is the vertical arrow from the top left vertex, then i increases
by going down on odd columns and up on even ones; right arrows ri are numbered so that r1 is also
exiting the top left vertex and i always increases going from left to right in each row; finally left arrows
li are numbered so that l1 exits the top right vertex and i always increases going from right to left in
each row.

This labeling of Um,n induces a labeling of arrows on each T i
m,n for 0 ≤ i ≤ n − 1, where all arrows

are labeled in the same way in each diagram.
Let us call admissible the words in the alphabet Am,n that correspond to paths of arrows in a

transition diagram (in a similar way to Definition 6.8).

Definition 9.10. Let us say that the word a in Am,n
Z is admissible if it describes an infinite path on

Um,n, i.e. all pairs of consecutive labels aiai+1 are such that ai labels an arrow that ends in a vertex
in which the arrow labeled by ai+1 starts.

Let us also define an operator Tm,n
i which, for 0 ≤ i ≤ 2n − 1, allows us to convert admissible words

in A Z
m,n to words in L Z

m,n that are admissible in diagram T i
m,n.
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Figure 45. The labeling of Um,n with the labels of Am,n for
m = 4, n = 3 and for m = 3, n = 4

Definition 9.11. The operator Tm,n
0 sends an admissible sequence (ak)k in A Z

m,n to (wk)k the sequence
in L Z

m,n admissible in T 0
m,n obtained by reading off the names of the vertices of a path in T 0

m,n which
goes through all the arrows . . . a−1, a0, a1, . . . .

The operators Tm,n
i for 0 ≤ i ≤ 2n − 1 are obtained by composing Tm,n

0 with the action on Lm,n of
πin, so that Tm,n

i := πin ◦ Tm,n
0 maps admissible sequences in A Z

m,n to the sequences in L Z
m,n admissible

in T i
m,n.

Example 9.12. Let m = 4 and n = 3. Consider an admissible sequence in A Z
4,3 containing r1l2v1.

This is possible because the string represents a path in U4,3 (see Figure 45). Now, to calculate
Tm,n
0 (. . . r1l2v1 . . . ), we need to look at T 0

4,3 (Figure 33). We record the vertices of the path represented
by these arrows and we get a word which will contain the subword 1216. So Tm,n

0 (. . . r1l2v1 . . . ) =
. . . 1216 . . . .

Remark 9.13. The operator Tm,n
i is invertible and for 0 ≤ i ≤ n − 1 the inverse (Tm,n

i )−1 maps
a sequence (wk)k in L Z

m,n admissible in T i
m,n to the admissible sequence (ak)k in A Z

m,n obtained by
reading off the names . . . a−1, a0, a1, . . . of the arrows of a path in T i

m,n which goes through all the
vertices . . .w−1,w0,w1, . . . .

The main result of this section is the following characterization.

Theorem 9.14 (An S-adic characterization of Bouw-Möller cutting sequences.). There exist
(n − 1)(m − 1) substitutions σi, j for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ m − 1 on the alphabet Am,n such
that the following holds:

The sequence w is the closure of the set of cutting sequences of a bi-infinite linear trajectory on
Sm,n if and only if there exist two sequences (ak)k ∈ {1, . . . , n − 1}N and (bk)k ∈ {1, . . . ,m − 1}N and
0 ≤ b0 ≤ 2n − 1 such that

(20) w ∈
⋂
k∈N

Tm,n
b0

σm,n
a1,b1

σm,n
a2,b2

. . . σm,n
ak,bk

A Z
m,n.

Furthermore, the sequence ((ak, bk))k the itinerary of θ under Fm,n.
This gives the desired S-adic characterization, where

S = Sm,n = {σi, j, 1 ≤ i ≤ n − 1, 1 ≤ i ≤ m − 1}.
Equivalently, (20) can be rephrased by saying that any sequence in the closure of the set of cutting
sequences is obtained as an inverse limit of products of the substitutions in Sm,n, i.e. there exists a
sequence of labels ak in Am,n such that

(21) w = lim
k→∞

Tm,n
b0

σm,n
a1,b1

σm,n
a2,b2

. . . σm,n
ak,bk

ak .

The above expression is known as S-adic expansion of w. We refer to [7] for details.
The proof of Theorem 20, which is presented in the next section §9.4, essentially consists of

rephrasing Theorem 9.7 in the language of substitutions.
As an example of the substitutions which occur, we list one of the substitutions for m = 4, n = 3

below (Example 9.15) and give the other substitutions for m = 4, n = 3 in Example 9.21 as composition
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of the pseudosubstitutions (see Definition 9.18 below) in Example 9.19. We explain in the next section
how these substitutions were computed (see in particular Example 9.16).

Example 9.15 (Substitutions for S4,3). The substitution σ4,3
1,1 for cutting sequences on S4,3 is the

following:

σ4,3
1,1 : σ4,3

1,1 (r1) = l2v1r3v4 σ4,3
1,1 (l1) = l1 σ4,3

1,1 (v1) = l2v1

σ4,3
1,1 (r2) = r2 σ4,3

1,1 (l2) = r2l1 σ4,3
1,1 (v2) = r3

σ4,3
1,1 (r3) = r3 σ4,3

1,1 (l3) = r2v5v6l5v3 σ4,3
1,1 (v3) = r6l5v3

σ4,3
1,1 (r4) = l4r3v4 σ4,3

1,1 (l4) = l4 σ4,3
1,1 (v4) = l4r3v4

σ4,3
1,1 (r5) = l4v2r5 σ4,3

1,1 (l5) = l5 σ4,3
1,1 (v5) = l1

σ4,3
1,1 (r6) = r6 σ4,3

1,1 (l6) = r6l5v3 σ4,3
1,1 (v6) = r2v5v6

In Example 9.15 below we explain how the above substitution can be obtained from the generation
rules in the previous section. The other substitutions for S4,3 are given in Example 9.21, see also
Example 9.19.

9.4. From generations to substitutions. We will now provide the recipe of how to translate
generation operators (in the alphabet Lm,n) into a substitution (in the alphabet Am,n), and in
particular to obtain the substitutions in the previous example. This is done in Definition 9.20 and
Lemma 9.22. They constitute the heart of the proof of Theorem 9.14 from Theorem 9.7, which is
presented at the end of this section. We begin first with a concrete example, which the definitions
below will then formalize.

Example 9.16. Let m = 4 and n = 3. Let us explain how to associate to the composition of the
two generation operators g3,41 ◦ g

4,3
1 a substitution on the arrows alphabet A4,3. For clarity, we will

denote in red the symbols (edge labels) of the alphabet A4,3 and in green the ones of A3,4. Let us first
consider the generation diagram T 1

4,3 used to define g4,31 . Start from the arrow labeled by r1 on the
universal diagram U4,3, which in this diagram is the arrow from the vertex labeled by 7 to the vertex
9. The generating word on this arrow in G1

4,3 is the green word 36. Remark also that all the arrows
incoming to the red vertex 7 (in this case only one) carry a green word which ends with 4 (in this case
54), while all the arrows outgoing from the red vertex 9 (two) carry a green word which starts with
5 (5 and 54). Thus, the derived sequence of a sequence which contains the transition 79 contain the
word 4365. We look now at the transition diagram T 0

3,4 on page 41 (the first in Figure 34) and see
that a path which goes through 4365 crosses the arrows which are labeled by l1v3r6 in U3,4 (see Figure
45). We choose to include in the green path associated to the transition r1 the first arrow but not the
last one, which will be included in the green path associated to the following red transition. Thus, we
say that the label r1 of A4,3 is mapped to the word l1v3 in the alphabet A3,4. We repeat the same
process for every arrow on G0

4,3. This gives a map from edge labels in A4,3 to words in A3,4, which
can be extended to words in A4,3 by juxtaposition. We call this type of operator a pseudo-substitution
(see Definition 9.18), since it acts as a substitution but between two different alphabets. Note that
a pseudo-substitution is sometimes called a free semi-group morphism.

Similarly, we repeat the same process for arrows for the dual Bouw-Möller surface S3,4. For example,
for the generation diagram G1

3,4 used to define g3,41 we see that the arrow labeled by l1 is the arrow
from 1 to 3 and carries the word 16. Furthermore, the unique incoming arrow to 1 carries the label
2. Since the word 216 describes in the diagram T 0

4,3, describes a path through the arrows labeled by
l2v1 in U3,4 in Figure 45, we associate to l1 the word l2v1. Reasoning in a similar way, we associate to
v3 the word r3v4 (given by the path 652). Thus, by juxtaposition, the word l3v4r6 in A4,3 maps to the
word l2v1r3v4 in A4,3.

Thus, the composition g3,42 ◦ g
4,3
1 sends r1 to l2v1r3v4. Thus we can define a standard substitution

σ43
1,2 in the alphabet A4,3, by setting σ43

1,2(r1) = l2v1r3v4r2 and similarly for the other labels of A4,3.
This produces the substitutions in the Example 9.15 above.

We will now state formally how to obtain substitutions from generations, thus formalizing the
process explained in the Example 9.16 above. As we already saw, since each generation operator maps
cutting sequences on Sn,m to cutting sequences on Sn,m, in order to get substitutions (in the standard
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sense of Definition 9.9) we will need to compose two generation operators. It is easier though to first
describe the substitutions in two steps, each of which correspond to one of the generation operators.
Since the alphabet Am,n on which the substitution acts corresponds to transitions in the original
alphabet Lm,n and the transitions for Sn,m and for Sm,n, the intermediate steps will be described by
pseudo-substitutions, which are like substitutions but act on two different alphabets in departure and
arrival:

Definition 9.17. [Pseudo-substitution] A pseudo-substitution σ from alphabet A to an alphabet
A ′ is a map that sends each letter a ∈ A to a finite word in A ′, then extended to act on AZ by
justapposition, so that if σ(a) = wa for some finite words wa in the letters of A ′ as a ∈ A, then for
w = (ai)Z ∈ AZ we have that σ(· · · a−1a0a1 · · · ) = · · ·wa−1wa0wa1 · · · .
Definition 9.18 (Pseudo-substitution associated to a generation). Let σm,n

i for ≤ i ≤ n − 1 be the
pseudo-substitution between the alphabets Am,n and An,m defined as follows. Assume that the arrow
from vertex j to vertex k of T i

m,n is labeled by a in Um,n. Let w1w2 . . .wN be the finite word associated
to this arrow in the generation diagram Gi

m,n. Then set

σm,n
i (a) = a0a1a2 . . . aN−1,

where ak for 1 ≤ k ≤ N − 1 are the labels in Am,n of the arrow from wi to wi+1, while a0 is the label of
the arrow from the unique edge label in Ln,m which always preceeds j in paths on Gi

m,n to w1.

Example 9.19. Let m = 4, n = 3. For i = 1, as we already saw in the beginning of Example 9.16,
the arrow labeled by r1 on the universal diagram U4,3, which in the arrow from the vertex labeled by
7 to the vertex 9 in G1

4,3, is labeled by the green word 36 and the labels of arrows incoming to the
red vertex 7 end with 4. Furthermore, the path 436 on T 0

4,3 correspond to the arrows labeled by l1v3.
Thus we set σ4,3

i (r1) = l1v3. Similarly, the arrow r2 in G1
4,3 goes from 9 to 8, is labeled by 5 and all

three arrows which and in 9 have labels which end with 6. Thus, since the path 65 correspond to the
arrow r6 in T 0

3,4, we set σ4,3
i (r1) = r6. Reasoning in the same way and generalizing it to i = 2, we get

the full pseudosubstitutions for S4,3 (Figure 46).

σ4,3
1 : σ4,3

1 (r1) = l1v3 σ4,3
1 (l1) = l4 σ4,3

1 (v1) = l1

σ4,3
1 (r2) = r6 σ4,3

1 (l2) = r6v4 σ4,3
1 (v2) = l2

σ4,3
1 (r3) = l2 σ4,3

1 (l3) = l5v2 σ4,3
1 (v3) = r4v2

σ4,3
1 (r4) = r2v3 σ4,3

1 (l4) = r2 σ4,3
1 (v4) = r2v3

σ4,3
1 (r5) = l3v1 σ4,3

1 (l5) = l6 σ4,3
1 (v5) = l4

σ4,3
1 (r6) = r4 σ4,3

1 (l6) = r4v2 σ4,3
1 (v6) = l5

σ4,3
2 : σ4,3

2 (r1) = r1 σ4,3
2 (l1) = r4v2 σ4,3

2 (v1) = r1

σ4,3
2 (r2) = l3v1 σ4,3

2 (l2) = l3 σ4,3
2 (v2) = r2

σ4,3
2 (r3) = r2v3l5 σ4,3

2 (l3) = r5 σ4,3
2 (v3) = l1v3

σ4,3
2 (r4) = l5 σ4,3

2 (l4) = l5v2 σ4,3
2 (v4) = l5v2

σ4,3
2 (r5) = r3 σ4,3

2 (l5) = r6v4 σ4,3
2 (v5) = r4

σ4,3
2 (r6) = r4 σ4,3

2 (l6) = l1 σ4,3
2 (v6) = r5

Figure 46. The pseudosubstitutions for S4,3

Let now m = 3 and n = 4. In the same way, for i = 1, 2, 3, we can calculate the pseudosubstitutions
for S3,4 (Figure 47).

It is easy to check from the definition that given a pseudo-substitution σ between the alphabets A
and A ′ and a pseudo-substitution τ between the alphabets A ′ and A, their composition τ ◦ σ is a
substitution on the alphabet A. Thus the following definition is well posed.
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σ3,4
1 : σ3,4

1 (r1) = r5v3 σ3,4
1 (l1) = l2v1 σ3,4

1 (v1) = r5

σ3,4
1 (r2) = l4 σ3,4

1 (l2) = r3 σ3,4
1 (v2) = l5v3

σ3,4
1 (r3) = r3v4 σ3,4

1 (l3) = l4v2 σ3,4
1 (v3) = r3v4

σ3,4
1 (r4) = r6 σ3,4

1 (l4) = l1 σ3,4
1 (v4) = l1

σ3,4
1 (r5) = l5v3v4 σ3,4

1 (l5) = r2v5v6

σ3,4
1 (r6) = r2 σ3,4

1 (l6) = l5

σ3,4
2 : σ3,4

2 (r1) = l3v4 σ3,4
2 (l1) = r4v6 σ3,4

2 (v1) = l3

σ3,4
2 (r2) = r2v5v6 σ3,4

2 (l2) = l5v3v4 σ3,4
2 (v2) = r5v3v4

σ3,4
2 (r3) = l5v3 σ3,4

2 (l3) = r2v5 σ3,4
2 (v3) = l5v3v4

σ3,4
2 (r4) = l4v2 σ3,4

2 (l4) = r3v4 σ3,4
2 (v4) = r3

σ3,4
2 (r5) = r5v3v4 σ3,4

2 (l5) = l2v1v2

σ3,4
2 (r6) = l2v1 σ3,4

2 (l6) = r5v3

σ3,4
3 : σ3,4

3 (r1) = r1 σ3,4
3 (l1) = l6 σ3,4

3 (v1) = r1

σ3,4
3 (r2) = l2v1v2 σ3,4

3 (l2) = r5v3v4 σ3,4
3 (v2) = l3v4

σ3,4
3 (r3) = r5 σ3,4

3 (l3) = l2 σ3,4
3 (v3) = r5v3

σ3,4
3 (r4) = r2v5 σ3,4

3 (l4) = l5v3 σ3,4
3 (v4) = l5

σ3,4
3 (r5) = l3 σ3,4

3 (l5) = r4

σ3,4
3 (r6) = r4v6 σ3,4

3 (l6) = l3v4

Figure 47. The pseudosubstitutions for S3,4

Definition 9.20 (Substitution associated to pair of generation). For ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1, let
σm,n
i, j be the substitution on the alphabets Am,n defined by

σm,n
i, j := σn,m

j ◦ σm,n
i .

Example 9.21. In Example 9.15 we wrote the substitution σ4,3
1,1 explicitly. The full list of substitutions

for S4,3 can be produced by composing the pseudosubstitutions in Example 9.19, as by Definition 9.20,
i.e.

S4,3 = {σ4,3
i, j := σn,m

j ◦ σm,n
i , for 1 ≤ i ≤ 2, 1 ≤ j ≤ 3}.

The following Lemma shows that, up to changing alphabet from vertices labels to arrows labels
as given by the operator Tm,n

0 and its inverse (see Remark 9.13), the substitutions σm,n
i,k

act as the
composition of two generation operators.

Lemma 9.22 (From generations to substitutions). The substitutions σm,n
i, j defined in Definition 9.20

for any 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1 are such that

(22) Tm,n
0 ◦ σm,n

i, j ◦ (T
m,n
0 )

−1 = gn,mj ◦ gm,ni .

Before giving the proof, we show by an example the action of the two sides of the above formula.

Example 9.23. Let us verify for example that the formula in Lemma 9.22 holds for m = 4, n = 3 and
i = 1, j = 1 when applied to a word w admissible in T 0

4,3 which contains the transition 123.
Let us first compute the action of the right hand side of (22). Recall (see Definition 9.2) that g4,31

is given by first applying π13, then g
0
1. Since π

1
3 maps 123 to 798, by looking at the generation diagram

G1
4,3 (Figure 42), we see that g4,31 w will contain the string 4365. Then, to apply g4,31 we first apply π14,
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which sends 4365 to 1387, then look at the generation diagram G1
3,4 (Figure 43), to see that a path

which contains 1387 will also contain 216523. Hence g3,41 g
4,3
1 w will contain 216523.

Let us now compute the action of the left hand side of (22). Since the arrow from the vertex 1 to 2
in T 1

4,3 is labeled by r1 (Figure 45), and the one from 2 to 3 is labeled by r2, the operator (Tm,n
0 )−1 sends

123 to r1r2. Then, from Example 9.19 we have that σ4,3
1,1 (r1r2) = l2v1r3v4r2. Finally, Tm,n

0 maps this
word in A4,3 to 216523 (see Example 9.12). Thus, we have verified again that T4,3

0 ◦ σ
4,3
1,1 ◦ (T

4,3
0 )−1(w)

contains 216523.

Proof of Lemma 9.22. Since

σm,n
i, j := σn,m

j ◦ σm,n
i = σn,m

j ◦ (Tm,n
0 )

−1 ◦ Tm,n
0 ◦ σm,n

i ,

it is enough to show that

Tn,m
0 ◦ σm,n

i ◦ (Tm,n
0 )

−1 = gm,ni , for all 1 ≤ i ≤ m − 1, for all m, n.

Consider any sequence w ∈ Lm,n
Z. Let n1n2 and n2n3 be any two pairs of transitions in T 0

m,n. Let
u1u2 . . . uN be the label of the arrow from n1 to n2 in Gi

m,n and v1v2 . . . vM the one of the arrow between
n2 and n3. Then, for every occurrence of the transitions n1n2n3 transitions in w (i.e. every time
wp−1 = n1,wp = n2,wp+1 = n3 for some p ∈ N) gives rise to a block of the form u1u2 . . . uNv1v2 . . . vM
in Ln,m in gm,ni (w).

Let a be the label in Am,n of the arrow from n1 to n2 and b be the label of the arrow from n2 to n3.
Thus, when we apply (Tm,n

0 )−1 to w, each block n1n2n3 in w is mapped to the word ab.
Let ai for 1 ≤ i ≤ N − 1 be the labels of the arrows from ui to ui+1 and a0 be the label of the

arrow from the unique label in Am,n which preceeds n1 to u1. Thus, by Definition 9.18, we have that
σm,n
i (a) = a0a1a2 . . . aN . Now, let bi for 1 ≤ i ≤ M − 1 be the labels of the arrow from vi to vi+1. Let

b0 be the arrow from uN to v1 and remark that uN is (by uniqueness) the unique label in Am,n which
preceeds n2. Thus, again by Definition 9.18, σm,n

i (b) = b0b1b2 . . . bM−1.
Thus, we have that σm,n

i (ab) = a0a1a2 . . . aNb0b1 . . . bM . Finally, by definition of the operator Tm,n
0

(recall Definition 9.11) and of the arrows ai and bi given above, Tm,n
0 ◦σm,n

i ◦ (Tm,n
0 )−1(w) contains the

word u1u2 . . . uNv1 . . . vM . This shows the equality between the two sides of (22). �

Proof of Theorem 9.14. By Theorem 9.7, w ∈ Lm,n
Z belongs to the closure of cutting sequences on

Sm,n if and only if there exists (ak)k, (bk)k such that it belongs to the intersection (20), i.e. for every k
there exists a word uk in L Z

m,n which is admissible in Tm
n,0 such that

w = (πb0n )−1(gn,ma1
g
m,n
b1
)(gn,ma2

g
m,n
b2
) . . . (gn,mak

g
m,n
bk
)uk

= (πb0n )−1Tm,n
0 (T

m,n
0 )

−1(gn,ma1
g
m,n
b1
)Tm,n

0 (T
m,n
0 )

−1(gn,ma2
g
m,n
b2
)Tm,n

0 . . . (Tm,n
0 )

−1(gn,mak
g
m,n
bk
)Tm,n

0 uk

= Tm,n
b0

σm,n
a1,b1

σm,n
a2,b2

. . . σm,n
ak,bk

Tm,n
0 uk,

where in the last line we applied Lemma 9.22 and recalled the definition Tm,n
i := (πin)−1 ◦ Tm,n

0 of the
operators Tm,n

i (see Definition 9.11). Remarking that Tm,n
0 uk is a sequence in the alphabet Am,n which

is admissible by definition of Tm,n
0 , this shows that w is in the closure of cutting sequences if and only

if it belongs to the intersection (20). �

Appendix A. Renormalization on the Teichmüller disk

In this section we describe how the renormalization algorithm for cutting sequences and linear
trajectories defined in this paper for Bouw-Möller surfaces can be visualized on the Teichmüller disk of
Sm,n. This is analogous to what was described in [38] by Smillie and the third author for the analogous
renormalization algorithm for the regular octagon and other regular 2n-gons introduced in [37], so we
will only give a brief overview and refer to [38] for details.

A.1. The Teichmüller disk of a translation surface. The Teichmüller disk of a translation
surface S can be identified with a space of marked translation surfaces as follows. Let S be a translation
surface. Using the convention that a map determines its range and domain we can identify a triple
with a map and denote it by [ f ]. We say two triples f : S → S′ and g : S → S′′ are equivalent if
there is a translation equivalence h : S′ → S′′ such that g = f h. Let M̃A(S) be the set of equivalence
classes of triples. We call this the set of marked translation surfaces affinely equivalent to S. There
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is a canonical basepoint corresponding to the identity map id : S → S. We can also consider marked
translation surfaces up to isometry. We say that two triples f : S → S′ and g : S → S′′ are equivalent
up to isometry if there is an isometry h : S′ → S′′ such that g = f h. Let M̃I (S) be the collection of
isometry classes of triples.

Let us denote by H the upper half plane, and by D the unit disk. In what follows, we will identify
them by the conformal map φ : H → D given by φ(z) = z−i

z+i . One can show that the set M̃A(S)
can be canonically identified with SL±(2,R). More precisely, one can map the matrix ν ∈ SL±(2,R)
to the marked triple Ψν : S → νS, where Ψν is the standard affine deformation of S given by ν and
show that this map is injective and surjective (see the the proof of Proposition 2.2 in [38]). The
space M̃I (S) of marked translation surfaces up to isometry is hence isomorphic to H (and hence to D)
(see Proposition 2.3 in [38]). The hyperbolic plane has a natural boundary, which can be naturally
identified with the projective space RP1. The point

(
x1 x2

)
in RP1 is sent to the point eiθx ∈ ∂D

where sin θx = −2x1x2/(x21 + x22) and cos θx = (x21 − x22)/(x21 + x22).

Actions on the Teichmüller disk and Teichmüller orbifolds. The subgroup SL±(2,R) ⊂ GL(2,R)
acts naturally on M̃A(S) by the following left action. Given a triple f : S → S′, an element
η ∈ SL±(2,R) maps [ f ] to [η f ] where η f : S → S′′ is obtained by post-composing f with the map
η : S′→ S′′ := ηS given by the linear action of η on the translation surface defined by post-composing
the charts of the translation surface with η. Using the identification of M̃A(S) with SL±(2,R), this
action corresponds to left multiplication by η. One can see that this action is simply transitively
on M̃A(S). There is also a natural right action of A f f (S) on the set of triples. Given an affine
automorphism Ψ : S → S we send f : S → S′ to fΨ : S → S′. This action induces a right action
of V(S) on M̃A(S). Using the identification of M̃A(S) with SL±(2,R), this action corresponds to right
multiplication by DΨ. It follows from the associativity of composition of functions that these two
actions commute.

The Veech group acts via isometries with respect to the hyperbolic metric of constant curvature
on H. This action induces an action of the Veech group on RP1 seen as boundary of H (or D), which
correspond to the projective action of GL(2,R) on row vectors coming from multiplication on the right,
namely

(
z1 z2

)
7→

(
z1 z2

) (
a b
c d

)
. When the matrix ν =

(
a b
c d

)
has positive determinant it takes the

upper and lower half-planes to themselves and the formula is z 7→ az+c
bz+d . When the matrix ν has

negative determinant the formula is z 7→ az+c
bz+d .

The Teichmüller flow is given by the action of the 1-parameter subgroup gt of SL(2,R) given by the
diagonal matrices

gt :=

(
et/2 0
0 e−t/2

)
, t ∈ R,

on M̃A(S). If we project M̃A(S) to M̃I (S) by sending a triple to its isometry class and using the
identification M̃I (S) with H described in § A.1, then the Teichmüller flow corresponds to the hyperbolic
geodesic flow on T1H, i.e. orbits of the gt -action on M̃A(S) project to geodesics in H parametrized at
unit speed. We call a gt -orbit in M̃A(S) (or, under the identifications, in T1D) a Teichmüller geodesic.

The quotient of M̃I (S) by the natural right action of the Veech group V(S) is the moduli space of
unmarked translation surfaces, which we call MI (S) = M̃I (S)/V(S). This space is usually called the
Teichmüller curve associated to S, but since since we allow orientation-reversing automorphisms, this
quotient might be a surface with boundary, so the term Teichmüller orbifold associated to S is more
appropriate. We denote byMA(S) the quotient M̃A(S)/V(S) of M̃A(S) by the right action of the Veech
group (this space is a four-fold cover of the tangent bundle to MI (S) in the sense of orbifolds, see
Lemma 2.5 in [38]). The Teichmüller flow on MA(S) can be identified with the geodesic flow on the
Teichmüller orbifold, which, in the particular case where the spaceMI (S) is a geodesic polygon in the
hyperbolic plane, is just the hyperbolic billiard flow on the polygon.

A.2. Veech group action on a tessellation of the Teichmüller disk of a Bouw-Möller
surface. Let Sm,n be the (m, n) Bouw-Möller translation surface. We recall from § 2.6 that the Veech
group of Sm,n (as well as the Veech group of the dual surface Sn,m) is isomorphic to the (m, n,∞) triangle
group or it has index 2 in it (when n,m are both even, see [17]). Thus, the fundamental domain for the
action described above of the Veech group on the Teichmüller disk is a hyperbolic triangle whose angles
are π/n, π/m, and 0. The action of the Veech group can be easily visualized by considering a tessellation
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of the hyperbolic plane by (m, n,∞) triangles, as shown in Figure 48 for the (3, 4) Bouw-Möller surface.
In this example, the tessellation consists of triangles whose angles are π/3, π/4, and 0. The rotational
symmetries of order 3 and 4 appear clearly at alternating interior vertices. Triangles in the tessellation
can be grouped to get a tessellation into hyperbolic polygons which are either 2m-gons or 2n-gons.
The 2m-gons (respectively the 2n-gons) have as a center an elliptic point of order m (respectively n)
and have exactly m (respectively n) ideal vertices. For example, the tessellation in Figure 48 contains
a supertessellation by octagons with four ideal vertices and hexagons with three ideal vertices.

Figure 48. The first four steps of the tessellation of the hyperbolic
disk by (3, 4,∞) triangles, with S3,4 or S4,3 in the center respectively.
Angles of π/3, π/4 and 0 are indicated by red, green and black dots,
respectively.

If we consider the Teichmüller disk of Sm,n pointed at Sm,n, i.e. we choose the center of the disk D
to represent the base triple id : Sm,n → Sm,n, the rotation of order π/n on the plane acts as a rotation
by angle 2π/n of the Teichmüller disk. On the other hand, if we center the Teichmüller disk at Sn,m,
i.e. we choose the center of the disk D to represent the base triple id : Sn,m → Sn,m and mark triples
by Sm,n, the rotation of order π/m acts a a rotation by an angle 2π/m of the Teichmüller disk. The
derivative γnm of the affine diffeomorphism Ψn

m (described in § 4) acts on the right on D by mapping the
center of the disk, which in this case is a center of an ideal 2n-gon, into the center of an ideal 2m-gon.
Thus, the elliptic element of order 2m in the Veech group of Sm,n can be obtained by conjugating the
rotation ρm by an angle π/m acting on Sn,m by the derivative γnm of the affine diffeomorphism Ψn

m

sending Sm,n to the dual surface Sn,m (described in § 4), i.e. it has the form γnm
−1ρmγnm. Finally, the

parabolic element which generates parabolic points in the tessellation is the shear automorphism from
Sm,n to itself given by the composition sn,msm,n of the shearing matrices defined in § 4.3, see (6). We
remark also that all reflections φin for 0 ≤ i ≤ n defined in § 6.7 (see Definition 6.18) belong to the
Veech group of Sm,n. Each of them acts on the Teichmüller disk as a reflection at one of the hyperbolic
diameters which are diagonals of the central 2n-gon.

The tree of renormalization moves. We now define a bipartite tree associated to the tessellations
of the disk described above. Paths in this tree will prove helpful in visualizing and describing the
possible sequences of renormalization moves. Consider the graph in the hyperbolic plane which has
a bipartite set of vertices V = Vm ∪ Vn where vertices in Vm, which we will call m-vertices, are in
one-to-one correspondence with centers of ideal 2m-gons of the tessellation, while vertices in Vn, called
n-vertices, are in one-to-one correspondence with centers of ideal 2n-gons. Edges connect vertices in
Vm with vertices in Vn, and there is a vertex connecting an m-vertex to an n-vertex if and only if the
corresponding 2m-gon and 2n-gon share a side. The graph can be naturally embedded in D, so that
vertices in Vm (respectively Vn) are centers of 2m-gons (respectively 2n gons) in the tessellation and
each edge is realized by a hyperbolic geodesic segment, i.e. by the side of a triangle in the tessellation
which connects the center of an 2m-gon with the center of an adjacent 2n-gon. We will call Tm,n the
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embedding of the graph in the tessellation associated to Sm,n, i.e. the embedding such that the center
of the disk is a vertex of order n (which will be the root of the tree). Examples of the embedded graph
Tm,n are given in Figure 49 for m = 3, n = 4 and for m = 4, n = 3.

Figure 49. The tree Tm,n for the tessellation associated to S3,4 and to
S4,3 with the labels of the first two generations of edges.

One can see that the graph Tm,n is a bipartite tree, with a root in the center of the disk. We define
the level k of the tree to be composed of all vertices which have distance k from the root, where the
distance here is the natural distance on a graph which gives distance 1 to vertices which are connected
by an edge. For k ≥ 1 we call edges of level k the edges which connect a vertex of level k − 1 with a
vertex of level k.

Labeling of the tree. Let us now describe how to label the edges of the tree Tm,n so that the
labels will code renormalization moves. We first remark that edges of level 1 are in one-to-one
correspondence with the n sectors Σin for 0 ≤ i ≤ n − 1 defined in § 6.3 (see Definition 6.3) as follows.
Consider all the points on ∂D that are endpoints of paths on the tree that start with a given edge e of
level 1. These give an arc on ∂D, which, via the identification of ∂D with RP1 described in § A.1, maps
to one of the sectors Σin for 0 ≤ i ≤ n − 1. Thus, we label by i the edge e of level 1 that corresponds to
the sector Σin.

We remark now that the right action of the derivative γnm of the affine diffeomorphism Ψn
m (which,

we recall, was described in § 4) maps the level 1 edge labeled by 0 in Tm,n to the level 1 edge labeled
by 0 in Tn,m flipping its orientation, in particular by mapping the center of the disk (i.e. the root of
Tm,n) to the endpoint v0 of the edge of level 1 labeled by 0 in Tn,m. Thus, the inverse (γmn )−1 sends
the endpoint v0 of the edge of level 1 labeled by 0 in Tm,n to the root of Tn,m in the center of the disk
(and maps the 2m-gon which has v0 as a center in the tessellation for Sm,n to the central 2m-gon in the
tessellation for the dual surface Sn,m). For example, (γ43)−1 maps the hexagon which has as center the
red endpoint of the 0-edge of level 1 in the left disk tessellation in Figure 49 to the central hexagon
in the right disk tessellation in the same Figure 49. Since the edges of level 1 of Tn,m are labeled by
0 ≤ i ≤ m − 1 and γnm maps the 0-edges of level 1 of Tm,n and Tn,m to each other, it follows that (γnm)−1
induces a labeling of m − 1 edges of level 2 which start from the endpoint of the 0-edge of level 1 as
follows. One of such edges e is labeled by 1 ≤ i ≤ m if (γnm)−1 maps e to the edge of level 1 of Tn,m
labeled by i.

To label the edges of level 2 which branch out of the other level 1 edges, just recall that the reflection
φin (see Definition 6.18) maps the i-edge to the 0 edge, and hence can be used in the same way to induce
a labeling of all the edges of level 1 branching out of the i edge (by labeling an edge by 1 ≤ j ≤ m if it
is mapped to an edge of level 1 already labeled by j). The same definitions for the tree embedded in
the tessellation for the dual surface Sn,m also produce a labeling of the edges of level 1 and 2 of Tn,m.
We refer to Figure 49 for an example of these labelings of edges of level 1 and 2 for T3,4 and T4,3.
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Figure 50. The labeling on a schematic representation of a portion of
tree Tm,n for S3,4, consisting of paths starting with the 0-edge.

We will now describe how to label all paths which start with the 0-edge in Tm,n, since these are
the ones needed to describe renormalization on Sm,n. Since we already labeled edges of levels 1 and 2
both in Tm,n and Tn,m, to label the edges of level 3 which belong to paths in Tm,n which start with the
0-edge, we can use that (γmn )−1 maps them to edges of level 2 in Tn,m and hence this induces a labeling
for them. For example, see Figure 50 to see this labeling for T3,4.

We can then transport this labeling of paths made by 3 edges starting with the 0-edge to all paths
starting with the 0 edge in Tm,n via the action of elements of the Veech group as follows. Consider the
elements (φimγnm)−1(φ

j
nγ

m
n )−1, i = 1, . . . ,m, j = 1, . . . , n and consider their right action on the embedded

copy of Tm,n. One can check the following.
For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let us denote by vi, j the vertex of level 3 which is the endpoint of the

path starting with the 0 edge at level 1, the i edge at level 2 and the j edge at level 3.

Lemma A.1. For every k ≥ 1, 1 ≤ i ≤ n and 1 ≤ j ≤ m, the right action of the element
(φimγnm)−1(φ

j
nγ

m
n )−1 gives a tree automorphism of Tm,n, which maps vi, j (defined just above) to the

endpoint of the 0-edge of level 1 in Tm,n. The edge ending in vi, j is mapped to the 0-edge of level
1. Furthermore, the edges of level 2k, k ≥ 2, which branch out of vi, j are mapped to edges of level
2k − 2 and the edges of level 2k + 1 branching from those to edges of level 2k − 1.

This Lemma, whose proof we leave to the reader, can be used to define a labeling of the edges of
paths starting with the 0-edge by induction on the level of the edges. One can check by induction by
repeatedly applying Lemma A.1 that the labeling is defined so that the following holds.

Lemma A.2. Consider a finite path on the tree Tm,n starting from the root and ending in an n-vertex,
whose edge labels are in order b0, a1, b1, . . . , ak, bk where 0 ≤ b0 ≤ n and, for any k ≥ 1, 1 ≤ ak ≤ m
and 1 ≤ bk ≤ n. Then the element

φb0n (φa1m γnm)−1(φb1n γmn )−1 · · · (φ
ak
m γnm)−1(φ

bk
n γmn )−1

acts on the right by giving a tree automorphism of Tm,n which maps the last edge, i.e. the one labeled
by bk , to the 0-edge of level 1 and the final vertex of the path to the ending vertex of the 0-edge of level
1.

Notice that the the labeling satisfies the following description. For k = 2i even, finite paths of length
k starting from the root are labeled by sequences of the form (b0, a1, b1, . . . , bi−1, ai) where 0 ≤ b0 ≤ n−1,
and for 1 ≤ j ≤ i, 1 ≤ aj ≤ m − 1 and 1 ≤ bj ≤ n − 1. Sharing the endpoint of such a path as an
initial vertex, there are n − 1 edges of level k + 1 which are labeled by an index j that increases from
1 to n − 1 as one moves counterclockwise (see Figure 49 and Figure 50). Similarly, for k = 2i + 1 odd,
finite paths of length k starting from the root are labeled by sequences of the form (b0, a1, b1, . . . , bi, ai)
where 0 ≤ b0 ≤ n − 1, and for 1 ≤ j ≤ i, 1 ≤ aj ≤ m − 1 and 1 ≤ bj ≤ n − 1. The final arc of any such
path is the initial endpoint of m − 1 vertices of level k + 1, labeled by an index i that increases from 1
to m − 1, also counterclockwise (see Figure 49 and Figure 50).
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A.3. Renormalization on the Teichmüller disk. In this section we link the sequences of labels of
paths on the tree to itineraries of the Bouw-Möller Farey map and to sequences of admissible diagrams
for derivatives of cutting sequences.

Let θ be a fixed direction, that we think of as the direction of a trajectory τ on Sm,n. Denote by ρθ
the matrix corresponding to counterclockwise rotation by θ and by gθt := ρ−1π

2 −θ
gt ρ π

2 −θ a 1-parameter
subgroup conjugate to the geodesic flow. Let us hence consider the Teichmüller geodesic ray

(23) r̃θ := {gθt · Mm,n}t≥0,

which, using the identification of M̃A(S) with T1D explained in § A.1, corresponds to a geodesic ray in
T1D. The projection rθ of the Teichmüller ray r̃θ to D is a half ray, starting at the center 0 ∈ D and
converging to the point e(π+2θ)i ∈ ∂D. In particular, r0 is the ray in D obtained by intersecting the
negative real axes in C with D and rθ is the ray that makes an angle 2θ (measured clockwise) with the
ray r0.

Combinatorial geodesics. Let us explain how to associate to the geodesic path rθ a path pθ in
the tree Tm,n, which we call the combinatorial geodesic approximating rθ . We say that θ is a cuspidal
direction if the ray rθ converges to a vertex of an ideal polygon of the tessellation. One can show
that this is equivalent to saying that the corresponding flow on Sm,n consists of periodic trajectories.
Assume first that θ is not a cuspidal direction. In this case, there exists a unique continuous semi-
infinite path on Tm,n, which starts at 0 and converges to the endpoint of rθ on ∂D. We will call this
infinite path on Tm,n the combinatorial geodesic associated to rθ and denote it by pθ . We can think of
this path pθ as the image of rθ under the retraction that sends the whole disk D onto the deformation
retract Tm,n. If θ is a cuspidal direction, there exist exactly two such paths, sharing the cuspidal point
as a common limit point, and thus two combinatorial geodesics that approximate rθ .

Interpretations of the labeling sequences. Given a direction θ, let pθ be a combinatorial geodesic
associated to rθ . Let us denote by

l(pθ) = (b0, a1, b1, . . . , ai, bi, . . . ), where 0 ≤ b0 ≤ n, 1 ≤ ak ≤ m, 1 ≤ bk ≤ n,

the sequence of labels of the edges of pθ in increasing order . This sequence coincides both with the
itinerary of θ under the Bouw-Möller Farey map (as defined in § 8.3), see Proposition A.3 below, and
with the pair of sequences of admissible sectors of any (bi-infinite, non periodic) cutting sequence of
a linear trajectory on Sm,n in direction θ (see Definition 7.13 in § 7.5), see Corollary A.4 below.

Let us recall that in § 8.4 we have defined a Bouw-Möller continued fraction expansion, see
Definition 15. Definitions of the labeling of the tree are given so that the following holds:

Proposition A.3. If a non-cuspidal direction θ has Bouw-Möller continued fraction expansion

(24) θ = [b0; a1, b1, a2, b2, . . . ]m,n,

then the labeling sequence l(pθ) of the unique combinatorial geodesics associated to the the Teichmüller
geodesics ray rθ is given by the entries, i.e.

l(pθ) = (b0, a1, b1, a2, b2, . . . ).

If θ is a cuspidal direction, θ admits two Bouw-Möller continued fraction expansions of the form (24),
which give the labellings of the two combinatorial geodesics approximating rθ .

To prove the proposition, one defines a renormalization scheme on paths on the tree Tm,n (or
combinatorial geodesics) acting by the elements (φimγnm)−1(φ

j
nγ

m
n )−1, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and

show that this renormalization extends to an action on ∂D that can be identified with the action of
the Bouw-Möller Farey map.

As a consequence of Proposition A.3 and the correspondence between itineraries and sequences of
admissible sectors given by Proposition 8.5, we hence also have the following.

Corollary A.4. Let w be a non-periodic cutting sequence of a bi-infinite linear trajectory on Sm,n in
a direction θ in Σ0n. Let (ak)k ∈ {1, . . . ,m − 1}N and (bk)k ∈ {1, . . . , n − 1}N be the pair of sequences of
admissible sectors associated to w (see Definiton 7.13). Then the labeling l(pθ) of the combinatorial
geodesic pθ approximating rθ is l(pθ) = (0, a0, b0, a1, b1, . . . ).
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Derived cutting sequences and vertices on the combinatorial geodesic. The sequence of
vertices of the combinatorial geodesic pθ has a geometric interpretation which helps to understand
derivation on cutting sequences. More precisely, if w is a cutting sequence of a trajectory τ in direction
θ, let rθ be the geodesic ray which contracts the direction θ given in (23) and let pθ be the associated
combinatorial geodesic, i.e. the path on Tm,n that we defined above. Recall that given a cutting
sequence w on Sm,n of a trajectory in direction θ, in § 7.5 we recursively defined its sequence of
derivatives (wk)k obtained by alternatively deriving it and normalizing it, see Definition 7.12. These
derived sequences can be seen as cutting sequences of the same trajectory with respect to a sequence of
polygonal decompositions of Sm,n dertermined by the vertices of the combinatorial path pθ as explained
below.

If the label sequence l(pθ) starts with b0, a1, b1, . . . , al, bl, . . . , then for each k ≥ 1, define the affine
diffeomorphisms

Ψ
k :=

{
φb0n (Ψm

n )−1φa1m (Ψn
m)−1φb1n (Ψm

n )−1 . . . φ
al
m (Ψn

m)−1 if k = 2l,
φb0n (Ψm

n )−1φa1m (Ψn
m)−1φb1n (Ψm

n )−1 . . . φ
al
m (Ψn

m)−1φ
bl
n (Ψm

n )−1 if k = 2l + 1.

We will denote by γk the derivative of Ψk . We claim that γk acts on the right on D by mapping the
k th vertex of pθ back to the origin. This can be deduced from Lemma A.2 for even indices, by remarking
that γ2kφbk

n =
(
φb0n (φa1m γnm)−1(φb1n γmn )−1 · · · (φ

ak
m γnm)−1(φ

bk
n γmn )−1

)
, which are the elements considered in

Lemma A.2 and by noticing that the additional reflection φbk
n does not change the isometry class of

the final vertex. For odd indices, this can be obtained by combining Lemma A.2 with the description
of the action of γmn on the disk. We omit the details.

We now remark that Ψk(Sm,n) = Sm,n when k is even while Ψk(Sn,m) = Sm,n when k is odd. Let
us consider the marked triple (Ψk)−1 : Sm,n → Sm,n for k even or (Ψk)−1 : Sm,n → Sn,m for k odd.
As explained at the beginning of this Appendix (see § A.1), this is an affine deformation of Sm,n and
considering its isometry equivalence class in M̃I (S) we can identify it with a point in the Teichmüller
disk D centered at id : Sm,n → Sm,n. The corresponding point is a vertex level k of Tm,n, or more
precisely, it is the k th vertex in the combinatorial geodesic pθ . Thus, under the identification of D
with M̃I (S), the vertices of the path pθ are, in order, the isometry classes of the marked triples [Ψk],
for k = 1, 2, . . . .

One can visualize these affine deformations by a corresponding sequence of polygonal presentations
as follows. Recall that both Sm,n and Sn,m are equipped for us with a semi-regular polygonal
presentation, whose sides are labeled by the alphabets Lm,n and Ln,m respectively as explained in
§ 6.1. For every k ≥ 1, let Pk be the image in Sm,n under the affine diffeomorphism Ψk of the
polygonal presentation of Sm,n if k is even or of Sn,m if k is odd. This polygonal decomposition Pk

carries furthermore a labeling of its sides by Lm,n or Ln,m (according to the parity of k) induced by Ψk :
if for k even (respectively k odd) a side of Sm,n (respectively Sn,m) is labeled by i ∈ Lm,n (respectively
by i ∈ Ln,m), let us also label by i its image under Ψk . This gives a labeling of the sides of Pk by Lm,n

for k even or by Ln,m for k odd, which we call the labeling induced by Ψk .
Thus the sequence of vertices in pθ determines a sequence of affine deformations of Sm,n and a

sequence (Pk)k of labeled polygonal decompositions. The connection between (Pk)k and the sequence
of derived cutting sequences (see Definition 7.12) is the following.

Proposition A.5. Let w, θ and Pk be as above. The k th derived sequence wk of the cutting sequence
w of a trajectory on Sm,n is the cutting sequence of the same trajectory with respect to the labels of the
sides of the polygonal decompositions Pk with the labeling induced by Ψk .

The proof of Proposition A.5 (as well as some of the other results stated in this Appendix) can
be found in the arXiv preprint version of this paper. Let us remark that if we think of Pk as a
collection of polygons in R2 obtained by linearly deforming the semi-regular polygonal presentation of
Sm,n if k is even or of Sn,m if k is odd by the linear action of γk , as k increases the polygons in these
decompositions become more and more stretched in the direction θ, meaning that the directions of
the sides of polygons tend to θ. This can be checked by first reflecting by φb0n to reduce to the b0 = 0
case and then by verifying that the sector of directions which is the image of Σ0n under the projective
action of γk is shrinking to the point corresponding to the line in direction θ. This distortion of the
polygons corresponds to the fact that as k increases a fixed trajectory hits the sides of Pk less often
which is reflected by the fact that in deriving a sequence labels are erased.
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Finally, let us remark that, as was done in [38] for the octagon Teichmüller disk and octagon Farey
map, it is possible to use the hyperbolic picture introduced in this Appendix to define a cross section
of the geodesic flow on the Teichmüller orbifold of a Bouw-Möller surface. More precisely, one can
consider a section corresponding to geodesics which have as forward endpoint a point on the arc of ∂D
given by endpoints of paths on the tree starting with the edge labeled by 0, and a backward endpoint
in the complementary arc of ∂D. The Poincaré map of the geodesic flow on this section provides a
geometric realization of the natural extension of the Bouw-Möller Farey map Fm,n. More precisely, one
can define a backward Bouw-Möller Farey map which can be used to define the natural extension and
describes the behavior of the backward endpoint under the Poincaré map. The natural extension can
be then used to explicitly compute an invariant measure for Fm,n which is absolutely continuous with
respect to the Lebesgue measure but infinite. In order to have a finite absolutely continuous invariant
measure, one can accelerate branches of Fm,n which correspond to the parabolic fixed points of Fm,n
at 0 and θ = π/n. We leave the computations to the interested reader, following the model given by
[38].

Towards a characterization of cutting sequences on Veech surfaces. We conclude by
explaining why we believe that the techniques introduced in this paper might be helpful in trying to
characterize cutting sequences on any Veech translation surface. We recall that in the characterization
of Sturmian sequences or of cutting sequences on regular 2n-gons, derivation and its inverse, namely
generation, are combinatorial operations that correspond to the action on cutting sequences induced
by (good and carefully chosen) generators of the group of affine diffeomorphisms of the corresponding
Veech surface (i.e. the surface obtained from the torus, or the regular 2n-gon respectively). In our
treatment of Bouw-Möller surfaces, though, the basic operations that we use in order to characterize
cutting sequences (e.g. the derivation operators or the substitutions σm,n

i, j ) correspond to intermediate
affine diffeomorphisms, which are not automorphisms of the Veech surface Mm,n to itself, but map
Mm,n to Mn,m and vice-versa. On the tree embedded in the Teichmueller disk of Sm,n that we described
in this Appendix, these operations are associated to edges of the tree, which connect a vertex with
index m (or resp. n) to a vertex with valency n (or resp. m). Given any Veech surface M, one can
similarly associate a tree of elementary moves, but this tree will not necessarily be bipartite as in the
case of Bouw-Möller surfaces. The basic steps one wants to describe combinatorially will hence be
operations that send cutting sequences on the (marked) surface corresponding to any vertex of the
tree, to cutting sequences of the (marked) surface which correspond to a vertex of the next tree level.
We believe that it should be possible to describe these moves using techniques similar to the ones
in this paper, and in particular by exploiting cylinder intersection diagrams similar to the Hooper
diagrams for Bouw-Möller surfaces. We hope to pursue this approach in future work.
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