
J
H
E
P
0
2
(
2
0
1
5
)
0
5
3

Published for SISSA by Springer

Received: December 10, 2014

Accepted: January 12, 2015

Published: February 10, 2015

Soft limits in holographic cosmology

Paul McFadden

Theoretical Physics Group, Blackett Laboratory, Imperial College London,

London, SW7 2AZ, U.K.

Perimeter Institute for Theoretical Physics,

Waterloo, Ontario, N2L 2Y5, Canada

E-mail: p.mcfadden@imperial.ac.uk

Abstract: We study the soft limits of cosmological correlators from a holographic per-

spective, showing how the inflationary consistency relations arise from the diffeomorphism

invariance of the dual quantum field theory. Starting from the corresponding Ward identity,

by taking moments we derive the leading and subleading behaviour of the stress tensor 3-

point function in the limit as one momentum vanishes. These results are non-perturbative

and valid in quantum field theories of a very general nature. Exploiting the known map-

ping of correlators in the dual quantum field theory to those of the cosmology, we then

obtain the leading and subleading soft behaviour of all cosmological 3-point correlators of

curvature perturbations and gravitons. Our results thus provide a holographic derivation

of all leading and subleading consistency relations for cosmological 3-point functions, and

our method is easily generalised. We verify our results explicitly for slow-roll inflation and

for strongly coupled holographic cosmologies with a perturbative dual description.

Keywords: Gauge-gravity correspondence, Space-Time Symmetries

ArXiv ePrint: 1412.1874

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2015)053

mailto:p.mcfadden@imperial.ac.uk
http://arxiv.org/abs/1412.1874
http://dx.doi.org/10.1007/JHEP02(2015)053


J
H
E
P
0
2
(
2
0
1
5
)
0
5
3

Contents

1 Introduction 1

2 Soft theorems for stress tensor correlators 4

2.1 Defining the soft limit 4

2.2 The diffeomorphism Ward identity 5

2.3 Moments of the diffeomorphism Ward identity 6

2.3.1 First moment 6

2.3.2 Second moment 7

2.4 Converting to a helicity basis 9

3 Soft limits in holographic cosmology 11

3.1 Holographic formulae 11

3.2 Cosmological consistency relations 13

4 Explicit tests 14

4.1 Slow-roll inflation 14

4.2 Strongly coupled holographic cosmologies 16

5 Discussion 18

A Convergence of boundary terms 20

B Momentum space 21

B.1 Fourier transforms 21

B.2 Differentiating the momentum-space Ward identity 22

C Helicity basis 23

C.1 Conventions 23

C.2 Derivative of a polarisation tensor with respect to momentum 24

1 Introduction

The correlators of primordial perturbations encode crucial clues to the dynamics of the

early universe. Of particular importance are the soft limits of these correlators, in which

one or more of the momenta vanish. In such limits, it is possible to derive exact non-

perturbative statements that are largely model independent and rely on only a few broad

dynamical assumptions. The most celebrated of these are the inflationary consistency con-

ditions [1–7] which relate n-point correlators in the limit where one momentum vanishes

to (n−1)-point functions. Valid in any single-field model for which the background is an
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attractor [2], any observed violation, whether in the cosmic microwave background [8–11]

or in large-scale structure [12–19], would be a signature of more exotic dynamics (e.g.,

multiple fields and/or the growth of curvature perturbations outside the horizon [20, 21],

non-attractor behaviour [22–24] or departures from the Bunch-Davies vacuum [25–33]).

Given their obvious importance, the consistency relations have been studied from a va-

riety of standpoints including background-wave arguments [2–6], the wavefunction of the

universe [34], and the symmetries of adiabatic perturbation modes [7, 35–39].

Our aim in this paper is to understand the consistency relations from a holographic

perspective. In holographic cosmology, inflationary correlators are determined by the stress

tensor correlators of a dual quantum field theory (QFT), which is both three dimensional

and non-gravitational. The cosmological consistency relations should therefore be equiva-

lent to soft theorems relating n-point stress tensor correlators in the limit as one momen-

tum vanishes to (n−1)-point correlators. In effect, holography should reduce the analysis

of cosmological soft limits to a straightforward problem in ordinary QFT.

Despite originating in the same paper as the consistency relations themselves [1], this

promising perspective has yet to be systematically developed. Partial progress was made

in [40], which recovered the leading order consistency relations for the scalar bispectrum

using the Callan-Symanzik equation, and [41], which used conformal perturbation theory

to recover the leading consistency relations for both the scalar bispectrum and the 3-point

function of a soft curvature perturbation and two gravitons. Both these works required

however specific assumptions about the nature of the dual QFT (either pertaining to the

form the β-function or proximity to a fixed point) that are considerably more restrictive

than those required to derive the bulk cosmological consistency relations. Moreover, it

is not clear how either approach can be extended to obtain consistency relations for soft

gravitons, or to understand soft behaviour at subleading orders.

In this paper we propose instead a fresh approach that eliminates these difficulties.

This approach is non-perturbative and applies under conditions equivalent to those assumed

in the cosmology. Besides enabling a holographic derivation of the consistency relations

for soft curvature perturbations, we can handle soft gravitons and extract the complete

subleading soft behaviour. In fact, as we will show in a companion paper [42], it is even

possible to recover the entire infinite hierarchy of consistency relations discovered in [7],

although in this paper we will confine ourselves to an analysis of the leading and subleading

soft behaviour. On top of these advantages, the method is both simple and systematic.

Our starting point is the diffeomorphism Ward identities in the dual QFT. These

may be obtained by functionally differentiating with respect to the metric the generating

relation,

0 = ∇i〈Tij(~x)〉s, (1.1)

before restoring a flat metric. (Here, the subscript s on the 1-point function indicates the

presence of a non-zero source, namely, a non-flat metric.) As required, these are exact

and non-perturbative statements relating the divergence of n-point functions of the stress

tensor to contact terms involving (n−1)-point functions (or lower). The detailed form of

these Ward identities depends on only two assumptions. Firstly, that 1-point functions in
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the absence of sources vanish,1 and secondly, that only a single bulk scalar is present. This

latter condition ensures that the source for the dual scalar operator is spatially uniform

in the background, eliminating an additional contribution to (1.1) from the scalar 1-point

function in the presence of sources.2

To derive soft theorems for stress tensor correlators, we simply take moments of these

diffeomorphism Ward identities. Multiplying both sides by xaxb . . . and integrating over

all ~x, on the right-hand side we pick up a finite number of (n−1)-point contributions from

integrating over the contact terms, while the left-hand side can be handled by parts yielding

(modulo a boundary term) the required moment integrals, e.g.,∫
d3~x xaxb ∂i〈Tij(~x) . . .〉 = −2

∫
d3~x δi(axb)〈Tij(~x) . . .〉. (1.2)

In momentum space, these become soft theorems for the zero-momentum limit of

momentum-derivatives of stress tensor correlators. (One could alternatively work in mo-

mentum space throughout by differentiating the Fourier transform of the Ward identity

with respect to the soft momentum.) One can then straightforwardly reconstruct the Tay-

lor expansion for the leading and subleading soft behaviour of the stress tensor n-point

function.

To derive the cosmological consistency relations from these soft theorems, we simply

use the holographic formulae linking stress tensor correlators of the dual QFT to cos-

mological correlators. In this paper we focus on 3-point correlators, since the required

holographic formulae (both for scalars and tensors) have been completely worked out in

this case [44, 45].3 The soft limit we study is therefore the familiar squeezed limit of the

3-point function. Specifically, we will show how to recover the leading and subleading soft

behaviour (i.e., to O(q2
1)) of all cosmological 3-point correlators of both scalars and ten-

sors. Included in these results are the consistency relations of [1, 4, 5] plus the lower-order

relations of [7]. Our method is readily extendible to n-point functions, however, upon

determination of the appropriate holographic formulae. This would allow a holographic

analysis of internal [46, 47] and multiple soft limits [48, 49].

Since the soft theorems we derive for stress tensor correlators are non-perturbative,

they hold equally well when the dual QFT is strongly or weakly coupled. The latter case

is especially interesting since it corresponds to an early universe emerging from a strongly

coupled holographic phase [43, 44, 50–54]. As the string scale is comparable to the Hubble

scale in this case (though both are far below the Planck scale), a geometric description in

terms of low-energy fields such as the metric is not straightforwardly applicable4 meaning

1This is true when the dual QFT is in the Euclidean vacuum state, as corresponds to Bunch-Davies

initial conditions in cosmology [43], but might be violated more generally.
2For multiple bulk scalars such contributions generically arise, however, as we discuss in section 5. These

contributions lead to Ward identities with both pure stress tensor and mixed stress tensor/scalar n-point

functions, blocking our derivation of the consistency relations as required.
3The attractor property of the background is implicit in the derivation of these holographic formulae,

which assume the dual QFT either flows to a fixed point or has generalised conformal symmetry in the UV.
4Indeed, the possibility this entails of avoiding the big bang singularity is a key motivation for these

models. The absence of a big bang singularity corresponds to IR finiteness of the dual QFT, as discussed

in [50, 52].
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that the standard methods for deriving cosmological consistency relations cannot be ap-

plied. Instead one can follow the holographic approach we develop here, working directly

in the dual QFT. The validity of the consistency relations even under these extreme cir-

cumstances goes a long way towards explaining the remarkable fact that, despite the very

different underlying physical picture, the predicted correlators of this holographic model

are still very close to those of ordinary slow-roll inflation [53].

The layout of this paper is as follows. In section 2 we define the soft limit and intro-

duce the diffeomorphism Ward identity. Next, we derive the soft theorems associated with

the first and second moments of this Ward identity. Using these results, we then recon-

struct the leading and subleading soft behaviour of the stress tensor 3-point function in a

convenient helicity basis. A useful check of these results follows from previous calculations

for free fields. (Note that we work in three dimensions throughout, though our results

are easily generalised.) In section 3, we introduce the holographic formulae linking QFT

correlators to cosmological correlators. We then recover all leading and subleading con-

sistency relations for cosmological 3-point correlators by inserting our results for the soft

limits of the stress tensor 3-point function. In section 4, we test these consistency relations

for standard slow-roll inflation and also strongly coupled holographic cosmologies based

on a perturbative dual QFT description. Possible generalisations of our results are noted

in the discussion section, as well as some preliminary considerations of how violations of

the consistency relations show up in the dual QFT description. Three appendices contain

additional technical information. Appendix A discusses the convergence of the boundary

term when computing moments of the Ward identity. Appendix B provides additional

detail relating to Fourier transforms as well as a direct momentum-space derivation of the

soft theorems. Finally, appendix C lists our conventions and a few useful properties of

polarisation tensors.

2 Soft theorems for stress tensor correlators

2.1 Defining the soft limit

Let us begin by defining carefully what we mean by the soft (or squeezed) limit of a 3-point

function. In this limit the magnitude of one of the momenta, say ~q1, is taken to zero while

preserving its direction. To fully specify the limit, we additionally need to prescribe what

happens to the two remaining momenta ~q2 and ~q3.

One possibility would be to select one of these as our preferred momentum and hold it

fixed while sending q1 → 0, with the remaining momentum following from overall momen-

tum conservation. To treat ~q2 and ~q3 on a more equal footing, however, we prefer instead

to hold fixed the antisymmetric linear combination,5

~q =
1

2
(~q2 − ~q3), (2.1)

in line with some of the cosmological literature [2, 4, 5]. We emphasize that this is simply

a choice, however, and that our method works equally well for other choices.

5The symmetric linear combination is fixed by momentum conservation to be − 1
2
~q1.
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Figure 1. Due to momentum conservation the momenta in a 3-point function form a triangle.

In the squeezed limit we send the magnitude of ~q1 to zero while holding its direction fixed. The

remaining vectors ~q2 and ~q3 are then given in terms of ~q1 and the fixed vector ~q as shown.

Our soft limit thus corresponds to setting

~q2 = ~q − 1

2
~q1, ~q3 = −~q − 1

2
~q1, (2.2)

then sending q1 → 0 while holding ~q and ~q1/q1 fixed, as illustrated in figure 1. In this limit,

scalar quantities can be expressed as functions of the magnitudes q and q1, along with the

fixed angle ϕ defined by

cosϕ =
~q1 · ~q
q1 q

. (2.3)

Similarly, when we convert to a helicity basis in section 2.4, all our results will be expressible

in terms of q, q1 and ϕ.

2.2 The diffeomorphism Ward identity

Returning now to position space, as noted above, the diffeomorphism Ward identity for

stress tensor correlators may be obtained by functionally differentiating the basic identity

∇i〈Tij(~x)〉s = 0 with respect to the metric. After this, we restore the metric to be flat and

we can write all indices as lowered.

Functionally differentiating once, we find the well-known 2-point Ward identity

∂i〈Tij(~x1)Tkl(~x2)〉 = 0. (2.4)

Functionally differentiating twice yields the 3-point Ward identity,

∂i

[
〈Tij(~x1)Tkl(~x2)Tmn(~x3)〉

− 2〈Tij(~x1)Υklmn(~x2, ~x3)〉 − 2〈Υijkl(~x1, ~x2)Tmn(~x3)〉 − 2〈Υijmn(~x1, ~x3)Tkl(~x2)〉
]

= 2∂(k

(
〈Tl)j(~x1)Tmn(~x3)〉δ(~x2 − ~x1)

)
+ 2∂(m

(
〈Tn)j(~x1)Tkl(~x2)〉δ(~x3 − ~x1)

)
− δkl〈Tij(~x1)Tmn(~x3)〉∂iδ(~x2 − ~x1)− δmn〈Tij(~x1)Tkl(~x2)〉∂iδ(~x3 − ~x1)

+ 〈Tkl(~x1)Tmn(~x3)〉∂jδ(~x2 − ~x1) + 〈Tmn(~x1)Tkl(~x2)〉∂jδ(~x3 − ~x1). (2.5)

In both these relations all partial derivatives are taken with respect to ~x1, and we drop

ultralocal contact terms that only contribute when all three insertion points coincide. (Such

terms depend on the choice of renormalisation scheme and can be removed by the addition
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of local counterterms.) The tensor Υijkl encodes the residual metric-dependence hidden

within the stress tensor Tij itself, and is defined by

Υijkl(~x1, ~x2) =
δTij(~x1)

δgkl(~x2)

∣∣∣
0

(2.6)

where the zero subscript indicates the sources have been set to zero (i.e., the metric restored

to flatness). In (2.5) we have defined the 3-point function to mean the insertion of three

copies of the stress tensor Tij . An alternative definition (used, for example, in [55]) would

be to functionally differentiate the generating functional three times. This latter definition

effectively subsumes the terms involving Υijkl into the stress tensor 3-point function itself,

eliminating them from the Ward identity. Which definition is used is purely a matter of

convention, however, and it is straightforward to convert between the two by the addition

of the appropriate semilocal terms (i.e., terms which contribute when only two of the three

insertions points are coincident).

Notice also that, despite appearances, the first term on the second line of (2.5) is

actually symmetric under interchange of ~x2 and ~x3, i.e.,

∂i〈Tij(~x1)Υklmn(~x2, ~x3)〉 = ∂i〈Tij(~x1)Υmnkl(~x3, ~x2)〉. (2.7)

To see this, going back to the definition of the stress tensor in terms of the action, one

finds that [45]

Υklmn(~x2, ~x3) = Υmnkl(~x3, ~x2) +
1

2

(
Tkl(~x2)δmn − Tmn(~x3)δkl

)
δ(~x2 − ~x3). (2.8)

The 2-point Ward identity (2.4) then eliminates the non-symmetric piece when inserted

into the correlator. In fact, for free fields, the entire term ∂i〈Tij(~x1)Υklmn(~x2, ~x3)〉 vanishes

since Υijkl can always be rewritten purely in terms of the stress tensor [53]. (For this

reason this term is omitted from the Ward identity quoted in appendix D.3 of [53].) As we

consider completely general QFTs here, however, we retain this term explicitly.

2.3 Moments of the diffeomorphism Ward identity

2.3.1 First moment

To derive the leading-order behaviour in the squeezed limit, we take the first moment of

the 3-point Ward identity (2.5). To do this, we multiply by x1a then integrate over all

~x1. We obtain a contribution from each of the contact terms on the right-hand side, while

the left-hand side is handled by parts to eliminate the partial derivative.6 In this fashion,

we obtain∫
d3~x1

[
〈Tij(~x1)Tkl(~x2)Tmn(~x3)〉

− 2〈Tij(~x1)Υklmn(~x2, ~x3)〉 − 2〈Υijkl(~x1, ~x2)Tmn(~x3)〉 − 2〈Υijmn(~x1, ~x3)Tkl(~x2)〉
]

(2.9)

= 2δi(k〈Tl)j(~x2)Tmn(~x3)〉+ 2δi(m〈Tn)j(~x3)Tkl(~x2)〉+ 2δij〈Tkl(~x2)Tmn(~x3)〉

− δkl〈Tij(~x2)Tmn(~x3)〉 − δmn〈Tij(~x3)Tkl(~x2)〉+
(
x2i

∂

∂x2j
+ x3i

∂

∂x3j

)
〈Tkl(~x2)Tmn(~x3)〉.

6The boundary term vanishes, though for higher moments this is non-trivial as discussed in appendix A.
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In momentum space, the integral over ~x1 on the left-hand side corresponds to an insertion

at zero momentum, with momentum conservation then forcing the remaining momenta

to be equal and opposite (±~q from (2.2)). Thus, after Fourier transforming, we obtain

the result7

lim
q1→0

[
〈〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉〉

− 2〈〈Tij(~q1)Υklmn(~q2, ~q3)〉〉 − 2〈〈Υijkl(~q1, ~q2)Tmn(~q3)〉〉 − 2〈〈Υijmn(~q1, ~q3)Tkl(~q2)〉〉
]

= 2δi(k〈〈Tl)j(~q)Tmn(−~q)〉〉+ 2δi(m〈〈Tn)j(~q)Tkl(−~q)〉〉+ δij〈〈Tkl(~q)Tmn(−~q)〉〉

− δkl〈〈Tij(~q)Tmn(−~q)〉〉 − δmn〈〈Tij(~q)Tkl(−~q)〉〉 − qj
∂

∂qi
〈〈Tkl(~q)Tmn(−~q)〉〉. (2.10)

Our double bracket notation 〈〈. . .〉〉 for correlators here simply indicates the removal of the

overall momentum-conserving delta function, i.e.,

〈Tij(~q1)Tkl(~q2)〉 = 〈〈Tij(~q1)Tkl(−~q1)〉〉(2π)3δ(~q1 + ~q2), (2.11)

〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉 = 〈〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉〉(2π)3δ(~q1 + ~q2 + ~q3), (2.12)

and similarly for other correlators.

The first moment of the 3-point Ward identity (2.5) thus yields the soft theorem (2.10)

relating the leading behaviour of the 3-point function in the squeezed limit to the 2-point

function and its derivative. Applying similar arguments to the 2-point Ward identity (2.4)

we also find

lim
q1→0
〈〈Tij(~q1)Tkl(−~q1)〉〉 = 0. (2.13)

2.3.2 Second moment

To obtain the subleading behaviour of the 3-point function in the squeezed limit, we must

instead take the second moment of the Ward identity (2.5). To do this, we multiply both

sides by x1ax1b and then integrate over ~x1 as before, yielding∫
d3~x1 x1(a

[
〈Tb)j(~x1)Tkl(~x2)Tmn(~x3)〉

− 2〈Tb)j(~x1)Υklmn(~x2, x3)〉 − 2〈Υb)jkl(~x1, ~x2)Tmn(~x3)〉 − 2〈Υb)jmn(~x1, ~x3)Tkl(~x2)〉
]

= 2x2(aδb)(k〈Tl)j(~x2)Tmn(~x3)〉+ 2x3(aδb)(m〈Tn)j(~x3)Tkl(~x2)〉 − δklx2(a〈Tb)j(~x2)Tmn(~x3)〉

− δmnx3(a〈Tb)j(~x3)Tkl(~x2)〉+ x2(aδb)j〈Tkl(~x2)Tmn(~x3)〉+ x3(aδb)j〈Tmn(~x3)Tkl(~x2)〉

+

(
x2ax2b

∂

∂x2j
+ x3ax3b

∂

∂x3j

)
〈Tkl(~x2)Tmn(~x3)〉. (2.14)

7See appendix B.1 for details, and appendix B.2 for a parallel discussion starting from the momentum-

space Ward identity.

– 7 –



J
H
E
P
0
2
(
2
0
1
5
)
0
5
3

Transforming to momentum space,8 one then obtains the subleading soft theorem

lim
q1→0

∂

∂q1(a

[
〈〈Tb)j(~q1)Tkl(~q2)Tmn(~q3)〉〉

− 2〈〈Tb)j(~q1)Υklmn(~q2, ~q3)〉〉 − 2〈〈Υb)jkl(~q1, ~q2)Tmn(~q3)〉〉 − 2〈〈Υb)jmn(~q1, ~q3)Tkl(~q2)〉〉
]

=
∂

∂q(a

[
δb)(k〈〈Tl)j(~q)Tmn(−~q)〉〉 − δb)(m〈〈Tn)j(~q)Tkl(−~q)〉〉

+
1

2
〈〈Tb)j(~q)Tkl(−~q)〉〉δmn −

1

2
〈〈Tb)j(~q)Tmn(−~q)〉〉δkl

]
, (2.15)

where the limit q1 → 0 is taken while enforcing (2.2).

The final step is now to remove the symmetrisation over the indices a and b in (2.15).

Noting that for a tensor obeying Xabj = Xajb, it follows that Xabj = X(ab)j+X(aj)b−X(jb)a,

we find

lim
q1→0

∂

∂q1a

[
〈〈Tbj(~q1)Tkl(~q2)Tmn(~q3)〉〉

− 2〈〈Tbj(~q1)Υklmn(~q2, ~q3)〉〉 − 2〈〈Υbjkl(~q1, ~q2)Tmn(~q3)〉〉 − 2〈〈Υbjmn(~q1, ~q3)Tkl(~q2)〉〉
]

=
1

2

∂

∂qa

[
δmn〈〈Tbj(~q)Tkl(−~q)〉〉 − δkl〈〈Tbj(~q)Tmn(−~q)〉〉

]
+

∂

∂q(a

[
δb)(k〈〈Tl)j(~q)Tmn(−~q)〉〉 − δb)(m〈〈Tn)j(~q)Tkl(−~q)〉〉

]
+

∂

∂q(a

[
δj)(k〈〈Tl)b(~q)Tmn(−~q)〉〉 − δj)(m〈〈Tn)b(~q)Tkl(−~q)〉〉

]
+

∂

∂q(j

[
δb)(k〈〈Tl)a(~q)Tmn(−~q)〉〉 − δb)(m〈〈Tn)a(~q)Tkl(−~q)〉〉

]
. (2.16)

This soft theorem relates the subleading behaviour of the momentum-space 3-point function

in the squeezed limit (i.e., the terms linear in ~q1) to single derivatives of the 2-point function.

Using similar methods to compute the second moment of the 2-point Ward iden-

tity (2.4), we find

lim
q1→0

∂

∂q1a
〈〈Tbj(~q1)Tkl(−~q1)〉〉 = 0. (2.17)

Generally, we can combine the information contained in the leading and subleading soft

theorems to reconstruct the Taylor expansion for correlators in the soft limit. Thus, us-

ing (2.13) and (2.17), for the 2-point function we have

〈〈Tij(~q1)Tkl(−~q1)〉〉 = lim
q1→0
〈〈Tij(~q1)Tkl(−~q1)〉〉+ q1a lim

q1→0

∂

∂q1a
〈〈Tbj(~q1)Tkl(−~q1)〉〉+O(q2

1)

= O(q2
1), (2.18)

8Again, see appendix B.1 for details.
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while for the 3-point function,

〈〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉〉+ . . .

= lim
q1→0

[
〈〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉〉+ . . .

]
+ q1a lim

q1→0

∂

∂q1a

[
〈〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉〉+ . . .

]
+O(q2

1), (2.19)

where (2.10) and (2.16) should be used to evaluate the right-hand side.

2.4 Converting to a helicity basis

We now convert our results to a helicity basis by contracting with polarisation tensors

and taking traces. Expressed in this form, our results for the squeezed limit of the stress

tensor 3-point function are ready to be fed into our holographic formulae for cosmological

correlators. As we will see later, these holographic formulae associate trace components of

the stress tensor with cosmological curvature perturbations, while helicity components are

associated with gravitons.

We begin by defining the trace and helicity contractions

T (~q) = δijTij(~q), T (s)(~q) =
1

2
ε
(s)
ij (−~q)Tij(~q), Υ(~q1, ~q2) = δijδklΥijkl(~q1, ~q2),

Υ(s2)(~q1, ~q2) =
1

2
δijε

(s2)
kl (−~q2)Υijkl(~q1, ~q2), (2.20)

Υ(s1s2)(~q1, ~q2) =
1

4
ε
(s1)
ij (−~q1)ε

(s2)
kl (−~q2)Υijkl(~q1, ~q2).

Here, the transverse traceless polarisation tensors ε
(s)
ij (~q) carry a helicity index s = ±1 (see

appendix C for a summary of our conventions). To write our results in compact form, it is

also useful to introduce the general decomposition

〈〈Tij(~q)Tkl(−~q)〉〉 = A(q)Πijkl +B(q)πijπkl, (2.21)

where the transverse traceless and transverse projection operators, Πijkl and πij respec-

tively, are defined by

Πijkl =
1

2
(πikπjl + πilπjk − πijπkl), πij = δij −

qiqj
q2

. (2.22)

The form of this decomposition follows directly from the Ward identity (2.4) in momentum

space. Physically, A(q) encodes the transverse traceless and B(q) the trace part of the stress

tensor 2-point function. Moreover, from (2.18), in the squeezed limit as q1 → 0 we have

A(q1) = O(q2
1), B(q1) = O(q2

1). (2.23)

With these considerations in place, our aim is now to project the Taylor expan-

sion (2.19) for the squeezed limit of the 3-point function into the helicity basis. To

– 9 –



J
H
E
P
0
2
(
2
0
1
5
)
0
5
3

commute polarisation tensors inside momentum derivatives where needed we use the

additional identity
∂

∂qa
ε
(s)
ij (~q) = − 2

q2
q(iε

(s)
j)a(~q), (2.24)

as derived in appendix C.2. From this relation (or directly from (2.22)), we also have

∂

∂qa
πij = − 2

q2
q(iπj)a,

∂

∂qa
Πijkl = − 2

q2

(
q(iΠj)akl + q(kΠl)aij

)
. (2.25)

To evaluate the various contractions of polarisation tensors arising on the right-hand sides,

without loss of generality we can simply pick a basis where ~q and ~q1 lie in the (x, z) plane

and use the explicit representation given in appendix C.1. This allows all contractions of

polarisation tensors to be evaluated in terms of the momentum magnitudes q and q1 and

the angle ϕ defined in (2.3).

After some straightforward computation, we then find

〈〈T (q1)T (q2)T (q3)〉〉 − 2〈〈T (q1)Υ(q2, q3)〉〉 − 2〈〈Υ(q1, q2)T (q3)〉〉 − 2〈〈Υ(q1, q3)T (q2)〉〉

= 4
(
B(q)− qB′(q)

)
+O(q2

1), (2.26)

〈〈T (q1)T (q2)T (s3)(q3)〉〉

− 2〈〈T (q1)Υ(s3)(q2, q3)〉〉 − 2〈〈Υ(q1, q2)T (s3)(q3)〉〉 − 2〈〈Υ(s3)(q1, q3)T (q2)〉〉

= O(q2
1), (2.27)

〈〈T (q1)T (s2)(q2)T (s3)(q3)〉〉

− 2〈〈T (q1)Υ(s2s3)(q2, q3)〉〉 − 2〈〈Υ(s2)(q1, q2)T (s3)(q3)〉〉 − 2〈〈Υ(s3)(q1, q3)T (s2)(q2)〉〉

=
1

2

(
7A(q)− qA′(q)

)
δs2s3 +O(q2

1), (2.28)

〈〈T (s1)(q1)T (q2)T (q3)〉〉

− 2〈〈T (s1)(q1)Υ(q2, q3)〉〉 − 2〈〈Υ(s1)(q2, q1)T (q3)〉〉 − 2〈〈Υ(s1)(q3, q1)T (q2)〉〉

= −
√

2 sin2 ϕ
(
2B(q) + qB′(q)

)
+O(q2

1), (2.29)

〈〈T (s1)(q1)T (s2)(q2)T (q3)〉〉

− 2〈〈T (s1)(q1)Υ(s2)(q3, q2)〉〉 − 2〈〈Υ(s1)(q3, q1)T (s2)(q2)〉〉 − 2〈〈Υ(s1s2)(q1, q2)T (q3)〉〉

=
1

4
(cosϕ− s1s2)2

(
A(q) + 2B(q)

)
+
q1

4q
A(q) sin2 ϕ(s1s2 − cosϕ)

+
q1

8q

[
q
(
2B′(q)−A′(q)

)
+ 2B(q)

]
cosϕ(s1s2 − cosϕ)2 +O(q2

1), (2.30)

〈〈T (s1)(q1)T (s2)(q2)T (s3)(q3)〉〉

− 2〈〈T (s1)(q1)Υ(s2s3)(q2, q3)〉〉−2〈〈Υ(s1s2)(q1, q2)T (s3)(q3)〉〉−2〈〈Υ(s1s3)(q1, q3)T (s2)(q2)〉〉

= − 1

4
√

2
sin2 ϕ

[(
qA′(q) + 2A(q)

)
δs2s3 +

q1

q

(
qA′(q) +A(q)

)
s1(s2 + s3)

]
+O(q2

1),

(2.31)
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where A′(q) = dA(q)/dq, etc., and the squeezed limit q1 → 0 is taken while enforcing (2.2).

In deriving (2.29) and (2.30) we also swapped the indices on Υklmn around using (2.8).

The soft theorems (2.26)–(2.31) are the main result of this paper from a quantum

field theory perspective. For free fields, we have explicitly checked each of these relations

using the results of [44, 53], in which the correlators above were evaluated for minimal

and conformal scalars, fermions and gauge fields. Given all the different field types and

polarisations, this amounts to a large number of non-trivial checks. To quote just a single

example, for a minimal scalar we have

〈〈T (q1)T (q2)T (q3)〉〉 =
1

128

(
2q1q2q3 − (q1 + q2 + q3)(q2

1 + q2
2 + q2

3)
)
, (2.32)

〈〈Υ(q1, q2)T (q3)〉〉 = 0, 〈〈T (q)T (−q)〉〉 = 4B(q) =
1

64
q3. (2.33)

Imposing (2.2), in the squeezed limit we then recover

〈〈T (q1)T (q2)T (q3)〉〉 − 2〈〈T (q1)Υ(q2, q3)〉〉 − 2〈〈Υ(q1, q2)T (q3)〉〉 − 2〈〈Υ(q1, q3)T (q2)〉〉

= − 1

32
q3 +O(q2

1), (2.34)

precisely as predicted.

3 Soft limits in holographic cosmology

Armed with our results (2.26)–(2.31) for the soft limit of the stress tensor 3-point function,

we are now in a position to derive the cosmological consistency relations holographically.

After introducing the necessary holographic formulae for cosmological correlators in sec-

tion 3.1, we deduce the consistency relations in section 3.2.

3.1 Holographic formulae

In holographic cosmology, the 2-point functions of superhorizon cosmological curvature

perturbations ζ(q) and gravitons γ(s)(q) are given by [43]

〈〈ζ(q)ζ(−q)〉〉 =
−1

8Im[B(q)]
, 〈〈γ(s)(q)γ(s′)(−q)〉〉 =

−δss′

Im[A(q)]
, (3.1)

where A(q) and B(q) are the transverse traceless and trace pieces of the stress tensor 2-

point function in the dual QFT, as defined in (2.21). The imaginary part in these formulae

is taken after making the analytic continuation

N → −iN, q → −iq, (3.2)

where N is the rank of the gauge group of the dual QFT. This continuation is the dual QFT

analogue of the bulk analytic continuation effecting the domain-wall/cosmology correspon-

dence, which acts to map perturbations on a domain-wall background to perturbations

on a corresponding cosmological background. For a detailed explanation of our approach

to holographic cosmology (and of how the rank N appears in the correlators of the dual
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QFT) we refer the reader to [43–45, 50, 53]. For our present purposes, however, no further

information is necessary. In fact, we do not even need to know how N enters any of the

correlators: to derive the cosmological consistency relations we need only to relate 3-point

functions in the squeezed limit to 2-point functions, and as we will see, this does not require

knowing the N -dependence of correlators.

The holographic formulae relating 3-point cosmological correlators to correlators of the

dual QFT were derived in [44, 45], and read

〈〈ζ(q1)ζ(q2)ζ(q3)〉〉

= − 1

256

(∏
i

Im[B(qi)]
)−1
× Im

[
〈〈T (q1)T (q2)T (q3)〉〉+ 4

∑
i

B(qi)

− 2
(
〈〈T (q1)Υ(q2, q3)〉〉+ cyclic perms.

)]
, (3.3)

〈〈ζ(q1)ζ(q2)γ(s3)(q3)〉〉

= − 1

32

(
Im[B(q1)]Im[B(q2)]Im[A(q3)]

)−1

× Im
[
〈〈T (q1)T (q2)T (s3)(q3)〉〉 − 2

(
Θ

(s3)
1 B(q1) + Θ

(s3)
2 B(q2)

)
− 2〈〈Υ(q1, q2)T (s3)(q3)〉〉 − 2〈〈T (q1)Υ(s3)(q2, q3)〉〉 − 2〈〈T (q2)Υ(s3)(q1, q3)〉〉

]
, (3.4)

〈〈ζ(q1)γ(s2)(q2)γ(s3)(q3)〉〉

= −1

4

(
Im[B(q1)]Im[A(q2)]Im[A(q3)]

)−1
(3.5)

× Im

[
〈〈T (q1)T (s2)(q2)T (s3)(q3)〉〉 − 1

2

(
A(q2) +A(q3)

)
θ(s2s3) −B(q1)Θ(s2s3)

− 2〈〈T (q1)Υ(s2s3)(q2, q3)〉〉 − 2〈〈T (s2)(q2)Υ(s3)(q1, q3)〉〉 − 2〈〈T (s3)(q3)Υ(s2)(q1, q2)〉〉
]
,

〈〈γ(s1)(q1)γ(s2)(q2)γ(s3)(q3)〉〉

= −
(∏

i

Im[A(qi)]
)−1
× Im

[
2〈〈T (s1)(q1)T (s2)(q2)T (s3)(q3)〉〉 − 1

2
Θ(s1s2s3)

∑
i

A(qi)

− 4
(
〈〈T (s1)(q1)Υ(s2s3)(q2, q3)〉〉+ cyclic perms.

)]
. (3.6)

Just as in the dual QFT, the double bracket notation used here for cosmological correlators

simply indicates the removal of the overall momentum-conserving delta function, e.g.,

〈ζ(~q1)ζ(~q2)ζ(~q3)〉 = 〈〈ζ(q1)ζ(q2)ζ(q3)〉〉(2π)3δ(~q1 + ~q2 + ~q3). (3.7)

The quantities Θ
(s)
1 , Θ

(s)
2 , Θ(s1s2), θ(s1s2) and Θ(s1s2s3) represent specific contractions of

polarisation tensors and projection operators and are listed in appendix C.1. The imaginary
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parts in these formulae are taken after applying the continuation (3.2), as above. We

emphasize also the presence of the semilocal contact terms in the numerators of these

formulae (i.e., the terms non-analytic in only a single momenta). The form of these terms

was carefully derived in [44, 45]; to obtain the correct cosmological consistency relations it

is essential their structure is correct.

3.2 Cosmological consistency relations

To derive the cosmological consistency relations we simply need to insert our re-

sults (2.26)–(2.31) for the soft limit of the stress tensor 3-point function (along with (2.23)

for the 2-point function) into the holographic formulae (3.3)–(3.6). The resulting terms

involving the 2-point function of the stress tensor and its derivatives can then be replaced

with cosmological 2-point functions and their derivatives using (3.1). The helicity contrac-

tion terms (i.e., Θ
(s)
1 , Θ

(s)
2 , Θ(s1s2), θ(s1s2) and Θ(s1s2s3)) are all dimensionless functions of

the momentum magnitudes (see appendix C.1) and so do not contribute to the imaginary

part of any formulae. Similarly, the momentum derivatives in (2.26)–(2.31) all appear in

dimensionless combinations and do not contribute to the imaginary part either. Knowing

the dependence of correlators on the rank N of the QFT gauge group is not necessary:

the QFT soft theorems giving rise to (2.26)–(2.31) are quite independent of this, and the

same analytic continuation applies in all holographic formulae, so the imaginary part of the

stress tensor 3-point function is simply related to the imaginary part of the stress tensor

2-point function, and hence to the cosmological 2-point function.

The complete leading and sub-leading behaviour of cosmological 3-point functions in

the squeezed limit can therefore be written

〈〈ζ(q1)ζ(q2)ζ(q3)〉〉
〈〈ζ(q1)ζ(−q1)〉〉

= (1− nS(q))〈〈ζ(q)ζ(−q)〉〉+O(q2
1), (3.8)

〈〈ζ(q1)ζ(q2)γ(s3)(q3)〉〉
〈〈ζ(q1)ζ(−q1)〉〉

= O(q2
1), (3.9)

〈〈ζ(q1)γ(s2)(q2)γ(s3)(q3)〉〉
〈〈ζ(q1)ζ(−q1)〉〉

= −nT (q)〈〈γ(+)(q)γ(+)(−q)〉〉δs2s3 +O(q2
1), (3.10)

〈〈γ(s1)(q1)ζ(q2)ζ(q3)〉〉
〈〈γ(+)(q1)γ(+)(−q1)〉〉

= (4− nS(q))〈〈ζ(q)ζ(−q)〉〉 1

2
√

2
sin2 ϕ+O(q2

1), (3.11)

〈〈γ(s1)(q1)γ(s2)(q2)ζ(q3)〉〉
〈〈γ(+)(q1)γ(+)(−q1)〉〉

= − 1

16

q1

q
〈〈γ(+)(q)γ(+)(−q)〉〉 cosϕ(s1s2 − cosϕ)2

+O(q2
1), (3.12)

〈〈γ(s1)(q1)γ(s2)(q2)γ(s3)(q3)〉〉
〈〈γ(+)(q1)γ(+)(−q1)〉〉

= (3− nT (q))〈〈γ(+)(q)γ(+)(−q)〉〉 1

2
√

2
sin2 ϕ

×
(
δs2s3 + s1(s2 + s3)

q1

q

)
+O(q2

1), (3.13)

where the limit q1 → 0 is taken while imposing (2.2). The scalar and tensor tilts in these
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formulae are defined by the usual expressions,

nS(q)− 1 =
d

d ln q
ln ∆2

S(q), nT (q) =
d

d ln q
ln ∆2

T (q), (3.14)

where the corresponding power spectra are

∆2
S(q) =

q3

2π2
〈〈ζ(q)ζ(−q)〉〉, ∆2

T (q) =
2q3

π2
〈〈γ(+)(q)γ(+)(−q)〉〉. (3.15)

(As per convention, a scale-invariant spectrum thus corresponds to nS = 1 but nT = 0.) In

writing the results in the form above we have also assumed invariance under parity, which

acts to invert all graviton helicities.

Our holographic derivation of the cosmological squeezed limits (3.8)–(3.13) is the main

result of this paper. The leading term of (3.8) is the famous Maldacena consistency relation

for the scalar bispectrum [1], while the absence of any contribution at order q1 is equivalent

to the ‘conformal’ consistency relation of [4, 5]. The leading pieces of (3.10) and (3.11) were

likewise discovered in [1], while the subleading piece of (3.11) is equivalent to the relation

found in [5].9 The remaining relations are then equivalent to the n = 0, 1 relations of [7].

4 Explicit tests

As a check on our calculations, we now verify the cosmological consistency rela-

tions (3.8)–(3.13) in two distinct scenarios, standard single field slow-roll inflation and

strongly coupled holographic cosmologies based on a perturbative dual QFT.

4.1 Slow-roll inflation

While the consistency relations for slow-roll inflation have been checked elsewhere (see,

e.g., [1, 4, 5, 56]), we repeat the exercise here since, relative to the literature, we have

chosen to replace contractions of polarisation tensors with explicit expressions in terms of

q, q1 and ϕ, and in addition our symmetrised definition (2.2) of the squeezed limit was not

always applied.

The 2-point functions at leading order in slow-roll are [57]

〈〈ζ(q)ζ(−q)〉〉SR =
κ2H2

∗
4ε∗q3

, 〈〈γ(s)(q)γ(s′)(−q)〉〉SR =
κ2H2

∗
q3

δss
′
, (4.1)

where κ2 = 8πG and the SR on correlators is shorthand for ‘slow-roll’. The asterisk

indicates as usual the evaluation of quantities at the moment of horizon crossing for which

q = aH. Our slow-roll parameters are defined as

ε = − Ḣ

H2
, η =

φ̈

φ̇H
, (4.2)

9Note that the example (68) given in [5] has a linear term because they set ~k2 = −~k1 − ~q, instead of the

symmetric definition we use here (2.2).

– 14 –



J
H
E
P
0
2
(
2
0
1
5
)
0
5
3

where H = ȧ/a is the proper Hubble rate and φ is the inflaton. With this choice, the

spectral tilts are then

nS − 1 = −4ε∗ − 2η∗, nT = −2ε∗, (4.3)

to leading order in slow-roll.

The 3-point functions for slow-roll inflation were obtained in [1]. Replacing the contrac-

tions of polarisation tensors that appear in [1] with expressions involving the momentum

magnitudes alone, we find [53]

〈〈ζ(q1)ζ(q2)ζ(q3)〉〉SR =
κ4H4

∗
32ε2∗

1

c3
123

[
2η∗
(
a3

123 − 3a123b123 + 3c123

)
+ ε∗

(
a3

123 − 2a123b123 − 16c123 +
8b2123

a123

)]
, (4.4)

〈〈ζ(q1)ζ(q2)γ(+)(q3)〉〉SR =
κ4H4

∗
16
√

2ε∗

λ2

a2
123c

3
123q

2
3

[
a3

123 − a123b123 − c123

]
, (4.5)

〈〈ζ(q1)γ(+)(q2)γ(+)(q3)〉〉SR = − κ4H4
∗

128b523q
2
1

(q2
1 − a2

23)2

[
(q2

1 − a2
23 + 2b23)− 8b223

q1a123

]
, (4.6)

〈〈ζ(q1)γ(+)(q2)γ(−)(q3)〉〉SR = − κ4H4
∗

128 b523q
2
1

(q2
1 − a2

23 + 4b23)2

×
[
(q2

1 − a2
23 + 2b23)− 8b223

q1a123

]
, (4.7)

〈〈γ(+)(q1)γ(+)(q2)γ(+)(q3)〉〉SR =
κ4H4

∗
64
√

2

λ2a2
123

c5
123

(a3
123 − a123b123 − c123), (4.8)

〈〈γ(+)(q1)γ(+)(q2)γ(−)(q3)〉〉SR =
κ4H4

∗
64
√

2

λ2

a2
123c

5
123

(q3 − a12)4(a3
123 − a123b123 − c123), (4.9)

where we use the following shorthand notation for symmetric polynomials of the momentum

magnitudes

a123 = q1 + q2 + q3, b123 = q1q2 + q2q3 + q3q1, c123 = q1q2q3

a12 = q1 + q2, b12 = q1q2, (4.10)

and similarly for a23 and b23, etc. We also define the useful combination

λ2 =(q1 + q2 + q3)(−q1 + q2 + q3)(q1− q2 + q3)(q1 + q2− q3)=−a123(a3
123−4a123b123 +8c123).

(4.11)

By Heron’s formula, λ is a quarter the area of the triangle with side lengths q1, q2 and q3.

To obtain the behaviour in the squeezed limit, we first set

q2
2 = q2 − q1q cosϕ+

1

4
q2

1, q2
3 = q2 + q1q cosϕ+

1

4
q2

1, (4.12)
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as per (2.2), and then by direct evaluation we find[
〈〈ζ(q1)ζ(q2)ζ(q3)〉〉
〈〈ζ(q1)ζ(−q1)〉〉

]
SR

= (2ε∗ + η∗)
κ2H2

∗
2ε∗q3

+O(q2
1), (4.13)

[
〈〈ζ(q1)ζ(q2)γ(s3)(q3)〉〉
〈〈ζ(q1)ζ(−q1)〉〉

]
SR

= O(q2
1), (4.14)

[
〈〈ζ(q1)γ(s2)(q2)γ(s3)(q3)〉〉

〈〈ζ(q1)ζ(−q1)〉〉

]
SR

= 2ε∗
κ2H2

∗
q3

δs2s3 +O(q2
1), (4.15)

[
〈〈γ(s1)(q1)ζ(q2)ζ(q3)〉〉
〈〈γ(+)(q1)γ(+)(−q1)〉〉

]
SR

=
κ2H2

∗
ε∗q3

3

8
√

2
sin2 ϕ+O(q2

1), (4.16)

[
〈〈γ(s1)(q1)γ(s2)(q2)ζ(q3)〉〉
〈〈γ(+)(q1)γ(+)(−q1)〉〉

]
SR

= −κ
2H2
∗

16 q4
q1 cosϕ(s1s2 − cosϕ)2 +O(q2

1), (4.17)

[
〈〈γ(s1)(q1)γ(s2)(q2)γ(s3)(q3)〉〉
〈〈γ(+)(q1)γ(+)(−q1)〉〉

]
SR

=
κ2H2

∗
q3

3

2
√

2
sin2 ϕ

(
δs2s3 + s1(s2 + s3)

q1

q

)
+O(q2

1).

(4.18)

These squeezed limits are indeed precisely in accordance with our consistency rela-

tions (3.8)–(3.13). In comparing (4.16) and (4.18) with (3.11) and (3.13) respectively,

note that it is sufficient to take (4 − nS) = 3 + O(ε∗, η∗) and (3 − nT ) = 3 + O(ε∗), since

we have only evaluated the left-hand sides to leading order in slow-roll.

4.2 Strongly coupled holographic cosmologies

We now turn to verify the consistency relations for strongly coupled holographic cosmolo-

gies based on a perturbative dual QFT. For a detailed discussion of these cosmologies,

including their predictions and their fit to recent observational data, we refer the reader

to [43, 44, 50–53]. In short, we postulate a phenomenological dual QFT consisting of three-

dimensional SU(N) Yang-Mills theory with general adjoint matter and interactions, then

use the holographic formulae to extract cosmological predictions for the regime in which

the dual QFT is weakly coupled. The basic parameters of the model are thus the rank

N , the Yang-Mills coupling g2
YM (or more accurately, the dimensionless effective coupling

g2
eff = g2

YMN/q, which is assumed to be small over the range of scales relevant to the

CMB), and the field content, i.e., the number of minimal and conformal scalars, fermions,

and gauge fields. In fact, at leading 1-loop order the interactions do not contribute and

g2
eff does not appear, although at 2-loop order interactions generate deviations from scale

invariance of the form nS(q)−1 ∼ g2
eff and nT (q) ∼ g2

eff [43, 50]. Moreover, the field content

only enters (with one exception) in two specific combinations N(A) and N(B) defined in

(4.6) of [53]; the former effectively counts the total number of fields, while the latter counts

the number of non-conformal fields (i.e., minimal scalars plus gauge fields).

Evaluating the leading 1-loop Feynman diagrams contributing to the 2- and 3-point

functions of the stress tensor then using the holographic formulae (3.1) and (3.3)–(3.6),
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one obtains cosmological predictions as follows. Firstly, the 2-point functions read [43]

〈〈ζ(q)ζ(−q)〉〉HM =
32

N2N(B)q3
, 〈〈γ(s)(q)γ(s′)(−q)〉〉HM =

256

N2N(A)q3
δss
′
, (4.19)

where the subscript HM stands for ‘holographic model’. At 1-loop order, the spectrum

is thus scale-invariant (i.e., nS(q) = 1, nT (q) = 0), but this does not persist at higher

orders as noted above. We observe also that the large-N ’t Hooft limit of the dual QFT is

consistent with the small observed amplitude of the scalar power spectrum.

Next, from [44, 53], the 3-point functions are

〈〈ζ(q1)ζ(q2)ζ(q3)〉〉HM =
512

N4N 2
(B)

λ2

a123c3
123

, (4.20)

〈〈ζ(q1)ζ(q2)γ(+)(q3)〉〉HM =
2048√

2N4N(A)N(B)

λ2

a2
123c

3
123q

2
3

[
a3

123−a123b123−c123−a123q
2
3

]
,

(4.21)

〈〈ζ(q1)γ(+)(q2)γ(+)(q3)〉〉HM = − 512

N4N 2
(A)b

5
23q

2
1

(q2
1 − a2

23)2

[
q2

1 − a2
23 + 2b23 +

32b323

a4
123

]
,

(4.22)

〈〈ζ(q1)γ(+)(q2)γ(−)(q3)〉〉HM = − 512

N4N 2
(A)b

5
23q

2
1

(q2
1− a2

23+ 4b23)2(q2
1− a2

23 + 2b23), (4.23)

〈〈γ(+)(q1)γ(+)(q2)γ(+)(q3)〉〉HM =
1024√

2N4N 2
(A)

λ2a2
123

c5
123

[
a3

123 − a123b123 − c123

−
(

1− 4
Nψ
N(A)

)
64c3

123

a6
123

]
, (4.24)

〈〈γ(+)(q1)γ(+)(q2)γ(−)(q3)〉〉HM =
1024√

2N4N 2
(A)

λ2

a2
123c

5
123

(q3 − a12)4(a3
123 − a123b123 − c123),

(4.25)

where the symmetric polynomials a123, a23, λ2, etc., are as defined earlier in (4.10)

and (4.11). The Nψ is the penultimate formula is the number of fermions in the dual

QFT (the one exception where the field content does not enter as just N(A) or N(B) as

noted above).

To extract the behaviour of the holographic model in the squeezed limit, we once again

set q2 and q3 as in (4.12), then by direct evaluation we find[〈〈ζ(q1)ζ(q2)ζ(q3)〉〉
〈〈ζ(q1)ζ(−q1)〉〉

]
HM

= O(q2
1), (4.26)

[〈〈ζ(q1)ζ(q2)γ(s3)(q3)〉〉
〈〈ζ(q1)ζ(−q1)〉〉

]
HM

= O(q2
1), (4.27)

[〈〈ζ(q1)γ(s2)(q2)γ(s3)(q3)〉〉
〈〈ζ(q1)ζ(−q1)〉〉

]
HM

= O(q2
1), (4.28)
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[〈〈γ(s1)(q1)ζ(q2)ζ(q3)〉〉
〈〈γ(+)(q1)γ(+)(−q1)〉〉

]
HM

=
24
√

2

N2N(B)q3
sin2 ϕ+O(q2

1), (4.29)

[〈〈γ(s1)(q1)γ(s2)(q2)ζ(q3)〉〉
〈〈γ(+)(q1)γ(+)(−q1)〉〉

]
HM

= − 16

N2N(A)

q1

q4
cosϕ (s1s2 − cosϕ)2 +O(q2

1), (4.30)

[〈〈γ(s1)(q1)γ(s2)(q2)γ(s3)(q3)〉〉
〈〈γ(+)(q1)γ(+)(−q1)〉〉

]
HM

=
192
√

2

N2N(A)

1

q3
sin2 ϕ

(
δs2s3 + s1(s2 + s3)

q1

q

)
+O(q2

1).

(4.31)

Once again, we see these results are exactly in accordance with our consistency rela-

tions (3.8)–(3.13), which therefore do indeed hold for the holographic model.

In fact, we are now in a position to understand a puzzling feature of the holographic

model 3-point functions noted in section 7 of [53]. After defining dimensionless shape func-

tions for general cosmological 3-point correlators, these shape functions were observed to

have similar behaviour in the squeezed limit for both slow-roll inflation and the holographic

model, with one curious exception: for slow-roll inflation the shape function S(ζγ(+)γ(+))

has a simple pole as the momentum q1 associated with the ζ vanishes, whereas its holo-

graphic model counterpart instead has a zero.

This discrepancy can now easily be understood using (3.10). Plugging this relation

into the definitions of the shape function from [53], in the squeezed limit q1 → 0 we find

S(ζγ(+)γ(+)) = −nT (q)
q2

1

q2

〈〈ζ(q1)ζ(−q1)〉〉
〈〈γ(+)(q)γ(+)(−q)〉〉

(
1 +O(q2

1)
)
. (4.32)

For slow-roll inflation we then have SSR(ζγ(+)γ(+)) = q/(2q1) + O(q1), but for the holo-

graphic model SHM (ζγ(+)γ(+)) = q1/(2q) +O(q2
1) because the tensor tilt vanishes. As we

have already emphasized, however, this vanishing tensor tilt for the holographic model

is only an artifact of working to 1-loop order in the dual QFT: at 2-loops interac-

tions typically generate a non-zero tensor tilt nT (q) ∼ g2
eff . At 2-loop order then, the

squeezed limit of the holographic model shape function will in fact be a pole after all,

SHM (ζγ(+)γ(+)) ∼ g2
YMN/q1. For the remaining polarisation ζγ(+)γ(−) this issue does

not arise, since the right-hand side of (3.10) vanishes identically. Similarly, for the other

correlators involving either one or three gravitons, the issue does not arise because for

these correlators the corrections generated by small deviations from scale invariance are

subleading, as we see from (3.9)–(3.13). The shape function for ζζζ was not examined

in [53], but in this case higher-loop corrections to the scalar tilt of the holographic model

are clearly important.

5 Discussion

The origin of the inflationary consistency relations in holographic cosmology is now clear.

By taking moments of the diffeomorphism Ward identity, we showed that correlators of the

stress tensor in the dual QFT obey a set of non-perturbative soft theorems governing their

behaviour in the limit as one momentum vanishes. The soft theorems derived from the
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first and second moments are alone sufficient to fully determine the leading and subleading

soft behaviour. Plugging this information into the holographic formulae connecting corre-

lators of the dual QFT to bulk cosmological correlators, we immediately obtain the correct

cosmological consistency relations to O(q2
1) for all 3-point functions of curvature perturba-

tions and gravitons. Besides furnishing a simple holographic derivation of the consistency

relations, our analysis extends their validity to cosmologies in which the gravitational de-

scription is strongly coupled and only the dual QFT is tractable.

The approach we have developed is both straightforward and systematic, and is easily

generalised in a number of directions. Firstly, as we will show elsewhere [42], the infinite

set of higher-order consistency relations found in [7] can be derived from the soft theorems

associated with the third and higher moments of the diffeomorphism Ward identity in the

dual QFT. At these higher orders, it is no longer possible to fully undo the symmetrisation

over indices that appears in the soft theorems, meaning that only partial constraints can

be extracted instead of the complete higher-order soft behaviour. Exactly the same was

found on the cosmological side in [7].

Another obvious extension is to higher-point correlation functions, starting with the

4-point function (see, e.g., [58–63]). While the derivation of the necessary soft theorems

for stress tensor correlators is straightforward, obtaining the holographic formulae con-

necting QFT and cosmological correlators is more involved. Whatever method is used, we

stress the importance of correctly determining the semilocal contact terms appearing in

the numerators of the holographic formulae, without which it is impossible to recover the

correct soft behaviour. (Indeed, this is ultimately the reason why it is necessary to keep

track of such terms in the first place.) The importance of these terms was also emphasized

in [41, 44, 45, 51, 53], where their contribution to local-type non-Gaussianity was noted.

With an extension to higher-point functions in place, it would be interesting to examine

internal [46, 47] and multiple soft limits [48, 49] from a holographic perspective, as well as

infrared loop effects [46, 64–70].

Finally, an important issue we have only touched on is the following. We know that

the cosmological consistency relations can fail when any of their basic input assumptions

are violated, e.g., by the presence of multiple scalar fields or non-Bunch-Davies initial

conditions. Under such conditions, the holographic derivation of the consistency relations

we have given must necessarily break down. Understanding precisely how this occurs

is an interesting direction for future work. Nevertheless, our rough expectations are as

follows. Deviations from Bunch-Davies initial conditions for perturbations corresponds to

evaluating dual QFT correlators in excited states instead of the Euclidean vacuum [43]. In

consequence, 1-point functions might not vanish in the absence of sources as assumed in

our derivation of the Ward identities for stress tensor correlators.

In the case of cosmologies with multiple scalar fields, non-adiabatic backgrounds will

generate spatially non-uniform sources for some of the scalar operators in the dual QFT.

This in turn produces extra contributions to the diffeomorphism Ward identity invalidating

the soft theorems we have derived here. (Similar considerations arise in the wavefunction

of the universe approach, as noted in [34].) For example, in the case of a single entropy
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mode, instead of (1.1) we would have

0 = ∇i〈Tij(~x)〉s + 〈O(~x)〉s∇jσ(~x), (5.1)

where σ(~x) is the spatially varying source for the entropy mode. (We assume we can choose

coordinates on field space so as to set the inflaton source to be spatially homogeneous in the

background.) Differentiating (5.1) with respect to the metric (n−1) times before restoring

the sources to their background values, we obtain Ward identities mixing the stress tensor

n-point function with the n-point function of one scalar and (n−1)-stress tensors (plus new

contact terms). Consequently, we can no longer simply relate the n-point function of the

stress tensor to purely lower-point functions as we could before. It would be instructive to

study this in a specific setting, for example, the deformation of a CFT by multiple slightly

relevant scalars in conformal perturbation theory [41, 71, 72].

Acknowledgments

Research at the Perimeter Institute is supported by the Government of Canada through

Industry Canada and by the Province of Ontario through the Ministry of Research &

Innovation. We thank also the U.K. Science & Technology Facilities Council for support.

A Convergence of boundary terms

When we integrate by parts the n-th moment of the Ward identity (2.5), we require the

convergence of the boundary term10∫
d3~x1

∂

∂x1i

[
x1a1 . . . x1an〈Tij(~x1)Tkl(~x2)Tmn(~x3)〉

]
. (A.1)

In general, we expect this boundary term to be most singular for massless theories in which

correlators decay algebraically rather than exponentially. It is useful to consider the case of

a conformal field theory. As we take ~x1 to the boundary for finite ~x2 and ~x3 in the interior,

we can use the operator product expansion to replace Tkl(~x2)Tmn(~x3) with a single stress

tensor insertion at ~x2 say.11 The resulting 2-point function 〈Tij(~x1)Tab(~x2)〉 then scales as

x−6
1 as x1 → ∞, since the stress tensor has dimension three in three dimensions. As the

area of the boundary scales as x2
1, we expect the boundary term (A.1) to converge for the

first three moments, but a logarithmic divergence could potentially arise for the fourth.

The existence of soft theorems for the fourth and higher moments is therefore non-trivial

and the convergence of boundary terms should be checked on a case-by-case basis.12

10We can ignore the semilocal terms involving the Υijkl tensor as they only contribute when ~x1 coincides

with ~x2 or ~x3, and so do not appear in the boundary term.
11Contributions to the OPE from other operators with different dimensions will vanish when inserted

into the 2-point function with Tij(~x1), while descendants of the stress tensor will give rise to less divergent

behaviour as x1 →∞.
12While the divergence of these higher moments can be regulated by the introduction of a Fourier trans-

form factor e−i~q1·~x1 prior to the integration by parts, to deal with the extra terms thereby introduced

requires additional smoothness assumptions as discussed in appendix B.2.
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Similar scaling arguments also apply to the evaluation of moments of higher-point

functions of the stress tensor, as would arise in the analysis of soft limits for higher-

point cosmological correlators. Applying the operator product expansion sequentially, we

again expect the first three moments to converge, but the fourth and higher moments

potentially diverge for massless QFTs. Such divergences, if present, would limit the amount

of information we can extract about the soft limit.

B Momentum space

B.1 Fourier transforms

In this section we outline a few supplementary details concerning the conversion of the

position-space soft theorems (2.9) and (2.14) to their momentum-space counterparts (2.10)

and (2.15). The first step is to write the left-hand sides of (2.9) and (2.14) as∫
d3~x1 〈Tij(~x1) . . .〉 = lim

q1→0

∫
d3~x1 e

−i~q1·~x1〈Tij(~x1) . . .〉, (B.1)∫
d3~x1 x1(a〈Tb)j(~x1) . . .〉 = lim

q1→0
i
∂

∂q1(a

∫
d3~x1 e

−i~q1·~x1〈Tb)j(~x1) . . .〉. (B.2)

We then set ~x3 = −~x2, multiply by 8e−2i~q·~x2 and integrate over ~x2. Thus, for example,

8

∫
d3~x1d3~x2 e

−i~q1·~x1−2i~q·~x2 〈Tij(~x1)Tkl(~x2)Tmn(−~x2)〉

= 8

∫
d3~x1d3~x2d3~x3 e

−i~q1·~x1−i~q·(~x2−~x3) 〈Tij(~x1)Tkl(~x2)Tmn(~x3)〉δ(~x2 + ~x3)

= 8

∫
d3~p

(2π)3

∫
d3~x1d3~x2d3~x3 e

−i~q1·~x1−i(~p+~q)·~x2−i(~p−~q)·~x3 〈Tij(~x1)Tkl(~x2)Tmn(~x3)〉

= 8

∫
d3~p

(2π)3
〈Tij(~q1)Tkl(~p+ ~q)Tmn(~p− ~q)〉

= 8

∫
d3~p

(2π)3
〈〈Tij(~q1)Tkl(~p+ ~q)Tmn(~p− ~q)〉〉(2π)3δ(~q1 + 2~p)

= 〈〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉〉, (B.3)

with ~q2 and ~q3 fixed as given in (2.2). Note the factor of 8 cancels in the last line with

the Jacobian factor from aligning the integration measure with the argument of the delta

function.

The right-hand sides of (2.9) and (2.14) can be handled similarly by setting ~x3 = −~x2,

multiplying by 8e−2i~q·~x2 and integrating over ~x2. For the last term on the right-hand side

of (2.9), note we must evaluate the derivatives first before setting ~x3 = −~x2. This can be

accomplished, for example, by writing(
x2i

∂

∂x2j
+x3i

∂

∂x3j

)
〈Tkl(~x2)Tmn(~x3)〉 = −

∫
d3~p

(2π)3
ei~p·(~x2−~x3) ∂

∂pi

(
pj〈〈Tkl(~p)Tmn(−~p)〉〉

)
.

(B.4)
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For the last term on the right-hand side of (2.14), we have instead(
x2ax2b

∂

∂x2j
+x3ax3b

∂

∂x3j

)
〈Tkl(~x2)Tmn(~x3)〉

= (x2ax2b − x3ax3b)

∫
d3~p

(2π)3
ei~p·(~x2−~x3)〈〈Tkl(~p)Tmn(−~p)〉〉, (B.5)

which vanishes when we set ~x3 = −~x2. For this reason the right-hand side of (2.15) contains

only single derivatives with respect to momenta, rather than double as might have been

expected.

B.2 Differentiating the momentum-space Ward identity

An alternative route to obtain the soft theorems (2.10) and (2.16) is to start directly from

the 3-point Ward identity (2.5) in momentum space, which reads

q1i

[
〈〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉〉

− 2〈〈Tij(~q1)Υklmn(~q2, ~q3)〉〉 − 2〈〈Υijmn(~q1, ~q3)Tkl(~q2)〉〉 − 2〈〈Υijkl(~q1, ~q2)Tmn(~q3)〉〉
]

= 2q1(k〈〈Tl)j(~q3)Tmn(−~q3)〉〉+ 2q1(m〈〈Tn)j(~q2)Tkl(−~q2)〉〉+ δklq2p〈〈Tpj(~q3)Tmn(−~q3)〉〉

+ δmnq3p〈〈Tpj(~q2)Tkl(−~q2)〉〉 − q2j〈〈Tkl(~q3)Tmn(−~q3)〉〉 − q3j〈〈Tmn(~q2)Tkl(−~q2)〉〉. (B.6)

To proceed we need to assume the squeezed limit is smooth in the sense that both the

Ward identity (B.6) and the stress tensor 3-point function (along with the semilocal terms

inside the square bracket above) are at least twice differentiable in the limit as q1 → 0.

Setting ~q2 and ~q3 as in (2.2) and differentiating (B.6) with respect to ~q1 (using the chain

rule where appropriate), in the limit q1 → 0 we do indeed recover precisely the leading soft

theorem (2.10). Notice here that the combination

lim
q1→0

q1i
∂

∂q1a

[
〈〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉〉

− 2〈〈Tij(~q1)Υklmn(~q2, ~q3)〉〉 − 2〈〈Υijmn(~q1, ~q3)Tkl(~q2)〉〉 − 2〈〈Υijkl(~q1, ~q2)Tmn(~q3)〉〉
]

(B.7)

vanishes since differentiability implies that the derivative of the stress tensor 3-point func-

tion (plus semilocal terms) is finite in the limit q1 → 0, i.e., there are no poles to counteract

the overall factor of q1i.

Similarly, to recover the subleading soft theorem (2.15), we impose (2.2) and differen-

tiate (B.6) twice with respect to ~q1 before taking the limit q1 → 0. This procedure yields

exactly (2.15), noting that the combination

lim
q1→0

q1i
∂

∂q1a

∂

∂q1b

[
〈〈Tij(~q1)Tkl(~q2)Tmn(~q3)〉〉

− 2〈〈Tij(~q1)Υklmn(~q2, ~q3)〉〉 − 2〈〈Υijmn(~q1, ~q3)Tkl(~q2)〉〉 − 2〈〈Υijkl(~q1, ~q2)Tmn(~q3)〉〉
]

(B.8)

vanishes, again by the assumed differentiability of the stress tensor 3-point function plus

semilocal terms in the limit q1 → 0.
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At first sight, it seems puzzling that we have been able to recover the complete stress

tensor 3-point function up to terms of order q2
1 when solutions of the Ward identity (B.6)

are ambiguous up to the addition of a transverse term. Such terms are tacitly forbid-

den, however, by our assumption that the stress tensor 3-point function (plus appropriate

semilocal terms) is twice differentiable in the limit as q1 → 0. To see this, notice that the

general form of any ambiguous contribution13 is πa(i(~q1)πj)b(~q1)Xabklmn(~q1, ~q). The action

of two derivatives with respect to ~q1 on the projection operators then produces a double

pole, as can be seen from (2.25). For this to cancel requires Xabklmn = O(q2
1), rendering

the stress tensor 3-point function unambiguous to the required order.

The smoothness assumption we have employed in this momentum-space derivation

appears to be unnecessary in the position-space approach we used in the main text. The

origin of this subtle difference can be seen as follows. In our position-space approach, we

took the route∫
d3~x1 x1a

∂

∂x1i
〈Tij(~x1) . . .〉 = −

∫
d3~x1 〈Taj(~x1) . . .〉 = − lim

q1→0

∫
d3~x1 e

−i~q1·~x1〈Taj(~x1) . . .〉

(B.9)

whereas the momentum-space approach above is equivalent to

lim
q1→0

∂

∂q1a

[
q1i〈Tij(~q1) . . .〉

]
= lim

q1→0

∫
d3~x1 e

−i~q1·~x1x1a
∂

∂x1i
〈Tij(~x1) . . .〉. (B.10)

Thus, in the position-space approach, the integration by parts is performed first, before

the exponential factor is introduced. In the momentum-space approach, however, the

exponential factor is introduced prior to the integration by parts, generating the extra

terms (B.7) and (B.8) above. Our smoothness assumption was then required to guarantee

the vanishing of these terms.

C Helicity basis

This appendix provides further details about the helicity basis we adopt in the main text.

In section C.1, we define our conventions and list the assorted contractions of polarisation

tensors that feature in the holographic formulae (3.3)–(3.6). In section C.2, we discuss the

differentiation of polarisation tensors with respect to momentum.

C.1 Conventions

Our polarisation tensors ε
(s)
ij (~q) satisfy

ε
(s)
ij (~q) = ε

(s)
ji (~q), ε

(s)
ii (~q) = 0, qiε

(s)
ij (~q) = 0, (C.1)

and are normalised such that [57]

Πijkl(~q) =
1

2
ε
(s)
ij (~q)ε

(s)
kl (−~q), ε

(s)
ij (~q)ε

(s′)
ij (−~q) = 2δss

′
, (C.2)

13See appendix A.1 of [73] for a complete classification.
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where the transverse traceless projector Πijkl was defined in (2.22). Helicity indices s, s′,

etc., take values ±1 and we sum over repeated indices.

When dealing with 3-point functions, momentum conservation implies that all three

momenta lie in a single plane. Taking this plane to be the (x, z) plane, for some momentum

~q = q (sin θ, 0, cos θ) we then have

ε
(s)
ij (~q) =

1√
2

 cos2 θ is cos θ − sin θ cos θ

is cos θ −1 −is sin θ

− sin θ cos θ −is sin θ sin2 θ

 . (C.3)

Using this representation we can evaluate contractions of polarisation tensors such as those

that appear in the holographic formulae (3.3)–(3.6), namely

Θ
(s3)
1 = πij(~q1)ε

(s3)
ij (−~q3), Θ

(s3)
2 = πij(~q2)ε

(s3)
ij (−~q3),

Θ(s2s3) = πij(~q1)ε
(s2)
ik (−~q2)ε

(s3)
kj (−~q3), θ(s2s3) = ε

(s2)
ij (−~q2)ε

(s3)
ij (−~q3),

Θ(s1s2s3) = ε
(s1)
ij (−~q1)ε

(s2)
jk (−~q2)ε

(s3)
ki (−~q3), (C.4)

where the transverse projection operator πij was defined in (C.2). In terms of the symmetric

polynomials of momentum magnitudes defined in (4.10) and (4.11), we find14

Θ
(±)
1 = − λ2

4
√

2b213

, Θ
(±)
2 = − λ2

4
√

2b223

,

Θ(+++) = − λ2a2
123

16
√

2c2
123

, Θ(++−) = − λ2

16
√

2c2
123

(q3 − a12)2,

θ(++) =
a2

123(a23 − q1)2

8b223

, θ(+−) =
(a13 − q2)2(a12 − q3)2

8b223

,

Θ(++) =
a123(a23 − q1)

16c2
123

[
2q2

1a123(a23 − q1)− λ2
]
,

Θ(+−) =
(a13 − q2)(a12 − q3)

16c2
123

[
2q2

1(a13 − q2)(a12 − q3) + λ2
]
. (C.5)

The representation (C.3) can also be used to evaluate the contractions of polarisation

tensors arising when converting our soft theorems to a helicity basis in section 2.4.

C.2 Derivative of a polarisation tensor with respect to momentum

We now turn to the derivation of (2.24), namely

∂

∂qa
ε
(s)
ij (~q) = − 2

q2
q(iε

(s)
j)a(~q). (C.6)

One method is to note that the most general form the right-hand side could take is

∂

∂qa
ε
(s)
ij (~q) = A1(q)qaδij+A2(q)q(iδj)a+A3(q)qaqiqj+A4(q)qaε

(s)
ij (~q)+A5(q)q(iε

(s)
j)a(~q), (C.7)

14See appendix C of [45] and appendix A of [53] for further details.
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Figure 2. Given arbitrary vectors ~q and δ~q we can orient our coordinates such that (C.9) holds.

for some unknown scalar coefficients An(q). We then enforce, e.g.,

qi
∂

∂qa
ε
(s)
ij (~q) = −ε(s)ja (~q), δij

∂

∂qa
ε
(s)
ij (~q) = 0, qa

∂

∂qa
ε
(s)
ij (~q) = 0, (C.8)

where the first two relations encode the transverse tracelessness of ε
(s)
ij (q) and the last arises

from its independence under rescalings of ~q. Satisfying these relations requires A1(q) =

A2(q) = A3(q) = A4(q) = 0 and A5(q) = −2/q2, yielding (C.6).

As a check on this relation, consider two arbitrary vectors ~q and δ~q where, without

loss of generality, we can choose a Cartesian coordinate system such that

~q = q(0, 0, 1), δ~q = δq(sinϕ, 0, cosϕ), ~q + δ~q = (q + δq)(sin θ, 0, cos θ), (C.9)

as illustrated in figure 2. Here θ = (δq/q) sinϕ+ O(δq2) is small, but ϕ is not necessarily

so. We then have

ε(s)(~q + δ~q) =
1√
2

 cos2 θ is cos θ − sin θ cos θ

is cos θ −1 −is sin θ

− sin θ cos θ −is sin θ sin2 θ


= ε(s)(~q) +

δq√
2q

sinϕ

 0 0 −1

0 0 −is
−1 −is 0

+O(δq2). (C.10)

For (C.6) to be valid, this must match

ε
(s)
ij (~q+ δ~q) = ε

(s)
ij (~q) + δqa

∂

∂qa
ε
(s)
ij (~q) +O(δq2) = ε

(s)
ij (~q)− 2

q2
q(iε

(s)
j)a(~q)δqa +O(δq2). (C.11)

Since

ε(s)(~q) =
1√
2

 1 is 0

is −1 0

0 0 0

 , (C.12)
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we have

− 2

q2
q(iε

(s)
j)a(~q)δqa = −2

q
δz(iε

(s)
j)x(~q)δq sinϕ, (C.13)

which indeed reproduces (C.10).
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Limit: Consistency Relations at Order q2, JCAP 11 (2013) 015 [arXiv:1307.0503]

[INSPIRE].

[7] K. Hinterbichler, L. Hui and J. Khoury, An Infinite Set of Ward Identities for Adiabatic

Modes in Cosmology, JCAP 01 (2014) 039 [arXiv:1304.5527] [INSPIRE].

[8] P. Creminelli, C. Pitrou and F. Vernizzi, The CMB bispectrum in the squeezed limit, JCAP

11 (2011) 025 [arXiv:1109.1822] [INSPIRE].

[9] N. Bartolo, S. Matarrese and A. Riotto, Non-Gaussianity in the Cosmic Microwave

Background Anisotropies at Recombination in the Squeezed limit, JCAP 02 (2012) 017

[arXiv:1109.2043] [INSPIRE].

[10] E. Pajer, F. Schmidt and M. Zaldarriaga, The Observed Squeezed Limit of Cosmological

Three-Point Functions, Phys. Rev. D 88 (2013) 083502 [arXiv:1305.0824] [INSPIRE].

[11] Planck collaboration, P.A.R. Ade et al., Planck 2013 Results. XXIV. Constraints on

primordial non-Gaussianity, Astron. Astrophys. 571 (2014) A24 [arXiv:1303.5084]

[INSPIRE].

[12] S.B. Giddings and M.S. Sloth, Cosmological observables, IR growth of fluctuations and

scale-dependent anisotropies, Phys. Rev. D 84 (2011) 063528, CERN-PH-TH-2011-070

(2011).

[13] L. Dai, D. Jeong and M. Kamionkowski, Anisotropic imprint of long-wavelength tensor

perturbations on cosmic structure, Phys. Rev. D 88 (2013) 043507 [arXiv:1306.3985]

[INSPIRE].

[14] A. Kehagias and A. Riotto, Symmetries and Consistency Relations in the Large Scale

Structure of the Universe, Nucl. Phys. B 873 (2013) 514 [arXiv:1302.0130] [INSPIRE].

– 26 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1126-6708/2003/05/013
http://arxiv.org/abs/astro-ph/0210603
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0210603
http://dx.doi.org/10.1088/1475-7516/2004/10/006
http://arxiv.org/abs/astro-ph/0407059
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0407059
http://dx.doi.org/10.1088/1475-7516/2008/02/021
http://arxiv.org/abs/0709.0295
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.0295
http://dx.doi.org/10.1088/1475-7516/2011/11/038
http://arxiv.org/abs/1106.1462
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.1462
http://dx.doi.org/10.1088/1475-7516/2012/07/052
http://arxiv.org/abs/1203.4595
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4595
http://dx.doi.org/10.1088/1475-7516/2013/11/015
http://arxiv.org/abs/1307.0503
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.0503
http://dx.doi.org/10.1088/1475-7516/2014/01/039
http://arxiv.org/abs/1304.5527
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.5527
http://dx.doi.org/10.1088/1475-7516/2011/11/025
http://dx.doi.org/10.1088/1475-7516/2011/11/025
http://arxiv.org/abs/1109.1822
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1822
http://dx.doi.org/10.1088/1475-7516/2012/02/017
http://arxiv.org/abs/1109.2043
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.2043
http://dx.doi.org/10.1103/PhysRevD.88.083502
http://arxiv.org/abs/1305.0824
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0824
http://dx.doi.org/10.1051/0004-6361/201321554
http://arxiv.org/abs/1303.5084
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5084
http://dx.doi.org/10.1103/PhysRevD.84.063528
http://cds.cern.ch/record/1341879
http://dx.doi.org/10.1103/PhysRevD.88.043507
http://arxiv.org/abs/1306.3985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3985
http://dx.doi.org/10.1016/j.nuclphysb.2013.05.009
http://arxiv.org/abs/1302.0130
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0130


J
H
E
P
0
2
(
2
0
1
5
)
0
5
3

[15] M. Peloso and M. Pietroni, Galilean invariance and the consistency relation for the nonlinear

squeezed bispectrum of large scale structure, JCAP 05 (2013) 031 [arXiv:1302.0223]

[INSPIRE].
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