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ABSTRACT
The magmatic-hydrothermal evolution of porphyry-style mineralization in the shallow 

crust that is linked to magmatic processes at depth has been extensively studied using bulk-
sample isotopic analysis combined with relative timing constraints. However, a lack of evalua-
tion of the fluid evolution process against an absolute time frame limits further understanding 
of the ore-forming process. Here, we quantify the fluid evolution process within an absolute 
time frame for the first time by integrating new in situ oxygen isotope data from the Qulong 
porphyry Cu-Mo deposit (Tibet) with existing fluid inclusion data and high-precision Re-Os 
dates of co-precipitated hydrothermal quartz and molybdenite, respectively. We demonstrate 
that vein quartz records primary oxygen isotopic compositions and reached oxygen isotope 
equilibrium with ore-forming fluids, and therefore is an archive of the isotopic composition 
and source of the ore-forming fluids. The δ18Oquartz and δ18Ofluid values, in absolute time, show 
periodic fluctuations that indicate the presence of three intermittent pulses of magmatic fluid 
flux, which have been balanced by meteoric water. As such, the flux of magmatic fluid during 
ore formation was pulsed, rather than being continuous. The overall highest δ18Ofluid in the 
first pulse of mineralization, with a gradual decrease to the second and third pulses, is sug-
gestive of a progressive reduction in the magmatic component of the hydrothermal fluids and, 
by inference, the mineralizing potential of the hydrothermal fluids. This view is supported 
by a decrease in sulfide-bearing fluid inclusions and metal grade through time. Our findings 
favor multiple fluid-release events from a single cooling magmatic reservoir, although mul-
tiple fluid-melt recharge events remain a competitive alternative. An additional implication 
is that the magmatic reservoir may have a lifespan of hundreds of thousands of years, with 
fluid release events occurring over tens of thousands of years.

INTRODUCTION
Porphyry copper deposits (PCDs) are the 

world’s primary source of Cu, Mo, and Au. Fun-
damental to the understanding of PCD formation 
is the evolution of the ore-forming fluid (Kouz-
manov and Pokrovski, 2012). The current consen-
sus is that the metals were transported via mag-
matic fluids (>600 °C) that were exsolved from 
a deep-seated magmatic system at 5–10 km, and 
ultimately precipitated as sulfides over a narrow 
temperature interval at shallow levels (425–320 °C, 
<3 km; Richards, 2011). Although PCDs are 
among the most extensively studied deposits, the 
fluid evolution path associated with metal depo-
sition is constrained only in relative time frame 
(Cooke et al., 2014), resulting in an incomplete 

understanding of the hydrothermal processes asso-
ciated with mineralization. For example, there is 
limited understanding regarding the precipitating 
rates of metals through absolute time.

Traditionally, the flux of magmatic fluid 
released from a deep magmatic reservoir is 
assumed to be continuous (Simmons and Brown, 
2006, 2007). Such an assumption is used in 
numerical simulations to provide insights into the 
hydrothermal controls of ore formation. In con-
trast, a pulsed hydrothermal process is obvious 
for active magmatic systems, and also has been 
proposed for the formation of porphyry depos-
its, as shown by high-precision U-Pb zircon and 
Re-Os molybdenite dating (Stein, 2014; Spen-
cer et al., 2015; Buret et al., 2016; Tapster et al., 
2016; Li et al., 2017a). However, the duration of 
a geological event could be significantly under-
estimated from a relatively small number (e.g., 
<10) of chronologic determinations (Glazner 
and Sadler, 2016); hence, the intermittent pulses 

inferred from radiometric dating could be biased 
from dating a protracted event.

The magmatic process in the middle crust con-
trolling the fluid release from the source pluton 
is debated. Proposed scenarios include multiple 
fluid release events from a single cooling mag-
matic reservoir or several fluid-melt recharging 
events (Stock et al., 2016; Williamson et al., 2016; 
Chelle-Michou et al., 2017). Tracing hydrother-
mal fluid evolution in an absolute time frame holds 
the promise to further understand these processes.

To provide robust constraints on the nature 
and evolution of ore-forming fluids, a temporal 
relationship between gangue (used to constrain 
fluid nature) and ore minerals must be estab-
lished (Wilkinson et al., 2009). This relationship, 
however, has long been hampered by the ubiq-
uitous overprinting and/or multi-stage growth of 
gangue minerals that are difficult to resolve by 
bulk analysis (Allan and Yardley, 2007). More 
importantly, it is critical to place the archive 
of ore-forming fluids into a robust temporal 
framework. Traditionally, this is done via the 
relative time frame defined by vein types, and 
in a single mineralization event/pulse, an A-type 
vein is earlier than a B-type vein, with a D-type 
vein being the latest (Sillitoe, 2010). However, 
the relative chronology of veining cannot be 
correlated at a deposit scale confidently, espe-
cially with the presence of multiple mineraliza-
tion pulses (Stein, 2014; Mercer et al., 2015; 
Spencer et al., 2015; Li et al., 2017a).

This study presents a novel approach to 
integrate in situ oxygen isotope data with fluid 
inclusion data and Re-Os chronology from 
co-precipitated vein quartz and molybdenite 
grains. The high-precision Re-Os dates from 
the Qulong porphyry Cu-Mo deposit in Tibet (Li 
et al., 2017a) permit, for the first time, evaluat-
ing the fluid evolution path under an absolute 
time frame. We propose that δ18Ofluid can be used 
as a proxy to trace the flux of magmatic fluid 
and mineralizing potential through time, and 
to probe the dynamic magmatic process of the 
deeply seated magmatic reservoir.
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SAMPLES AND IN SITU δ18O ISOTOPE 
RESULTS

In brief, the Qulong deposit comprises the 
pre-ore Rongmucuola pluton (RP), pre-ore 
aplite, syn-ore P and X porphyries, a syn-ore 
breccia pipe, and post-ore quartz diorite (Fig. 1; 
Fig. DR1 in the GSA Data Repository1). As con-
strained by high-precision Re-Os molybdenite 
dating, copper-molybdenum mineralization 
occurred over 266 k.y., between 16.126 Ma and 
15.860 Ma, with three short-lived intermittent 
mineralization pulses inferred at 16.126–16.050 
Ma, 16.040–15.981 Ma, and ca. 15.981–15.860 
Ma, respectively (Li et al., 2017a).

Magmatic quartz and zircon from the RP (n = 
2), a sinusoidal quartz vein hosted by the aplite, 
and 12 molybdenite-quartz ± chalcopyrite veins 
were utilized to constrain the δ18O of magmatic 
and hydrothermal fluids of the Qulong porphyry 
system. For the 12 veins, quartz-hosted fluid 
inclusion analyses and Re-Os molybdenite dat-
ing were conducted in previous studies (Li et al., 
2017a, 2017b), and quartz grains from the same 
sample set (Fig. DR3G) used in previous fluid 
inclusion studies were utilized in this study for 
secondary ion mass spectrometry (SIMS) δ18O 
analysis. Zircon and magmatic quartz from the 
RP instead of from P porphyry are utilized to 
assess the oxygen isotopic composition of mag-
matic fluid given the intensive alteration of the 
P porphyry (Yang et al., 2009; Li et al., 2017a).

Magmatic quartz and zircon possess mean 
δ18O values of 8.78‰ ± 0.65‰ (2 S.D. [stan-
dard deviation]) and 6.14‰ ± 0.39‰, respec-
tively, show no cross-pluton variations, and yield 
a ∆18Oquartz-zircon of 2.64‰ ± 0.76‰ (Fig. DR2). 
The sinusoidal vein hosted by the aplite com-
prises euhedral quartz grains (0.2–0.5 mm), with 
cathodoluminescence (CL) images revealing core 
resorption-dissolution and rim overgrowth tex-
tures (Fig. 2A). Three core-to-rim transects show 
similar δ18Oquartz values and trends, increasing 

1 GSA Data Repository item 2018001, Tables DR1–
DR3, deposit geology, methods, and quartz-water oxy-
gen fractionation considerations, is available online at 
http://www.geosociety.org/datarepository/2018/ or on 
request from editing@geosociety.org.

from ~5.40‰ (core) to ~7.89‰ (rim) (Fig. 2C). 
Quartz grains from the 12 quartz-molybdenite 
veins generally exhibit clear euhedral oscillatory 
growth zones, indicating lack of overprinting (Fig. 
2B). Individual veins have homogeneous δ18Oquartz, 
regardless of the presence or absence of frac-
tures and CL zonation (Figs. 2B and 2C). For the 
12 veins, their δ18Oquartz values vary significantly, 
between 8.12‰ ± 0.47‰ and 11.90‰ ± 0.51‰ 
(Fig. 3). The most pronounced fluctuation occurs 
from the first mineralization pulse, increasing 
from 8.27‰ to 11.90‰, and then decreasing to 
8.12‰. The second and third pulses are marked 
by smaller variations (8.81‰–9.46‰).

DISCUSSION

Quartz as an Oxygen Isotopic Archive of 
Ore-Forming Magma and Fluids

Before using δ18Oquartz values to trace fluid 
evolution, it is critical to evaluate the potential 
modification of δ18Oquartz values through vol-
ume diffusion and precipitation of new material 
along microfractures (Valley and Graham, 1996; 
Allan and Yardley, 2007). The ∆18Oquartz-zircon value 
reported above yields an equilibrium oxygen iso-
tope fractionation temperature of 674 ± 151 °C 
(Fig. DR2). The refractory and resistant nature 
of zircon, across-pluton homogeneous δ18Ozircon 
and δ18Oquartz values, and agreement between 
the quartz-zircon equilibrium temperature and 
the solidus temperature of granites (<720 °C; 
Johannes, 1984) imply that the magmatic quartz 
records the primary magmatic δ18O value.

For the 12 quartz veins, within-vein homoge-
neity of δ18Oquartz and the absence of any relation-
ships with microfractures rule out modification 

of the δ18Oquartz via diffusion along fractures 
(Valley and Graham, 1996), and indicate that 
the vein quartz was either free from volume dif-
fusion or experienced complete oxygen-isotope 
exchange. Complete oxygen-isotope exchange 
via volume diffusion for a 400 μm quartz grain 
is only achievable over ~1.3 and >10 m.y. at 
400 and 300 °C, respectively (Fig. DR4A). Such 
conditions, however, are implausible at Qulong 
(Zhao et al., 2016). Therefore, we conclude that 
the studied vein quartz records primary δ18O 
values.

Equilibrium Oxygen Fractionation 
Between Quartz and Fluids

Using the equilibrium temperature (674 ± 
151 °C) of zircon and quartz from RP, the mag-
matic fluid is estimated to have had a δ18O of 
7.6‰ ± 1.0‰, which agrees well with previous 
estimates for Qulong (~7.7‰) and other PCDs 
(Yang et al., 2009; Cooke et al., 2014). Given 
that no cross-pluton variations in δ18O (in both 
quartz and zircon) are observed (Fig. DR2), and 
the pre-ore RP and syn-ore P and X porphyries 
have very similar Sr-Nd-Pb isotopic character-
istics (Yang et al., 2009), plus the agreement of 
magmatic fluid δ18O with previous estimates, 
we consider the magmatic fluid δ18O estimated 
here (7.6‰ ± 1.0‰) is representative.

To calculate δ18Ofluid from δ18Oquartz, in addi-
tion to knowing the crystallization temperature, 
a further requirement is that the oxygen-isotope 
fractionation between quartz and water occurred 
under equilibrium conditions (Allan and Yard-
ley, 2007; Tanner et al., 2013). Equilibrium is 
expected if the duration of quartz growth is 
longer than that of isotope exchange between 
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Figure 2. Representative cathodoluminescence (CL) images and in situ δ18Oquartz from 
Qulong porphyry Cu-Mo deposit, Tibet. A: Quartz grains from sinusoidal quartz vein. 
Red box highlights resorption and dissolution of CL-dark core, which is overprinted 
by CL-bright overgrowth rim. B: Quartz grains from molybdenite-bearing vein possess 
euhedral growth zonation. C: δ18Oquartz plot of three transects shown in A and analyzed 
quartz grains shown in B. Ellipses in A and B represent positions analyzed by second-
ary ion mass spectrometry. See text for discussion. SD—standard deviation.

Figure 1. Cross section of Qulong (Tibet) por-
phyry Cu-Mo deposit.
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water and quartz. The vein quartz at Qulong 
(~0.4 cm in size) potentially precipitated over 
~409–66,906 yr (Pollington et al., 2016) at 425–
280 °C (Li et al., 2017b), which is sufficiently 
longer than that needed for quartz and water to 
reach equilibrium (<20 yr; Fig. DR4B; Cole et 
al., 1992). Therefore, the δ18Ofluid of each vein 
can be calculated from δ18Oquartz using the equa-
tion of Matsuhisa et al. (1979) with the forma-
tion temperature of that vein.

A potential concern for the calculated δ18Ofluid 
is the accuracy of the temperatures applied. Here 
we use trapping temperatures from fluid inclu-
sion assemblages (FIAs; Li et al., 2017b), which 
represent the best estimates of the formation 
temperatures (Goldstein and Reynolds, 1994). 
The trends shown by the δ18Oquartz and δ18Ofluid 
values (Fig. 3), coupled with similar trends 
determined by using the highest, average, and 
lowest mineralization temperatures in PCDs 
(Fig. DR5), suggest that the evolution trend of 
ore-forming fluid is robust.

In terms of fluids with salinities of <10 wt.% 
(Li et al., 2017b), oxygen isotope fractionation 
between aqueous and vapor phases via boiling 
is typically <0.5‰ at 350–450 °C (Shmulovich 
et al., 1999), which is of the same order of mag-
nitude as the uncertainties in SIMS analysis and 
the equilibrium fractionation equation. Moreover, 
fluid boiling only operated locally at Qulong (Li 
et al., 2017b), and therefore its effect on oxygen 
isotope fractionation is considered negligible.

Evolution of Ore-Forming Fluid in an 
Absolute Time Frame

The textures of quartz grains from the sinu-
soidal vein (barren of mineralization), includ-
ing dissolution-resorption of cores and discor-
dant overgrowth rims (Fig. 2A), suggest that 
the dissolution-resorption of the cores occurred 
during and/or before the overgrowths. Therefore, 
the progressive increase of δ18Oquartz from core 
to rim (Fig. 2C) indicates that the cores were 
modified by a late 18O-rich fluid. If the inner core 
recorded the most primary δ18Oquartz (5.40‰ ± 
0.27‰) during vein formation (~425 °C; Li et 

al., 2017b), the corresponding fluid has a δ18Ofluid 
of 1.8‰ ± 0.5‰, which represents the δ18Ofluid 
before the first mineralization pulse.

The isotopic evolution of the ore-forming 
fluids is presented in Figure 3 using the for-
mation times and temperatures constrained by 
Re-Os dating and fluid inclusion studies (Li et 
al., 2017a, 2017b), respectively. The δ18Ofluid val-
ues show significant variation, as much as 5.8‰. 
In brief, during each of the three mineraliza-
tion pulses defined by Re-Os dating, the δ18Ofluid 
increased from low to high values at the start of 
the mineralization pulse and then decreased to 
lower values toward the end of the pulse. For 
an instance, the first mineralization pulse, which 
had the most pronounced fluctuation, the δ18Ofluid 
increased progressively from 4.7‰ to 7.6‰, 
and then decreased to 3.1‰. Overall, the first 
mineralization pulse had higher δ18Ofluid values 
than the second and third pulses.

With the exception of the sample at 16.098 
Ma, which possesses a δ18Ofluid of 7.6‰ ± 0.5‰, 
all δ18Ofluid values are lower than that of mag-
matic water (Fig. 3), and require the involvement 
of an isotopically lighter component, most likely 
meteoric water. Assuming a steady groundwa-
ter table during ore formation, which is reason-
able given that no dramatic climatic changes are 
known for the mineralization period at Qulong, 
the trend in the δ18Ofluid values shown in Figure 3 
is best interpreted as an interplay between mag-
matic fluid and meteoric water. Prior to the first 
mineralization pulse, the hydrothermal fluid sys-
tem was dominated by an isotopically light water, 
likely meteoric water, as evidenced by the low 
δ18Ofluid (1.8‰ ± 0.5‰) of the sinusoidal vein. In 
the first mineralization pulse, the increase in the 
δ18Ofluid at the beginning of the pulse indicates 
that the hydrothermal fluid was progressively 
dominated by magmatic fluid. The decreasing 
trend at the waning stage of the mineralization 
pulse indicates a decline in the magmatic fluid 
flux, which results in the hydrothermal sys-
tem being dominated by meteoric water again. 
A similar process explains the trend observed in 
the second and third pulses.

The pulsed magmatic fluid flux inferred 
from δ18Ofluid is in agreement with the cyclic 
mineralization process defined by Re-Os dat-
ing, and therefore suggests that the three inter-
mittent pulses defined by Re-Os dating (Li et 
al., 2017a) are robust, rather than an artifact 
caused by undersampling (Glazner and Sadler, 
2016). For example, if the duration of the first 
mineralization pulse is underestimated, then 
the decreasing trend of δ18Ofluid would extend 
beyond the interval determined by Re-Os dating.

The δ18Ofluid values decrease gradually from 
the first to the second and third mineralization 
pulses (Fig. 3), with the most pronounced mag-
matic flux occurring in the first pulse. As δ18Ofluid 
is positively linked with the flux of magmatic 
fluids, and considering a stable bulk chemis-
try of the magmatic fluid (Chelle-Michou et al., 
2017), the δ18Ofluid can be used as a proxy to trace 
the amount of metals available for precipitat-
ing through time. In this regard, the low δ18Ofluid 
recorded by the sinusoidal vein suggests that the 
initial fluid did not contribute significantly to the 
metal budget, which is supported by the bar-
ren nature of the earliest quartz veins (Yang et 
al., 2009; Li et al., 2017b). The highest δ18Ofluid 
value in the first mineralization pulse indicates 
that a considerable amount of metals (Cu, Mo) 
could be deposited from a hydrothermal fluid 
dominated by a magmatic component. Although 
we cannot correlate the metal grade absolutely 
with our high-precision dating, such a scenario 
is partially supported by observations at Qulong, 
which include the slightly later quartz-biotite-
anhydrite alteration possessing ~60% of the met-
als (Yang et al., 2009), and that the majority of 
the fluid inclusions that contain sulfide minerals 
are documented in the first mineralization pulse 
(Li et al., 2017b). In addition, a relative decline 
in metal grade from early to late veins (Yang et 
al., 2009) further supports a decline of metals 
deposited throughout.

PULSED MAGMATIC-
HYDROTHERMAL PROCESS

Hydrothermal processes at shallow crustal 
levels that are linked with the exsolution of 
magmatic fluids from deep magmatic reser-
voirs (Kouzmanov and Pokrovski, 2012) can 
be used to probe the dynamic processes occur-
ring at depth. To explain the pulsed release of 
magmatic fluid, as observed at Qulong, two 
mechanisms are proposed, namely multiple 
fluid release events from the gradual cooling 
of a single magmatic reservoir (Chelle-Michou 
et al., 2017) and multiple fluid-melt recharging 
events feeding the source pluton (Kamenov et 
al., 2005; Williamson et al., 2016). For a grad-
ually cooling magmatic reservoir, numerical 
modeling suggests that the fluids are released 
episodically, with most (50–75 wt.%) of the fluid 
being released during the first pulse (Chelle-
Michou et al., 2017), which is our favored 

15.8515.9516.0516.15

Age (Ma)
2

6

10

14
δ18

O
 (‰

)

magmatic water range

 

 

δ18Ofluid

δ18Oquartz

1st pulse 2nd pulse 3rd pulse

gradual decrease trend

Figure 3. δ18Oquartz and δ18Ofluid 
values for Qulong deposit (Tibet) 
presented against absolute time 
frame defined by Re-Os dating. 
δ18O of magmatic-derived fluid 
is higher than δ18Ofluid of Qulong 
vein samples, which indicates 
the magmatic fluid is balanced 
by meteoric water during ore 
formation. δ18Oquartz and δ18Ofluid 
in absolute time show periodic 
fluctuations, which indicates 
presence of three intermittent 
pulses of magmatic fluid flux. 
Gradual decreasing trend of 
δ18Ofluid provide a proxy for flux of 
magmatic fluid and the mineral-
izing potential through time. See 
text for details.



4 www.gsapubs.org | Volume 46 | Number 1 | GEOLOGY

explanation as supported by the observations at 
Qulong that ~60% of the metals are deposited in 
the first pulse. The alternative mechanism is also 
possible if the amount of fluid and melt from the 
multiple recharging events also gradually drops.

Based on the pulsed hydrothermal process 
suggested here, together with cyclic mineraliza-
tion processes constrained by recent high-pre-
cision U-Pb and Re-Os dating, titanium diffu-
sion modeling, and concentric excess aluminum 
in plagioclase (Mercer et al., 2015; Spencer et 
al., 2015; Tapster et al., 2016; Williamson et 
al., 2016; Li et al., 2017a), we propose that 
a pulsed magmatic-hydrothermal process is 
common in the formation of porphyry depos-
its. Such a process is most likely controlled by 
periodic fluid release during gradual cooling of 
the source pluton at depth (Chelle-Michou et al., 
2017), although a decline in the amount of melt 
and fluid associated with multiple recharging 
events is a competitive alternative mechanism. 
By inference, the lifetime of the source pluton is 
estimated to be hundreds of thousands of years, 
with much shorter durations (tens of thousands 
of years) for the fluid release events (Mercer et 
al., 2015; Buret et al., 2016; Tapster et al., 2016; 
Chelle-Michou et al., 2017; Li et al., 2017a).
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