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For millions of people worldwide, sewage-polluted surface waters threaten water security, food security
and human health. Yet the extent of the problem and its causes are poorly understood. Given rapid
widespread global urbanisation, the impact of urban versus rural populations is particularly important
but unknown. Exploiting previously unpublished archival data for the Ganga (Ganges) catchment, we
find a strong non-linear relationship between upstream population density and microbial pollution, and
predict that these river systems would fail faecal coliform standards for irrigation waters available to 79%
of the catchment's 500 million inhabitants. Overall, this work shows that microbial pollution is condi-
tioned by the continental-scale network structure of rivers, compounded by the location of cities whose
growing populations contribute c. 100 times more microbial pollutants per capita than their rural
counterparts.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Background

Rising demands on water resources raise concerns about the
sustainable provision of clean water worldwide. Unclean water
poses significant risks of diarrhoea, opportunistic infections, and
consequent malnutrition accounting for ~1.7 million deaths annu-
ally, of which >90% are in developing countries and almost half are
children (Prüss-Ustün et al., 2014). These deaths are primarily due
to ingestion of faecal pathogens from humans or animals (Ashbolt,
2004; Kotloff et al., 2013; Prüss-Ustün et al., 2014).

India's growing population and economy are driving rapid ur-
banisation (30% of the population now live in urban areas (Census
of India, 2011a)) and exerting increased pressure on surface and
groundwater availability. In rural areas ~67% of the population
defecate in the open (Census of India (2011b)), a practice that poses
severe risk to health and safety (Clasen et al., 2010; Mara et al.,
2010; Ziegelbauer et al., 2012; Kotloff et al., 2013). In urban areas
~80% of the population have access to a toilet (Census of India
(2011b)), but only ~30% are connected to a sewage pipeline and
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few pipelines are connected to a treatment plant (Narain, 2012).
The impact of these sanitation problems on surface water quality
has been documented for many years at individual sample loca-
tions or river reaches across India (Bhargava,1983;Mukherjee et al.,
1993; Baghel et al., 2005; Mishra et al., 2009; Central Pollution
Control Board, 2010). However, there has been no catchment-
wide quantification of the problem and limited indication of what
is driving it. The former is essential to fully understand the scale of
intervention required, while the latter might inform decision-
making on ‘what to do where’. Urban areas often dominate the
microbial pollution signal in rivers (Tchobanoglous et al., 1991; Kay
et al., 2008; McGrane et al., 2014) but there is little consensus on
the extent to which this reflects an increased impact per capita or
simply a larger population and thus source. This difference is
important since a higher per capita impact indicates reduced
attenuation, perhaps due to more efficient delivery to the river
system or less efficient treatment. If the difference can be attributed
to per capita contribution this will define the extent to which urban
or rural focused interventions will improve surface water quality.

We address this question using archival water quality data from
across the Ganga (Ganges) catchment and show the pattern of
microbial pollution in its major rivers. We compare instream con-
centrations of a pollution proxy with upstream densities of the two
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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major sources of faecal pathogens (humans and livestock) at 100
sites spanning an approximate surface area of 106 km2.

Faecal pathogens are difficult to measure; however thermo-
tolerant coliforms, which originate in faeces (i.e. faecal coliforms,
FC), are easily detectable and routinely monitored as indicator or-
ganisms (Ashbolt et al., 2001). FCs are not a perfect predictor of
human pathogen presence, rather they establish connectivity be-
tween defecation and some receiving environment which could be
contributed to by a pathogen carrier. New host-specific tracing
techniques allow more precise tracking of microbial pollution
sources that can help to better assess risks to human health
(Harwood et al., 2014, Field and Samadpour, 2007). However, such
techniques are not used within routine monitoring in India and
thus do not have the spatial coverage required for our analysis.
Furthermore, the use of FCs for monitoring pollution is still regar-
ded as a viable measure of drinking and irrigation water quality
(WHO, 2017).

Two key issues that must be addressed are: 1) the extent to
which the FC signal that we observe reflects human sources; and 2)
the potential impact of FC die-off in our pollution tracer. Upstream
livestock and human population densities are strongly correlated at
the catchment scale, limiting our capacity to identify the source of
the pollution signal. To address this, we seek to de-correlate the
predictor variables by using a mixing model to estimate contribu-
tions from each non-overlapping segment of the catchment (our
sub-catchments). To address the impact of die-off in our pollution
tracer we adjust the population and livestock densities using a
distance decay function then seek decay parameters that will
maximise performance of our statistical model.

In the sections that followwe first introduce our null hypothesis
that pollution should be linearly related to source density (both
with and without accounting for die-off). We then detail our data
sources and methods for their analysis, and introduce the mixing
model that we use to calculate effective FC concentrations and
source densities for each sub-catchment (the non-overlapping
segments of the catchment).
2. Theory: expected relationship between FC concentration
and upstream source density with and without die-off

The FC concentration (CFC) at a given location is defined by the
ratio of the FC flux (QFC) to the water flux (Qw):

CFC ¼ QFC

Qw
(1)

Under the assumption that there is no die-off in FCs over time,
the FC flux is calculated from:

QFC ¼ ðPhNh þ PaNaÞ ¼ ðPhrh þ ParaÞA (2)

where: Ph is the production rate of FCs per human head [MPN
#�1 T�1]; Pa is the production rate per head of livestock [MPN
#�1 T�1]; Nh and Na are the total upstream populations of humans
and livestock respectively [#]; rh and ra are the upstream popu-
lation densities of humans and livestock respectively [# L�2]; and A
is the catchment area [L2]. Under the assumption of spatially uni-
form and time invariant runoff Rw [L T�1] the water flux Qw [L3 T�1]
is calculated from:

Qw ¼ RwA (3)

Substituting equations (2) and (3) into equation (1) gives the
following equation for FC concentration at eachmeasurement point
as a function of upstream population density.
CFC ¼ ðPhrh þ ParaÞ
Rw

¼ khrh þ kara (4)

where: kh¼Ph/Rw and ka ¼ Pa/Rw. It is clear from this relationship
that under these assumptions CFC should be a linear function of
upstream population and livestock density with the gradients
defined by the ratio of production rate, P, to runoff, Rw.

The assumption of no FC die-off is unlikely to be true but con-
trols on die-off remain poorly understood. Given the uncertainties,
die-off is most often represented using an exponential decay based
on first order kinetics (Crane and Moore, 1986; Sadeghi and Arnold,
2002; Cho et al., 2012):

QFC ¼ Q0e
�k1t (5)

where: Q0 is the FC flux at time t0 (the time of exit from the gut)
[MPN T�1], t is time since exit [T], k1 is a decay coefficient [T�1].
Assuming uniform time invariant FC velocity from source to mea-
surement point the FC flux QFC can be expressed as a function of
distance:

QFC ¼ Q0e
�k1

�
x
v

�
(6)

where: x is the travel distance from source to measurement point
[L] and v is the characteristic velocity [L T�1]. Changing population
(of people or livestock) with distance x upstream of the sampling
point can be calculated as the derivative of N(x):

nðxÞ ¼ �dN
dx

¼ �rðxÞdA
dx

� AðxÞdr
dx

(7)

Assuming that FC production rates are time invariant and
incorporating characteristic velocity into the decay coefficient to
express decay in terms of distance, the FC flux can be calculated by
combining equations (2), (6) and (7) and integrating over the range
of travel distances from the measurement point to the furthest
point upstream:

QFC ¼
Zxmax

0

�
ðPhnhðxÞ þ PanaðxÞÞe�kx

�
dx (8)

where change in population (for both humans and livestock) and
area are a function of travel distance; and k ¼ k1/v the distance
decay coefficient [L�1]. Substituting equations (3) and (8) into
equation (1) gives the following equation for FC concentration:

CFC ¼
Zxmax

0

 
ðPhnhðxÞ þ PanaðxÞÞe�kx

RwA

!
dx (9)

This can be implemented in discrete form by summing over the
ncells upslope of the measurement point where for each cell the
flow path lengths and routes are derived from digital elevation
data, and human and livestock population data from the sources
described below.

CFC ¼
Xncells
i¼1

 
ðPhrhi þ ParaiÞAie�kxi

RwAi

!
(10)

where: rhi and rai are the density of human and animal populations
respectively in cell i; Ai is the area of cell i; and xi is the average
flowpath length from cell i to the measurement point. Rearranging
and simplifying equation (10) gives:
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CFC ¼ kh
Xncells
i¼1

�
rhie

�kxi
�
þ ka

Xncells
i¼1

�
raie

�kxi
�

(11)

where: kh¼Ph/Rw and ka¼ Pa/Rw. Re-arranged in this form, equation
(11) shows that accounting for FC die-off, CFC remains a linear
function of population and livestock density transformed to ac-
count for flowpath length. As in the no die-off case (equation (4)),
the linear coefficients reflect the ratio of (human or livestock)
production rate to runoff.

3. Methods

We used water quality samples from 100 locations across the
Ganga catchment (Fig. 1), collected and analysed by six agencies
following a uniform protocol. Total and faecal coliform concentra-
tions were estimated using the standardised 9221 B and 9221 E
multiple tube fermentation techniques (APHA, 1995) to establish
the most probable number (MPN) of faecal coliforms per 100 ml. At
each site, we collated 10 years of data (2002e2012). The frequency
with which these data were sampled varies between sites, from
three samples per year at the two most remote Himalayan sites, to
quarterly for 24 more Himalayan sites and one or two samples per
month at the remaining sites. At ~30 sites, samples were collected
at two locations across the river in some years in order to improve
representation. These data were quality checked for potential data
entry or measurement errors. We removed a total of 63 observa-
tions where FC concentrations exceeded Total Coliform (TC) con-
centrations (since FC is a subset of TC). We also removed two
observations at a single site on the same date where FC concen-
tration exceeded 1010 MPN/100 ml. We consider this to be suspi-
cious given that the concentration is ~100 times the upper end of
the range of observed concentrations for sewage influent
Fig. 1. Network graph of decadal mean FC concentrations (circle colour) and catchment area
high FC flux); smaller green circles indicate lower concentration and discharge (thus low F
<500 MPNN/100 ml; those with thin blue outlines pass the upper limit of <2500 MPNN/100
in black, with approximate populations, in millions, in brackets and grey boxes to show appr
of the references to colour in this figure legend, the reader is referred to the web version o
(Tchobanoglous et al., 1991). Removing suspicious observations
results in a loss of <0.5% of the full dataset and <3% at any indi-
vidual site. The error-checked FC data at each site were poorly
approximated by a normal distribution but were generally well
approximated by a log-normal distribution, thus we used geo-
metric means to summarise FC concentration for each site
throughout our analysis.

To estimate upstream population density we used the GPWv3
gridded synthesis of census data from 2000 (Balk and Yetman,
2004; Balk et al., 2010). To estimate livestock density we used the
FAO global gridded livestock density data (Wint and Robinson,
2007; Robinson et al., 2014), weighted by estimates of FC produc-
tion rates for each livestock type (cow and buffalo: 1011 MPN/# day;
goats and sheep: 1.2� 1010 MPN/# day; pigs: 1.1� 1010 MPN/# day;
poultry: 1.4 � 108 MPN/# day) (ASAE Standards, 1998). Upstream
area, upstream population density (UPD) and upstream livestock
density (ULD) for each sample point were calculated using a D8
flow routing algorithm (O'Callaghan and Mark, 1984; Schwanghart
and Scherler, 2014) and the hydrologically corrected 90 m SRTM
DEM (Farr et al., 2007). To examine the influence of coliform die-off
in transit and thus relax the assumption that coliforms behave as
conservative tracers we introduced an exponential decay in coli-
form concentrationwith distance from the source. We sampled the
shape parameter that defines the rate of distance decay at 500
logarithmic intervals from 10�8 to 10�1 km�1 testing model per-
formance in each case using ordinary least squares regression.
3.1. Mixing model

The observation locations form a nested set of catchments
where 82% of observation sites have at least one observation site
upstream. We deal with this nested sampling in two ways. First, by
assessing the results for only non-nested (independent)
(circle size). Large red circles indicate high FC concentration and water discharge (thus
C flux). Sites with thick blue outlines pass Indian Government desirable standards of
ml (Central Pollution Control Board, 2008). Rivers are labelled in blue; cities are labelled
oximate extent. Inset shows a location map of the Ganga catchment.(For interpretation
f this article.)
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catchments; however this considerably reduces the number of
available observations. Second, by performing the analysis using
sub-catchments, where these are defined as the part of the catch-
ment that drains to the current sample site without first draining
through any upstream sample site. The result of this definition is
segmentation of the entire Ganga catchment into 100 non-
overlapping sub-catchments.

Effective source density and FC concentration are then calcu-
lated for each sub-catchment using an approach similar to that of
Granger et al., (1996) and Portenga et al., (2015) for effective erosion
rates in nested catchments. To do this we assume that catchment
area can be used as a proxy for discharge (equation (3)) and use a
mixing model to calculate the concentration of the FC input for the
sub-catchment (CFCr) given the catchment area and FC concentra-
tion at the upstream and downstream boundaries:

CFCr ¼
QFCr

Ar
¼ CFCdAd �

Pn
i¼1ðCFCuiAuiÞ

Ad �
Pn

i¼1ðAuiÞ
(12)

where: CFCui is the FC concentration at upstream boundary i; and
CFCd is the FC concentration at the downstream boundary of the
sub-catchment; Aui is the catchment area for upstream boundary i;
Ad is the catchment area for the downstream boundary of the sub-
catchment; and n is the number of upstream boundaries.We repeat
the same process to calculate the human and animal population
densities (rr) within the catchment area that drains into this sub-
catchment:

rr ¼
Nr

Ar
¼ rdAd �

Pn
i¼1ðruiAuiÞ

Ad �
Pn

i¼1ðAuiÞ
(13)

where: rui is the upstream population density of upstream
boundary i; and rd is the upstream population density of the
downstream boundary of the sub-catchment.
Fig. 2. Catchment scale analysis of faecal coliform concentration against: a) upstream popu
rates; c) co-variation between upstream population and livestock density. Trend lines show
linear regression for c. Solid circles show non-nested (i.e. independent) observations, n ¼ 18
Delhi; and B) Pinder catchment at Karanprayag.
4. Results

4.1. Observed pattern of FC concentrations

Our results suggest that high FC concentrations previously re-
ported at the reach and sub-catchment scale (Mukherjee et al.,
1993; Baghel et al., 2005; Mishra et al., 2009; Central Pollution
Control Board, 2010) do not reflect isolated pockets of poor water
quality but extensive pollution across the catchment. Decadal mean
FC concentrations at sites across the Ganga catchment range from
3 � 100 to 2.5 � 106 MPN/100 ml. 70% of sites fail Indian Govern-
ment desirable bathing limits (Central Pollution Control Board,
2008), with those that pass located almost exclusively in the
sparsely populated catchment headwaters. On the more populous
plains, 70 of the 80 sites fail the desirable limits and 63 of the 80
sites fail themaximumpermissible 2500MPN/100ml limit (Central
Pollution Control Board, 2008). Locally high FC concentrations are
generally associated with large population centres (Fig. 1), most
markedly for rivers with smaller catchment areas (e.g. the Varuna
at Varanasi). FC concentrations are moderately reduced down-
stream of the Yamuna-Ganga confluence as tributaries with lower
FC concentrations dilute the main stem. Further downstream, even
large cities (e.g. Patna) have limited influence andmany samples on
the main stem have very similar FC concentration, reflecting the
central tendency of water quality with increasing catchment area
for nested catchments.

4.2. Catchment scale relationships between FC concentration and
upstream source density

Since people and livestock are the primary sources of FCs, we
expect FC concentration to increase with the upstream density of
these sources. Fig. 2 suggests that the data fit this expectation. If FC
production per capita is spatially uniform, delivery to the river is
lation density; b) upstream livestock density adjusted for variable coliform production
quadratic (solid), cubic (dotted) and linear spline (dashed) regressions for a and b, and
; crosses show the full dataset, n ¼ 100. Labelled points are: A) Yamuna catchment at
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independent of population density, and if water flux is a linear
function of catchment area, thenwe expect FC concentration to be a
linear function of upstream source density with the form y ¼ bx
(see equations (1)e(4) for a full derivation). Variability in delivery
to the river network, or transit time through the river network, that
is uncorrelated with population density will introduce scatter to
the relationship but should not alter its functional form. However,
comparing the data with linear contours in Fig. 2 shows that the
data are not a good fit to a linear function (r2 < 0.1). Power functions
are a better fit (r2 ¼ 0.69 for UPD and 0.62 for ULD) but over-predict
high and low FC values and under-predict central values with both
UPD and ULD. Quadratic relationships offer a further improvement
(r2 ¼ 0.71 for UPD and 0.68 for ULD) suggesting positive curvature
in log-log space but have a physically unreasonable negative slope
at low population densities. Residuals from the quadratic function,
fitted by ordinary least squares regression, for both population and
livestock show some heteroscedasticity, though White (1980) and
BPK (Breusch and Pagan, 1979; Koenker, 1981) tests return p-values
that are always below 0.1. Given this moderate heteroscedasticity
and the insensitivity of ordinary least squares coefficients to het-
eroscedasticity we do not pursue more complex variance weighted
analyses. UPD alone explains slightly more of the variance in FC
concentration than ULD, but there is little difference between the
explanatory power of these predictors, and their combination in a
multiple quadratic regression offers little improvement (R2 ¼ 0.71).
This is consistent with the strong correlation between upstream
population and livestock densities (Fig. 2c). A cubic function con-
strained to monotonic increase over the range of the data gives a
similar performance to the quadratic (r2¼ 0.71 for UPD and 0.68 for
ULD). A linear spline (in log-log space) with a single interior knot
(i.e. piecewise power function) is the best-fit for both individual
predictors (r2 ¼ 0.73 for UPD and 0.71 for ULD), suggesting a
threshold rather than continuous change in power relationship
between UPD and FC concentration. Finally, we test one further null
hypothesis that there are two ranges of source density (population
or livestock) with FC concentrations represented by their average
value over each range. This model is important to exclude given the
appearance of clustered points within Fig. 2 but has difficult
physical implications. It implies a step change in contribution at
some source density and a constant contribution independent of
source density change (i.e. a declining per-head contribution)
within each range. The ‘stepmodel’ (r2¼ 0.69) does not outperform
any of the curved functions (quadratic, cubic or linear spline) for
UPD, though it is a slight improvement on quadratic and cubic
spline functions for ULD (r2 ¼ 0.70). These results demonstrate that
there is positive curvature to the FC-UPD relationship independent
of the particular functional form (quadratic, cubic or linear spline)
under consideration; and that the FC-ULD relationship also con-
tains positive curvature but can be almost as well described as two
FC distributions at high and low population density.

4.3. Sub-catchment relationships between FC concentration and
upstream source density

As for catchment analysis, the sub-catchment analysis suggests
that people and livestock are the primary sources of FCs with FC
concentration increasing with the upstream density of these
sources (Fig. 3). The relationship between source density and FC
concentration is not linear for sub-catchment based analysis or
catchment based analysis. Fig. 3 shows that as in the catchment
analysis the data are not a good fit to any linear model (r2 < 0.2).
Power functions are a better fit (r2 ¼ 0.54 for UPD and 0.17 for ULD)
but over-predict high and low FC values and under-predict central
values for UPD. For ULD the fit is very poor, suggesting that in the
sub-catchment based analysis livestock density is only a weak
control on FC concentration. Quadratic relationships (in loglog
space) offer further improvement for UPD (r2 ¼ 0.63) but not for
ULD (r2 ¼ 0.16). UPD alone explains considerably more of the
variance in FC concentration than ULD. Their combination in a
multiple quadratic regression offers some improvement
(R2 ¼ 0.72). This reflects the reduced correlation between UPD and
ULD for sub-catchment (r2 ¼ 0.66) rather than catchment
(r2 ¼ 0.95) analysis (compare Fig. 2c with 3c). The linear spline with
a single knot (i.e. piecewise power function) or cubic function (in
loglog space) constrained to monotonic increase result in similar
fits relative to a quadratic for both UPD (r2 ¼ 0.63 in both cases) and
ULD (r2 ¼ 0.16 and 0.15 respectively). This suggests that there is not
clear evidence for a threshold rather than continuous change in
power relationship between UPD and FC concentration when
examined at the sub-catchment scale. The results from these three
(quadratic, cubic and linear spline) approaches demonstrate that
there is positive curvature to the FC-UPD relationship independent
of the particular functional form under consideration. They also
demonstrate that UPD is a far better predictor than ULD for sub-
catchment scale analysis and that there is some merit in consid-
ering the two in combination. This suggests that most instream FCs
are human derived.

4.4. Per capita impact on instream FC concentration

Positive curvature to the FC-UPD and FC-ULD relationships in-
dicates that FC concentration increases with upstream source
density at an increasing rate per unit increase in upstream source
density. This can be interpreted as the change in FC per capita with
increasing upstream source density. The gradient of the line in
logarithmic space reflects its exponent in linear space thus:
values > 1 indicate positive curvature and increasing per capita
impact, those <1 indicate negative curvature and decreasing per
capita impact with increased source density. At low upstream
source densities (<10 people or <6 livestock per km2), FC concen-
trations are low and the gradient of all three best-fit curves is
slightly less than one indicating a slight decline in per capita impact
with increasing upstream source density. At source densities from
10 to 60 people or 6e30 livestock per km2 the gradient of all three
best-fit curves reaches then exceeds unity, indicating that per
capita impact reaches a minimum and begins increasing with
increasing upstream source density.

For population density, quadratic, cubic and linear spline fits all
predict a very similar relationship between UPD and FC concen-
tration for 102<UPD<103 #/km2 (Fig. 2a). Over this range the pre-
dicted FC concentration increases by three orders of magnitude
(from 102 to 105 MPN/100 ml), indicating a 100-fold increase in per
capita impact. Over the same range in population density
(102<UPD<103 #/km2) there is considerable variability in the per
capita contribution from no change at the lower limit to a 10,000-
fold increase at the upper limit.

A similar comparison can be made for individual sites, with the
linear trend lines in Fig. 2a acting as contours for per capita impact.
For example, moving downstream from the catchment with lowest
population density, UPD increases 10-fold from Badrinath to Sri-
nagar (7e77 #/km2) but FC concentration increases only three-fold
(3e10MPN/100ml), thus per capita impact declines by a factor of 3.
Continuing downstream from Srinagar to Kanpur UPD increases by
a factor of 6 (77e450 #/km2) while the FC concentration increases
by a factor of 1600 (10e1.6 � 104 MPN/100 ml), thus impact per
capita increases by a factor of 300. Per capita impact increases by a
factor of 60,000 from its minimum for the rural Pindar catchment
(B) to its maximum for the densely populated Yamuna at Delhi (A).
These results indicate that urban populations contribute more
sewage to the river per capita than rural populations and that this



Fig. 3. Sub-catchment based faecal coliform concentration against: a) upstream population density and b) upstream livestock density adjusted for variable coliform production
rates; c) co-variation between upstream population and livestock density; d) predicted v observed coliform concentrations from multiple cubic regression with upstream popu-
lation and livestock density. Trend lines show quadratic (solid), cubic (dotted) and linear spline (dashed) regressions for a and b, and linear regression for c. Solid circles show non-
nested (i.e. independent) observations, n ¼ 18; crosses show the full dataset, n ¼ 100. Labelled points are: A) Yamuna catchment at Delhi; and B) Pinder catchment at Karanprayag.
Contours in c show prediction surface from multiple regression.
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increase: 1) depends on the difference in population densities,
rather than changing sharply at a particular density; 2) is large on
average (a factor of 100); and 3) is highly, and asymmetrically,
variable (ranging from a factor of 1e10,000).
5. Discussion

5.1. The relative importance of human or livestock FC sources

Both UPD and ULD are good predictors of FC concentration
based on catchment scale analysis. This may reflect the importance
of both sources, but is also very likely due to the strong positive
correlation between UPD and ULD in the catchment based analysis
(Fig. 2c), which makes it difficult to distinguish between the sour-
ces based on these data alone. When calculated over large areas
population and livestock density are highly correlated. However, at
small scales population and livestock density can become de-
correlated (e.g. in cities, where population density is high but
livestock density low). Our sub-catchment based analysis breaks
the catchment into smaller non-nested segments, disrupting the
correlation between UPD and ULD (Fig. 3c). This analysis shows a
small reduction in the percentage of variance in FC concentration
explained by UPD and a large reduction in that explained by ULD. In
the sub-catchment based analysis UPD is a much better predictor of
FC concentration than ULD.

This is consistent with simple accounting estimates of export
coefficients calculated using population and livestock densities
with estimated FC production rates for the loading terms and
observed FC concentration as the output. Assuming a human pro-
duction rate of 2 � 109 MPN/# day (Tchobanoglous et al., 1991) and
livestock production rates detailed in the methods section,
livestock-derived FC loads produced on any given day range from
2 � 1010 MPN/km2 day (for ULD ¼ 3 #/km2) to 1.5 � 1013 MPN/km2

day (for ULD¼ 200 #/km2) while population derived FC loads range
from 1.4� 1010MPN/km2 day (for UPD¼ 7 #/km2) to 2� 1012MPN/
km2 day (for UPD ¼ 1000 #/km2). Yet over this range of source
densities FC concentrations increase from 2 � 100 to 1 � 105 MPN/
100 ml on average. This results in export coefficients >100 times
larger at high livestock and population densities than at low den-
sities. It is difficult to conceive of a mechanism for such an increase
in export coefficient for livestock-derived FCs as a function of
source density.
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5.2. The relative importance of local or non-local FC sources

UPD is a good predictor of instream FC concentrations across the
Ganga catchment, explaining 73% of the observed variance in
decadal mean FC concentrations from a catchment scale analysis
and 63% from a sub-catchment scale analysis (Figs. 2a and 3a). This
is consistent with findings from catchments across the world
(Tchobanoglous et al., 1991; Kay et al., 2008; McGrane et al., 2014),
and with previous reach-scale findings in the Ganga Catchment
(Mukherjee et al., 1993; Baghel et al., 2005; Mishra et al., 2009;
Central Pollution Control Board, 2010). However, there remains
considerable variance in FC concentration unexplained by either
UPD or ULD, particularly at high population densities, >100 people/
km2 (Figs. 2 and 3). Previous reach-scale studies did not account for
the upstream boundary condition either in terms of FC flux or
upstream population (Mukherjee et al., 1993; Baghel et al., 2005;
Mishra et al., 2009). These studies implicitly assumed that point
sources proximal to sample sites dominated the FC signal (perhaps
due to coliform die-off in transit). However, while many of our sites
near larger settlements have high coliform concentrations, these
concentrations are better explained by upstream population den-
sity (r2 > 0.7) than population of the nearest settlement (r2 ¼ 0.25).
Examining paired samples above and below settlements suggests
that, in some cases, positive residuals (where FC concentration is
greater than predicted) may reflect sites immediately downstream
of population centres. However, including a distance-decay func-
tion in our analysis did not improve our ability to predict FC con-
centrations. Fig. 4 shows that model performance is initially stable
as the rate at which FCs decay with distance increases, but that the
performance is never better than that without distance decay, and
that performance declines markedly for decay rates greater than
0.01%/km. This reduction in performance relates to a reduction in
decay-adjusted population density, primarily at sites with inter-
mediate or dense populations (Fig. 5). These results suggest that,
UPD is an important but not singular factor in defining the con-
nectivity between sources and receiving waters that defines the
timescales and thus efficiency of delivery. Our approach neglects
Fig. 4. Model performance (Adjusted r2 for FC concentration v decay-adjusted UPD)
with varying distance decay coefficient (k) for the three empirical functions fitted in
Fig. 2. Best performance is always for no decay (k ¼ 0); small coefficients (k < 10�4)
have little effect; larger coefficients result in a breakdown in model performance.
many processes that should be important in the transport of co-
liforms from source to the point of measurement (e.g. weather
dependent die-off rates, hydrological connectivity, hydraulics at the
cross section and reach scale). However, it is encouraging that even
our simple empirical model explains a large fraction of the variance
in microbial pollution concentrations.

5.3. Implications of the FC-UPD relationship

The increase in per capita impact as UPD increases likely reflects
an increase in the efficiency of delivery rather than FC production,
perhaps due to changes in individual or corporate waste manage-
ment decisions as population density increases. At low population
densities, much of the population defecate in the open or in pit
latrines (Census of India (2011b)) where faeces are less likely to be
washed into the river and FCs are more likely to die in situ. As
population density increases and towns and cities grow, the dis-
tance to open fields increases and there is a need for an alternative
strategy to manage faeces. This problem has historically confronted
communities across the world, leading to degradation of sanitary
conditions and construction of sewers (Gandy, 2004; Allen, 2008;
Benzerzour et al., 2011). Sewage systems vary in sophistication
but generally involve the movement of excreta by water out of the
population centre, often made possible by piped domestic water.
The faeces have a much shorter residence time in the environment
and FCs will be removed primarily by sewage treatment rather than
die-off in the environment. In many Indian cities, the flux of sewage
that is, andmust be, removed from the population centre through a
growing network of sewers and storm water drains is many times
higher than the capacity of the sewage treatment facilities (Ansari
et al., 2000). In this case the predominant impact of the sewage
network is to remove the sewage from the population centre and
rapidly deliver it to the river untreated. Sewage removal is essential
for the public health of the city, but without effective treatment it
comes at the cost of accentuated river pollution with associated
public health implications for the population downstream. Herewe
demonstrate as others have (Central Pollution Control Board, 2010)
the severe river pollution that results. The extent to which this can
be addressed by following the same trajectory towards centralised
‘end-of-pipe’ sewage treatment has been called into question for
practical and economic reasons (Jha, 2003; Bracken et al., 2007;
Katukiza, 2012). However, there is a growing range of innovative,
water and energy efficient, on-site alternatives (Jha, 2003; Bracken
et al., 2007; Gates Foundation, 2014) as well as a growing recog-
nition that this is a social as well as physical or technical issue
(Burra et al., 2003; Sharma and Bhide, 2005; McFarlane, 2008).

It is important to emphasise that our results do not imply that
open defecation is a safe approach to sewagemanagement.Water is
not the only vector for faecal-oral disease; transmission can also
occur through food, insects, and direct contact (Wagner and Lanoix,
1958). Thus safely disposing of faeces involves more than simply
ensuring that they do not enter the watercourse. There is good
evidence to suggest that open defecation is extremely problematic
for public health and safety (Clasen et al., 2010; Mara et al., 2010;
Ziegelbauer et al., 2012).

5.4. Network structure controls the spatial pattern of microbial
pollution

The relationship between upstream population density and FC
concentration enables a simple predictive relationship, albeit with
considerable scatter. This model predicts that 33e48% of rivers in
the Ganga catchment fail the Indian Government's safe bathing
standards, depending on the choice of standard (Fig. 6). However,
many of those rivers that pass are in sparsely populated



Fig. 5. Scatter plots of faecal coliform (FC) concentration against upstream population density (UPD) adjusted with an exponential distance decay using a range of decay coefficients
(k). Panels reflect decay rates of: a) 0%/km, b) 0.01%/km, c) 1%/km and d) 10%/km. Best model performance is for no decay (k ¼ 0); small coefficients (k < 10�4) have little effect;
larger coefficients result in a breakdown in the relationship between UPD and FC concentration.
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headwaters. For 70e85% of the catchment's population, their
nearest river fails safe bathing standards (Central Pollution Control
Board, 2008); for 79% it should not be used for flood irrigation,
irrigation of crops eaten raw or where children are involved in
Fig. 6. Spatial pattern of predicted coliform concentration. Dark blue areas have concentrat
(Central Pollution Control Board, 2008); light blue areas have concentrations below 2500 MP
shows the fraction of the river network (blue) and population (red) for which the nearest ri
safe bathing (U.S. EPA, 1976); (b) Indian government desirable limit for safe bathing (Central
crops eaten raw, or where children are involved in farming (WHO, 1989; Blumenthal et al.
Board, 2008); (e) WHO limit for sprinkler irrigation (Blumenthal et al., 2000).(For interpr
web version of this article.)
farming (WHO,1989; Blumenthal et al., 2000); and for 51% it should
not be used for irrigation with sprinklers (Blumenthal et al., 2000).

The pattern of predicted FC concentration from this empirical
model is strongly influenced by the catchment's network structure
ions below 500 MPN/100 ml, the Indian Government's desirable limit for safe bathing
N/100 ml, the upper limit for safe bathing (Central Pollution Control Board, 2008). Inset
ver has an FC concentration less than the x-axis value. Letters signify: (a) USA limit for
Pollution Control Board, 2008); (c) WHO recommended limit for flood irrigation, or for
, 2000); (d) Indian government upper limit for safe bathing (Central Pollution Control
etation of the references to colour in this figure legend, the reader is referred to the
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(Fig. 6). Sparsely populated Himalayan headwaters produce high
discharges of clean water suppressing FC concentrations far
downstream; without this discharge, plains-fed rivers (e.g. Kali)
have high FC concentrations throughout. The most polluted reach
of the Ganga is predicted to be between Kanpur and Allahabad.
Upstream of Kanpur the diluting effect of the headwaters persists
while downstream of Allahabad the Ganga is diluted first by the
less polluted Yamuna (strongly influenced by the Chambal) and
then by the large left bank tributaries with their headwaters in the
Himalaya. This may be the result of not only the topology but also
the geometry of the network, since the Ganga at Allahabad is at its
furthest point from themountain front meaning cleaner Himalayan
water must travel over a larger expanse of populated plain to reach
that point.

Interventions high up the river network have the highest po-
tential for impacting FC concentration for a given FC flux reduction
because: 1) lower discharge on these rivers means that the same FC
flux reduction will lead to a larger concentration reduction; and 2)
rivers are directed networks (i.e. they accumulate) thus a reduction
in FC flux at a given location will impact only reaches downstream
of it. Decisions about what to do where are difficult and necessarily
political, with many drivers (Bulkeley and Mol, 2003), but the
findings of this study can help guide strategic investment in
pollution reduction.

6. Conclusions

The rivers of the Ganga catchment are subject to widespread
and, in places, severe microbial pollution. 52e67% of measured
sites fall below the Indian Government's upper and desirable limits
for safe bathing; and for 61e70% of the population, model results
suggest that their nearest river falls below these same bathing
standards. The network structure of the Ganga catchment pre-
conditions certain rivers to be highly polluted, and others (with
large Himalayan headwaters) to be more robust against pollution,
despite their location on the densely populated plains. The entire
population upstream (not only those nearby) contribute to micro-
bial river pollution but urban populations contribute more pollu-
tion per capita than rural populations. Howmuchmore depends on
their respective population densities. A person living in an area
with 1000 #/km2 contributes on average 100 times more pollution
to the river than they would in an area with 100 #/km2. While this
is an average in the presence of considerable (asymmetric) vari-
ability, the denser population in this case contribute at least as
much pollution per capita at the lower limit and up to 10,000 times
more at the upper limit. Densely populated areas dominate surface
water pollution in the Ganga catchment not only because they
contain many people but because their faeces are more efficiently
delivered to the river network. We suggest that this increasing ef-
ficiency reflects: the transmission speed of urban sewerage sys-
tems, delivering the coliforms to the river more quickly with less
die-off; and the limited capacity for sewage treatment within
these systems. Addressing this problem requires investment in
both sewage removal and treatment whether by increasing existing
sewerage capacity or implementing decentralised treatment
solutions.
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